TWM598198U - Welding robot controlling system - Google Patents

Welding robot controlling system Download PDF

Info

Publication number
TWM598198U
TWM598198U TW109200150U TW109200150U TWM598198U TW M598198 U TWM598198 U TW M598198U TW 109200150 U TW109200150 U TW 109200150U TW 109200150 U TW109200150 U TW 109200150U TW M598198 U TWM598198 U TW M598198U
Authority
TW
Taiwan
Prior art keywords
welding
robot
unit
command
signal
Prior art date
Application number
TW109200150U
Other languages
Chinese (zh)
Inventor
簡隸
林晉毅
Original Assignee
新代科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新代科技股份有限公司 filed Critical 新代科技股份有限公司
Priority to TW109200150U priority Critical patent/TWM598198U/en
Publication of TWM598198U publication Critical patent/TWM598198U/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Manipulator (AREA)

Abstract

A welding robot controlling system includes a welding robot system, an external sensing element, a welding equipment, a robot, an external whole-line monitoring system, and an external server, and the welding robot system connected to the external sensing element, the welding equipment, the robot, the external whole-line monitoring system, and the external server respectively. The welding robot system further includes a signal input module receives an original data and processes to obtain a measurement data. An intelligent decision-making module includes an intelligent teaching unit that is provided functions to allow the user to adjust the path of the robot. A tracking modulation unit is provided for optimally adjusting workpieces by the welding equipment according to the measurement data for controlling the welding equipment to obtain a modulation command and a position command. The inspection and compensation unit is provided for on-line inspecting the workpiece, and the modulation parameter and the position parameter are obtained according to the measurement data. A welding equipment controlling unit is provided for controlling the cooperative operation of the robot and the welding equipment. A command output module is provided for converting the modulation command into an output signal, and the output signal is outputted to the robot and the welding equipment to perform and action of the outputted signal. An information monitor module is provided for transmitting the monitor data to the outside. The monitor data can be converted into quantitative index for the user.

Description

焊接機器人控制系統 Welding robot control system

本創作關於一種機器人技術領域,特別是關於一種焊接機器人控制系統。 This creation is about a robot technology field, especially about a welding robot control system.

現存的焊接自動化方案大多是採用多系統的架構,並且透過額外的中控系統,例如可編程邏輯控制器(PLC,programmable logic controller)來做串接。此種多系統方案對於設備商來說需要兼顧不同系統的開發,開發成本很高。當系統出現異常,要排查問題時會因為系統架構複雜很難明確的釐清問題,維護成本也相當高。此外,對於操作人員來說需要同時學習多個系統的操作方式,學習成本很高之外還有需要較長的時間才能夠上手,需要負擔較高的人力成本。 Most of the existing welding automation solutions adopt a multi-system architecture and are connected in series through an additional central control system, such as a programmable logic controller (PLC). Such a multi-system solution needs to take into account the development of different systems for equipment manufacturers, and the development cost is high. When there is an abnormality in the system, it is difficult to clearly clarify the problem due to the complex system architecture and the maintenance cost is also very high. In addition, it is necessary for operators to learn the operation methods of multiple systems at the same time. In addition to the high cost of learning, it also takes a long time to get started, requiring high labor costs.

根據上述的技術問題,本創作的主要目的是提供一種焊接機器人控制系統,利用機器手臂結合視覺系統、測高模組、焊縫跟蹤系統、焊接專用模組、資訊監控模組,以單系統的方式實現高度整合的焊接機器人系統,能夠同時適用於電弧焊接、雷射焊接,而提升焊接製程的品質與效率。 Based on the above technical issues, the main purpose of this creation is to provide a welding robot control system that uses a robot arm to combine the vision system, height measurement module, weld tracking system, welding special module, and information monitoring module, in a single system This way, a highly integrated welding robot system can be applied to both arc welding and laser welding, thereby improving the quality and efficiency of the welding process.

本創作的另一目的在於提供一種焊接機器人控制系統,單系統實現訊號感測、智能教導、追蹤調變、檢測補正、機器人控制等功能,高度整合且模組化的特點,使得焊接機器人控制系統提供其產業利用性。 Another purpose of this creation is to provide a welding robot control system. A single system realizes signal sensing, intelligent teaching, tracking and modulation, detection correction, robot control and other functions. The highly integrated and modular features make the welding robot control system Provide its industrial utility.

本創作的再一目的在於提供一種焊接機器人控制系統,在單系統架構下針對焊接製程在焊前、焊中及焊後提供不同的應用情境。 Another purpose of this creation is to provide a welding robot control system that provides different application scenarios for the welding process before, during and after welding in a single system architecture.

根據上述目的,本創作揭露一種焊接機器人控制系統,其具有焊接機器人系統、外部感測元件、焊接設備、機器人、外部整廠整線監控系統及外部伺服器,且焊接機器人系統分別與外部感測元件、焊接設備、機器人、外部整廠整線監控系統及外部伺服器連接,其中焊接機器人系統包括:訊號輸入模組、智慧決策模組、命令輸出模組以及資訊監控模組,其中訊號輸入模組用以接收原始資料,並將此原始資料處理之後得到量測資料。智慧決策模組還包括智慧教導單元、追蹤調變單元、檢測補正單元以及焊接設備控制單元,其中智慧教導單元用以提供至少一個功能使得使用者可以根據此功能調整機器人的路徑軌跡;追蹤調變單元,根據量測資料即時調控焊接設備以實時的針對工件的焊縫焊道狀態以在線方式進行工藝參數的最佳化調整以得到調變命令及位置命令;以及檢測補正單元對工件執行在線檢測,並根據量測資料得到調變參數與位置參數以作為下一次加工的補償依據;以及焊接設備控制單元用以控制機器人與焊接設備的協同操作。命令輸出模組是將調變命令轉換成輸出訊號,並將輸出訊號予以輸出機器人與焊接設備以執行相對應於輸出訊號的動作。資訊監控模組用以監控焊接機器人系統所產生的監控數據並傳送至外部整廠整線監控系統。 According to the above-mentioned purpose, this creation discloses a welding robot control system, which has a welding robot system, external sensing components, welding equipment, robots, an external whole-plant whole-line monitoring system and an external server, and the welding robot system is separate from the external sensing Components, welding equipment, robots, external whole-plant whole-line monitoring systems and external server connections. The welding robot system includes: signal input modules, smart decision-making modules, command output modules, and information monitoring modules. The signal input module The group is used to receive raw data, and process the raw data to obtain measurement data. The smart decision module also includes a smart teaching unit, a tracking modulation unit, a detection correction unit, and a welding equipment control unit. The smart teaching unit is used to provide at least one function so that the user can adjust the path trajectory of the robot according to this function; Unit, according to the measurement data, real-time control welding equipment to real-time on-line optimization of process parameters for the weld and bead state of the workpiece to obtain modulation commands and position commands; and the detection and correction unit performs online detection of the workpiece , And obtain the modulation parameters and position parameters according to the measurement data as the compensation basis for the next processing; and the welding equipment control unit is used to control the coordinated operation of the robot and the welding equipment. The command output module converts the modulation command into an output signal, and sends the output signal to the robot and welding equipment to perform actions corresponding to the output signal. The information monitoring module is used to monitor the monitoring data generated by the welding robot system and send it to the external whole-plant whole-line monitoring system.

根據上述焊接機器人控制系統,本創作還揭露一種焊接機器人控制方法,其步驟包括:感測原始資料;擷取並處理原始資料以得到量測資料;根據量測資料進行決策功能並分別轉換得到調變命令與位置命令;將調變命令轉換成輸出訊號並將此輸出訊號輸出以驅動至少一個焊接設備,並將位置命令轉換成驅動命令以驅動至少一個機器人,據此焊接設備及機器人協同對工件進行操作;以及分析量測資料以得到監控數據,並將此監控數據傳送至監控系統進行監控。 According to the aforementioned welding robot control system, this creation also discloses a welding robot control method, the steps of which include: sensing original data; capturing and processing the original data to obtain measurement data; performing decision-making functions based on the measurement data and converting them to obtain adjustments. Variable command and position command; convert the modulation command into an output signal and output the output signal to drive at least one welding device, and convert the position command into a drive command to drive at least one robot, according to which the welding device and the robot coordinate the workpiece Perform operations; and analyze measurement data to obtain monitoring data, and transmit the monitoring data to the monitoring system for monitoring.

1:焊接機器人控制系統 1: Welding robot control system

2:焊接機器人系統 2: Welding robot system

10:訊號輸入模組 10: Signal input module

110:訊號擷取單元 110: signal capture unit

120:訊號處理單元 120: signal processing unit

210:智慧教導單元 210: Wisdom Teaching Unit

220:追蹤調變單元 220: Tracking modulation unit

230:檢測補正單元 230: Detection and correction unit

240:焊接設備控制單元 240: Welding equipment control unit

20:智慧決策模組 20: Smart Decision Module

30:命令輸出模組 30: Command output module

310:運動規劃單元 310: Motion Planning Unit

320:力量控制單元 320: Power Control Unit

330:訊號輸出單元 330: Signal output unit

40:資訊監控模組 40: Information monitoring module

410:資料蒐集單元 410: Data Collection Unit

420:資料分析單元 420: Data Analysis Unit

430:通訊單元 430: Communication unit

50:外部感測元件 50: External sensing element

60:焊接設備 60: Welding equipment

70:機器人 70: Robot

80:外部整廠整線監控系統 80: External whole plant whole line monitoring system

90:外部伺服器 90: external server

S11~S14、S21、S22、S33、S41~S46、A1~A4、A11~A13、A21、A23~A27、A31~A33、A41、A43~A47:步驟 S11~S14, S21, S22, S33, S41~S46, A1~A4, A11~A13, A21, A23~A27, A31~A33, A41, A43~A47: steps

圖1是根據本創作所揭露的技術,表示焊接機器人控制系統的方塊示意圖。 Fig. 1 is a block diagram of a welding robot control system according to the technology disclosed in this creation.

圖2是根據本創作所揭露的技術,表示焊接機器人系統的方塊圖。 Fig. 2 is a block diagram showing the welding robot system according to the technology disclosed in this creation.

圖3是根據本創作所揭露的技術,表示焊接機器人控制方法的步驟流程示意圖。 Fig. 3 is a schematic diagram showing the steps of the welding robot control method according to the technology disclosed in this creation.

圖4A是根據本創作所揭露的技術,表示焊接機器人控制系統在焊前應用情境的步驟流程示意圖。 FIG. 4A is a schematic diagram showing the steps of the welding robot control system before welding according to the technology disclosed in this creation.

圖4B是根據本創作所揭露的技術,表示焊接機器人控制系統在焊前應用情境的方塊圖。 FIG. 4B is a block diagram showing the application scenario of the welding robot control system before welding according to the technology disclosed in this creation.

圖5A是根據本創作所揭露的技術,表示焊接機器人控制系統在進行焊中應用情境的步驟流程示意圖。 FIG. 5A is a schematic diagram showing the steps of the welding robot control system in the welding process according to the technology disclosed in this creation.

圖5B是根據本創作所揭露的技術,表示焊接機器人控制系統在進行焊中應用情境的方塊圖。 FIG. 5B is a block diagram showing the application scenario of the welding robot control system in welding according to the technology disclosed in this creation.

圖6A是根據本創作所揭露的技術,表示焊接機器人控制系統在焊中另一應用情境的步驟流程示意圖。 FIG. 6A is a schematic diagram of a step flow diagram showing another application scenario of the welding robot control system in welding according to the technology disclosed in this creation.

圖6B是根據本創作所揭露的技術,表示焊接機器人控制系統在焊中另一應用情境的方塊圖。 FIG. 6B is a block diagram showing another application scenario of the welding robot control system in welding according to the technology disclosed in this creation.

圖7A是根據本創作所揭露的技術,表示焊接機器人控制系統在進行焊後應用情境的步驟流程示意圖。 FIG. 7A is a schematic diagram showing the process flow of the welding robot control system after welding according to the technology disclosed in this creation.

圖7B是根據本創作所揭露的技術,表示焊接機器人控制系統在進行焊後應用情境的方塊圖。 FIG. 7B is a block diagram showing the application scenario of the welding robot control system after welding according to the technology disclosed in this creation.

以下提供本創作具體實施例的詳細內容說明,然而本創作並不受限於下述實施例,且本創作中的圖式均屬於示意圖式,主要意在表示各模組之間的連接關係,於此實施方式搭配各圖式作詳細說明如下。 The following provides detailed descriptions of specific embodiments of this creation. However, this creation is not limited to the following embodiments, and the diagrams in this creation are all schematic, which are mainly intended to represent the connection relationship between the modules. The detailed description of this embodiment with various drawings is as follows.

首先請參考圖1。圖1是根據本創作所揭露的技術,表示焊接機器人控制系統的方塊示意圖。在圖1中,焊接機器人控制系統1具有焊接機器人系統2、外部感測元件50、焊接設備60、機器人70、外部整廠整線監控系統80及外部伺服器90,其中外部感測元件50、焊接設備60、機器人70、外部整廠整線監控系統80及外部伺服器90彼此連接。焊接機器人控制系統1中的焊接機器人系統2包括訊號輸入模組10、智慧決策模組20、命令輸出模組30及資訊監控模組40,其中訊號輸入模組10分別與智慧決策模組20及資訊監控模組40連接,智慧決策模組20與命令輸出模組30連接。又如圖1所示,外部感測元件50與焊接機器人系 統2中的訊號輸入模組10連接,命令輸出模組30分別與焊接設備60及機器人70連接,以及資訊監控模組40與外部整廠整線監控系統80及外部伺服器90連接。值得注意的是,在本創作實施例中,焊接設備60及機器人70的數量皆為至少一台,也可為多台。舉例來說,一台焊接設備60可與一台機器人70協作;多台焊接設備60可與一台機器人70協作;一台焊接設備60可與多台機器人70協作,本創作對焊接設備60及機器人70的數量不加以限制。 Please refer to Figure 1 first. Fig. 1 is a block diagram of a welding robot control system according to the technology disclosed in this creation. In FIG. 1, the welding robot control system 1 has a welding robot system 2, an external sensing element 50, a welding equipment 60, a robot 70, an external whole-plant whole-line monitoring system 80 and an external server 90, wherein the external sensing element 50, The welding equipment 60, the robot 70, the external whole-plant whole-line monitoring system 80, and the external server 90 are connected to each other. The welding robot system 2 in the welding robot control system 1 includes a signal input module 10, a smart decision module 20, a command output module 30, and an information monitoring module 40. The signal input module 10 is connected to the smart decision module 20 and The information monitoring module 40 is connected, and the smart decision module 20 is connected to the command output module 30. As shown in Figure 1, the external sensing element 50 and the welding robot system The signal input module 10 in the system 2 is connected, the command output module 30 is connected to the welding equipment 60 and the robot 70, and the information monitoring module 40 is connected to the external whole-plant monitoring system 80 and the external server 90. It is worth noting that, in this creative embodiment, the number of welding equipment 60 and robot 70 is at least one, and there may be more than one. For example, one welding equipment 60 can cooperate with one robot 70; multiple welding equipment 60 can cooperate with one robot 70; one welding equipment 60 can cooperate with multiple robots 70. This creation is related to welding equipment 60 and The number of robots 70 is not limited.

在圖1中,訊號輸入模組10用以接收原始資料,並且將此原始資料處理後得到量測資料。又於本創作較佳的實施例中,原始資料是由外部感測器50量測工件(未在圖中表示)與端效器(未在圖中表示)之間的訊號所得到,其中訊號可以是距離、角度、電流、電壓或是電容。 In FIG. 1, the signal input module 10 is used to receive raw data, and process the raw data to obtain measurement data. In the preferred embodiment of the present invention, the original data is obtained by measuring the signal between the workpiece (not shown in the figure) and the end effector (not shown in the figure) by the external sensor 50, where the signal It can be distance, angle, current, voltage or capacitance.

接著請參考圖2。圖2是根據本創作所揭露的技術,表示焊接機器人系統的方塊示意圖。在說明圖2時,也請一併參考圖1。在圖2中,訊號輸入模組10包括訊號擷取單元110及訊號處理單元120,其訊號擷取單元110用以擷取由外部感測元件50所傳送的原始資料,而訊號處理單元120則是將此原始資料處理形成量測資料。訊號輸入模組10是提供外部感測元件50的擷取介面,支援現存的標準通訊協議、傳統的類比訊號介面、訊號I/O介面等不同訊號來源輸入,並且整合訊號放大、濾波等訊號處理功能於此訊號輸入模組10中。在不額外安裝通訊轉換模組、訊號放大器等周邊設備的前提下,此訊號輸入模組10可以提供整個焊接機器人控制系統1與外部感測元件50彼此溝通的介面。 Then please refer to Figure 2. FIG. 2 is a block diagram showing the welding robot system according to the technology disclosed in this creation. When explaining Figure 2, please also refer to Figure 1. In FIG. 2, the signal input module 10 includes a signal capture unit 110 and a signal processing unit 120. The signal capture unit 110 is used to capture the original data transmitted by the external sensing element 50, and the signal processing unit 120 is This raw data is processed to form measurement data. The signal input module 10 provides the acquisition interface of the external sensing component 50, supports the existing standard communication protocol, the traditional analog signal interface, the signal I/O interface and other different signal source input, and integrates signal processing such as signal amplification and filtering. The function is in this signal input module 10. Without additional peripheral equipment such as a communication conversion module and a signal amplifier, the signal input module 10 can provide an interface for the entire welding robot control system 1 and the external sensing component 50 to communicate with each other.

智慧決策模組20:針對焊接行業所提出的應用,智慧決策模組20可以在配合外部感測元件50的前提下(即接收由訊號處理單元120傳來的量測資料),實現智慧決策的功能,其中智慧決策模組20包括:智慧教導單元210、追蹤 調變單元220、檢測補正單元230以及焊接設備控制單元240。以下針對智慧決策模組20中的各單元來說明。 Smart decision-making module 20: For applications proposed by the welding industry, the smart decision-making module 20 can implement smart decision-making under the premise of cooperating with the external sensing element 50 (that is, receiving measurement data from the signal processing unit 120) Functions, the smart decision module 20 includes: smart teaching unit 210, tracking The modulation unit 220, the detection and correction unit 230, and the welding equipment control unit 240. The following describes each unit in the smart decision module 20.

智慧教導單元210:用以提供焊接機器人系統2整合外部感測元件50提供視覺對位、視覺畫面預覽、自動調高等功能輔助使用者進行點位示教,改善用人工方式例如肉眼,直接對位所產生的誤差問題,以調整機器人70的路徑軌跡能夠盡可能的與焊縫焊道對齊。 Smart teaching unit 210: used to provide welding robot system 2 integrating external sensing components 50 to provide visual alignment, visual screen preview, automatic height adjustment and other functions to assist users in point teaching, improving manual methods such as direct alignment with the naked eye The resulting error problem is to adjust the path of the robot 70 to be aligned with the weld bead as much as possible.

追蹤調變單元220:為了增進焊接品質,焊接機器人控制系統1能夠整合焊接機器人系統2及外部感測元件50的資訊,即時補償機器人70的加工路徑及姿態。同時亦可根據外部感測元件50所感測得到的量測資料即時調控焊接周邊設備,以實時的針對工件的焊縫焊道的狀態,以在線方式進行工藝參數的最佳化調整以得到調變命令及位置命令。 Tracking and modulating unit 220: In order to improve the welding quality, the welding robot control system 1 can integrate the information of the welding robot system 2 and the external sensing element 50 to compensate the processing path and posture of the robot 70 in real time. At the same time, the welding peripheral equipment can be adjusted in real time based on the measurement data sensed by the external sensing element 50, and the state of the weld bead of the workpiece can be adjusted in real time to optimize the process parameters in an online manner. Command and position command.

檢測補正單元230:焊接機器人控制系統1整合了工業相機、網路相機及/或雷射測距儀等感測器,在焊接製程完成之後,檢測焊縫焊道品質。利用本創作所揭露的焊接機器人控制系統1可以在不透過額外機台輔助量測的前提下,實現焊接成品的在線檢測,並根據外部感測元件50所感測得到的量測資料得到調變參數與位置參數,用以分別修正焊接設備60相關參數與機器人70的路徑軌跡,做為下次加工的補償依據。 Detection and correction unit 230: The welding robot control system 1 integrates sensors such as industrial cameras, network cameras and/or laser rangefinders to detect the quality of the weld bead after the welding process is completed. The welding robot control system 1 disclosed in this creation can realize the online inspection of the welding products without the auxiliary measurement of additional machines, and obtain the adjustment parameters according to the measurement data sensed by the external sensing element 50 The and position parameters are used to respectively correct the relevant parameters of the welding equipment 60 and the path trajectory of the robot 70 as a basis for compensation for the next processing.

焊接設備控制單元240:焊接設備控制單元240可提供焊接頭、振鏡、雷射源及/或焊槍等焊接設備控制功能,提供類比輸入/輸出(AD-DA)、數位輸入輸出(DI-DO)、PWM訊號輸出、XY2-100等命令輸出。因為單系統整合的特性,除了大大地降低系統配置的複雜度及成本之外,也可以實現具有各種功能的機器人70與焊接設備60的協同控制功能。 Welding equipment control unit 240: The welding equipment control unit 240 can provide welding equipment control functions such as welding head, galvanometer, laser source and/or welding gun, and provide analog input/output (AD-DA) and digital input and output (DI-DO) ), PWM signal output, XY2-100 and other command output. Because of the single-system integration feature, in addition to greatly reducing the complexity and cost of the system configuration, the coordinated control function of the robot 70 and the welding equipment 60 with various functions can also be realized.

命令輸出模組30:命令輸出模組30至少包括運動規劃單元310、力量控制單元320以及訊號輸出單元330,其中,運動規劃單元310是將由智慧決策模組20所傳送的調變結果轉換成位置命令訊號,此位置命令訊號可以是機器人70對工件進行加工的路徑,因此運動規劃單元310可依據調變結果來對機器人70要對工件執行加工時的運動軌跡進行最佳化。因此,透過命令輸出模組30將調變結果轉換為位置、力量與類比等輸出訊號,並且將上述輸出訊號經由訊號輸出單元330傳送至機器人70,使得機器人70在接收到訊號之後,可以執行對應於訊號的動作。 Command output module 30: The command output module 30 includes at least a motion planning unit 310, a force control unit 320, and a signal output unit 330. The motion planning unit 310 converts the modulation result transmitted by the intelligent decision-making module 20 into a position The command signal. The position command signal can be the path for the robot 70 to process the workpiece. Therefore, the motion planning unit 310 can optimize the motion trajectory of the robot 70 when the workpiece is to be processed according to the modulation result. Therefore, the command output module 30 converts the modulation result into output signals such as position, force, and analog, and transmits the above output signals to the robot 70 through the signal output unit 330, so that the robot 70 can perform the corresponding after receiving the signal The action of the signal.

資訊監控模組40:資訊監控模組40包括資料蒐集單元410、資料分析單元420及通訊單元430,資訊監控模組40中的資料蒐集單元410蒐集及監控在焊接過程中所有與焊接製程有關的數據,並且利用資料分析單元420將這些數據進行分析,讓使用者能夠容易地監控加工狀態。另外,通訊單元430將監控數據輸出至外部整廠整線監控系統80及外部伺服器90來使用。外部伺服器90可以是雲端硬碟或是一般電腦主機,當外部伺服器90接收到通訊單元430傳來的監控數據後,外部伺服器90會將監控數據進行量化處理。接著,根據上述焊接機器人控制系統1,本創作還提供一種焊接機器人控制方法,如圖3所示。圖3是根據本創作所揭露的技術,表示焊接機器人控制方法的步驟流程示意圖。以下說明請同時參考圖1、圖2與圖3,首先步驟S1:感測原始資料,於此步驟,此原始資料是利用外部感測元件50感測工件與端效器之間的訊號所得到。步驟S2:擷取並處理原始資料以得到量測資料。於此步驟,將步驟S1所得到的原始資料由訊號輸入模組10的訊號擷取單元110所擷取,然後再經由訊號處理單元120將此原始資料進行處理而轉換成量測資料。步驟S3:根據量測資料進行決策功能並轉換 得到調變命令與位置命令。此步驟利用智慧決策模組20來將上述的量測資料進行決策,利用追蹤調變單元220將量測資料轉換成調變命令以及位置命令。步驟S4:將調變命令轉換成輸出訊號並將輸出訊號輸出以驅動至少一個焊接設備60,並將此位置命令轉換成驅動命令以驅動至少一個機器人70。於此步驟,調變命令由智慧決策模組20傳送至命令輸出模組30,並根據使用者設定,命令輸出模組30中的運動規劃單元310、力量控制單元320及會將調變命令轉換成位置、力量、類比等輸出訊號,再將輸出訊號由訊號輸出單元330傳送至焊接設備60和機器人70。接著於步驟S5:焊接設備60和機器人70根據輸出訊號對工件進行加工。此外於步驟S6:分析量測資料以得到監控數據並傳送到監控系統進行監控。於此步驟是將前述的量測資料由訊號輸入模組10傳送至資訊監控模組40,利用資料蒐集單元410將量測資料蒐集後經由資料分析單元420分析後得到監控數據,再利用通訊單元430將監控數據傳送至外部整廠整線監控系統80,透過外部整廠整線監控系統80進行監控。以下是針對焊接機器人控制系統1在焊接製程的焊前、焊中及焊後三個不同應用情境的操作步驟流程。請參考圖4A及圖4B。圖4A是根據本創作所揭露的技術,表示焊接機器人控制系統在焊前應用情境的步驟流程示意圖及圖4B是根據本創作所揭露的技術,表示焊接機器人控制系統1在焊前應用情境的方塊示意圖。要說明的是,在不同的焊接階段的三種情境:焊前、焊中及焊後會使用到先前所述的圖1及圖2的模組中的單元來執行,因此在圖4B中將焊前應用情境中所使用到的各個單元列出,但其功能與前述是相同的,在此僅針對各個單元在不同焊接情境時所執行的功能來描述。 Information monitoring module 40: The information monitoring module 40 includes a data collection unit 410, a data analysis unit 420, and a communication unit 430. The data collection unit 410 in the information monitoring module 40 collects and monitors all welding processes related to the welding process The data analysis unit 420 is used to analyze the data, so that the user can easily monitor the processing status. In addition, the communication unit 430 outputs the monitoring data to the external whole-plant whole-line monitoring system 80 and the external server 90 for use. The external server 90 can be a cloud disk or a general computer host. When the external server 90 receives the monitoring data from the communication unit 430, the external server 90 will quantify the monitoring data. Next, according to the welding robot control system 1 described above, this creation also provides a welding robot control method, as shown in FIG. 3. Fig. 3 is a schematic diagram showing the steps of the welding robot control method according to the technology disclosed in this creation. Please refer to Figure 1, Figure 2 and Figure 3 at the same time for the following description. First step S1: Sensing the original data. In this step, the original data is obtained by using the external sensing element 50 to sense the signal between the workpiece and the end effector. . Step S2: Acquire and process original data to obtain measurement data. In this step, the original data obtained in step S1 is captured by the signal capturing unit 110 of the signal input module 10, and then the original data is processed by the signal processing unit 120 and converted into measurement data. Step S3: Perform decision-making function and conversion based on measurement data Get the modulation command and position command. In this step, the smart decision module 20 is used to make a decision on the aforementioned measurement data, and the tracking modulation unit 220 is used to convert the measurement data into modulation commands and position commands. Step S4: Convert the modulation command into an output signal and output the output signal to drive at least one welding device 60, and convert the position command into a drive command to drive at least one robot 70. In this step, the modulation command is transmitted from the smart decision module 20 to the command output module 30, and according to the user setting, the motion planning unit 310 and the force control unit 320 in the command output module 30 will convert the modulation command Output signals such as position, force, analog, etc. are generated, and the output signals are transmitted from the signal output unit 330 to the welding equipment 60 and the robot 70. Then in step S5: the welding equipment 60 and the robot 70 process the workpiece according to the output signal. In addition, in step S6: Analyze the measurement data to obtain the monitoring data and send it to the monitoring system for monitoring. In this step, the aforementioned measurement data is transmitted from the signal input module 10 to the information monitoring module 40, the measurement data is collected by the data collection unit 410 and analyzed by the data analysis unit 420 to obtain the monitoring data, and then the communication unit is used 430 transmits the monitoring data to the external whole-plant whole-line monitoring system 80, and monitors through the external whole-plant whole-line monitoring system 80. The following are the operation steps of the welding robot control system 1 in three different application scenarios of the welding process before welding, during welding and after welding. Please refer to Figure 4A and Figure 4B. FIG. 4A is a schematic diagram showing the step flow diagram of the welding robot control system before welding according to the technology disclosed in this creation, and FIG. 4B is a block diagram showing the application situation of the welding robot control system 1 before welding according to the technology disclosed in this creation Schematic. It should be noted that the three scenarios in different welding stages: before welding, during welding, and after welding will be performed using the units in the modules of Figures 1 and 2 described earlier. Therefore, the welding is shown in Figure 4B. The various units used in the previous application scenarios are listed, but their functions are the same as those described above, and only the functions performed by each unit in different welding scenarios are described here.

由於端效器與工件表面之間的距離控制為相當重要的課題,再加上工件大多為異型工件,焊縫路徑為複雜的空間曲線,導致在點位教導的過程會 需要耗費大量的時間。此外,在用離線編程軟體例如CAD/CAM規劃加工路徑後,也會因為來料誤差,需要在加工過程中對於加工路徑進行微調,此時也需要人為針對工件外型做教導修正,這也同樣地會耗費大量時間。為了解決此階段的時間及人力成本,本創作所揭露的焊接機器人控制系統1在此焊前應用情境階段執行智能教導,其結合視覺系統與測高模組,提供視覺輔助教導、自動調高功能,實現高效率的點位示教過程。其操作步驟如下:步驟S11:對端效器及工件之間進行量測以得到原始資料。於此步驟中,由外部感測元件50量測工件與端效器之間的距離以得到原始資料。步驟S12:擷取並處理原始資料以得到位置命令。在此步驟中,外部感測元件50將量測到的距離的原始資料傳送給訊號擷取單元110,並傳送至訊號處理單元120對此原始資料進行處理而轉換成量測資料,智慧決策模組20中的智慧教導單元210會將量測資料轉換為位置命令。步驟S13:根據位置命令進行命令規劃並輸出驅動命令。於此步驟中,訊號處理單元120將經過處理得到的量測資料傳送至智慧教導單元210,利用智慧教導單元210來進行決策並且提供自動調高功能以輔助使用者進行點位示教,以智能方式來調整機器人70的路徑軌跡與焊縫焊道對齊,以降低人工所造成的誤差。最後,步驟S14:根據驅動命令使得機器人執行點位調整程序。於此步驟,智慧教導單元210將驅動命令傳送至運動規劃單元310,進行命令規劃之後將對應驅動命令的位置命令輸出給機器人70(如圖1所示),使得機器人70可以依據此具有位置命令的驅動命令來執行。據此,機器人70可以在不改變當前旋轉姿態的前提下,依據驅動命令並沿著當前工件的平面法向量進行移動,機器人70會自動調整端效器與工件表面之間的距離,實現自動調高功能。 Since the distance control between the end effector and the surface of the workpiece is a very important topic, and most of the workpieces are special-shaped workpieces, the welding seam path is a complex spatial curve, which leads to the process of teaching at the point. It takes a lot of time. In addition, after using offline programming software such as CAD/CAM to plan the processing path, it will be necessary to fine-tune the processing path during the processing due to the error of the incoming material. At this time, it is also necessary to teach and correct the appearance of the workpiece. Land will consume a lot of time. In order to solve the time and labor cost of this stage, the welding robot control system 1 disclosed in this creation performs intelligent teaching in this pre-welding application scenario stage. It combines the vision system and the height measurement module to provide visual assistance teaching and automatic height adjustment functions. , To achieve high-efficiency point teaching process. The operation steps are as follows: Step S11: Measure between the end effector and the workpiece to obtain the original data. In this step, the external sensing element 50 measures the distance between the workpiece and the end effector to obtain the original data. Step S12: Retrieve and process the original data to obtain the position command. In this step, the external sensing element 50 transmits the original data of the measured distance to the signal acquisition unit 110, and then transmits the original data to the signal processing unit 120 to process the original data and convert it into measurement data, a smart decision model The smart teaching unit 210 in the group 20 converts the measurement data into position commands. Step S13: Perform command planning according to the position command and output the driving command. In this step, the signal processing unit 120 sends the processed measurement data to the smart teaching unit 210, and the smart teaching unit 210 is used to make decisions and provide an automatic height adjustment function to assist the user in point teaching. In this way, the path trajectory of the robot 70 is aligned with the weld bead to reduce the error caused by manual labor. Finally, step S14: Make the robot execute the point adjustment program according to the driving command. At this step, the smart teaching unit 210 transmits the driving command to the motion planning unit 310, and after the command planning is performed, the position command corresponding to the driving command is output to the robot 70 (as shown in FIG. 1), so that the robot 70 can have a position command according to this Drive commands to execute. Accordingly, the robot 70 can move along the plane normal vector of the current workpiece according to the driving command without changing the current rotation posture, and the robot 70 will automatically adjust the distance between the end effector and the workpiece surface to realize automatic adjustment. High functionality.

接著,為了增進焊接品質,本創作所揭露的焊接機器人控制系統1在焊中應用情境中提供追蹤調變功能,其結合了測高模組、焊縫跟蹤系統實現三維焊縫跟蹤功能,能夠實時監測焊縫的位置、大小變化,即時改變機器人70的路徑軌跡及加工姿態,最佳化焊接品質。此外,本創作所揭露的焊接機器人控制系統1也結合焊接專用模組,根據實際機器人70的運動情形,針對焊機、雷射源、焊接頭等焊接設備60的輸出進行調變,實現機器人70與焊接設備60的交互控制調變功能,用以改善焊接效果。另外,在調變過程中亦能利用資訊監控模組40蒐集數據,將資料經過分析之後,即時顯示當前焊接製程狀態,以實現焊接品質實時監控功能。 Next, in order to improve the welding quality, the welding robot control system 1 disclosed in this creation provides tracking and modulation functions in the welding application context. It combines the height measurement module and the welding seam tracking system to realize the three-dimensional welding seam tracking function, which can be real-time Monitor the position and size changes of the welding seam, and instantly change the path trajectory and processing posture of the robot 70 to optimize the welding quality. In addition, the welding robot control system 1 disclosed in this creation is also combined with a dedicated welding module. According to the actual movement of the robot 70, the output of the welding equipment 60 such as the welding machine, laser source, and welding head is adjusted to realize the robot 70 The interactive control and modulation function with the welding equipment 60 is used to improve the welding effect. In addition, the information monitoring module 40 can also be used to collect data during the modulation process. After the data is analyzed, the current welding process status can be displayed in real time to realize the real-time monitoring function of welding quality.

根據上述,焊接機器人控制系統1於焊中應用情境的操作步驟如圖5A及圖5B所示。圖5A是根據本創作所揭露的技術,表示焊接機器人控制系統在進行焊中應用情境的步驟流程示意圖及圖5B是根據本創作所揭露的技術,表示焊接機器人控制系統在進行焊中應用情境的方塊圖。在圖5A與圖5B實施例中,主要是說明本創作於焊中製程中可實時檢測焊縫位置與焊道寬度等資訊,並根據上述資訊同時調整焊接設備60與機器人70以達焊接製程之最佳化。 According to the above, the operation steps of the welding robot control system 1 in the welding application scenario are shown in Figs. 5A and 5B. Figure 5A is a schematic diagram showing the step flow diagram of the welding robot control system used in welding according to the technology disclosed in this creation, and Figure 5B is a schematic diagram showing the application situation of the welding robot control system in welding according to the technology disclosed in this creation Block diagram. In the embodiment of FIGS. 5A and 5B, it is mainly to illustrate that the present invention can detect information such as the position of the weld seam and the width of the weld bead in real time during the welding process, and adjust the welding equipment 60 and the robot 70 at the same time according to the above information to achieve the best of the welding process. optimization.

在圖5A中,步驟S21:感測工件與端效器以得到原始資料。於此步驟中,同樣是由外部感測元件50量測工件與端效器之間的訊號以得到原始資料。步驟S22:擷取並處理原始資料以得到量測資料。在此步驟中,同樣是由外部感測元件50將量測到的原始資料傳送給訊號擷取單元110,並傳送至訊號處理單元120對此原始資料進行處理以得到量測資料。而在本創作中根據上述的量測資料可以分別執行第一程序(步驟A1)及第二程序(步驟A2),其中第一程序(步驟A1)是如圖5A中左邊圖面的步驟,在步驟S22取得量測資料之後,接著執行步驟 A11:將量測資料進行蒐集。於此步驟中,利用資料蒐集單元410將上述的量測資料予以蒐集及監控在焊接過程中所有與焊接製程有關的數據。步驟A12:將量測資料進行分析處理得到監控數據。在此步驟是利用資料分析單元420將這些數據進行分析,例如分析監控數據是屬於距離、角度、電流、電壓與電容中何種訊號。接著於步驟A13:將監控數據傳送給使用者實現在焊接過程中實時監控。於此步驟是利用通訊單元430將監控數據(或是監控結果)輸出至使用者,例如外部整廠整線監控系統80,來使用。 In FIG. 5A, step S21: sensing the workpiece and the end effector to obtain the original data. In this step, the external sensing element 50 also measures the signal between the workpiece and the end effector to obtain the original data. Step S22: Acquire and process original data to obtain measurement data. In this step, the measured raw data is also sent to the signal capturing unit 110 by the external sensing component 50 and sent to the signal processing unit 120 to process the raw data to obtain the measured data. In this creation, the first procedure (step A1) and the second procedure (step A2) can be executed respectively based on the above measurement data. The first procedure (step A1) is the step on the left side of Figure 5A. Step S22 After obtaining the measurement data, proceed to step A11: Collect measurement data. In this step, the data collection unit 410 is used to collect the above-mentioned measurement data and monitor all data related to the welding process during the welding process. Step A12: Analyze and process the measurement data to obtain monitoring data. In this step, the data analysis unit 420 is used to analyze the data, for example, to analyze which signal of the distance, angle, current, voltage, and capacitance the monitored data belongs to. Then in step A13: the monitoring data is transmitted to the user to realize real-time monitoring during the welding process. In this step, the communication unit 430 is used to output the monitoring data (or monitoring results) to the user, such as the external whole-plant whole-line monitoring system 80, for use.

請繼續參閱圖5A。第二程序(步驟A2)則是如圖5A中,右邊圖面的步驟流程圖。如圖5A所示,同樣的在步驟S22擷取並處理原始資料以得到量測資料之後,進入第二程序,即步驟A21:根據量測資料實現在焊接過程中量測相關資訊以得到調變命令與位置命令。於此步驟中,利用追蹤調變單元220將量測資料進行調變,而轉換成調變命令及位置命令。而追蹤調變單元220分別將調變命令傳送至焊接設備控制單元240以及位置命令傳送至運動規劃單元310進行後續步驟。因此,當追蹤調變單元220將調變命令傳送至焊接設備控制單元240時,則進行步驟A23:根據調變命令控制焊接設備針對工件進行在線調整。此步驟即是當焊接設備控制單元240接收到由追蹤調變單元220所傳送的調變命令之後,根據此調變命令調整焊接設備針對焊道大小、加工速度或工件偏移量等不同工藝參數的在線調整。接著,進行步驟A24:將經過在線調整的調變命令轉換成輸出訊號。在此步驟是利用訊號輸出單元330將調變命令轉換成輸出訊號,其訊號的型態可以是類比訊號。接著步驟A25:根據輸出訊號進行焊接製程。在此步驟中,訊號輸出單元330將輸出訊號傳送至焊接設備60,而焊接設備60根據此輸出訊號進行焊接製程。另外,當追蹤調變單元220將位置命令傳送至運動規劃單元 310時,則圖5A中的流程圖則進行到步驟A26:根據位置命令進行命令規劃並輸出驅動命令。在此步驟中,當運動規劃單元310接收到位置命令之後會進行命令規劃並輸出驅動命令給機器人70。接著步驟A27:根據驅動命令對機器人70進行偏移調整。在此步驟中,機器人70會根據驅動命令調整加工路徑與姿態以進行偏移調整。 Please continue to refer to Figure 5A. The second procedure (step A2) is shown in Figure 5A, the step flow chart on the right. As shown in Fig. 5A, after acquiring and processing the original data in step S22 to obtain the measurement data, the second procedure is entered, namely step A21: According to the measurement data, the relevant information is measured during the welding process to obtain the modulation Command and position commands. In this step, the tracking modulation unit 220 is used to modulate the measurement data and convert them into a modulation command and a position command. The tracking modulation unit 220 respectively transmits the modulation command to the welding equipment control unit 240 and the position command to the motion planning unit 310 for subsequent steps. Therefore, when the tracking modulation unit 220 transmits the modulation command to the welding equipment control unit 240, step A23 is performed: the welding equipment is controlled to perform online adjustment for the workpiece according to the modulation command. In this step, after the welding equipment control unit 240 receives the modulation command transmitted by the tracking modulation unit 220, it adjusts the welding equipment for different process parameters such as weld bead size, processing speed, or workpiece offset according to the modulation command. Online adjustment. Then, proceed to step A24: Convert the online adjusted modulation command into an output signal. In this step, the signal output unit 330 is used to convert the modulation command into an output signal, the type of the signal can be an analog signal. Then step A25: perform the welding process according to the output signal. In this step, the signal output unit 330 transmits the output signal to the welding equipment 60, and the welding equipment 60 performs the welding process according to the output signal. In addition, when the tracking modulation unit 220 transmits the position command to the motion planning unit At 310, the flowchart in FIG. 5A proceeds to step A26: command planning is performed according to the position command and the driving command is output. In this step, after receiving the position command, the motion planning unit 310 will perform command planning and output a driving command to the robot 70. Next step A27: offset adjustment of the robot 70 according to the drive command. In this step, the robot 70 adjusts the processing path and posture according to the driving command to perform offset adjustment.

於本創作中,為了確保焊接成品的品質,焊接機器人控制系統1焊中另一應用情境提供檢測補正,其利用視覺系統與測高模組,在焊接完成之後,檢測焊接加工成果,量測焊接路徑偏差,焊道瑕疵處,並且針對機器人70的運動軌跡、焊接工藝參數進行對應補正,若加工誤差超過容許公差範圍,焊接機器人控制系統1可以根據檢測補正後的加工程式及工藝參數進行二次加工。在完成加工後,更可以利用資訊監控模組40即時診斷當前焊接加工製程的狀態,並且蒐集資訊提供給使用者監看。 In this creation, in order to ensure the quality of the welding products, the welding robot control system 1 provides inspection and correction in another application situation in welding. It uses the vision system and the height measurement module to inspect the welding results after the welding is completed, and measure the welding Path deviation, welding bead flaws, and corresponding corrections to the motion trajectory of the robot 70 and welding process parameters. If the processing error exceeds the allowable tolerance range, the welding robot control system 1 can perform a second time according to the processing program and process parameters after the detection and correction. Processing. After the processing is completed, the information monitoring module 40 can be used to diagnose the current welding process status in real time, and collect the information for the user to monitor.

因此請同時參考圖6A及圖6B。圖6A是根據本創作所揭露的技術,表示焊接機器人控制系統在焊中另一應用情境的步驟流程示意圖及圖6B是根據本創作所揭露的技術,表示焊接機器人控制系統在焊中另一應用情境的方塊圖。在圖6A與圖6B實施例中,主要是說明本創作於焊中製程中可藉由同時調整焊接設備60與機器人70進行多次加工補正,以獲得誤差符合公差範圍的焊接成品。 Therefore, please refer to Figure 6A and Figure 6B at the same time. FIG. 6A is a schematic diagram of the steps of another application scenario of the welding robot control system in welding according to the technology disclosed in this creation, and FIG. 6B is the technology disclosed in this creation, showing another application of the welding robot control system in welding Block diagram of the situation. In the embodiments of FIGS. 6A and 6B, it is mainly to illustrate that the present invention can simultaneously adjust the welding equipment 60 and the robot 70 to perform multiple processing and corrections during the welding process to obtain a welded product whose error meets the tolerance range.

於步驟S31:感測工件與端效器以得到原始資料。於此步驟中,由外部感測元件50量測工件與端效器之間的訊號以得到原始資料。步驟S32:擷取並處理原始資料以得到量測資料。在此步驟中,同樣是由外部感測元件50將量測到的距離的原始資料傳送給訊號擷取單元110,並傳送至訊號處理單元120對 此原始資料進行處理以得到量測資料。接著在本實施例中,根據上述的量測資料可以分別執行第三程序(步驟A3)及第四程序(步驟A4),其中第三程序(步驟A3)是如圖6A中左邊圖面的步驟,在步驟S32取得量測資料之後,接著執行步驟A31:將量測資料進行蒐集。步驟A32:將量測資料進行分析處理得到監控數據。在此步驟是利用資料分析單元420將這些數據進行分析(例如分析監控數據屬於何種類型)。接著於步驟A33:將監控數據傳送給使用者實現在焊接過程中實時監控。於此步驟是利用通訊單元430將監控數據(或是監控結果)輸出至使用者(例如外部整廠整線監控系統80),實現在焊接過程中實時監控的功能。 In step S31: sensing the workpiece and the end effector to obtain the original data. In this step, the external sensing element 50 measures the signal between the workpiece and the end effector to obtain the original data. Step S32: Retrieve and process original data to obtain measurement data. In this step, the original data of the measured distance is also sent to the signal acquisition unit 110 by the external sensing component 50, and then sent to the signal processing unit 120 This raw data is processed to obtain measurement data. Then in this embodiment, the third procedure (step A3) and the fourth procedure (step A4) can be executed respectively based on the above-mentioned measurement data. The third procedure (step A3) is the step shown in the left picture in Figure 6A. After the measurement data is obtained in step S32, step A31: collect the measurement data. Step A32: Analyze and process the measurement data to obtain monitoring data. In this step, the data analysis unit 420 is used to analyze the data (for example, to analyze the type of monitoring data). Then in step A33: the monitoring data is transmitted to the user to realize real-time monitoring during the welding process. In this step, the communication unit 430 is used to output the monitoring data (or monitoring results) to the user (for example, the external whole-plant whole-line monitoring system 80) to realize the function of real-time monitoring during the welding process.

接下來請繼續參閱圖6A。第四程序(步驟A4)則是如圖6A中,右邊圖面的步驟流程圖。如圖6A所示,同樣的在步驟S32擷取並處理原始資料以得到量測資料之後,進入第四程序,即步驟A41:根據量測資料實現在焊接過程中量測相關資訊以得到調變參數與位置參數。於此步驟中,利用檢測補正單元230將量測資料進行調變,而轉換成調變參數及位置參數。舉例來說,檢測補正單元230會將接收到的量測資料(如焊道寬度A)與預先設定的焊道寬度(如焊道寬度B)進行比較,且根據焊道寬度A與焊道寬度B兩者之間的誤差資訊轉換成調變參數及位置參數。 Please continue to refer to Figure 6A next. The fourth program (step A4) is a flowchart of the steps shown on the right in Figure 6A. As shown in Figure 6A, the same step S32 captures and processes the original data to obtain the measurement data, enter the fourth procedure, namely step A41: according to the measurement data to achieve the measurement of relevant information during the welding process to obtain modulation Parameters and positional parameters. In this step, the detection and correction unit 230 is used to modulate the measurement data and convert them into modulation parameters and position parameters. For example, the detection and correction unit 230 compares the received measurement data (such as weld bead width A) with a preset weld bead width (such as weld bead width B), and compares the weld bead width A and the weld bead width B. The error information between the two is converted into modulation parameters and position parameters.

檢測補正單元230分別將調變參數傳送至焊接設備控制單元240以及將位置參數傳送至運動規劃單元310進行後續步驟。當檢測補正單元230將調變參數傳送至焊接設備控制單元240時,則進行步驟A43:根據調變參數修正焊接設備相關參數。在此步驟是利用調變參數,自動編修加工程式,修正焊接設備60相關參數。接著,步驟A44:將修正後的焊接設備相關參數轉換成輸出訊號。在此步驟是利用訊號輸出單元330將調變命令轉換成輸出訊號,其訊號的型態可 以是類比訊號。接著步驟A45:根據輸出訊號進行焊接加工補正製程。在此步驟中,訊號輸出單元330將輸出訊號傳送至焊接設備60,而焊接設備60根據此輸出訊號進行焊接加工補正製程。 The detection and correction unit 230 respectively transmits the modulation parameters to the welding equipment control unit 240 and the position parameters to the motion planning unit 310 for subsequent steps. When the detection and correction unit 230 transmits the modulation parameters to the welding equipment control unit 240, step A43 is performed: the welding equipment related parameters are corrected according to the modulation parameters. In this step, the adjustment parameters are used to automatically edit the processing program and modify the relevant parameters of the welding equipment 60. Then, step A44: Convert the corrected welding equipment related parameters into output signals. In this step, the signal output unit 330 is used to convert the modulation command into an output signal. The signal type can be So it is an analog signal. Then step A45: Perform welding correction process according to the output signal. In this step, the signal output unit 330 transmits the output signal to the welding equipment 60, and the welding equipment 60 performs the welding correction process based on the output signal.

另外,當追蹤調變單元220將位置參數傳送至運動規劃單元310時,則圖6A中的流程圖則進行到步驟A46:根據位置參數進行命令規劃修正並輸出修正後的驅動命令。在此步驟中,當運動規劃單元310接收到位置參數之後會進行命令規劃修正並輸出修正後的驅動命令給機器人70。接著步驟A47:根據修正後的驅動命令修正機器人70的路徑軌跡。在此步驟中,機器人70會根據修正後的驅動命令調整加工路徑與姿態。 In addition, when the tracking modulation unit 220 transmits the position parameter to the motion planning unit 310, the flowchart in FIG. 6A proceeds to step A46: the command planning correction is performed according to the position parameter and the corrected driving command is output. In this step, when the motion planning unit 310 receives the position parameter, it will perform command planning correction and output the corrected driving command to the robot 70. Next step A47: Correct the path trajectory of the robot 70 according to the corrected drive command. In this step, the robot 70 adjusts the processing path and posture according to the corrected driving command.

接著,步驟S33:獲得加工補正後的焊接成品。在此步驟是根據將前述的步驟S31、步驟S32、步驟A4、步驟A41~A47所得到的經過加工與補正製程後符合公差範圍的焊接成品。 Next, step S33: Obtain a welded product after processing and correction. This step is based on the welding products that meet the tolerance range after processing and correction processes obtained from the aforementioned steps S31, S32, A4, and A41~A47.

最後,在焊接製程結束後,本創作所揭露的焊接機器人控制系統1在焊後應用情境中將監控數據傳送至外部伺服器90,且外部伺服器90將會監控數據轉化成量化指標。請同時參考圖7A及圖7B。圖7A是根據本創作所揭露的技術,表示焊接機器人控制系統在焊後應用情境的步驟流程示意圖及圖7B是根據本創作所揭露的技術,表示焊接機器人控制系統在焊後應用情境的方塊圖。關於步驟S41~步驟S45之說明,可參考圖5A中步驟S21、步驟S22、步驟A1、步驟A11、步驟A12與步驟A13,不在此贅述。值得注意的是步驟S46:將監控數據轉換成量化指標。在此步驟中,通訊單元430將監控數據(或是監控結果)輸出至外部伺服器90,且外部伺服器90將會監控數據轉化成量化指標。舉例來說,外部伺服器90將焊機電壓反饋資訊量化成為焊接品質指標,使用者可藉由 焊接品質指標來調整焊接製程的相關參數。因此根據上述,本創作所揭露的焊接機器人控制系統1可以將智能控制系統、焊接系統及機器人系統整合成單一系統,以實現訊號感測、智能教導、追蹤調變、檢測補正及/或機器人控制等功能,能夠同時應用焊接行業的各階段焊接製程,以增加產業的利用性。 Finally, after the welding process is finished, the welding robot control system 1 disclosed in this creation transmits the monitoring data to the external server 90 in the post-welding application context, and the external server 90 converts the monitoring data into quantitative indicators. Please refer to Figure 7A and Figure 7B at the same time. FIG. 7A is a schematic diagram showing the step flow diagram of the welding robot control system after welding according to the technology disclosed in this creation, and FIG. 7B is a block diagram showing the application situation of the welding robot control system after welding according to the technology disclosed in this creation . For the description of step S41 to step S45, please refer to step S21, step S22, step A1, step A11, step A12 and step A13 in FIG. 5A, and will not be repeated here. It is worth noting that step S46: the monitoring data is converted into a quantitative index. In this step, the communication unit 430 outputs the monitoring data (or monitoring results) to the external server 90, and the external server 90 converts the monitoring data into quantitative indicators. For example, the external server 90 quantifies the voltage feedback information of the welding machine into a welding quality indicator, and the user can use Welding quality indicators are used to adjust the relevant parameters of the welding process. Therefore, based on the above, the welding robot control system 1 disclosed in this creation can integrate the intelligent control system, the welding system, and the robot system into a single system to realize signal sensing, intelligent teaching, tracking adjustment, detection correction, and/or robot control. And other functions, can simultaneously apply all stages of the welding process in the welding industry to increase the industrial utilization.

以上所述僅為本創作較佳的實施方式,並非用以限定本創作權利的範圍;同時以上的描述,對於相關技術領域中具有通常知識者應可明瞭並據以實施,因此其他未脫離本創作所揭露概念下所完成之等效改變或修飾,應均包含於申請專利範圍中。 The above descriptions are only preferred implementations of this creation, and are not intended to limit the scope of the creation rights; at the same time, the above descriptions should be understood by those with ordinary knowledge in the relevant technical fields and implemented accordingly, so other aspects are not deviated from this creation. The equivalent changes or modifications completed under the concepts disclosed in the creation should all be included in the scope of the patent application.

1:焊接機器人控制系統 1: Welding robot control system

2:焊接機器人系統 2: Welding robot system

10:訊號輸入模組 10: Signal input module

20:智慧決策模組 20: Smart Decision Module

30:命令輸出模組 30: Command output module

40:資訊監控模組 40: Information monitoring module

50:外部感測元件 50: External sensing element

60:焊接設備 60: Welding equipment

70:機器人 70: Robot

80:外部整廠整線監控系統 80: External whole plant whole line monitoring system

90:外部伺服器 90: external server

Claims (8)

一種焊接機器人控制系統,具有一焊接機器人系統、一外部感測元件、一焊接設備、一機器人、一外部整廠整線監控系統及一外部伺服器,其中該焊接機器人系統分別與該外部感測元件、該焊接設備、該機器人、該外部整廠整線監控系統及該外部伺服器連接,其中該焊接機器人系統包括:一訊號輸入模組,用以接收由該外部感測器所傳送的一原始資料,並將該原始資料處理後得到一量測資料;一智慧決策模組,包括:一智慧教導單元,用以提供至少一個功能使得一使用者可根據該功能調整該機器人的一路徑軌跡;一追蹤調變單元,根據該量測資料即時調控該焊接設備以實時的針對一工件的一焊縫焊道狀態以一在線方式進行一工藝參數的最佳化調整以得到一調變命令及一位置命令;一檢測補正單元,對該工件執行一在線檢測,並根據該量測資料得到一調變參數與一位置參數,以作為下一次加工的一補償依據;以及一焊接設備控制單元,用以控制該機器人與該焊接設備的一協同操作;一命令輸出模組,將該調變命令轉換成一輸出訊號,並且將該輸出訊號予以輸出至該機器人與該焊接設備以執行相對應於該輸出訊號的一動作;以及 一資訊監控模組,用以監控該焊接機器人系統中所產生的一監控數據並傳送至該外部整廠整線監控系統。 A welding robot control system has a welding robot system, an external sensing element, a welding equipment, a robot, an external whole plant and whole line monitoring system and an external server, wherein the welding robot system and the external sensing Components, the welding equipment, the robot, the external whole-plant whole-line monitoring system, and the external server connection, wherein the welding robot system includes: a signal input module for receiving a signal transmitted by the external sensor Raw data, and process the raw data to obtain a measurement data; a smart decision module including: a smart teaching unit for providing at least one function so that a user can adjust a path trajectory of the robot according to the function ; A tracking modulation unit, according to the measurement data, real-time regulation of the welding equipment to real-time for a workpiece of a weld bead state in an online manner to optimize adjustment of a process parameter to obtain a modulation command and A position command; a detection and correction unit, which performs an online detection on the workpiece, and obtains a modulation parameter and a position parameter according to the measurement data, which are used as a compensation basis for the next processing; and a welding equipment control unit, Used to control a coordinated operation of the robot and the welding equipment; a command output module, which converts the modulation command into an output signal, and outputs the output signal to the robot and the welding equipment to execute the corresponding An action of outputting a signal; and An information monitoring module is used to monitor a monitoring data generated in the welding robot system and send it to the external whole-plant whole-line monitoring system. 如申請專利範圍第1項所述的焊接機器人控制系統,其中該原始資料是由該外部感測器量測該工件與一端效器之間的一訊號所得到。 The welding robot control system described in the first item of the scope of patent application, wherein the original data is obtained by measuring a signal between the workpiece and the end effector by the external sensor. 如申請專利範圍第1項所述的焊接機器人控制系統,其中該訊號輸入模組包含一訊號擷取單元及一訊號處理單元。 For example, in the welding robot control system described in item 1 of the scope of patent application, the signal input module includes a signal acquisition unit and a signal processing unit. 如申請專利範圍第1項所述的焊接機器人控制系統,其中該功能包括一視覺對位功能、一視覺畫面預覽功能或一自動調高功能。 For the welding robot control system described in item 1 of the scope of patent application, the function includes a visual alignment function, a visual image preview function or an automatic height adjustment function. 如申請專利範圍第1項所述的焊接機器人控制系統,其中該命令輸出模組包括一運動規劃單元、一力量控制單元及一訊號輸出單元。 For the welding robot control system described in item 1 of the scope of patent application, the command output module includes a motion planning unit, a force control unit and a signal output unit. 如申請專利範圍第5項所述的焊接機器人控制系統,其中該運動化規劃單元根據該位置命令進行一命令規劃,使得該機器人可根據該命令規劃進行操作。 For the welding robot control system described in item 5 of the scope of patent application, the motion planning unit performs a command plan according to the position command, so that the robot can operate according to the command plan. 如申請專利範圍第5項所述的焊接機器人控制系統,其中該資訊監控模組包含一資訊蒐集單元、一資料分析單元及一通訊單元。 For example, in the welding robot control system described in item 5 of the scope of patent application, the information monitoring module includes an information collection unit, a data analysis unit and a communication unit. 如申請專利範圍第1項所述的焊接機器人控制系統,其中該資訊監控模組更包括將該監控數據傳送至該外部伺服器,且該外部伺服器將該監控數據轉化成一量化指標。 For the welding robot control system described in item 1 of the patent application, the information monitoring module further includes transmitting the monitoring data to the external server, and the external server converts the monitoring data into a quantitative index.
TW109200150U 2020-01-06 2020-01-06 Welding robot controlling system TWM598198U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109200150U TWM598198U (en) 2020-01-06 2020-01-06 Welding robot controlling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109200150U TWM598198U (en) 2020-01-06 2020-01-06 Welding robot controlling system

Publications (1)

Publication Number Publication Date
TWM598198U true TWM598198U (en) 2020-07-11

Family

ID=72602961

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109200150U TWM598198U (en) 2020-01-06 2020-01-06 Welding robot controlling system

Country Status (1)

Country Link
TW (1) TWM598198U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI739264B (en) * 2020-01-06 2021-09-11 新代科技股份有限公司 Welding robot controlling system and the controlling method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI739264B (en) * 2020-01-06 2021-09-11 新代科技股份有限公司 Welding robot controlling system and the controlling method thereof

Similar Documents

Publication Publication Date Title
CN105665970B (en) For the path point automatic creation system and method for welding robot
CN106041258B (en) A kind of intelligent robot's welding system
CN104199453B (en) For patrolling and examining the intelligent robot of electric instrument
CN108817613A (en) A kind of arc welding robot weld seam deviation-rectifying system and method
WO2015120734A1 (en) Special testing device and method for correcting welding track based on machine vision
CN111152221A (en) Welding robot control system and control method thereof
CN203791807U (en) Welding robot
CN103480991A (en) Thin steel plate narrow welding joint online visual inspection and control device
CN204413359U (en) Laser vision welded seam tracing system
CN104759736A (en) Container corrugated plate welding robot and visual servo control system thereof
CN103231162A (en) Device and method for visual detection of welding quality of robot
CN104057202A (en) System and method for remotely monitoring automatic welding of mobile robot based on FPGA
CN104325268A (en) Industrial robot three-dimensional space independent assembly method based on intelligent learning
CN112207482A (en) Multi-information monitoring and control system and method for welding quality control
CN104408788B (en) A kind of method patrolling and examining electric instrument
CN101645136A (en) Image identification and detection system
CN112775975A (en) Vision-guided multi-station robot welding deviation correcting device and method
CN203636184U (en) Container corrugated plate welding robot and visual servo control system thereof
CN111580487A (en) Intelligent monitoring control system for industrial production line
CN109459980A (en) A kind of co-melting robot control system of optical fabrication and method
CN105783851A (en) Roughness detection system and detection method
TWM598198U (en) Welding robot controlling system
TWI739264B (en) Welding robot controlling system and the controlling method thereof
CN116673962A (en) Intelligent mechanical arm grabbing method and system based on FasterR-CNN and GRCNN
CN104148838A (en) Small feature point visual tracking and real-time quality test device for sheet steel weld joints