TWM572989U - Specimen delivering robot - Google Patents

Specimen delivering robot Download PDF

Info

Publication number
TWM572989U
TWM572989U TW107212197U TW107212197U TWM572989U TW M572989 U TWM572989 U TW M572989U TW 107212197 U TW107212197 U TW 107212197U TW 107212197 U TW107212197 U TW 107212197U TW M572989 U TWM572989 U TW M572989U
Authority
TW
Taiwan
Prior art keywords
robot
specimen
central controller
housing
sample
Prior art date
Application number
TW107212197U
Other languages
Chinese (zh)
Inventor
蒲長恩
胡興勇
蔡坤良
尹宏文
易繼湘
黃振峯
楊孟娟
羅文霖
劉曜誠
林佑玲
吳易璋
Original Assignee
法務部調查局
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 法務部調查局 filed Critical 法務部調查局
Priority to TW107212197U priority Critical patent/TWM572989U/en
Publication of TWM572989U publication Critical patent/TWM572989U/en

Links

Landscapes

  • Manipulator (AREA)

Abstract

A specimen delivering robot has a robot housing, a positioning assembly, a mobile assembly, a specimen carrier, a linear actuator, a robotic arm, a depth sensor, and a central controller. The central controller and a lidar of the positioning assembly are configured to provide a robot position data. The central controller controlls a driving motor of the mobile assembly according to the robot position data, so that the specimen delivering robot moves to a predetermined location for placing a specimen. After the specimen delivering robot moves to the predetermined location, the central controller drives the specimen carrier to move out of the robot housing by the liner actuator, and commands the robotic arm to grab a specimen on the specimen carrier to place the specimen at the predetermined location. Accordingly, the specimen delivering robot may avoid the delays in working plans and reduce the workload of staff.

Description

檢體運送機器人Sample transport robot

本創作是有關於一種運送裝置,尤其是有關於一種檢體運送機器人。The present invention relates to a transport device, and more particularly to a sample transport robot.

臺灣面臨老齡化、少子化、勞動人口減少的問題,可預見未來各行業將都將處於勞動人力不足的情形,當然,研究及檢驗單位也不例外。於各研究及檢驗單位中,除必要的核心研究及檢驗人員以外,通常還需要額外的輔助人員協助試樣、檢體等的運送,但隨著前述的人口結構的改變,研究及檢驗單位人力也趨於不足,研究及檢驗人員除了負責試驗的執行以外,經常也必須承擔試樣、檢體等的運送工作,造成工作計畫的延遲及工作負擔的加重。Taiwan faces the problems of aging, declining birthrate, and reduced labor. It is foreseeable that all industries will be in a shortage of labor and manpower in the future. Of course, research and inspection units are no exception. In each research and inspection unit, in addition to the necessary core research and inspection personnel, additional support personnel are usually required to assist the transportation of samples, specimens, etc., but with the aforementioned demographic changes, the research and inspection unit manpower In addition to the lack of implementation of the test, the research and inspection personnel must also bear the transportation of samples, specimens, etc., resulting in delays in the work plan and an increase in the workload.

本「先前技術」段落只是用來幫助瞭解本創作內容,因此在「先前技術」中所揭露的內容可能包含一些沒有構成所屬技術領域中具有通常知識者所知道的習知技術。此外,在「先前技術」中所揭露的內容並不代表該內容或者本創作一個或多個實施例所要解決的問題,也不代表在本創作申請前已被所屬技術領域中具有通常知識者所知曉或認知。This "Prior Art" paragraph is only intended to aid in understanding the content of this creation, and thus the content disclosed in "Previous Technology" may contain some conventional techniques that are not known to those of ordinary skill in the art. In addition, the content disclosed in the "Prior Art" does not represent the problem to be solved by the content or one or more embodiments of the present invention, nor does it mean that it has been known to those skilled in the art prior to the present application. Know or recognize.

本創作提供一種檢體運送機器人,可避免工作計畫延遲並減輕人員的工作負擔。This creation provides a sample transport robot that avoids work schedule delays and reduces the workload of personnel.

本創作所提供的檢體運送機器人包括機器人殼體、定位組件、移動組件、檢體承載件、線性致動器、機械手臂、深度相機及中央控制器。機器人殼體具有側開口部。定位組件配置於機器人殼體上且包括光達。移動組件配置於機器人殼體上且包括輪胎組及驅動馬達。輪胎組配置於機器人殼體的底部,驅動馬達適於驅動輪胎組,以使檢體運送機器人移動。檢體承載件配置於機器人殼體內且鄰接於側開口部,適於承載檢體。線性致動器配置於機器人殼體上且連接於檢體承載件,適於使檢體承載件在側開口部處相對機器人殼體移動。機械手臂配置於機器人殼體上,適於抓取檢體。深度相機,配置於機器人殼體上適於感測機械手臂的動作及位置。中央控制器,配置於機器人殼體上,電連接於光達、驅動馬達、線性致動器、機械手臂及深度相機。中央控制器與光達適於提供機器人位置資料,中央控制器依據機器人位置資料控制驅動馬達,以使檢體運送機器人移動至檢體預定放置位置;當檢體運送機器人到達檢體預定放置位置後,中央控制器經由線性致動器驅使檢體承載件經由側開口部移出至機器人殼體外,並且令機械手臂抓取檢體以將檢體放置於檢體預定放置位置。The specimen transport robot provided by the present invention includes a robot housing, a positioning assembly, a moving assembly, a specimen carrier, a linear actuator, a robot arm, a depth camera, and a central controller. The robot housing has a side opening. The positioning component is disposed on the robot housing and includes light. The moving component is disposed on the robot housing and includes a tire set and a drive motor. The tire set is disposed at the bottom of the robot housing, and the drive motor is adapted to drive the tire set to move the sample transport robot. The specimen carrier is disposed in the robot housing and adjacent to the side opening portion, and is adapted to carry the specimen. The linear actuator is disposed on the robot housing and coupled to the specimen carrier, and is adapted to move the specimen carrier relative to the robot housing at the side opening. The robot arm is disposed on the robot housing and is adapted to grasp the specimen. The depth camera is disposed on the robot housing to sense the motion and position of the robot arm. The central controller is disposed on the robot housing and electrically connected to the optical drive, the drive motor, the linear actuator, the robot arm and the depth camera. The central controller and the optical controller are adapted to provide the robot position data, and the central controller controls the driving motor according to the robot position data to move the specimen transport robot to the predetermined placement position of the specimen; when the specimen transport robot reaches the predetermined placement position of the specimen The central controller drives the specimen carrier through the side opening to the outside of the robot housing via the linear actuator, and causes the robot to grasp the specimen to place the specimen in the predetermined placement position of the specimen.

在本創作的實施例中,上述的檢體承載件包括底壁及側壁,底壁適於承載檢體,側壁與底壁連接,且側壁連接線性致動器。In an embodiment of the present invention, the specimen carrier member includes a bottom wall and a side wall, the bottom wall is adapted to carry the specimen, the side wall is connected to the bottom wall, and the side wall is connected to the linear actuator.

在本創作的實施例中,上述的側壁的底端環接於底壁的周緣,且側壁的頂端形成開口,機械手臂經由開口抓取檢體。In the embodiment of the present invention, the bottom end of the side wall is looped to the periphery of the bottom wall, and the top end of the side wall forms an opening, and the robot arm grasps the sample through the opening.

在本創作的實施例中,上述的定位組件更包括慣性測量單元,慣性量測單元電連接於中央控制器,中央控制器、慣性量測單元與光達適於提供機器人位置資料。In an embodiment of the present invention, the positioning component further includes an inertial measurement unit electrically connected to the central controller, and the central controller, the inertial measurement unit, and the optical device are adapted to provide the robot position data.

在本創作的實施例中,上述的定位組件更包括旋轉編碼器,旋轉編碼器連接於中央控制器,中央控制器、慣性量測單元、光達及旋轉編碼器適於提供機器人位置資料。In an embodiment of the present invention, the positioning assembly further includes a rotary encoder coupled to the central controller, and the central controller, the inertial measurement unit, the optical and rotary encoder are adapted to provide the robot position data.

在本創作的實施例中,上述的檢體運送機器人更包括聲納測距儀,聲納測距儀電連接於中央控制器,聲納測距儀適於偵測障礙物並提供關連於障礙物的障礙位置資料給中央控制器,以使檢體運送機器人迴避障礙物。In an embodiment of the present invention, the sample transport robot further includes a sonar range finder, the sonar range finder is electrically connected to the central controller, and the sonar range finder is adapted to detect obstacles and provide an obstacle to the obstacle. The obstacle position information of the object is given to the central controller, so that the sample transport robot avoids the obstacle.

在本創作的實施例中,上述的移動組件更包括馬達控制器,馬達控制器電連接於驅動馬達與中央控制器之間,中央控制器經由馬達控制器控制驅動馬達。In an embodiment of the present invention, the moving assembly further includes a motor controller electrically coupled between the drive motor and the central controller, the central controller controlling the drive motor via the motor controller.

在本創作的實施例中,上述的檢體運送機器人更包括電源供應器,電源供應器配置為供應光達、驅動馬達、線性致動器、機械手臂、深度相機及中央控制器電力。In an embodiment of the present invention, the sample transport robot further includes a power supply configured to supply light, a drive motor, a linear actuator, a robot arm, a depth camera, and a central controller power.

本創作的檢體運送機器人中,藉由機器人殼體、定位組件、移動組件、檢體承載件、線性致動器、機械手臂、深度相機及中央控制器,檢體運送機器人中可自主將檢體運送並放置於預定檢體預定放置位置上,因此,再人力不足的情況下,研究及檢驗人員仍可專注於試驗工作,不需額外負擔檢體的運送工作,從而避免工作進度的延遲並減輕人員的工作負擔。In the specimen transport robot of the present invention, the robotic housing, the positioning component, the moving component, the specimen carrier, the linear actuator, the robot arm, the depth camera, and the central controller can be independently inspected by the sample transport robot. The body is transported and placed in a predetermined placement position of the predetermined specimen. Therefore, in the case of insufficient manpower, the research and inspection personnel can still concentrate on the test work without additional burden on the transport of the specimen, thereby avoiding the delay of the work schedule and Reduce the workload of personnel.

為讓本創作的上述和其他目的、特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式,作詳細說明如下。The above and other objects, features and advantages of the present invention will become more apparent and understood.

圖1為本創作一實施例的檢體運送機器人的使用狀態示意圖。圖2為本創作一實施例的檢體運送機器人的側視示意圖。圖3為圖1的側視圖。圖4為本創作一實施例的檢體運送機器人的方塊圖。圖5為本創作一實施例的檢體運送機器人的移動組件的方塊圖。請參考圖1至5,本實施例的檢體運送機器人100包括機器人殼體110、定位組件120、移動組件130、檢體承載件140、線性致動器150、機械手臂160、深度相機170及中央控制器180。機器人殼體110具有側開口部111且可為中空,機器人殼體110的材質可為例如金屬、塑膠或木頭等。定位組件120配置於機器人殼體110上,且包括光達121。移動組件130配置於機器人殼體110上,且包括輪胎組131及驅動馬達132,輪胎組131配置於機器人殼體110的底部112,驅動馬達132適於驅動輪胎組131,以使檢體運送機器人100移動。檢體承載件140配置機器人殼體110內且鄰接於側開口部111,檢體承載件140可承載檢體。線性致動器150配置於機器人殼體110上且鄰接於檢體承載件140,線性致動器150驅使檢體承載件140在側開口部111處相對機器人殼體110移動;換言之,線性致動器150可驅使檢體承載件140由機器人殼體110內經由側開口部111移出至機器人殼體110外,而於檢體承載件140伸出機器人殼體110外之後,線性致動器150可驅使檢體承載件140經由側開口部111移入機器人殼體110內。機械手臂160配置於機器人殼體110上且適於抓取及放置檢體。深度相機170配置於機器人殼體110上,機械手臂160的動作及位置可以深度相機170進行感測。中央控制器180配置於機器人殼體110上,中央控制器180電連接於光達121、驅動馬達132、線性致動器150、機械手臂160及深度相機170。中央控制器180與光達121適於提供機器人位置資料,中央控制器180依據機器人位置資料控制驅動馬達132,使檢體運送機器人100移動至檢體預定放置位置。當檢體運送機器人100到達檢體預定放置位置後,中央控制器180經由線性致動器150使檢體承載件140移出至機器人殼體110外,並且令機械手臂160抓取檢體以將檢體放置於檢體預定放置位置。此外,中央控制器180可為平板電腦、手機、筆記型電腦、桌上型電腦等電子裝置,但不以此為限;深度相機170可例如為Kinect相機,但亦不以此為限。另外,檢體運送機器人100還可包括電源供應器190,電源供應器190配置為供應光達121、驅動馬達132、線性致動器150、機械手臂160、深度相機170及中央控制器180電力,電源供應器190可例如為鋰蓄電池或太陽能電池等;在本實施例中,電源供應器190可經由例如中央控制器180供應光達121、慣性量測單元122、旋轉編碼器123、線性致動器150、機械手臂160及深度相機170電力,但不以此為限;在其他實施例中,電源供應器190也可直接供應光達121、慣性量測單元122、旋轉編碼器123、線性致動器150、機械手臂160及深度相機170電力。Fig. 1 is a schematic view showing the use state of a sample transport robot according to an embodiment of the present invention. Fig. 2 is a side elevational view showing the sample transport robot of the embodiment of the present invention. Figure 3 is a side view of Figure 1. Fig. 4 is a block diagram of a sample transport robot according to an embodiment of the present invention. Fig. 5 is a block diagram showing a moving assembly of a sample transport robot according to an embodiment of the present invention. Referring to FIGS. 1 to 5 , the sample transport robot 100 of the present embodiment includes a robot housing 110 , a positioning assembly 120 , a moving assembly 130 , a specimen carrier 140 , a linear actuator 150 , a robot arm 160 , a depth camera 170 , and Central controller 180. The robot housing 110 has a side opening portion 111 and may be hollow, and the material of the robot housing 110 may be, for example, metal, plastic or wood. The positioning component 120 is disposed on the robot housing 110 and includes a light up to 121. The moving assembly 130 is disposed on the robot housing 110 and includes a tire set 131 and a driving motor 132. The tire set 131 is disposed at the bottom 112 of the robot housing 110, and the driving motor 132 is adapted to drive the tire set 131 to enable the sample transport robot 100 moves. The specimen carrier 140 is disposed in the robot housing 110 and adjacent to the side opening portion 111, and the specimen carrier 140 can carry the specimen. The linear actuator 150 is disposed on the robot housing 110 and adjacent to the specimen carrier 140, and the linear actuator 150 drives the specimen carrier 140 to move relative to the robot housing 110 at the side opening portion 111; in other words, linear actuation The device 150 can drive the specimen carrier 140 to be removed from the robot housing 110 via the side opening portion 111 to the outside of the robot housing 110. After the specimen carrier 140 protrudes out of the robot housing 110, the linear actuator 150 can be The specimen carrier 140 is driven to move into the robot housing 110 via the side opening portion 111. The robot arm 160 is disposed on the robot housing 110 and is adapted to grasp and place the specimen. The depth camera 170 is disposed on the robot housing 110, and the motion and position of the robot arm 160 can be sensed by the depth camera 170. The central controller 180 is disposed on the robot housing 110, and the central controller 180 is electrically connected to the light 121, the drive motor 132, the linear actuator 150, the robot arm 160, and the depth camera 170. The central controller 180 and the light source 121 are adapted to provide the robot position data, and the central controller 180 controls the drive motor 132 according to the robot position data to move the sample transport robot 100 to the predetermined placement position of the sample. After the specimen transport robot 100 reaches the predetermined placement position of the specimen, the central controller 180 moves the specimen carrier 140 out of the robot housing 110 via the linear actuator 150, and causes the robot arm 160 to grasp the specimen for inspection. The body is placed at a predetermined placement position of the specimen. In addition, the central controller 180 can be an electronic device such as a tablet computer, a mobile phone, a notebook computer, a desktop computer, and the like, but is not limited thereto; the depth camera 170 can be, for example, a Kinect camera, but is not limited thereto. In addition, the sample transport robot 100 may further include a power supply 190 configured to supply the light 121, the drive motor 132, the linear actuator 150, the robot arm 160, the depth camera 170, and the central controller 180, The power supply 190 can be, for example, a lithium secondary battery or a solar battery or the like; in the present embodiment, the power supply 190 can supply the light up to 121 via the central controller 180, the inertial measurement unit 122, the rotary encoder 123, and linear actuation. The power supply 190 can also directly supply the light 121, the inertial measurement unit 122, the rotary encoder 123, and the linearity. The actuator 150, the robot arm 160, and the depth camera 170 are powered.

上述的檢體承載件140更可包括底壁141及側壁142,底壁141適於承載檢體,側壁142與底壁141連接,且側壁142連接線性致動器150。進一步來說,側壁142的底端可環接於底壁141的周緣,且側壁142的頂端定義出開口143,機械手臂160可經由開口143抓取檢體。線性致動器150可將檢體承載件140向外推而使檢體承載件140移出至機器人殼體110外,並且可將檢體承載件140往回拉而使檢體承載件140整體回到機器人殼體110內。另外,檢體承載件140的數量可為一個或多個,圖2中是以三個檢體承載件140作為例示。再者,線性致動器150的數量可等於或多於檢體承載件140的數量,圖2中是以三個檢體承載件140搭配三個線性致動器150,且每一檢體承載件140連接於每一線性致動器150(一對一)作為例示,但於其他實施例中,也可以例如是六個線性致動器150搭配三個檢體承載件140,且各檢體承載件140連接兩個線性致動器150(二對一),但不以此為限。The sample carrier 140 may further include a bottom wall 141 adapted to carry a sample, a sidewall 142 connected to the bottom wall 141, and a sidewall 142 connected to the linear actuator 150. Further, the bottom end of the side wall 142 can be looped to the periphery of the bottom wall 141, and the top end of the side wall 142 defines an opening 143 through which the robot arm 160 can grasp the specimen. The linear actuator 150 can push the specimen carrier 140 outward to move the specimen carrier 140 out of the robot housing 110, and can pull the specimen carrier 140 back to make the specimen carrier 140 as a whole. Inside the robot housing 110. In addition, the number of the sample carriers 140 may be one or more, and FIG. 2 is exemplified by three sample carriers 140. Moreover, the number of linear actuators 150 may be equal to or greater than the number of sample carriers 140. In FIG. 2, three sample carriers 140 are combined with three linear actuators 150, and each sample carries The member 140 is connected to each linear actuator 150 (one-to-one) as an example, but in other embodiments, for example, six linear actuators 150 may be associated with three sample carriers 140, and each sample is The carrier 140 connects the two linear actuators 150 (two to one), but is not limited thereto.

上述的機器人殼體110可包括頂部113,頂部113與底部112位置相對,側開口部111位於頂部113與底部112之間,光達121及機械手臂160可配置於頂部113,深度相機170鄰接於機械手臂160,深度相機170可配置於頂部113,檢體承載件140的開口143朝向頂部113,但不以此為限,光達121、機械手臂160及深度相機170於機器人殼體110上的配置位置可依實際需求變動,檢體承載件140的開口143的方向亦可依需求變動。此外,在本實施例中,光達121經由支架1211裝設於頂部113上。另外,中央控制器180可依需求配置於機器人殼體110內、頂部113或底部112,本創作不對中央控制器180在機器人殼體110上的配置位置作限制。The robot housing 110 described above may include a top portion 113, the top portion 113 is opposite to the bottom portion 112, the side opening portion 111 is located between the top portion 113 and the bottom portion 112, the light 121 and the robot arm 160 may be disposed at the top portion 113, and the depth camera 170 is adjacent to the The robot arm 160, the depth camera 170 can be disposed on the top 113, and the opening 143 of the specimen carrier 140 faces the top 113, but not limited thereto, the light 121, the robot arm 160, and the depth camera 170 are on the robot housing 110. The configuration position can be changed according to actual needs, and the direction of the opening 143 of the sample carrier 140 can also be changed as needed. Further, in the present embodiment, the light up to 121 is mounted on the top portion 113 via the bracket 1211. In addition, the central controller 180 can be disposed in the robot housing 110, the top 113 or the bottom 112 as needed. The present invention does not limit the position of the central controller 180 on the robot housing 110.

上述的移動組件130更可包括馬達控制器133,馬達控制器133電連接於驅動馬達132與中央控制器180之間,且馬達控制器133配置於驅動馬達132與電源供應器190之間的電力傳輸路徑上,適於控制驅動馬達132與電源供應器190之間的通路或斷路,中央控制器180經由馬達控制器133控制(啟動或停止)驅動馬達132。此外,移動組件130還可包括開發板134,馬達控制器133經由開發板134與中央控制器180電連接,開發板134可例如為Arduino Uno控制板,但不以此為限。另外,在本實施例中,驅動馬達132可包括第一馬達1321及第二馬達1322,輪胎組131包括第一輪胎1311及第二輪胎1312,第一馬達1321連接於第一輪胎1311,第二馬達1322連接於第二輪胎1312,馬達控制器133連接於第一馬達1321與中央控制器180之間,馬達控制器133連接於第二馬達1322與中央控制器180之間,馬達控制器133經由第一馬達1321與第二馬達1322使第一輪胎1311及第二輪胎1312轉動;其中,第一輪胎1311例如是左側輪胎,第二輪胎1312例如是右側輪胎,但不以此為限。本創作對第一輪胎1311及第二輪胎1312的種類及數量不予以限制。The moving assembly 130 described above may further include a motor controller 133 electrically connected between the driving motor 132 and the central controller 180, and the motor controller 133 is disposed between the driving motor 132 and the power supply 190. The transmission path is adapted to control a path or an open circuit between the drive motor 132 and the power supply 190, and the central controller 180 controls (starts or stops) the drive motor 132 via the motor controller 133. In addition, the mobile component 130 may further include a development board 134. The motor controller 133 is electrically connected to the central controller 180 via the development board 134. The development board 134 may be, for example, an Arduino Uno control board, but is not limited thereto. In addition, in the embodiment, the driving motor 132 may include a first motor 1321 and a second motor 1322. The tire group 131 includes a first tire 1311 and a second tire 1312. The first motor 1321 is coupled to the first tire 1311, and the second The motor 1322 is connected to the second tire 1312, the motor controller 133 is connected between the first motor 1321 and the central controller 180, and the motor controller 133 is connected between the second motor 1322 and the central controller 180. The motor controller 133 is connected via the motor The first motor 1321 and the second motor 1322 rotate the first tire 1311 and the second tire 1312. The first tire 1311 is, for example, a left tire, and the second tire 1312 is, for example, a right tire, but is not limited thereto. The present invention does not limit the type and number of the first tire 1311 and the second tire 1312.

在本實施例中,上述的中央控制器180可具有例如機器人操作系統(Robot Operating System,ROS),光達121可掃描環境並提供環境特徵資料,光達121所提供的環境特徵資料可搭配中央控制器180的機器人操作系統中的Gmapping演算法來實現即時定位與地圖構建(Simultaneous Localization and Mapping,SLAM),以獲得導航地圖及機器人位置資料,但不以此為限。此外,在本實施例中,可使用中央控制器180的機器人操作系統中的概率路線圖(Probabilistic Roadmap,PRM)演算法,依據機器人位置資料及關連於檢體預定放置位置的放置位置資料,來規劃檢體運送機器人100的移動路徑,並且可使用機器人操作系統中的純追蹤(Pure Pursuit)演算法,來使檢體運送機器人100沿移動路徑移動至檢體預定放置位置。In this embodiment, the central controller 180 may have, for example, a Robot Operating System (ROS), which can scan the environment and provide environmental characteristic data, and the environmental characteristic data provided by the optical 121 can be matched with the central The Gmapping algorithm in the robot operating system of the controller 180 implements Simultaneous Localization and Mapping (SLAM) to obtain navigation maps and robot position data, but not limited thereto. In addition, in this embodiment, a Probabilistic Roadmap (PRM) algorithm in the robot operating system of the central controller 180 may be used, according to the robot position data and the placement position data related to the predetermined placement position of the specimen. The movement path of the specimen transport robot 100 is planned, and the pure pursuit algorithm in the robot operating system can be used to move the specimen transport robot 100 along the movement path to the specimen predetermined placement position.

上述的定位組件120還可包括慣性量測單元122(Inertial Measurement Unit,IMU),慣性量測單元122電連接於中央控制器180,且電源供應器190供應慣性量測單元122電力,中央控制器180、慣性量測單元122與光達121配置為提供機器人位置資料;舉例而言,中央控制器180、慣性量測單元122及光達121可以機器人操作系統中的自適應蒙地卡羅定位(Adaptive Monte Carlo Localization,AMCL)演算法來實現定位,以提供機器人位置資料,蒙地卡羅定位演算法使用已建構的導航地圖,動態建立機率分布粒子,配合光達121的環境特徵資料與慣性量測單元122所提供的加速度資料及角速度資料重複修正不同粒子的機率分布,從而提升定位的準確性;換言之,藉由中央控制器180、慣性量測單元122與光達121的配合,可提升機器人位置資料的正確性。此外,慣性量測單元122可例如為加速度計(accelerometer)、磁力計(magnetometer)或 陀螺儀(gyroscope),但不以此為限。The positioning component 120 may further include an inertial measurement unit 122 (IMU), the inertia measurement unit 122 is electrically connected to the central controller 180, and the power supply 190 supplies the inertia measurement unit 122 power, the central controller. 180. The inertia measurement unit 122 and the optical component 121 are configured to provide robot position data; for example, the central controller 180, the inertia measurement unit 122, and the optical sensor 121 can be adaptive Monte Carlo positioning in the robot operating system ( Adaptive Monte Carlo Localization (AMCL) algorithm is used to achieve positioning to provide robot position data. The Monte Carlo positioning algorithm uses the constructed navigation map to dynamically establish probability distribution particles, and cooperate with the environmental characteristics data and inertia of Guangda 121. The acceleration data and the angular velocity data provided by the measuring unit 122 repeatedly correct the probability distribution of different particles, thereby improving the accuracy of the positioning; in other words, by the cooperation of the central controller 180, the inertial measurement unit 122 and the light up to 121, the robot can be raised. The correctness of the location data. In addition, the inertial measurement unit 122 can be, for example, an accelerometer, a magnetometer, or a gyroscope, but is not limited thereto.

上述的定位組件120更可包括旋轉編碼器123(rotary encoder),旋轉編碼器123連接於中央控制器180,且電源供應器190供應旋轉編碼器123電力,旋轉編碼器123、中央控制器180、慣性量測單元122與光達121配置為提供機器人位置資料;舉例而言,中央控制器180、光達121及慣性量測單元122進一步配合旋轉編碼器123所提供的機器人里程資料,以機器人操作系統的自適應蒙地卡羅定位演算法來實現定位,而大幅度提升機器人位置資料的準確率;換言之,藉由中央控制器180、慣性量測單元122、光達121及旋轉編碼器123的配合,可大幅提升機器人位置資料的正確性。The positioning assembly 120 described above may further include a rotary encoder 123, the rotary encoder 123 is connected to the central controller 180, and the power supply 190 supplies the rotary encoder 123 power, the rotary encoder 123, the central controller 180, The inertia measurement unit 122 and the light reaching unit 121 are configured to provide the robot position data; for example, the central controller 180, the light reaching unit 121 and the inertia measuring unit 122 further cooperate with the robot mileage data provided by the rotary encoder 123 to operate by the robot. The system's adaptive Monte Carlo positioning algorithm is used to achieve positioning, and the accuracy of the robot position data is greatly improved; in other words, by the central controller 180, the inertial measurement unit 122, the optical 121 and the rotary encoder 123 Coordination can greatly improve the correctness of the robot position data.

此外,上述的光達121還可配置為在檢體運送機器人100移動時偵測障礙物並提供關連於障礙物的障礙位置資料,中央控制器180可依據障礙物位置資料及機器人位置資料控制驅動馬達132,使檢體運送機器人100迴避關聯於障礙物位置資料的障礙物,以移動至檢體預定放置位置;舉例而言,可使用中央控制器180的機器人操作系統中的方向區間直方圖(Vector Field Histogram,VHF)演算法來使檢體運送機器人100迴避障礙物,但不以此為限。在一實施例中,檢體運送機器人100也可包括聲納測距儀,聲納測距儀電連接於中央控制器180,且電源供應器190供應聲納測距儀電力;聲納測距儀偵測障礙物並提供關連於障礙物的障礙位置資料給中央控制器180,以使檢體運送機器人100迴避障礙物。In addition, the light 121 may be configured to detect an obstacle when the specimen transport robot 100 moves and provide obstacle position data related to the obstacle, and the central controller 180 can control the driving according to the obstacle position data and the robot position data. The motor 132 causes the sample transport robot 100 to avoid an obstacle associated with the obstacle position data to move to the predetermined placement position of the specimen; for example, a direction interval histogram in the robot operating system of the central controller 180 can be used ( The Vector Field Histogram (VHF) algorithm is used to cause the sample transport robot 100 to avoid obstacles, but not limited thereto. In an embodiment, the sample transport robot 100 may also include a sonar range finder, the sonar range finder is electrically connected to the central controller 180, and the power supply 190 supplies the sonar range finder power; sonar ranging The instrument detects the obstacle and provides the obstacle position information related to the obstacle to the central controller 180 to cause the sample transport robot 100 to avoid the obstacle.

本實施例的檢體運送機器人100中,藉由中央控制器180、光達121及移動組件130的配合,檢體運送機器人100可以自主導航並移動到到達檢體預定放置位置;於到達檢體預定放置位置後,藉由中央控制器180與線性致動器150的配合,檢體承載件140被線性致動器150推動而經由側開口部111伸出至機器人殼體110外,使得檢體暴露於機器人殼體110外;接著,藉由中央控制器180、機械手臂160及深度相機170的配合,機械手臂160抓取檢體放置件上的檢體,並且將檢體放置於檢體預定放置位置上,從而完成檢體的運送,於完成檢體的拿取與放置後,線性致動器150將檢體承載件140拉回至機器人殼體110內,檢體運送機器人100可再進行下一個檢體的運送。據此,於人力不足的情況下,研究及檢驗人員除職責內的試驗工作外,不需另外負擔檢體的運送工作。In the sample transport robot 100 of the present embodiment, the sample transport robot 100 can autonomously navigate and move to reach a predetermined placement position of the specimen by the cooperation of the central controller 180, the light reaching 121, and the moving component 130; After the predetermined placement position, the specimen carrier 140 is pushed by the linear actuator 150 and protrudes out of the robot housing 110 via the side opening portion 111 by the cooperation of the central controller 180 and the linear actuator 150, so that the specimen is inspected. Exposed to the outside of the robot housing 110; then, by the cooperation of the central controller 180, the robot arm 160 and the depth camera 170, the robot arm 160 grasps the specimen on the specimen placement member, and places the specimen on the specimen body. The placement position is such that the transport of the sample is completed. After the take-up and placement of the sample is completed, the linear actuator 150 pulls the sample carrier 140 back into the robot housing 110, and the sample transport robot 100 can perform further Delivery of the next specimen. According to this, in the case of insufficient manpower, the research and inspection personnel do not need to bear the transportation work of the specimen in addition to the test work within the responsibilities.

此外,本實施例的檢體運送機器人100藉由線性致動器150,檢體承載件140於運送過程中,可保持於機器人殼體110內,而到達檢體預定放置位置時,檢體承載件140才被推動而伸出機器人殼體110外,以進行檢體的拿取與放置,據此,檢體承載件140上的檢體於運送過程中可受到機器人殼體110的保護而免於汙染及破壞。In addition, the sample transport robot 100 of the present embodiment can maintain the sample carrier 140 in the robot housing 110 during the transport process by the linear actuator 150, and the specimen carrier is carried when the sample is placed in the predetermined position. The piece 140 is pushed out of the robot housing 110 for picking up and placing the sample, whereby the sample on the sample carrier 140 can be protected by the robot housing 110 during transportation. For pollution and destruction.

綜上所述,藉由機器人殼體、定位組件、移動組件、檢體承載件、線性致動器、機械手臂、深度相機及中央控制器,本創作實施例的檢體運送機器人中可自主將檢體運送並放置於預定檢體預定放置位置上,因此,再人力不足的情況下,研究及檢驗人員仍可專注於試驗工作,不需額外負擔檢體的運送工作,從而避免工作計畫的延遲並減輕人員的工作負擔。In summary, the robotic housing, the positioning component, the moving component, the specimen carrier, the linear actuator, the robot arm, the depth camera, and the central controller can be autonomously in the sample transport robot of the present embodiment. The specimen is transported and placed in a predetermined placement position of the predetermined specimen. Therefore, in the case of insufficient manpower, the research and inspection personnel can still concentrate on the trial work without additional burden on the transport of the specimen, thereby avoiding the work plan. Delay and reduce the workload of personnel.

雖然本創作已以實施例揭露如上,然其並非用以限定本創作,本創作所屬技術領域中具有通常知識者,在不脫離本創作之精神和範圍內,當可作些許之更動與潤飾,因此本創作之保護範圍當視後附之申請專利範圍所界定者為準。此外,本說明書或申請專利範圍中提及的「第一」、「第二」等用語僅用以命名元件(element)的名稱或區別不同實施例或範圍,而並非用來限制元件數量上的上限或下限。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention. Those skilled in the art to which the present invention pertains may have some modifications and refinements without departing from the spirit and scope of the present invention. Therefore, the scope of protection of this creation is subject to the definition of the scope of the patent application attached. In addition, the terms "first" and "second" as used in the specification or the scope of the patent application are used only to name the elements or to distinguish different embodiments or ranges, and are not intended to limit the number of elements. Upper or lower limit.

100‧‧‧檢體運送機器人100‧‧‧Check transport robot

110‧‧‧機器人殼體 110‧‧‧ Robot housing

111‧‧‧側開口部 111‧‧‧Side opening

112‧‧‧底部 112‧‧‧ bottom

113‧‧‧頂部 113‧‧‧ top

120‧‧‧定位組件 120‧‧‧ Positioning components

121‧‧‧光達 121‧‧‧光达

1211‧‧‧支架 1211‧‧‧ bracket

122‧‧‧慣性量測單元 122‧‧‧Inertial measurement unit

123‧‧‧旋轉編碼器 123‧‧‧Rotary encoder

130‧‧‧移動組件 130‧‧‧Mobile components

131‧‧‧輪胎組 131‧‧‧ tire group

1311‧‧‧第一輪胎 1311‧‧‧First tire

1312‧‧‧第二輪胎 1312‧‧‧Second tire

132‧‧‧驅動馬達 132‧‧‧Drive motor

1321‧‧‧第一馬達 1321‧‧‧First motor

1322‧‧‧第二馬達 1322‧‧‧second motor

133‧‧‧馬達控制器 133‧‧‧Motor controller

134‧‧‧開發板 134‧‧‧ Development Board

140‧‧‧檢體承載件 140‧‧‧ specimen carrier

141‧‧‧底壁 141‧‧‧ bottom wall

142‧‧‧側壁 142‧‧‧ side wall

143‧‧‧開口 143‧‧‧ openings

150‧‧‧線性致動器 150‧‧‧linear actuator

160‧‧‧機械手臂 160‧‧‧ Robotic arm

170‧‧‧深度相機 170‧‧‧Deep camera

180‧‧‧中央控制器 180‧‧‧Central controller

190‧‧‧電源供應器 190‧‧‧Power supply

圖1為本創作一實施例的檢體運送機器人的使用狀態示意圖; 圖2為本創作一實施例的檢體運送機器人的側視示意圖; 圖3為圖1的側視圖; 圖4為本創作一實施例的檢體運送機器人的方塊圖;以及 圖5為本創作一實施例的檢體運送機器人的移動組件的方塊圖。1 is a schematic view showing a state of use of a sample transport robot according to an embodiment of the present invention; FIG. 2 is a side view of a sample transport robot according to an embodiment of the present invention; FIG. 3 is a side view of FIG. A block diagram of a sample transport robot of an embodiment; and Fig. 5 is a block diagram of a moving assembly of the sample transport robot of the present embodiment.

Claims (8)

一種檢體運送機器人,包括: 一機器人殼體,具有一側開口部; 一定位組件,配置於該機器人殼體上,且包括一光達; 一移動組件,配置於該機器人殼體上,且包括一輪胎組及一驅動馬達,該輪胎組配置於該機器人殼體的一底部,該驅動馬達適於驅動該輪胎組,以使該檢體運送機器人移動; 一檢體承載件,配置於該機器人殼體內且鄰接於該側開口部,適於承載一檢體; 一線性致動器,配置於該機器人殼體上且連接於該檢體承載件,適於使該檢體承載件在側開口部處相對機器人殼體移動; 一機械手臂,配置於該機器人殼體上,適於抓取該檢體; 一深度相機,配置於該機器人殼體上,適於感測該機械手臂的動作及位置;以及 一中央控制器,配置於該機器人殼體上,電連接於該光達、該驅動馬達、該線性致動器、該機械手臂及該深度相機; 其中,該中央控制器與該光達適於提供一機器人位置資料,該中央控制器依據該機器人位置資料控制該驅動馬達,以使該檢體運送機器人移動至一檢體預定放置位置;當該檢體運送機器人到達該檢體預定放置位置後,該中央控制器經由該線性致動器使該檢體承載件經由該側開口部移出至機器人殼體外,並且令該機械手臂抓取該檢體以將檢體放置於該檢體預定放置位置。A sample transport robot includes: a robot housing having a side opening; a positioning component disposed on the robot housing and including a light; a moving component disposed on the robot housing, and a tire set and a drive motor, the tire set is disposed at a bottom of the robot housing, the drive motor is adapted to drive the tire set to move the sample transport robot; a sample carrier is disposed on the a linear actuator, disposed on the robot housing and coupled to the sample carrier, is adapted to be on the side of the robot housing The opening is moved relative to the robot housing; a mechanical arm is disposed on the robot housing to be adapted to grasp the specimen; and a depth camera is disposed on the robot housing to sense the motion of the robot arm And a central controller, disposed on the robot housing, electrically connected to the light, the drive motor, the linear actuator, the robot arm and the depth camera; wherein The central controller and the optical device are adapted to provide a robot position data, and the central controller controls the driving motor according to the robot position data to move the sample transport robot to a predetermined position of the specimen; when the specimen is transported After the robot reaches the predetermined placement position of the specimen, the central controller moves the specimen carrier through the side opening to the outside of the robot housing via the linear actuator, and causes the robot to grasp the specimen for inspection. The body is placed at a predetermined placement position of the specimen. 如請求項1所述的檢體運送機器人,其中該檢體承載件包括一底壁及一側壁,該底壁適於承載該檢體,該側壁與該底壁連接,且該側壁連接該線性致動器。The sample transport robot of claim 1, wherein the sample carrier comprises a bottom wall and a side wall, the bottom wall is adapted to carry the sample, the side wall is connected to the bottom wall, and the side wall is connected to the linear Actuator. 如請求項2所述的檢體運送機器人,其中該側壁的一底端環接於該底壁的一周緣,且該側壁的一頂端形成一開口,該機械手臂經由該開口抓取該檢體。The sample transport robot of claim 2, wherein a bottom end of the side wall is looped to a peripheral edge of the bottom wall, and a top end of the side wall forms an opening through which the robot arm grasps the sample . 如請求項1所述的檢體運送機器人,其中該定位組件更包括一慣性測量單元,該慣性量測單元電連接於該中央控制器,該中央控制器、該慣性量測單元與該光達適於提供該機器人位置資料。The sample transport robot of claim 1, wherein the positioning component further comprises an inertial measurement unit electrically connected to the central controller, the central controller, the inertial measurement unit and the optical Suitable for providing the robot position information. 如請求項4所述的檢體運送機器人,其中該定位組件更包括一旋轉編碼器,該旋轉編碼器連接於該中央控制器,該中央控制器、該慣性量測單元、該光達及該旋轉編碼器適於提供該機器人位置資料。The sample transport robot of claim 4, wherein the positioning component further comprises a rotary encoder coupled to the central controller, the central controller, the inertial measurement unit, the light and the A rotary encoder is adapted to provide the robot position data. 如請求項1所述的檢體運送機器人,其中更包括一聲納測距儀,該聲納測距儀電連接於該中央控制器,該聲納測距儀適於偵測一障礙物並一提供關連於該障礙物的障礙位置資料給該中央控制器,以使該檢體運送機器人迴避該障礙物。The sample transport robot of claim 1, further comprising a sonar range finder electrically connected to the central controller, the sonar range finder being adapted to detect an obstacle and A fault location information associated with the obstacle is provided to the central controller to cause the specimen transport robot to evade the obstacle. 如請求項1所述的檢體運送機器人,其中該移動組件更包括一馬達控制器,該馬達控制器電連接於該驅動馬達與該中央控制器之間,該中央控制器經由該馬達控制器控制該驅動馬達。The sample transport robot of claim 1, wherein the moving component further comprises a motor controller electrically connected between the drive motor and the central controller, the central controller via the motor controller The drive motor is controlled. 如請求項1所述的檢體運送機器人,其中更包括一電源供應器,該電源供應器配置為供應該光達、該驅動馬達、該線性致動器、該機械手臂、該深度相機及該中央控制器電力。The specimen transport robot of claim 1, further comprising a power supply configured to supply the light, the drive motor, the linear actuator, the robot arm, the depth camera, and the Central controller power.
TW107212197U 2018-09-06 2018-09-06 Specimen delivering robot TWM572989U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107212197U TWM572989U (en) 2018-09-06 2018-09-06 Specimen delivering robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107212197U TWM572989U (en) 2018-09-06 2018-09-06 Specimen delivering robot

Publications (1)

Publication Number Publication Date
TWM572989U true TWM572989U (en) 2019-01-11

Family

ID=65804859

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107212197U TWM572989U (en) 2018-09-06 2018-09-06 Specimen delivering robot

Country Status (1)

Country Link
TW (1) TWM572989U (en)

Similar Documents

Publication Publication Date Title
ES2812568T3 (en) Autonomous mobile robot to execute work assignments in a physical environment in which there are stationary and non-stationary obstacles
US10974830B2 (en) Manipulation system and method for an aircraft
US9757859B1 (en) Tooltip stabilization
US10759051B2 (en) Architecture and methods for robotic mobile manipulation system
Bostelman et al. Survey of research for performance measurement of mobile manipulators
JP6433122B2 (en) Enhanced mobile platform positioning
US11230016B1 (en) Multi-resolution localization system
EP2538297A2 (en) Manufacturing control system
CN111730606B (en) Grabbing action control method and system of high-intelligence robot
US9844877B1 (en) Generating a parameter for a movement characteristic for a waypoint trained path of a robot
CN111077889A (en) Multi-mobile-robot formation cooperative positioning method for workshop tray transportation
US11426885B1 (en) Robot docking station identification surface
US12059814B2 (en) Object-based robot control
Lee et al. The design and implementation of autonomous driving pallet robot system using ROS
TWM572989U (en) Specimen delivering robot
Everett et al. An advanced telereflexive tactical response robot
JP7340756B2 (en) Aircraft control system and method
Geer et al. Novel software architecture for an autonomous agricultural robotic fruit harvesting system
CN107272725B (en) Spherical robot motion control system with visual feedback and motion control method
Liu et al. A fast method for mobile robot transportation in life science automation
Xatzopoulos et al. Mobile robotic platforms as educational tools in mechatronics engineering
KR20200020369A (en) A wall-climbing drone unit for maintaining and managing of high-storied building and the control method thereof
Suthakorn et al. An enhanced robotic library system for an off-site shelving facility
Pearson et al. Mobile Manipulation Platform for Autonomous Indoor Inspections in Low-Clearance Areas
Miura et al. Self-Localization of Mobile Robot Based on Beacon Beam of TOF Laser Sensor Mounted on Pan-Tilt Actuator: Estimation Method that Combines Spot Coordinates on Laser Receiver and Odometry

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees