TWM564599U - Fiber pre-oxidation equipment - Google Patents

Fiber pre-oxidation equipment Download PDF

Info

Publication number
TWM564599U
TWM564599U TW107201430U TW107201430U TWM564599U TW M564599 U TWM564599 U TW M564599U TW 107201430 U TW107201430 U TW 107201430U TW 107201430 U TW107201430 U TW 107201430U TW M564599 U TWM564599 U TW M564599U
Authority
TW
Taiwan
Prior art keywords
fiber
furnace body
bundle
oxidized
microwave
Prior art date
Application number
TW107201430U
Other languages
Chinese (zh)
Inventor
王智永
Original Assignee
永虹先進材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 永虹先進材料股份有限公司 filed Critical 永虹先進材料股份有限公司
Priority to TW107201430U priority Critical patent/TWM564599U/en
Priority to CN201820182688.3U priority patent/CN207891472U/en
Priority to JP2018001250U priority patent/JP3216682U/en
Publication of TWM564599U publication Critical patent/TWM564599U/en

Links

Abstract

本創作之纖維預氧化設備,主要包括:一傳送單元,以及一微波處理單元;該微波處理單元係於該傳送單元之一爐體處設有至少一磁控管,以及設有與該爐體連接的一供氣機組;利用微波聚焦對連續通過該爐體的一纖維紗束施以超高速預氧化製程,將該纖維紗束加工成為一氧化纖維紗束,不但可以有效縮減一氧化纖維之氧化時間,且有效降低該氧化纖維之皮芯結構,甚至可讓該氧化纖維達到無明顯皮芯程度,以相對更為積極、可靠之手段提升碳纖維性能。The fiber pre-oxidation device of the present invention mainly comprises: a transfer unit, and a microwave processing unit; the microwave processing unit is provided with at least one magnetron at a furnace body of the transfer unit, and is provided with the furnace body Connected gas supply unit; using microwave focusing to apply a super-high speed pre-oxidation process to a fiber yarn bundle continuously passing through the furnace body, and processing the fiber yarn bundle into a oxidized fiber yarn bundle, which can effectively reduce the oxidized fiber Oxidation time, and effectively reduce the core structure of the oxidized fiber, and even allow the oxidized fiber to reach a level of no obvious core, and improve carbon fiber performance by a relatively more active and reliable means.

Description

纖維預氧化設備Fiber pre-oxidation equipment

本創作係與碳纖維之預氧化技術有關,主要揭露一種有助於提升碳纖維性能的纖維預氧化設備。This creation is related to the pre-oxidation technology of carbon fiber, which mainly discloses a fiber pre-oxidation device which helps to improve the performance of carbon fiber.

碳纖維是有機纖維經一系列熱處理後轉化而成的含碳量在90%以上的新型碳材料,其具有高比強度、高比模量、高導電性和導熱性、低熱膨脹係數、低密度、耐高溫、耐疲勞、抗蠕變、自潤滑等一系列的優異性能,是一種理想的功能材料和結構材料,廣泛應用於航太、民用航空及運輸等領域,並具有廣闊的應用前景。Carbon fiber is a new carbon material with a carbon content of more than 90% after a series of heat treatment of organic fibers. It has high specific strength, high specific modulus, high electrical and thermal conductivity, low thermal expansion coefficient, low density, A series of excellent performances such as high temperature resistance, fatigue resistance, creep resistance and self-lubrication are ideal functional materials and structural materials. They are widely used in aerospace, civil aviation and transportation fields, and have broad application prospects.

聚丙烯腈(polyacrylonitrile,PAN)作為原絲的碳纖維製備工藝過程包括聚合、紡絲、預氧化和碳化,其中預氧化過程是碳纖維製備過程中結構轉變的關鍵階段,也是熱處理過程中最耗時的階段,其目的是使聚丙烯腈的線型大分子鏈轉化為具耐熱結構的氧化纖維,使其在後續的碳化時不熔不燃,而能夠保持纖維形態。Polyacrylonitrile (PAN) as a raw material for carbon fiber preparation includes polymerization, spinning, pre-oxidation and carbonization. The pre-oxidation process is a key stage in the structural transformation of carbon fiber preparation process and the most time-consuming process in the heat treatment process. In the stage, the purpose is to convert the linear macromolecular chain of polyacrylonitrile into an oxidized fiber having a heat-resistant structure, so that it does not melt and burn in the subsequent carbonization, and can maintain the fiber morphology.

預氧化過程中原絲的結構轉變在很大程度上決定著碳纖維的結構和性能,在工業化生產中,多係採用梯度升溫的預氧化方式,在此過程中合適的溫度梯度範圍是必要的,起始溫度如果太低,對預氧化過程沒有貢獻,耗費時間增加成本,但起始溫度太高,劇烈的反應放熱會使沒有耐熱能力的PAN大分子鏈熔斷;另外,終止溫度如果太高,集中放熱會破壞預氧絲的結構,並且造成過度預氧化,不利於製備高強度碳纖維,但終止溫度太低,又可能使原絲得不到充分的預氧化。The structural transformation of the raw silk in the pre-oxidation process largely determines the structure and properties of the carbon fiber. In industrial production, the pre-oxidation method using gradient heating is adopted in many stages, and a suitable temperature gradient range is necessary in this process. If the initial temperature is too low, it does not contribute to the pre-oxidation process, which takes time to increase the cost, but the initial temperature is too high, and the intense reaction exotherm will melt the PAN macromolecular chain without heat resistance; in addition, if the termination temperature is too high, concentrate The exotherm destroys the structure of the pre-oxidized filament and causes excessive pre-oxidation, which is not conducive to the preparation of high-strength carbon fibers, but the termination temperature is too low, and the original filament may not be sufficiently pre-oxidized.

再者,以加熱的方式進行預氧化反應時,隨著預氧化反應的進行,由於熱是由原絲的外層往內層傳遞,因此會先在原絲的外層形成了緻密梯形結構的氧化層(皮部),這反而阻礙了氧向原絲內層的芯部擴散,造成如第1圖所示之一氧化纖維10當中之一纖維11產生氧化之一氧化層111(皮部)和尚未氧化之一芯部112明顯差異的一皮芯結構,該氧化層111與該芯部112之間存在一皮芯界面113。該皮芯結構的檢驗係利用掃描式電子顯微鏡(SEM,Scanning Electron Microscope)拍攝實體影像圖以觀測該氧化纖維之斷面並分別計算該氧化層的斷面面積與該芯部的斷面面積以及該氧化纖維之斷面面積,該皮芯結構之程度鑑定法為芯部比率(%)等於該芯部的斷面面積除以該氧化層的斷面面積與該芯部的斷面面積之和,亦即芯部比率(%)等於該芯部的斷面面積除以該氧化纖維之斷面面積。另外,該氧化纖維10及其所製成之碳纖維的物性,例如拉伸強度及拉伸模數,還取決於該氧化纖維10或氧化層111之氧化程度及環化程度;該氧化纖維10或氧化層111之氧化程度及環化程度愈高則該氧化纖維10所製成的碳纖維之拉伸強度及拉伸模數也愈高。該氧化層111呈氧化狀態所以結構緻密並導致所製成的碳纖維之高拉伸強度及高拉伸模數,該芯部112呈氧化不完全或未氧化狀態所以結構鬆散並導致所製成的碳纖維之低拉伸強度及低拉伸模數,因此該氧化層111與該芯部112的氧化程度不一致所導致之該皮芯結構即是導致碳纖維抗拉強度降低的主要原因之一。因此,在預氧化反應過程中如何縮短預氧化時間,以及如何提高預氧化程度同時降低甚至消除皮芯結構,對碳纖維生產成本的降低以及性能(拉伸強度及拉伸模數)的提高具有十分重要的意義。Further, when the pre-oxidation reaction is carried out by heating, as the pre-oxidation reaction proceeds, since the heat is transferred from the outer layer of the raw yarn to the inner layer, an oxide layer having a dense trapezoidal structure is first formed on the outer layer of the original filament ( The skin portion, which in turn hinders the diffusion of oxygen into the core of the inner layer of the original filament, causing one of the oxidized fibers 10, as shown in Fig. 1, to oxidize an oxide layer 111 (skin) and not yet oxidized. A core-sheath structure in which a core portion 112 is significantly different, and a core-core interface 113 exists between the oxide layer 111 and the core portion 112. The inspection of the sheath-core structure is performed by scanning a solid image image using a scanning electron microscope (SEM) to observe the cross section of the oxide layer and calculating the cross-sectional area of the oxide layer and the cross-sectional area of the core. The cross-sectional area of the oxidized fiber, the degree of the core structure is determined by the core ratio (%) equal to the cross-sectional area of the core divided by the sum of the cross-sectional area of the oxide layer and the cross-sectional area of the core That is, the core ratio (%) is equal to the cross-sectional area of the core divided by the cross-sectional area of the oxidized fiber. In addition, the physical properties of the oxidized fiber 10 and the carbon fiber produced therefrom, such as tensile strength and tensile modulus, are also dependent on the degree of oxidation and degree of cyclization of the oxidized fiber 10 or the oxide layer 111; The higher the degree of oxidation and the degree of cyclization of the oxide layer 111, the higher the tensile strength and tensile modulus of the carbon fiber produced by the oxidized fiber 10. The oxide layer 111 is in an oxidized state, so that the structure is dense and results in high tensile strength and high tensile modulus of the produced carbon fiber. The core portion 112 is incompletely oxidized or unoxidized, so that the structure is loose and causes the resulting structure. Since the carbon fiber has low tensile strength and low tensile modulus, the sheath-core structure caused by the oxidation degree of the oxide layer 111 and the core portion 112 is one of the main causes of the decrease in the tensile strength of the carbon fiber. Therefore, how to shorten the pre-oxidation time during the pre-oxidation reaction, and how to increase the degree of pre-oxidation while reducing or even eliminating the sheath-core structure, the reduction of carbon fiber production cost and the improvement of properties (tensile strength and tensile modulus) are very Significance.

有鑑於此,本創作即在提供一種可以有效縮短氧化纖維之氧化時間,且有效降低氧化纖維之皮芯結構,甚至讓氧化纖維達到無明顯皮芯結構的纖維預氧化設備,為其主要目的者。In view of this, the present invention provides a fiber pre-oxidation device which can effectively shorten the oxidation time of the oxidized fiber, effectively reduce the core structure of the oxidized fiber, and even allow the oxidized fiber to have no obvious sheath core structure. .

本創作之纖維預氧化設備,適用於將一纖維紗束預氧化為一氧化纖維紗束,該纖維紗束係由一纖維或複數個該纖維集結成束所構成,該氧化纖維紗束係由一氧化纖維或複數個該氧化纖維集結成束所構成,該纖維預氧化設備基本上包括有:一傳送單元,設有提供一纖維紗束的一供料機組、供該纖維紗束通過並將該纖維紗束預氧化為該氧化纖維紗束的一爐體、拖曳該纖維紗束連續傳送及將該氧化纖維紗束收取的一收卷機組;以及,一微波處理單元,係設置於該爐體處以對該爐體的內部產生一微波。The fiber pre-oxidation device of the present invention is suitable for pre-oxidizing a fiber yarn bundle into a oxidized fiber yarn bundle, wherein the fiber yarn bundle is composed of a fiber or a plurality of the fiber bundles, and the oxidized fiber yarn bundle is composed of The oxidized fiber or a plurality of the oxidized fibers are assembled into a bundle, and the fiber pre-oxidation apparatus basically comprises: a conveying unit provided with a feeding unit for supplying a fiber yarn bundle, and the fiber yarn bundle is passed through The fiber yarn bundle is pre-oxidized into a furnace body of the oxidized fiber yarn bundle, a winding unit that continuously transports the fiber yarn bundle and collects the oxidized fiber yarn bundle; and a microwave processing unit is disposed in the furnace The body creates a microwave for the interior of the furnace body.

依據上述結構特徵,該微波處理單元係於該爐體處設有供產生該微波的一磁控管。According to the above structural feature, the microwave processing unit is provided with a magnetron for generating the microwave at the furnace body.

依據上述結構特徵,該微波處理單元更設有供將一含氧氣體通入該爐體的一供氣機組。According to the above structural features, the microwave processing unit is further provided with a gas supply unit for introducing an oxygen-containing gas into the furnace body.

依據上述結構特徵,該爐體更包含一進氣口及一出氣口,該供氣機組係與該該進氣口連接。According to the above structural feature, the furnace body further includes an air inlet and an air outlet, and the air supply unit is connected to the air inlet.

依據上述結構特徵,該爐體更包含一保溫單元。According to the above structural features, the furnace body further comprises a heat preservation unit.

依據上述結構特徵,該爐體內部相對於該纖維紗束傳送路徑之上、下位置處,分別設有該保溫單元。According to the above structural features, the interior of the furnace body is provided with the thermal insulation unit at a position above and below the fiber yarn delivery path.

依據上述結構特徵,該爐體內部設有相對將該纖維紗束之傳送路徑包圍的該保溫單元。According to the above structural feature, the heat insulating unit is provided inside the furnace body so as to surround the conveying path of the fiber yarn bundle.

依據上述結構特徵,該收卷機組、該磁控管及該供氣機組係與一控制單元電氣連接。According to the above structural features, the winding unit, the magnetron and the air supply unit are electrically connected to a control unit.

依據上述結構特徵,該微波處理單元係於該爐體處設有供產生該微波的複數個該磁控管。According to the above structural feature, the microwave processing unit is provided with a plurality of the magnetrons for generating the microwaves at the furnace body.

依據上述結構特徵,複數個該磁控管設於該爐體的單側。According to the above structural features, a plurality of the magnetrons are disposed on one side of the furnace body.

依據上述結構特徵,複數個該磁控管設於該爐體的上下兩側呈相對排列。According to the above structural features, a plurality of the magnetrons are arranged opposite to each other on the upper and lower sides of the furnace body.

依據上述結構特徵,複數個該磁控管設於該爐體的上下兩側呈錯位排列。According to the above structural features, the plurality of magnetrons are arranged in a misaligned arrangement on the upper and lower sides of the furnace body.

依據上述結構特徵,複數個該磁控管設於該爐體的上下兩側及左右兩側。According to the above structural features, a plurality of the magnetrons are disposed on the upper and lower sides and the left and right sides of the furnace body.

依據上述結構特徵,該纖維紗束係為聚丙烯腈(PAN)纖維、瀝青纖維或其他有機纖維其中之一。According to the above structural features, the fiber bundle is one of polyacrylonitrile (PAN) fibers, pitch fibers or other organic fibers.

本創作所揭露的纖維預氧化設備,主要利用微波處理單元之微波聚焦對纖維紗束施以超高速預氧化處理,將纖維紗束加工成為氧化纖維,不但可以有效縮減氧化纖維之氧化時間,且氧化纖維當中之氧化層係至少佔該氧化纖維之斷面面積50%以上,有效降低氧化纖維之皮芯結構;當氧化纖維當中之氧化層係佔該氧化纖維之斷面面積至少80%以上時,甚至可讓氧化纖維達到無明顯皮芯結構。因此,本創作係以相對更為積極、可靠之手段提升碳纖維性能。The fiber pre-oxidation device disclosed in the present invention mainly uses the microwave focusing of the microwave processing unit to apply ultra-high-speed pre-oxidation treatment to the fiber yarn bundle, and processes the fiber yarn bundle into oxidized fiber, which can effectively reduce the oxidation time of the oxidized fiber, and The oxide layer in the oxidized fiber accounts for at least 50% of the cross-sectional area of the oxidized fiber, and effectively reduces the sheath-core structure of the oxidized fiber; when the oxide layer in the oxidized fiber accounts for at least 80% of the cross-sectional area of the oxidized fiber Even the oxidized fiber can be made to have no obvious sheath core structure. Therefore, this creation enhances carbon fiber performance with a relatively more active and reliable means.

本創作主要提供一種可以有效縮短氧化纖維之氧化時間,且有效降低氧化纖維皮芯結構,甚至讓氧化纖維達到無明顯皮芯結構的纖維預氧化設備。請同時參閱第2圖及第3圖。如第2圖所示,本創作之纖維預氧化設備,適用於將一纖維紗束20預氧化為一氧化纖維紗束20A,該纖維紗束20係由一纖維(圖未繪出)或複數個該纖維集結成束所構成,該氧化纖維紗束20A係由一氧化纖維21或複數個該氧化纖維21集結成束所構成,該纖維預氧化設備包括有:The present invention mainly provides a fiber pre-oxidation device which can effectively shorten the oxidation time of the oxidized fiber, effectively reduce the core structure of the oxidized fiber, and even allow the oxidized fiber to have no obvious sheath core structure. Please also refer to Figures 2 and 3. As shown in Fig. 2, the fiber pre-oxidation apparatus of the present invention is suitable for pre-oxidizing a fiber bundle 20 into a oxidized fiber bundle 20A, which is composed of a fiber (not shown) or plural The fibers are assembled into a bundle, and the oxidized fiber bundle 20A is composed of a oxidized fiber 21 or a plurality of the oxidized fibers 21, and the fiber pre-oxidation device comprises:

一傳送單元30,設有提供一纖維紗束20的一供料機組31、供該纖維紗束20通過並將該纖維紗束20預氧化為該氧化纖維紗束20A的一爐體33、拖曳該纖維紗束20連續傳送及將該氧化纖維紗束20A收取的一收卷機組32、設於該爐體33之前端的一進氣口331及設於該爐體33之後端的一出氣口332;以及,A conveying unit 30 is provided with a feeding unit 31 for supplying a fiber bundle 20, a furnace body 33 for passing the fiber yarn bundle 20 and pre-oxidizing the fiber yarn bundle 20 into the oxidized fiber yarn bundle 20A, and towing The fiber bundle 20 is continuously conveyed and a winding unit 32 for collecting the oxidized fiber yarn bundle 20A, an air inlet 331 provided at the front end of the furnace body 33, and an air outlet 332 disposed at the rear end of the furnace body 33; as well as,

一微波處理單元40,係於該爐體33處設有供產生一微波的至少一磁控管41,以及設有供將一含氧氣體通入該爐體33的一供氣機組42;該供氣機組42係與該爐體33的該進氣口331連接,該含氧氣體係由該進氣口331進入該爐體33並由該爐體33的該出氣口332排出。a microwave processing unit 40 is provided at the furnace body 33 with at least one magnetron 41 for generating a microwave, and a gas supply unit 42 for introducing an oxygen-containing gas into the furnace body 33; The air supply unit 42 is connected to the air inlet 331 of the furnace body 33. The oxygen-containing system enters the furnace body 33 from the air inlet 331 and is discharged from the air outlet 332 of the furnace body 33.

該收卷機組32、該磁控管41及該供氣機組42係可與一控制單元50電氣連接。可由該控制單元50控制該收卷機組32、該磁控管41及該供氣機組42運作與否,並可依照所加工之該纖維紗束20特性或產品規格設定該收卷機組32之轉速、該磁控管41之功率以及該供氣機組42之流量等運作參數。The winding unit 32, the magnetron 41 and the air supply unit 42 are electrically connectable to a control unit 50. The control unit 50 can control whether the winding unit 32, the magnetron 41 and the air supply unit 42 operate, and can set the rotation speed of the winding unit 32 according to the characteristics of the fiber bundle 20 or the product specifications processed. The operating parameters of the power of the magnetron 41 and the flow rate of the gas supply unit 42.

較佳地,該微波處理單元40係於該爐體33處設有複數個該磁控管41;複數個該磁控管41設於該爐體33的上下兩側呈相對或錯位排列,或者複數個該磁控管41設於該爐體33的單側(上側或下側),如第2圖之複數個該磁控管41設於該爐體33的上下兩側並呈上下相對的排列方式。最佳地,如第3圖所示之複數個該磁控管41呈上下相對的排列方式,如此可對通過該爐體33的該纖維紗束20的上半部及下半部同時均勻地以微波照射處理,因此得以更縮短該爐體33的長度並因而縮短製程時間且加快生產速度。Preferably, the microwave processing unit 40 is provided with a plurality of the magnetrons 41 at the furnace body 33; a plurality of the magnetrons 41 are disposed on opposite sides of the furnace body 33 in a relative or misaligned manner, or A plurality of the magnetrons 41 are disposed on one side (upper side or lower side) of the furnace body 33. A plurality of the magnetrons 41 are disposed on the upper and lower sides of the furnace body 33 as shown in FIG. Arrangement. Preferably, the plurality of magnetrons 41 as shown in FIG. 3 are arranged in an up-and-down manner so that the upper and lower halves of the fiber bundle 20 passing through the furnace body 33 are simultaneously and uniformly The treatment by microwave irradiation makes it possible to shorten the length of the furnace body 33 and thereby shorten the process time and speed up the production.

本創作在該傳送單元30係可進一步於該爐體33內部設有一保溫單元34,如第2圖所示,可利用該保溫單元34之蓄熱效果,令該爐體33內部保持在預先設定的工作溫度,以及達到節省能源之目的。In the present invention, the heat transfer unit 34 can be further disposed inside the furnace body 33. As shown in FIG. 2, the heat storage effect of the heat retention unit 34 can be utilized to maintain the inside of the furnace body 33 at a predetermined setting. Working temperature and energy saving.

本創作於實施時,該傳送單元30係可如第2圖所示,於該爐體33內部相對於該纖維紗束20傳送路徑之上、下位置處,分別設有該保溫單元34;或者如第3圖所示,於該爐體33內部設有相對將該纖維紗束20之傳送路徑包圍的該保溫單元34,藉以讓該纖維紗束20均勻受熱。在上揭各種可能實施之樣態下,該保溫單元34係可以選擇為金屬氧化物、碳化物、微波高感應材料其中之一或其組合者。於第3圖中,該供料機組31係提供彼此平行排列的複數個該纖維紗束20進入該爐體33。In the implementation of the present invention, the transfer unit 30 can be respectively disposed inside the furnace body 33 at a position above and below the transport path of the fiber bundle 20, as shown in FIG. 2; As shown in Fig. 3, the heat retaining unit 34 is provided inside the furnace body 33 so as to surround the transport path of the fiber bundle 20, whereby the fiber bundle 20 is uniformly heated. The thermal insulation unit 34 can be selected as one of metal oxides, carbides, microwave high induction materials, or a combination thereof, in the various possible implementations. In Fig. 3, the supply unit 31 provides a plurality of the fiber bundles 20 arranged in parallel with each other into the furnace body 33.

本創作於實施時,該微波處理單元40係可如第2圖所示,在相對於該纖維紗束20傳送路徑之上、下位置處,分別設有該磁控管41;或者,該微波處理單元40係設有相對將該纖維紗束20之傳送路徑圍繞的複數個該磁控管41,藉以讓該纖維紗束20均勻接受微波聚焦處理。亦即複數個該磁控管41設於該爐體33的上下兩側及左右兩側。When the present invention is implemented, the microwave processing unit 40 can be respectively provided with the magnetron 41 at a position above and below the transport path with respect to the fiber bundle 20 as shown in FIG. 2; or, the microwave The processing unit 40 is provided with a plurality of the magnetrons 41 surrounding the transport path of the fiber bundle 20, whereby the fiber bundle 20 is uniformly subjected to microwave focusing processing. That is, a plurality of the magnetrons 41 are provided on the upper and lower sides and the left and right sides of the furnace body 33.

於實施時,藉由前述該纖維預氧化設備進行一氧化纖維製造方法以有效縮短氧化纖維之氧化時間,且有效降低氧化纖維皮芯結構,甚至讓氧化纖維達到無明顯皮芯結構。該氧化纖維製造方法,請一併參閱第4圖所示,基本上包括下列步驟:In the implementation, the oxidized fiber manufacturing method is effectively performed by the fiber pre-oxidation device to effectively shorten the oxidation time of the oxidized fiber, and effectively reduce the core structure of the oxidized fiber, and even allow the oxidized fiber to have no obvious sheath-core structure. The method for producing the oxidized fiber, as shown in Fig. 4, basically includes the following steps:

a.提供該傳送單元30及該微波處理單元40。a. The transmitting unit 30 and the microwave processing unit 40 are provided.

b.提供該纖維紗束20,並將該纖維紗束20安置於該傳送單元30,並使該傳送單元30能夠帶動該纖維紗束20通過該微波處理單元40。例如將成捲的該纖維紗束20,以可由該傳送單元30帶動連續通過該微波處理單元40作業區域的型態安裝於該傳送單元30處;在實施例中,係將成捲的該纖維紗束20置放於該供料機組31,且將該纖維紗束20之尾端引導通過該爐體33並固定於該收卷機組32;該纖維紗束20,係可以為聚丙烯腈(PAN)、瀝青或其他有機纖維其中之一者。b. The fiber bundle 20 is provided and the fiber bundle 20 is placed in the transfer unit 30 and the transfer unit 30 is enabled to pass the fiber bundle 20 through the microwave processing unit 40. For example, the bundle of the fiber bundles 20 to be wound up is mounted to the transfer unit 30 in a form that can be continuously driven by the transfer unit 30 through the working area of the microwave processing unit 40; in an embodiment, the fibers are wound into a roll. The yarn bundle 20 is placed on the feeding unit 31, and the trailing end of the fiber bundle 20 is guided through the furnace body 33 and fixed to the winding unit 32; the fiber yarn bundle 20 may be polyacrylonitrile ( PAN), one of asphalt or other organic fibers.

c.啟動該微波處理單元40,由該微波處理單元40產生一微波條件,該微波條件包含:一微波頻率,該微波頻率係介於300~300,000MHz;一微波功率,該微波功率係介於1~1000 kW/m 2;一工作溫度,該工作溫度係介於100~600℃;以及,一氣體氣氛,該氣體氣氛為氧氣、空氣、臭氧其中之一或其混合,該氣體氣氛為前述之該含氧氣體。在本實施例中,係同時由該供氣機組42將該含氧氣體通入該爐體33內部。 The microwave processing unit 40 is activated, and the microwave processing unit 40 generates a microwave condition, the microwave condition includes: a microwave frequency, the microwave frequency is between 300 and 300,000 MHz; and a microwave power, the microwave power is between 1~1000 kW/m 2 ; at an operating temperature, the operating temperature is between 100 and 600 ° C; and, in a gas atmosphere, the gas atmosphere is one of oxygen, air, ozone or a mixture thereof, and the gas atmosphere is the aforementioned The oxygen-containing gas. In the present embodiment, the oxygen-containing gas is simultaneously introduced into the interior of the furnace body 33 by the gas supply unit 42.

d.啟動該傳送單元30,由該傳送單元30帶動該纖維紗束20於該微波條件之下持續一處理時間,使該纖維紗束20成為該氧化纖維紗束20A。例如由該傳送單元30帶動該纖維紗束20持續接受微波聚焦處理1~40分鐘的速度通過該微波處理單元40作業區域成為一氧化纖維紗束20A,該處理時間係介於1~40分鐘。在本實施例中,係由該傳送單元30帶動該纖維紗束20持續接受該微波處理單元40之微波聚焦處理1~40分鐘的速度通過該爐體33成為該氧化纖維紗束20A。另外,該纖維紗束20係可於該爐體33內以一疊繞方式持續接受該微波處理單元40之微波聚焦處理1~40分鐘的速度通過該爐體33成為該氧化纖維紗束20A,例如,該纖維紗束20於該爐體33的前端進入該爐體33內並被傳送到該爐體33的後端,再由該爐體33的後端被傳送到該爐體33的前端,再接著再度從該爐體33的前端被傳送到該爐體33的後端,依此方式重複疊繞直到依需求而從該爐體33的後端被傳送出成為該氧化纖維紗束20A。採用該疊繞方式係能夠有效縮短該爐體33的所需長度。d. The transfer unit 30 is activated, and the fiber bundle 20 is driven by the transfer unit 30 under the microwave condition for a processing time to make the fiber bundle 20 into the oxidized fiber bundle 20A. For example, the fiber bundle 20 is driven by the transport unit 30 to continuously receive the microwave focusing process for 1 to 40 minutes. The working area of the microwave processing unit 40 becomes the oxidized fiber bundle 20A. The processing time is between 1 and 40 minutes. In the present embodiment, the fiber bundle 20 is driven by the transport unit 30 to continue the microwave focusing process of the microwave processing unit 40 for a period of 1 to 40 minutes to pass through the furnace body 33 to become the oxidized fiber yarn bundle 20A. In addition, the fiber bundle 20 can be continuously received in the furnace body 33 in a winding manner to receive the microwave focusing treatment of the microwave processing unit 40 for 1 to 40 minutes, and the oxidized fiber yarn bundle 20A is passed through the furnace body 33. For example, the fiber bundle 20 enters the furnace body 33 at the front end of the furnace body 33 and is conveyed to the rear end of the furnace body 33, and is transferred from the rear end of the furnace body 33 to the front end of the furnace body 33. Then, it is again transferred from the front end of the furnace body 33 to the rear end of the furnace body 33, and the winding is repeated in this manner until it is conveyed from the rear end of the furnace body 33 as needed to become the oxidized fiber yarn bundle 20A. . The use of the winding method can effectively shorten the required length of the furnace body 33.

據以,可在該傳送單元30之運作下,帶動該纖維紗束20依照預先設定的速度通過該微波處理單元40之作業區域,在該纖維紗束20通過該微波處理單元40作業區域之過程中,利用微波聚焦對連續通過該爐體33的該纖維紗束20施以超高速預氧化處理,將該纖維紗束20加工成為該氧化纖維紗束20A。該纖維紗束20係由該纖維或複數個該纖維集結成束所構成,該氧化纖維紗束20A係由該氧化纖維21或複數個該氧化纖維21集結成束所構成,運用本創作纖維預氧化設備,係將該纖維紗束20之該纖維預氧化為該氧化纖維21。According to the operation of the transfer unit 30, the fiber bundle 20 can be driven through the working area of the microwave processing unit 40 according to a preset speed, and the fiber bundle 20 passes through the working area of the microwave processing unit 40. The fiber bundle 20 continuously passing through the furnace body 33 is subjected to ultra-high-speed pre-oxidation treatment by microwave focusing, and the fiber bundle 20 is processed into the oxidized fiber yarn bundle 20A. The fiber bundle 20 is composed of a bundle of the fiber or a plurality of the fibers, and the oxidized fiber bundle 20A is composed of the oxidized fiber 21 or a plurality of the oxidized fibers 21, and is formed by using the artificial fiber. The oxidizing device pre-oxidizes the fibers of the fiber bundle 20 into the oxidized fibers 21.

請同時配合參照第5圖所示,分別實施以無微波、微波功率12kW/m 2、微波功率16 kW/m 2、微波功率20 kW/m 2、微波功率24 kW/m 2之微波聚焦處理於該纖維紗束20,可確實得到以微波功率24 kW/m 2之微波聚焦處理於該纖維紗束20經過10分鐘後,即可讓該氧化纖維紗束20A當中之該氧化纖維21的氧化程度達到100%,與該纖維紗束20相對應地,該氧化纖維紗束20A由單根該氧化纖維21或複數個該氧化纖維21集結成束所構成。同樣地,以微波功率20 kW/m 2之微波聚焦處理於該纖維紗束20經過15分鐘後,即可讓該氧化纖維紗束20A當中之該氧化纖維21的氧化程度達到100%;以微波功率16 kW/m 2之微波聚焦處理於該纖維紗束20經過25分鐘後,即可讓該氧化纖維紗束20A當中之該氧化纖維21的氧化程度達到100%。而即使僅以微波功率12 kW/m 2之微波聚焦處理於該纖維紗束20經過40分鐘後,即使無法讓該氧化纖維紗束20A當中之該氧化纖維21的氧化程度達到100%,但也可使該氧化纖維21的氧化程度達到89%。而若僅以傳統加熱製程而以270℃對該纖維紗束20加熱經過40分鐘的無微波製程,則該氧化纖維21的氧化程度最多只達到70%。因此,運用本創作所提出之施以微波製程與傳統加熱製程相比,本創作能有效地提高該氧化纖維21的氧化程度且縮短製程時間,尤其以微波功率24 kW/m 2之微波聚焦處理於該纖維紗束20進行10分鐘以達到100%氧化程度的該氧化纖維21,為進行氧化階段的最佳製程條件。 Please also refer to FIG. 5 with the illustrated embodiment, respectively in a non-microwave, microwave power of 12kW / m 2, microwave power of 16 kW / m 2, microwave power of 20 kW / m 2, microwave power of 24 kW / m 2 of the microwave focusing process The fiber bundle 20 can be surely obtained by microwave focusing treatment with a microwave power of 24 kW/m 2 after the fiber bundle 20 is passed for 10 minutes, so that the oxidation of the oxidized fiber 21 in the oxidized fiber bundle 20A can be performed. To the extent of 100%, the oxidized fiber bundle 20A is composed of a single oxidized fiber 21 or a plurality of oxidized fibers 21 bundled in bundles. Similarly, after the fiber bundle 20 is subjected to microwave focusing treatment with a microwave power of 20 kW/m 2 for 15 minutes, the oxidation degree of the oxidized fiber 21 in the oxidized fiber bundle 20A is 100%; The microwave focusing treatment of the power of 16 kW/m 2 is carried out for 25 minutes after the fiber bundle 20 is passed, so that the oxidation degree of the oxidized fiber 21 in the oxidized fiber bundle 20A is 100%. On the other hand, even after only 40 minutes of the fiber bundle 20 having been subjected to microwave focusing treatment with a microwave power of 12 kW/m 2 , even if the oxidation degree of the oxidized fiber 21 in the oxidized fiber bundle 20A cannot be 100%, The degree of oxidation of the oxidized fiber 21 can be made 89%. On the other hand, if the fiber bundle 20 is heated at 270 ° C for only 40 minutes in a microwave-free process by a conventional heating process, the oxidation degree of the oxidized fiber 21 is at most 70%. Therefore, compared with the conventional heating process proposed by the present invention, the present invention can effectively increase the oxidation degree of the oxidized fiber 21 and shorten the process time, especially the microwave focusing treatment with a microwave power of 24 kW/m 2 . The oxidized fiber 21 is subjected to the fiber bundle 20 for 10 minutes to achieve a degree of oxidation of 100%, which is an optimum process condition for performing the oxidation stage.

請同時配合參照第6圖所示,以微波功率24 kW/m 2之微波聚焦處理於該纖維紗束20,分別處理2分鐘、4分鐘、5分鐘、10分鐘及15分鐘並檢驗所形成之該氧化纖維21的環化程度,該氧化纖維21經過5分鐘後之環化程度即達100%,因此環化程度達100%的所需時間5分鐘少於氧化程度所需的時間10分鐘。請同時配合參照第7圖、第8圖及第9圖所示,分別以24 kW/m 2之微波聚焦處理於該纖維紗束20分別進行5分鐘、10分鐘及15分鐘所製造而成之該氧化纖維紗束20A當中的該氧化纖維21的斷面以掃描式電子顯微鏡(SEM,Scanning Electron Microscope)拍攝實體影像圖,發現該氧化層211佔該氧化纖維21之99.0%以上或該氧化層211的斷面面積佔該氧化纖維21之斷面面積係為99.0%以上,且並無明顯之皮芯結構。 Please also focus on the fiber bundle 20 with microwave power of 24 kW/m 2 as shown in Fig. 6, and treat it separately for 2 minutes, 4 minutes, 5 minutes, 10 minutes and 15 minutes. The degree of cyclization of the oxidized fiber 21, that is, the degree of cyclization of the oxidized fiber 21 after 5 minutes reached 100%, so the time required for the degree of cyclization to reach 100% was 5 minutes less than the time required for the degree of oxidation for 10 minutes. Please also use the microwave focusing treatment of 24 kW/m 2 for 5 minutes, 10 minutes, and 15 minutes, respectively, as shown in Fig. 7, Fig. 8, and Fig. 9 for each of the fiber bundles 20, respectively. The cross section of the oxidized fiber 21 in the oxidized fiber bundle 20A is taken by a scanning electron microscope (SEM) to find a solid image, and the oxide layer 211 is found to account for 99.0% or more of the oxidized fiber 21 or the oxide layer. The cross-sectional area of the 211 is 99.0% or more of the cross-sectional area of the oxidized fiber 21, and there is no obvious sheath-core structure.

請同時配合參照表一及表二所示,表一為以電熱管加熱方式的傳統製程及使用本創作纖維預氧化設備之氧化纖維製造方法之微波製程,測得該纖維紗束20、該氧化纖維紗束20A及其後續碳化製成之碳纖維紗束的拉伸強度比較表;表二為以電熱管加熱方式的傳統製程及使用本創作纖維預氧化設備之氧化纖維製造方法之微波製程,測得該纖維紗束20、該氧化纖維紗束20A及其後續碳化製成之碳纖維紗束的拉伸模數比較表。前述以電熱管加熱方式的傳統製程,其製程條件為該爐體溫度270℃,處理時間為40分鐘,所得出之物性結果列為『比較例一』;前述本創作的微波製程,其製程條件為該爐體的溫度220℃,微波頻率2450 MHz,微波功率24 kW/m 2,處理時間為10分鐘,所得出之物性結果列為『實施例一』。於比較例一及實施例一中之該纖維紗束20係使用聚丙烯腈所製成。 Please also refer to Tables 1 and 2, Table 1 for the conventional process of heating the electric heating tube and the microwave process using the oxidized fiber manufacturing method of the pre-oxidation equipment of the present fiber to measure the fiber bundle 20, the oxidation The comparison of the tensile strength of the fiber bundle 20A and the carbon fiber bundle formed by the subsequent carbonization thereof; Table 2 is the microwave process of the conventional process of heating the electric heating tube and the oxidized fiber manufacturing method using the pre-oxidation device of the present invention. A comparison table of tensile modulus of the fiber bundle 20, the oxidized fiber bundle 20A, and the carbon fiber bundle formed by subsequent carbonization thereof is obtained. In the conventional process of heating the electric heating tube, the processing conditions are the temperature of the furnace body of 270 ° C, the processing time is 40 minutes, and the obtained physical property results are listed as "Comparative Example 1"; the microwave process of the above creation, the process conditions thereof The temperature of the furnace body was 220 ° C, the microwave frequency was 2450 MHz, the microwave power was 24 kW/m 2 , and the treatment time was 10 minutes. The obtained physical property results are listed as "Example 1". The fiber bundle 20 of Comparative Example 1 and Example 1 was made of polyacrylonitrile.

表一: <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 拉伸強度(MPa) </td><td> 纖維紗束 </td><td> 氧化纖維紗束 </td><td> 碳纖維紗束 </td></tr><tr><td> 比較例一 </td><td> 865 </td><td> 221 </td><td> 2824 </td></tr><tr><td> 實施例一 </td><td> 865 </td><td> 164 </td><td> 3675 </td></tr></TBODY></TABLE>從表一中顯示實施例一之微波製程所製成之氧化纖維紗束,其最終碳化後之碳纖維紗束的拉伸強度是比較例一的1.3倍(3675除以2824),亦即拉伸強度提高30%。微波製程因能讓PAN氧化更為完全,所以微波製程的該氧化纖維紗束強度略低於傳統電熱管製程的該氧化纖維紗束強度,此為本創作的微波製程更能夠讓該纖維紗束提高氧化程度之另一證據。 Table I:  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Tensile strength (MPa) </td><td> Fiber yarn bundle</td>< Td> oxidized fiber yarn bundle </td><td> carbon fiber yarn bundle </td></tr><tr><td> Comparative Example 1 </td><td> 865 </td><td> 221 < /td><td> 2824 </td></tr><tr><td> Example 1 </td><td> 865 </td><td> 164 </td><td> 3675 </ Td></tr></TBODY></TABLE> The oxidized fiber yarn bundle produced in the microwave process of Example 1 is shown in Table 1, and the tensile strength of the carbonized yarn bundle after the final carbonization is Comparative Example 1 1.3 times (3675 divided by 2824), that is, the tensile strength is increased by 30%. The microwave process can make the PAN oxidation more complete, so the strength of the oxidized fiber yarn bundle of the microwave process is slightly lower than the strength of the oxidized fiber yarn bundle of the conventional electrothermal control process, which is the microwave process of the creation of the fiber bundle. Another proof of increasing the degree of oxidation.  

表二: <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 拉伸模數(GPa) </td><td> 纖維紗束 </td><td> 氧化纖維紗束 </td><td> 碳纖維紗束 </td></tr><tr><td> 比較例一 </td><td> 8.82 </td><td> 6.03 </td><td> 194.4 </td></tr><tr><td> 實施例一 </td><td> 8.82 </td><td> 6.92 </td><td> 227.1 </td></tr></TBODY></TABLE>從表二中顯示實施例一之微波製程所製成之氧化纖維紗束,其最終碳化後之碳纖維紗束的拉伸模數是比較例一的1.17倍(227.1除以194.4),亦即拉伸模數提高17%。 Table II:  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Tensile Modulus (GPa) </td><td> Fiber Yarn bundle</td> <td> oxidized fiber yarn bundle</td><td> carbon fiber yarn bundle</td></tr><tr><td> Comparative Example 1 </td><td> 8.82 </td><td> 6.03 </td><td> 194.4 </td></tr><tr><td> Example 1 </td><td> 8.82 </td><td> 6.92 </td><td> 227.1 < /td></tr></TBODY></TABLE> From the second embodiment, the oxidized fiber yarn bundle produced by the microwave process of the first embodiment is shown, and the tensile modulus of the carbonized yarn bundle after the final carbonization is compared. The 1.17 times of Example 1 (227.1 divided by 194.4), that is, the tensile modulus increased by 17%.  

至此,本創作與傳統加熱製程作用於該纖維紗束之該氧化纖維紗束相較,運用本創作能將傳統加熱製程所需的40分鐘縮短為10分鐘,因此製程效率提高3倍,節省了製程的時間;與傳統加熱製程相較,本創作亦將碳纖維紗束的拉伸強度提高30%及拉伸模數提高17%;與傳統加熱製程相較,本創作亦將該氧化纖維紗束20A當中的該氧化纖維21的該氧化層211的斷面面積佔該氧化纖維21之斷面面積係為99.0%以上,使其無明顯之皮芯結構,使得該氧化纖維紗束20A的斷面更趨向均勻一致,故能將碳纖維紗束的拉伸強度及拉伸模數提高。故運用本創作能夠以相對更為積極、可靠之手段提升碳纖維性能。At this point, the creation and the conventional heating process are applied to the oxidized fiber bundle of the fiber bundle, and the creation can shorten the 40 minutes required for the conventional heating process to 10 minutes, thereby improving the process efficiency by 3 times, thereby saving The time of the process; compared with the traditional heating process, the creation also increases the tensile strength of the carbon fiber yarn bundle by 30% and the tensile modulus by 17%; compared with the conventional heating process, the creation also oxidizes the fiber bundle The cross-sectional area of the oxide layer 211 of the oxidized fiber 21 in 20A accounts for 99.0% or more of the cross-sectional area of the oxidized fiber 21, so that there is no obvious sheath-core structure, so that the cross section of the oxidized fiber yarn bundle 20A It tends to be uniform, so that the tensile strength and tensile modulus of the carbon fiber yarn bundle can be improved. Therefore, the use of this creation can enhance the performance of carbon fiber with a relatively more active and reliable means.

運用本創作於實施時,係以24 kW/m 2之微波聚焦處理於該些纖維紗束5~10分鐘之實施樣態呈現為佳。是以本創作可適用於該纖維紗束20通過該爐體33後不經該收卷機組32捲取而是接續碳化製程以連續生產方式生產碳纖維紗束,或適用於成捲之該纖維紗束20以該供料機組31捲出並以該收卷機組32捲取之生產方式。 In the implementation of the present invention, it is preferable to perform the microwave focusing treatment of 24 kW/m 2 on the fiber bundle for 5 to 10 minutes. Therefore, the present invention can be applied to the production of carbon fiber yarn bundles by the fiber bundle 20 through the furnace body 33 without being wound up by the winding unit 32, or by successive carbonization processes, or for the winding of the fiber yarn. The bundle 20 is unwound by the supply unit 31 and is produced by the winding unit 32.

請再度參照第5圖,如前所述以微波功率12 kW/m 2之微波聚焦處理於220℃對該纖維紗束20經過40分鐘後,該氧化纖維21的氧化程度達到89%;而以傳統加熱製程而以270℃對該纖維紗束20加熱經過40分鐘的無微波製程,則該氧化纖維21的氧化程度達到70%。因此本創作相較於傳統加熱製程而言,能夠以較低的溫度便可達到更高的氧化程度,故可避免浪費熱能。 Referring again to FIG. 5, the oxidized fiber 21 is oxidized to 89% after the fiber bundle 20 is irradiated at 220 ° C for 40 minutes by microwave focusing treatment with a microwave power of 12 kW/m 2 as described above. The oxidized fiber 21 is oxidized to 70% by a conventional heating process and the fiber bundle 20 is heated at 270 ° C for 40 minutes without a microwave process. Therefore, compared with the conventional heating process, the present invention can achieve a higher degree of oxidation at a lower temperature, so that waste of heat energy can be avoided.

請同時配合參照表三所示,表三為以電熱管加熱方式的傳統製程及使用本創作的微波製程,測得該纖維紗束20、該氧化纖維紗束20A及其後續碳化製成之碳纖維紗束的拉伸強度比較表。前述以電熱管加熱方式的傳統製程,其製程條件為該爐體溫度270℃,處理時間為40分鐘,所得出之物性結果列為『比較例一』;前述使用本創作的微波製程,其製程條件為該爐體溫度220℃,微波頻率2450 MHz,微波功率12 kW/m 2,處理時間為40分鐘,當微波功率為22kW/m 2所得出之物性結果列為『實施例二』、當微波功率為20 kW/m 2所得出之物性結果列為『實施例三』、當微波功率為16kW/m 2所得出之物性結果列為『實施例四』、當微波功率為15 kW/m 2所得出之物性結果列為『實施例五』。於比較例一及所有實施例中之該纖維紗束20係使用聚丙烯腈所製成。另外,將比較例一及各別實施例之該氧化纖維紗束20A當中的該氧化纖維21的斷面以掃描式電子顯微鏡(SEM,Scanning Electron Microscope)拍攝實體影像圖,經計算後該氧化層211的斷面面積除以該氧化纖維21之斷面面積,亦即該氧化層211佔該氧化纖維21之比率,列於表三。 Please also refer to Table 3 for the same. Table 3 shows the fiber bundle 20, the oxidized fiber bundle 20A and the carbon fiber produced by the subsequent carbonization by the conventional process of heating the electric heating tube and the microwave process using the creation. Comparison table of tensile strength of yarn bundles. In the conventional process of heating the electric heating tube, the processing conditions are the temperature of the furnace body of 270 ° C, the processing time is 40 minutes, and the obtained physical property result is listed as "Comparative Example 1"; the aforementioned microwave process using the creation, the process thereof The condition is that the furnace body temperature is 220 ° C, the microwave frequency is 2450 MHz, the microwave power is 12 kW/m 2 , the processing time is 40 minutes, and the physical property result obtained when the microwave power is 22 kW/m 2 is listed as "Example 2". microwave power of 20 kW / m property results 2 obtained listed as the "third embodiment", when the object of the results microwave power of 16kW / m 2 the results listed as the "fourth embodiment", when the microwave power is 15 kW / m 2 The physical property results obtained are listed as "Example 5". The fiber bundle 20 of Comparative Example 1 and all of the examples was made of polyacrylonitrile. Further, the cross section of the oxidized fiber 21 in the oxidized fiber bundle 20A of Comparative Example 1 and the respective examples was taken as a solid image by a scanning electron microscope (SEM), and the oxide layer was calculated. The cross-sectional area of 211 is divided by the cross-sectional area of the oxidized fiber 21, that is, the ratio of the oxidized layer 211 to the oxidized fiber 21, and is shown in Table 3.

表三: <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 編號 </td><td> 纖維紗束的拉伸強度(MPa) </td><td> 微波功率 kW/m<sup>2</sup></td><td> 碳纖維紗束的拉伸強度(MPa) </td><td> 拉伸強度的比例 </td><td> 氧化層的斷面面積除以該氧化纖維之斷面面積 </td></tr><tr><td> 比較例一 </td><td> 865 </td><td> 0 </td><td> 2824 </td><td> 1 </td><td> 40% </td></tr><tr><td> 實施例一 </td><td> 865 </td><td> 24 </td><td> 3675 </td><td> 1.30 </td><td> 99.0% </td></tr><tr><td> 實施例二 </td><td> 865 </td><td> 22 </td><td> 3580 </td><td> 1.27 </td><td> 91.3% </td></tr><tr><td> 實施例三 </td><td> 865 </td><td> 20 </td><td> 3486 </td><td> 1.23 </td><td> 82.7% </td></tr><tr><td> 實施例四 </td><td> 865 </td><td> 16 </td><td> 3298 </td><td> 1.17 </td><td> 61.5% </td></tr><tr><td> 實施例五 </td><td> 865 </td><td> 15 </td><td> 3204 </td><td> 1.13 </td><td> 51.2% </td></tr></TBODY></TABLE>從表三中顯示實施例五運用本創作之微波製程所製成之氧化纖維紗束,其最終碳化後之碳纖維紗束的拉伸強度是比較例一的1.13倍,亦即拉伸強度提高13%,該氧化層211的斷面面積除以該氧化纖維21之斷面面積係為51.2%,亦即該氧化層211佔該氧化纖維21之51.2%;實施例四運用本創作之微波製程所製成之氧化纖維紗束,其最終碳化後之碳纖維紗束的拉伸強度是比較例一的1.17倍,亦即拉伸強度提高17%,該氧化層211的斷面面積除以該氧化纖維21之斷面面積係為61.5%,亦即該氧化層211佔該氧化纖維21之61.5%;實施例三運用本創作之微波製程所製成之氧化纖維紗束,其最終碳化後之碳纖維紗束的拉伸強度是比較例一的1.23倍,亦即拉伸強度提高23%,該氧化層211的斷面面積除以該氧化纖維21之斷面面積係為82.7%,亦即該氧化層211佔該氧化纖維21之82.7%;實施例二運用本創作之微波製程所製成之氧化纖維紗束,其最終碳化後之碳纖維紗束的拉伸強度是比較例一的1.27倍,亦即拉伸強度提高27%,該氧化層211的斷面面積除以該氧化纖維21之斷面面積係為91.3%,亦即該氧化層211佔該氧化纖維21之91.3%;實施例一運用本創作之微波製程所製成之氧化纖維紗束,其最終碳化後之碳纖維紗束的拉伸強度是比較例一的1.3倍,亦即拉伸強度提高30%,該氧化層211的斷面面積除以該氧化纖維21之斷面面積係為99.0%,亦即該氧化層211佔該氧化纖維21之99.0%。 Table 3:  <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> number</td><td> Tensile strength (MPa) of the fiber bundle </td ><td> Microwave power kW/m<sup>2</sup></td><td> Tensile strength (MPa) of carbon fiber yarn bundle </td><td> Ratio of tensile strength</td> <td> The cross-sectional area of the oxide layer divided by the cross-sectional area of the oxidized fiber</td></tr><tr><td> Comparative Example 1 </td><td> 865 </td><td> 0 </td><td> 2824 </td><td> 1 </td><td> 40% </td></tr><tr><td> Example 1 </td><td> 865 </td><td> 24 </td><td> 3675 </td><td> 1.30 </td><td> 99.0% </td></tr><tr><td> Example </td><td> 865 </td><td> 22 </td><td> 3580 </td><td> 1.27 </td><td> 91.3% </td></tr> <tr><td> Example 3</td><td> 865 </td><td> 20 </td><td> 3486 </td><td> 1.23 </td><td> 82.7% </td></tr><tr><td> Example 4</td><td> 865 </td><td> 16 </td><td> 3298 </td><td> 1.17 < /td><td> 61.5% </td></tr><tr><td> Example 5</td><td> 865 </td><td> 15 </td><td> 3204 < /td><td> 1.13 </td><td> 51.2% </td></tr></TBODY></TABLE> from Table 3 shows the use of this example The oxidized fiber yarn bundle produced by the microwave process has a tensile strength of the carbon fiber bundle after the final carbonization is 1.13 times that of the first comparative example, that is, the tensile strength is increased by 13%, and the sectional area of the oxide layer 211 is divided. The cross-sectional area of the oxidized fiber 21 is 51.2%, that is, the oxide layer 211 accounts for 51.2% of the oxidized fiber 21; and the fourth embodiment uses the oxidized fiber yarn bundle made by the microwave process of the present invention to finally carbonize. The tensile strength of the carbon fiber yarn bundle is 1.17 times that of Comparative Example 1, that is, the tensile strength is increased by 17%, and the cross-sectional area of the oxide layer 211 divided by the cross-sectional area of the oxidized fiber 21 is 61.5%. That is, the oxide layer 211 accounts for 61.5% of the oxidized fiber 21; in the third embodiment, the oxidized fiber yarn bundle produced by the microwave process of the present invention has a tensile strength of the carbon fiber bundle after the final carbonization is 1.23 of the first comparative example. Times, that is, the tensile strength is increased by 23%, and the cross-sectional area of the oxide layer 211 divided by the cross-sectional area of the oxidized fiber 21 is 82.7%, that is, the oxide layer 211 accounts for 82.7% of the oxidized fiber 21; Example 2: Oxidized fiber yarn bundle made by the microwave process of the present invention The tensile strength of the carbonized yarn bundle after the final carbonization is 1.27 times that of the first comparative example, that is, the tensile strength is increased by 27%, and the sectional area of the oxide layer 211 divided by the sectional area of the oxidized fiber 21 is 91.3%, that is, the oxide layer 211 accounts for 91.3% of the oxidized fiber 21; the first embodiment uses the oxidized fiber yarn bundle made by the microwave process of the present invention, and the tensile strength of the carbonized yarn bundle after the final carbonization is compared. 1.3 times of the first example, that is, the tensile strength is increased by 30%, and the cross-sectional area of the oxide layer 211 divided by the cross-sectional area of the oxidized fiber 21 is 99.0%, that is, the oxide layer 211 occupies the oxidized fiber 21 99.0%.  

因此,使用本創作所生產之該氧化纖維21,該氧化纖維21包含該氧化層211及一芯部212,該氧化層211係包覆於該芯部212之外側,其中,該氧化層211佔該氧化纖維21之至少50%以上,或該氧化層211的斷面面積佔該氧化纖維21之斷面面積係為至少50%以上。如第10圖所示,該氧化層211佔該氧化纖維21之至少80%以上,或該氧化層211的斷面面積佔該氧化纖維21之斷面面積係為至少80%以上。Therefore, the oxidized fiber 21 produced by the present invention comprises the oxide layer 211 and a core portion 212, and the oxide layer 211 is coated on the outer side of the core portion 212, wherein the oxide layer 211 occupies At least 50% or more of the oxidized fiber 21 or a cross-sectional area of the oxidized layer 211 is at least 50% or more of the cross-sectional area of the oxidized fiber 21. As shown in Fig. 10, the oxide layer 211 accounts for at least 80% or more of the oxidized fibers 21, or the cross-sectional area of the oxidized layer 211 accounts for at least 80% or more of the cross-sectional area of the oxidized fibers 21.

當然,本創作揭露之該氧化纖維21,由於該氧化層211係於該微波條件下所形成,因此該氧化層211係為一微波氧化層,且該氧化纖維紗束20A當中之該氧化纖維21的該氧化層211係佔該氧化纖維21之至少50%以上。Of course, the oxidized fiber 21 disclosed in the present invention is formed by the oxide layer 211 under the microwave condition, so that the oxide layer 211 is a microwave oxide layer, and the oxidized fiber 21 among the oxidized fiber bundles 20A. The oxide layer 211 accounts for at least 50% of the oxidized fibers 21.

於實施時,該纖維紗束20,係可以為聚丙烯腈(PAN)、瀝青或其他有機纖維其中之一者。當然,該氧化纖維經過24 kW/m 2之微波作用於該纖維紗束20經過10分鐘之微波聚焦處理後,該氧化纖維紗束20A當中之該氧化纖維21的該氧化層211佔該氧化纖維21之99.0%,或該氧化層211的斷面面積佔該氧化纖維21之斷面面積係為99.0%。 In practice, the fiber bundle 20 can be one of polyacrylonitrile (PAN), asphalt or other organic fibers. Of course, after the oxidized fiber is subjected to microwave focusing treatment of the fiber bundle 20 through a microwave of 24 kW/m 2 for 10 minutes, the oxide layer 211 of the oxidized fiber 21 among the oxidized fiber bundle 20A occupies the oxidized fiber. 99.0% of 21, or the cross-sectional area of the oxide layer 211 accounts for 99.0% of the cross-sectional area of the oxidized fiber 21.

與傳統習用技術相較,運用本創作纖維預氧化設備,主要係利用微波處理單元之微波聚焦對纖維紗束施以超高速預氧化處理,將纖維紗束加工成為氧化纖維紗束,不但可以有效縮減氧化纖維紗束之氧化時間,且氧化纖維紗束當中之氧化纖維經微波聚焦氧化處理的氧化層係至少佔該氧化纖維之斷面面積50%以上,有效降低氧化纖維皮芯結構,甚至可讓氧化纖維達到無明顯皮芯結構,以相對更為積極、可靠之手段提升碳纖維性能。Compared with the conventional technology, the pre-oxidation equipment of the present invention mainly uses the microwave focusing of the microwave processing unit to apply ultra-high-speed pre-oxidation treatment to the fiber yarn bundle, and the fiber yarn bundle is processed into an oxidized fiber yarn bundle, which is effective not only effective. The oxidation time of the oxidized fiber yarn bundle is reduced, and the oxide layer of the oxidized fiber in the oxidized fiber yarn bundle is subjected to microwave focusing oxidation treatment to at least 50% of the cross-sectional area of the oxidized fiber, thereby effectively reducing the core structure of the oxidized fiber, and even The oxidized fiber is made to have no obvious core structure, and the carbon fiber performance is improved by a relatively more active and reliable means.

以上所述之實施例僅係為說明本創作之技術思想及特點,其目的在使熟習此項技藝之人士能夠瞭解本創作之內容並據以實施,當不能以之限定本創作之專利範圍,即大凡依本創作所揭示之精神所作之均等變化或修飾,仍應涵蓋在本創作之專利範圍內。The embodiments described above are only for explaining the technical idea and characteristics of the present invention, and the purpose thereof is to enable those skilled in the art to understand the contents of the present invention and implement them according to the scope of the patent. That is, the equivalent changes or modifications made by the people in accordance with the spirit revealed by this creation should still be covered by the scope of the patent of this creation.

[先前技術]
10‧‧‧氧化纖維
11‧‧‧纖維
111‧‧‧氧化層
112‧‧‧芯部
113‧‧‧皮芯界面
[本創作]
20‧‧‧纖維紗束
20A‧‧‧氧化纖維紗束
21‧‧‧氧化纖維
211‧‧‧氧化層
212‧‧‧芯部
30‧‧‧傳送單元
31‧‧‧供料機組
32‧‧‧收卷機組
33‧‧‧爐體
331‧‧‧進氣口
332‧‧‧出氣口
34‧‧‧保溫單元
40‧‧‧微波處理單元
41‧‧‧磁控管
42‧‧‧供氣機組
50‧‧‧控制單元
[Prior technology]
10‧‧‧Oxidized fiber
11‧‧‧Fiber
111‧‧‧Oxide layer
112‧‧‧ core
113‧‧‧ skin core interface
[This creation]
20‧‧‧Fiber yarn bundle
20A‧‧‧Oxidized fiber yarn bundle
21‧‧‧Oxidized fiber
211‧‧‧Oxide layer
212‧‧‧ core
30‧‧‧Transfer unit
31‧‧‧Feeding unit
32‧‧‧Winding unit
33‧‧‧ furnace body
331‧‧‧air inlet
332‧‧‧ air outlet
34‧‧‧Insulation unit
40‧‧‧Microwave processing unit
41‧‧‧Magnetron
42‧‧‧ gas supply unit
50‧‧‧Control unit

第1圖係為習知氧化纖維之皮芯結構示意圖。 第2圖係為本創作纖維預氧化設備結構示意圖。 第3圖係為本創作之爐體結構示意圖。 第4圖係為運用本創作纖維預氧化設備之氧化纖維製造方法的基本流程圖。 第5圖係為分別以12kW/m2、16 kW/m2、20 kW/m2、24 kW/m2之微波聚焦處理於纖維紗束與傳統以加熱製程作用於纖維紗束之氧化纖維氧化程度曲線圖。 第6圖係為以24 kW/m2之微波聚焦處理於纖維紗束經過2分鐘、4分鐘、5分鐘、10分鐘、15分鐘之氧化纖維的環化程度曲線圖。 第7圖係為以24 kW/m2之微波聚焦處理於纖維紗束5分鐘所製造而成之氧化纖維紗束當中的氧化纖維斷面實體影像圖。 第8圖係為以24 kW/m2之微波聚焦處理於纖維紗束10分鐘所製造而成之氧化纖維紗束當中的氧化纖維斷面實體影像圖。 第9圖係為以24 kW/m2之微波聚焦處理於纖維紗束15分鐘所製造而成之氧化纖維紗束當中的氧化纖維斷面實體影像圖。 第10圖係為本創作之氧化纖維結構示意圖。Figure 1 is a schematic view of the sheath core structure of a conventional oxidized fiber. The second figure is a schematic diagram of the structure of the pre-oxidation equipment of the present invention. The third figure is a schematic diagram of the structure of the furnace body. Fig. 4 is a basic flow chart of a method for producing an oxidized fiber using the present fiber pre-oxidation apparatus. Figure 5 is a graph showing the oxidation degree of oxidized fibers of fiber bundles treated with microwaves of 12 kW/m2, 16 kW/m2, 20 kW/m2, and 24 kW/m2, respectively, and a conventional heat treatment process. . Fig. 6 is a graph showing the degree of cyclization of oxidized fibers after 2 minutes, 4 minutes, 5 minutes, 10 minutes, and 15 minutes of fiber bundle treatment by microwave focusing at 24 kW/m2. Fig. 7 is a cross-sectional view of the oxidized fiber cross section of the oxidized fiber bundle produced by focusing the fiber bundle for 5 minutes with a microwave of 24 kW/m2. Fig. 8 is a cross-sectional view of the oxidized fiber cross section of the oxidized fiber bundle produced by focusing the fiber bundle for 10 minutes with a microwave of 24 kW/m2. Fig. 9 is a cross-sectional view of the oxidized fiber cross section of the oxidized fiber bundle produced by focusing the fiber bundle for 15 minutes with a microwave of 24 kW/m2. Figure 10 is a schematic diagram of the structure of the oxidized fiber of the present invention.

Claims (14)

一種纖維預氧化設備,適用於將一纖維紗束(20)預氧化為一氧化纖維紗束(20A),該纖維紗束(20)係由一纖維或複數個該纖維集結成束所構成,該氧化纖維紗束(20A)係由一氧化纖維(21)或複數個該氧化纖維(21)集結成束所構成,該纖維預氧化設備基本上包括有: 一傳送單元(30),設有提供一纖維紗束(20)的一供料機組(31)、供該纖維紗束(20)通過並將該纖維紗束(20)預氧化為該氧化纖維紗束(20A)的一爐體(33)、拖曳該纖維紗束(20)連續傳送及將該氧化纖維紗束(20A)收取的一收卷機組(32);以及, 一微波處理單元(40),係設置於該爐體(33)處以對該爐體(33)的內部產生一微波。A fiber pre-oxidation apparatus for pre-oxidizing a fiber yarn bundle (20) into a oxidized fiber yarn bundle (20A), the fiber yarn bundle (20) being composed of a fiber or a plurality of fibers bundled into a bundle. The oxidized fiber yarn bundle (20A) is composed of a oxidized fiber (21) or a plurality of the oxidized fibers (21), and the fiber pre-oxidation device basically comprises: a conveying unit (30), Providing a feeding unit (31) of a fiber bundle (20), passing the fiber bundle (20) and pre-oxidizing the fiber bundle (20) into a furnace body of the oxidized fiber bundle (20A) (33), a winding unit (32) for continuously transporting the fiber yarn bundle (20) and collecting the oxidized fiber yarn bundle (20A); and a microwave processing unit (40) disposed on the furnace body (33) is to generate a microwave for the inside of the furnace body (33). 如請求項1所述之纖維預氧化設備,其中,該微波處理單元(40)係於該爐體(33)處設有供產生該微波的一磁控管(41)。The fiber pre-oxidation apparatus according to claim 1, wherein the microwave processing unit (40) is provided at the furnace body (33) with a magnetron (41) for generating the microwave. 如請求項2所述之纖維預氧化設備,其中,該微波處理單元(40)更設有供將一含氧氣體通入該爐體(33)的一供氣機組(42)。The fiber pre-oxidation apparatus according to claim 2, wherein the microwave processing unit (40) is further provided with a gas supply unit (42) for introducing an oxygen-containing gas into the furnace body (33). 如請求項3所述之纖維預氧化設備,其中,該爐體(33)更包含一進氣口(331)及一出氣口(332),該供氣機組(42)係與該該進氣口(331)連接。The fiber pre-oxidation apparatus according to claim 3, wherein the furnace body (33) further comprises an air inlet (331) and an air outlet (332), and the air supply unit (42) is coupled to the air intake unit (42) Port (331) is connected. 如請求項1所述之纖維預氧化設備,其中,該爐體(33)更包含一保溫單元(34)。The fiber pre-oxidation apparatus according to claim 1, wherein the furnace body (33) further comprises a heat retention unit (34). 如請求項1所述之纖維預氧化設備,其中,該爐體(33)內部相對於該纖維紗束(20)傳送路徑之上、下位置處,分別設有一保溫單元(34)。The fiber pre-oxidation apparatus according to claim 1, wherein the inside of the furnace body (33) is provided with a heat retention unit (34) at a position above and below the transport path of the fiber bundle (20). 如請求項1所述之纖維預氧化設備,其中,該爐體(33)內部設有相對將該纖維紗束(20)之傳送路徑包圍的一保溫單元(34)。The fiber pre-oxidation apparatus according to claim 1, wherein the furnace body (33) is internally provided with a heat retention unit (34) that surrounds the conveying path of the fiber yarn bundle (20). 如請求項3所述之纖維預氧化設備,其中,該收卷機組(32)、該磁控管(41)及該供氣機組(42)係與一控制單元(50)電氣連接。The fiber pre-oxidation apparatus according to claim 3, wherein the winding unit (32), the magnetron (41) and the gas supply unit (42) are electrically connected to a control unit (50). 如請求項1所述之纖維預氧化設備,其中,該微波處理單元(40)係於該爐體(33)處設有供產生該微波的複數個磁控管(41)。The fiber pre-oxidation apparatus according to claim 1, wherein the microwave processing unit (40) is provided at the furnace body (33) with a plurality of magnetrons (41) for generating the microwaves. 如請求項9所述之纖維預氧化設備,其中,複數個該磁控管(41)設於該爐體(33)的單側。A fiber pre-oxidation apparatus according to claim 9, wherein a plurality of the magnetrons (41) are provided on one side of the furnace body (33). 如請求項9所述之纖維預氧化設備,其中,複數個該磁控管(41)設於該爐體(33)的上下兩側呈相對排列。The fiber pre-oxidation apparatus according to claim 9, wherein a plurality of the magnetrons (41) are disposed opposite to each other on the upper and lower sides of the furnace body (33). 如請求項9所述之纖維預氧化設備,其中,複數個該磁控管(41)設於該爐體(33)的上下兩側呈錯位排列。The fiber pre-oxidation apparatus according to claim 9, wherein a plurality of the magnetrons (41) are disposed on the upper and lower sides of the furnace body (33) in a misaligned arrangement. 如請求項9所述之纖維預氧化設備,其中,複數個該磁控管(41)設於該爐體(33)的上下兩側及左右兩側。The fiber pre-oxidation apparatus according to claim 9, wherein a plurality of the magnetrons (41) are disposed on upper and lower sides and left and right sides of the furnace body (33). 如請求項1所述之纖維預氧化設備,其中, 該纖維紗束(20)係為聚丙烯腈(PAN)纖維、瀝青纖維或其他有機纖維其中之一。The fiber pre-oxidation apparatus according to claim 1, wherein the fiber bundle (20) is one of polyacrylonitrile (PAN) fibers, pitch fibers or other organic fibers.
TW107201430U 2018-01-29 2018-01-29 Fiber pre-oxidation equipment TWM564599U (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
TW107201430U TWM564599U (en) 2018-01-29 2018-01-29 Fiber pre-oxidation equipment
CN201820182688.3U CN207891472U (en) 2018-01-29 2018-02-02 Fiber pre-oxidation equipment
JP2018001250U JP3216682U (en) 2018-01-29 2018-04-05 Fiber pre-oxidation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107201430U TWM564599U (en) 2018-01-29 2018-01-29 Fiber pre-oxidation equipment

Publications (1)

Publication Number Publication Date
TWM564599U true TWM564599U (en) 2018-08-01

Family

ID=62555959

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107201430U TWM564599U (en) 2018-01-29 2018-01-29 Fiber pre-oxidation equipment

Country Status (3)

Country Link
JP (1) JP3216682U (en)
CN (1) CN207891472U (en)
TW (1) TWM564599U (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI665349B (en) * 2018-01-29 2019-07-11 永虹先進材料股份有限公司 Fiber pre-oxidation equipment
TWI667339B (en) * 2018-09-06 2019-08-01 永虹先進材料股份有限公司 High-temperature carbonization furnace
CN109594151A (en) * 2018-12-25 2019-04-09 中国科学院合肥物质科学研究院 A kind of equipment optimizing carbon fiber and graphite
CN109652870B (en) * 2018-12-28 2021-05-18 安徽天富环保科技材料有限公司 Activated carbon fiber low-temperature pre-oxidation equipment
CN109944057A (en) * 2019-03-08 2019-06-28 常熟市翔鹰特纤有限公司 A kind of polyacrylonitrile filament microwave densification device
CN110042505B (en) * 2019-03-29 2021-10-22 武汉格罗夫氢能汽车有限公司 High efficiency carbon fiber apparatus for producing
CN112227057B (en) * 2019-07-15 2023-01-24 中国石油化工股份有限公司 Heat treatment method of polyacrylonitrile-based fiber
CN112142487B (en) * 2020-09-22 2021-09-10 中国科学院山西煤炭化学研究所 Microwave-assisted asphalt oxidation non-melting method
CN115369521B (en) * 2021-05-19 2024-01-05 吉林碳谷碳纤维股份有限公司 Pre-oxidation process of carbon fiber precursor and polyacrylonitrile carbon fiber pre-oxidized precursor
CN113445156A (en) * 2021-05-20 2021-09-28 北京化工大学 Pre-oxidized fiber treatment device

Also Published As

Publication number Publication date
CN207891472U (en) 2018-09-21
JP3216682U (en) 2018-06-14

Similar Documents

Publication Publication Date Title
TWM564599U (en) Fiber pre-oxidation equipment
CA2649131C (en) Process for continuous production of carbon fibres
US10316433B2 (en) Carbon fiber and method for producing carbon fiber
JP6063045B2 (en) Carbonization method and carbon fiber production method
TWI695099B (en) Oxidized fiber
US20120181162A1 (en) Method for Stabilizing Carbon-Containing Fibre and Method for Producing Carbon Fibre
CN106460243A (en) Carbon fiber manufacturing device and carbon fiber manufacturing method
CN211522400U (en) Microwave heating carbon fiber precursor annealing-pre-oxidation treatment equipment
TWI665349B (en) Fiber pre-oxidation equipment
TWM564598U (en) Oxidized fiber structure
TWI695096B (en) Oxidized fiber manufacturing method
CN208362540U (en) A kind of microwave heating preoxidized polyacrylonitrile device
WO2022168830A1 (en) Microwave heating unit, and carbon fiber manufacturing method using same
KR20120037043A (en) Apparatus for maunfacturing carbon fiber using plasma source