TWM563642U - Testing system - Google Patents

Testing system Download PDF

Info

Publication number
TWM563642U
TWM563642U TW107204382U TW107204382U TWM563642U TW M563642 U TWM563642 U TW M563642U TW 107204382 U TW107204382 U TW 107204382U TW 107204382 U TW107204382 U TW 107204382U TW M563642 U TWM563642 U TW M563642U
Authority
TW
Taiwan
Prior art keywords
resolver
test
simulator
instant
decoder
Prior art date
Application number
TW107204382U
Other languages
Chinese (zh)
Inventor
邱華靜
陳涵
Original Assignee
大陸商上海蔚蘭動力科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810132261.7A external-priority patent/CN110133392A/en
Application filed by 大陸商上海蔚蘭動力科技有限公司 filed Critical 大陸商上海蔚蘭動力科技有限公司
Publication of TWM563642U publication Critical patent/TWM563642U/en

Links

Landscapes

  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

A testing system includes a resolver decoder, a real-time simulator for performing a testing process, the testing process includes an accuracy testing on a peripheral circuit setting of the resolver decoder to generate a first testing result, a dynamic resolver to digital converter response testing on the resolver decoder to generate a second testing result, and determining whether the resolver decoder passes the testing according to the first testing result and the second testing result, and an oscilloscope for recording a plurality of signals generated by the resolver decoder simulated by the real-time simulator with a specified rotating speed.

Description

測試系統Test system

本創作係指一種測試系統,尤指一種即時模擬的測試系統。This creation refers to a test system, especially a test system that simulates in real time.

針對旋轉變壓器來設計旋轉變壓器解碼器時,需要測試旋轉變壓器解碼器設置的正確性及解碼結果的精確度,現有技術通常直接將解碼器耦接至實際旋轉變壓器以進行測試,此時,需要將旋轉變壓器安裝於電動機上,以測試旋轉變壓器解碼器。然而,現有測試旋轉變壓器解碼器的測試方法具有下列缺點。首先,當一旋轉變壓器安裝於一電動機上時所產生的安裝偏差,將影響旋轉變壓器解碼器的解碼結果;再者,當測試高速情況下,要求旋轉變壓器解碼器轉換結果的精確度時,旋轉變壓器解碼器也必須處於高速旋轉的情況,因此,對於電動機對拖測試台架的轉速要求也隨之提升;此外,即使電動機對拖測試台架可針對電動機上的一旋轉變壓器模擬高速環境,當電動機對測試拖台架具有較大響應延時,無法提供理想的測試環境,以測試旋轉變壓器解碼器的一階躍速度(Step Velocity)及一斜坡速度(Ramp Velocity)。因此,現有的旋轉變壓器解碼器的測試系統,確實有改進的必要。When designing a resolver decoder for a resolver, it is necessary to test the correctness of the resolver decoder setting and the accuracy of the decoding result. In the prior art, the decoder is usually directly coupled to the actual resolver for testing. A resolver is mounted on the motor to test the resolver decoder. However, the existing test method for testing a resolver decoder has the following disadvantages. First, the mounting deviation generated when a resolver is mounted on a motor will affect the decoding result of the resolver decoder; further, when the test is performed at a high speed, the accuracy of the resolver decoder conversion result is required, and the rotation The transformer decoder must also be in high-speed rotation, so the speed requirement for the motor-to-drag test rig is also increased; in addition, even if the motor-to-drag test rig can simulate a high-speed environment for a rotary transformer on the motor, The motor has a large response delay to the test trailer, which does not provide an ideal test environment to test the stepper speed (Rout Velocity) and a ramp speed (Ramp Velocity) of the resolver decoder. Therefore, the test system of the existing resolver decoder does have a need for improvement.

因此,本創作提供一種旋轉變壓器解碼器的測試系統,以即時模擬的方式更精確且便捷地測試旋轉變壓器解碼器設置的正確性及解碼結果的精確度。Therefore, the present invention provides a test system for a resolver decoder that more accurately and conveniently tests the correctness of the resolver decoder settings and the accuracy of the decoding results in a real-time simulation manner.

本創作另揭露一種測試系統,其包含有一旋轉變壓器解碼器;以及一即時模擬器,用來對該旋轉變壓器解碼器之一週邊電路設置進行一精度測試,以產生一第一測試結果,以及對該旋轉變壓器解碼器進行一解角器轉數位轉換器動態響應測試,以產生一第二測試結果,並根據該第一測試結果及該第二測試結果,判斷該旋轉變壓器解碼器是否通過測試;以及一示波器,用來記錄該即時模擬器模擬該旋轉變壓器解碼器在一指定轉速下所產生的複數個訊號。The present invention further discloses a test system including a resolver decoder; and an instant simulator for performing an accuracy test on a peripheral circuit setting of one of the resolver decoders to generate a first test result, and The resolver decoder performs a resolver-to-digital converter dynamic response test to generate a second test result, and determines whether the resolver decoder passes the test according to the first test result and the second test result; And an oscilloscope for recording the instant simulator to simulate a plurality of signals generated by the resolver decoder at a specified rotational speed.

請參考第1圖,第1圖為本創作實施例之一測試系統10之示意圖。測試系統10包含有一即時模擬器102、一旋轉變壓器解碼器104及一示波器(未繪示)。即時模擬器102用來對旋轉變壓器解碼器104的一週邊電路設置進行一精度測試,以產生一第一測試結果,以及對旋轉變壓器解碼器104進行一解角器轉數位轉換器(Resolver to Digital Converter,RDC)動態響應測試,以產生一第二測試結果,並根據第一測試結果及第二測試結果,判斷旋轉變壓器解碼器104是否通過測試。示波器則用來記錄即時模擬器102模擬旋轉變壓器解碼器104在一轉速下所產生的複數個訊號。在一實施例中,即時模擬器102可針對旋轉變壓器解碼器104的精度測試,以排除安裝一旋轉變壓器於一電動機測試台上的安裝精度問題所導致的誤差,並且即時模擬器102可輸出理想旋變訊號以模擬理想的階躍電動機測試台的一轉速變化狀況,從而測試旋轉變壓器解碼器104的動態響應,舉例來說,即時模擬器102可模擬電動機測試台上的對拖台架在每分鐘15000至18000轉(Revolution Per Minute,RPM)的情況下,旋轉變壓器解碼器104的實際轉速的精確度及動態回應等參數。接著,測試系統10再根據精度測試以及動態響應的結果,判斷旋轉變壓器解碼器104是否通過測試。如此一來,本創作的測試系統10不需要將旋轉變壓器解碼器104安裝於實體的旋轉變壓器上,即可對旋轉變壓器解碼器進行測試。Please refer to FIG. 1 , which is a schematic diagram of a test system 10 according to one embodiment of the present invention. The test system 10 includes an instant simulator 102, a resolver decoder 104, and an oscilloscope (not shown). The instant simulator 102 is used to perform a precision test on a peripheral circuit setting of the resolver decoder 104 to generate a first test result, and to perform a resolver to digital converter on the resolver decoder 104 (Resolver to Digital) The converter, RDC) dynamically responds to the test to generate a second test result, and determines whether the resolver decoder 104 passes the test based on the first test result and the second test result. The oscilloscope is used to record the complex simulator 102 to simulate the plurality of signals generated by the resolver decoder 104 at a rotational speed. In an embodiment, the instant simulator 102 can be tested for the accuracy of the resolver decoder 104 to eliminate errors caused by mounting accuracy problems of installing a resolver on a motor test bench, and the instant simulator 102 can output an ideal The resolver signal is used to simulate a rotational speed change of an ideal step motor test bench to test the dynamic response of the resolver decoder 104. For example, the instant simulator 102 can simulate a pair of tow carriages on the motor test bench. In the case of 15,000 to 18,000 revolutions (RPM), the accuracy of the actual rotational speed of the resolver decoder 104 and the dynamic response and other parameters. Next, the test system 10 determines whether the resolver decoder 104 has passed the test based on the accuracy test and the result of the dynamic response. In this way, the test system 10 of the present invention can test the resolver decoder without installing the resolver decoder 104 on a physical resolver.

請繼續參考第2圖,第2圖為本創作實施例之一測試流程20之示意圖。測試流程20應用於測試系統10,其包含有下列步驟:Please continue to refer to FIG. 2, which is a schematic diagram of a test flow 20 of one of the creative embodiments. Test process 20 is applied to test system 10, which includes the following steps:

步驟202: 開始。Step 202: Start.

步驟204:對旋轉變壓器解碼器104之週邊電路設置進行精度測試,以產生第一測試結果。Step 204: Perform an accuracy test on the peripheral circuit settings of the resolver decoder 104 to generate a first test result.

步驟206:對旋轉變壓器解碼器104進行解角器轉數位轉換器動態響應測試,以產生第二測試結果。Step 206: Perform a dynamic response test of the resolver to digital converter on the resolver decoder 104 to generate a second test result.

步驟208:根據第一測試結果及第二測試結果,判斷旋轉變壓器解碼器104是否通過測試。Step 208: Determine whether the resolver decoder 104 passes the test according to the first test result and the second test result.

步驟210:結束。Step 210: End.

由上述可知,根據測試流程20,測試系統10可不需將旋轉變壓器解碼器104安裝於實體的旋轉變壓器上,即可對旋轉變壓器解碼器104進行測試。在一實施例中,於步驟204,先針對旋轉變壓器解碼器104的週邊電路設置進行精度測試,以產生第一測試結果。接著,於步驟206,對旋轉變壓器解碼器104進行解角器轉數位轉換器動態響應測試,以產生第二測試結果。最後,在步驟208中,根據上述第一測試結果及第二測試結果,判斷旋轉變壓器解碼器104是否通過測試。From the above, according to the test flow 20, the test system 10 can test the resolver decoder 104 without installing the resolver decoder 104 on a physical resolver. In an embodiment, in step 204, an accuracy test is first performed on the peripheral circuit settings of the resolver decoder 104 to generate a first test result. Next, in step 206, the resolver decoder 104 performs a resolver-to-digital converter dynamic response test to generate a second test result. Finally, in step 208, based on the first test result and the second test result, it is determined whether the resolver decoder 104 passes the test.

針對旋轉變壓器解碼器104的週邊電路設置的精度測試,請參考第3圖,第3圖為本創作實施例之一精度測試流程30之示意圖。精度測試流程30包含有下列步驟:For the accuracy test of the peripheral circuit setting of the resolver decoder 104, please refer to FIG. 3, which is a schematic diagram of the accuracy test flow 30 of one of the creative embodiments. The accuracy test process 30 includes the following steps:

步驟302:開始。Step 302: Start.

步驟304:確定旋轉變壓器解碼器104之複數個週邊電路參數。Step 304: Determine a plurality of peripheral circuit parameters of the resolver decoder 104.

步驟306:即時模擬器102根據週邊電路參數,模擬旋轉變壓器解碼器104在一指定轉速下所產生的複數個訊號。Step 306: The instant simulator 102 simulates a plurality of signals generated by the resolver decoder 104 at a specified rotational speed based on the peripheral circuit parameters.

步驟308:即時模擬器102根據產生的訊號,判斷該旋轉變壓器解碼器是否於一誤差範圍之內。Step 308: The instant simulator 102 determines, according to the generated signal, whether the resolver decoder is within an error range.

步驟310:結束。Step 310: End.

根據精度測試流程30,測試系統10可判斷旋轉變壓器解碼器104是否通過第一測試結果。首先,在步驟304中,先決定旋轉變壓器解碼器104的週邊電路參數(例如,極對數為2、轉換比率為0.286)。接著,在步驟306中,即時模擬器102根據決定的週邊電路參數,模擬旋轉變壓器解碼器104在指定轉速下所產生的訊號,例如,在每分鐘15000至18000轉的轉速下所產生的旋變訊號sin、cos(即一正弦訊號及一餘弦訊號),並以示波器將產生的旋變訊號sin、cos儲存為一逗點分隔值(Comma-Separated Values,CSV)文件。最後,於步驟308中,即時模擬器102根據產生的訊號判斷旋轉變壓器解碼器104是否於誤差範圍之內(例如,正負10 RPM內)。具體而言,示波器所記錄的旋變訊號sin、cos的CSV文件可用來作為一Matlab之一解角器轉數位轉換器演算法的輸入值,使得Matlab根據旋變訊號sin、cos解碼出一角度值及一速度值,並據以判斷旋轉變壓器解碼器104是否於誤差範圍之內。其中,解角器轉數位轉換器演算法是根據一角度閉鎖跟蹤演算法及旋變訊號sin、cos,以判斷旋轉變壓器解碼器104是否通過測試。在此情形下,當旋轉變壓器解碼器104的外圍電路設置精度的計算結果在誤差範圍(即正負10 RPM)內時,表示旋轉變壓器解碼器104達到第一測試結果的要求。Based on the accuracy test flow 30, the test system 10 can determine whether the resolver decoder 104 passes the first test result. First, in step 304, the peripheral circuit parameters of the resolver decoder 104 are first determined (for example, the number of pole pairs is 2 and the conversion ratio is 0.286). Next, in step 306, the instant simulator 102 simulates the signal generated by the resolver decoder 104 at the specified rotational speed based on the determined peripheral circuit parameters, for example, the rotational force generated at a rotational speed of 15,000 to 18,000 revolutions per minute. Signals sin, cos (ie, a sine signal and a cosine signal), and use the oscilloscope to generate the sin, cos generated by the oscilloscope as a Comma-Separated Values (CSV) file. Finally, in step 308, the instant simulator 102 determines whether the resolver decoder 104 is within the error range (eg, within plus or minus 10 RPM) based on the generated signal. Specifically, the CSV file of the sin and cos recorded by the oscilloscope can be used as an input value of the algorithm of the resolver to the digital converter of a Matlab, so that Matlab decodes an angle according to the sin and cos of the gyro signal. The value and a velocity value are used to determine if the resolver decoder 104 is within error. Wherein, the resolver to digital converter algorithm is based on an angle locking tracking algorithm and the sin, sin, cos to determine whether the resolver decoder 104 passes the test. In this case, when the calculation result of the peripheral circuit setting accuracy of the resolver decoder 104 is within the error range (i.e., plus or minus 10 RPM), it indicates that the resolver decoder 104 has reached the requirement of the first test result.

在一實施例中,即時模擬器102可由一LabCAR即時模擬器實現,並連接一電動機控制器的旋轉變壓器進行硬體在環(Hardware-in-the-loop,HIL)的即時模擬測試。其中,LabCAR即時模擬器包含一旋變位置感測器及一訊號連接線,旋轉變壓器解碼器104可以一旋變訊號轉換晶片AU6805實現,其中旋變訊號轉換晶片AU6805另包含一訊號調理電路(Signal Conditioning Circuit)用來轉換來自旋變位置感測器的旋變訊號sin、cos,並且將旋變訊號sin、cos轉換為一電動機轉子(Motor Rotor)位置角度值。因此,在此例中,訊號調理電路即為旋轉變壓器解碼器104的週邊電路,示波器用以採集並儲存旋變訊號轉換晶片AU6805的旋變訊號sin、cos,進而透過Matlab中的解角器轉數位轉換器演算法,以根據旋變訊號sin、cos解碼出角度值及速度值。在此情形下,根據旋變訊號轉換晶片AU6805解碼出的轉速偏差與LabCAR及時模擬器的誤差於正負10 RPM以內時,則判斷旋轉變壓器解碼器104的旋變訊號調理電路設置正確。In one embodiment, the instant simulator 102 can be implemented by a LabCAR instant simulator and connected to a motor controller's resolver for real-time simulation testing of hardware-in-the-loop (HIL). The LabCAR instant simulator includes a revolving position sensor and a signal connection line, and the resolver decoder 104 can be implemented by a cyclotron signal conversion chip AU6805, wherein the revolving signal conversion chip AU6805 further includes a signal conditioning circuit (Signal) The Conditioning Circuit is used to convert the sin, cos from the resolver position sensor and convert the sin, cos into a motor Rotor position angle value. Therefore, in this example, the signal conditioning circuit is the peripheral circuit of the resolver decoder 104. The oscilloscope is used to collect and store the sin and s of the resolve signal conversion chip AU6805, and then through the resolver in Matlab. The digital converter algorithm is used to decode the angle value and the velocity value according to the sin and cos. In this case, according to the rotational speed deviation decoded by the resolver signal conversion chip AU6805 and the error of the LabCAR timely simulator within plus or minus 10 RPM, it is determined that the resolver signal conditioning circuit of the resolver decoder 104 is set correctly.

在另一實施例中,請參考第4圖及第5圖,第4圖為本創作實施例之旋變訊號sin、cos之示意圖,第5圖為本創作實施例之週邊電路設置之精度測試之示意圖。如第4圖所示,示波器可測量到旋變訊號轉換晶片AU6805所產生的旋變訊號sin、cos,並儲存其波型,進而透過Matlab的解角器轉數位轉換器演算法,將旋變訊號sin、cos轉換為角度值。因此,從第5圖可發現,模擬結果的轉速誤差在正負5 RPM以內,即旋轉變壓器解碼器104的週邊電路達到精度測試的要求。In another embodiment, please refer to FIG. 4 and FIG. 5 , FIG. 4 is a schematic diagram of the sin and s of the sinusoidal signal of the present embodiment, and FIG. 5 is a precision test of the peripheral circuit setting of the present embodiment. Schematic diagram. As shown in Figure 4, the oscilloscope can measure the sin and cos generated by the gyro signal conversion chip AU6805, and store its waveform, and then rotate it through Matlab's resolver-to-digital converter algorithm. The signals sin and cos are converted to angle values. Therefore, it can be found from Fig. 5 that the rotational speed error of the simulation result is within plus or minus 5 RPM, that is, the peripheral circuit of the resolver decoder 104 meets the requirements of the accuracy test.

另一方面,針對旋轉變壓器解碼器104的解角器轉數位轉換器動態響應測試,請參考第6圖,第6圖為本創作實施例之一動態響應測試流程60之示意圖。動態響應測試流程60包含有下列步驟:On the other hand, for the resolver-to-digital converter dynamic response test of the resolver decoder 104, please refer to FIG. 6, which is a schematic diagram of a dynamic response test flow 60 of the present embodiment. The dynamic response test process 60 includes the following steps:

步驟602:開始。Step 602: Start.

步驟604:確定旋轉變壓器解碼器104之複數個內部參數。Step 604: Determine a plurality of internal parameters of the resolver decoder 104.

步驟606:即時模擬器102根據內部參數,模擬在指定轉速下旋轉變壓器解碼器104產生一模擬結果。Step 606: The instant simulator 102 simulates the resolver decoder 104 to generate a simulation result at the specified speed based on the internal parameters.

步驟608:即時模擬器102根據模擬結果,判斷旋轉變壓器解碼器104在指定轉速下是否滿足動態響應。Step 608: The instant simulator 102 determines, based on the simulation result, whether the resolver decoder 104 satisfies the dynamic response at the specified rotational speed.

步驟610:結束。Step 610: End.

由上述可知,根據動態響應測試流程60,測試系統10可判斷旋轉變壓器解碼器104是否通過第二測試結果。首先,於步驟604,確定旋轉變壓器解碼器104的內部參數,接著,於步驟606中,即時模擬器102在指定轉速下模擬旋轉變壓器解碼器104產生模擬結果,最後,在步驟608,判斷旋轉變壓器解碼器104在指定轉速下的模擬結果是否滿足動態響應。在一實施例中,即時模擬器102可由一LabCAR即時模擬器實現,並且LabCAR即時模擬器可包含一輸入輸出板(Input/Output Board)。輸入輸出板在指定轉速下輸出一輸出訊號至電動機測試台以做為一時間同步訊號,並且使用一陣列記錄轉換速度的結果,進而分析出一實際轉速,並據以判斷旋轉變壓器解碼器104在指定轉速下是否滿足該動態響應。As can be seen from the above, according to the dynamic response test flow 60, the test system 10 can determine whether the resolver decoder 104 passes the second test result. First, in step 604, the internal parameters of the resolver decoder 104 are determined. Next, in step 606, the instant simulator 102 simulates the resolver decoder 104 to generate a simulation result at the specified rotational speed. Finally, at step 608, the resolver is determined. Whether the simulation result of the decoder 104 at the specified rotational speed satisfies the dynamic response. In an embodiment, the instant simulator 102 can be implemented by a LabCAR instant simulator, and the LabCAR instant simulator can include an input/output board (Input/Output Board). The input/output board outputs an output signal to the motor test station at a specified speed as a time synchronization signal, and uses an array to record the result of the conversion speed, thereby analyzing an actual rotation speed, and judging that the resolver decoder 104 is Whether the dynamic response is satisfied at the specified speed.

綜上所述,本創作提供一種旋轉變壓器解碼器的測試方法及其相關測試系統,以即時模擬的方式,排除由於旋轉變壓器在實物電動機上的安裝精度問題所造成的誤差,於測試旋轉變壓器解碼器的動態響應時,不需依靠電動機測試台的對拖台架,以避免延遲,並且創造性地將Matlab模擬應用於旋轉變壓器解碼器的測試過程,以判斷旋轉變壓器解碼器的週邊調理電路的精確度,使得本創作之測試方法及相關測試系統可更精確且便捷的方式來測試旋轉變壓器解碼器的設置的正確性及解碼結果的精確度。In summary, the present invention provides a test method for a resolver decoder and its related test system, which eliminates errors caused by the installation accuracy of the resolver on the physical motor in a real-time simulation manner, and decodes the resolver in the test. The dynamic response of the device does not depend on the tow gantry of the motor test bench to avoid delay, and creatively applies Matlab simulation to the test procedure of the resolver decoder to determine the accuracy of the peripheral conditioning circuit of the resolver decoder. This makes the test method and related test system of this creation more accurate and convenient way to test the correctness of the setting of the resolver decoder and the accuracy of the decoding result.

以上所述僅為本創作之較佳實施例,凡依本創作申請專利範圍所做之均等變化與修飾,皆應屬本創作之涵蓋範圍。The above descriptions are only preferred embodiments of the present invention, and all changes and modifications made by the scope of the patent application of the present invention should be covered by the present invention.

10‧‧‧測試系統
102‧‧‧即時模擬器
104‧‧‧旋轉變壓器解碼器
20、30、60‧‧‧流程
202、204、206、208、210、302、304、306、308、310、602、604、606、608、610‧‧‧步驟
10‧‧‧Test system
102‧‧‧ Instant Simulator
104‧‧‧Revolving Transformer Decoder
20, 30, 60‧ ‧ process
202, 204, 206, 208, 210, 302, 304, 306, 308, 310, 602, 604, 606, 608, 610 ‧ ‧ steps

第1圖為本創作實施例之一測試系統之示意圖。 第2圖為本創作實施例之一測試流程之示意圖。 第3圖為本創作之一精度測試流程之示意圖。 第4圖為本創作實施例之旋變訊號之示意圖。 第5圖為本創作實施例之一週邊電路設置之精度測試之示意圖。 第6圖為本創作之一態響應測試流程之示意圖。Figure 1 is a schematic diagram of a test system of one of the creative embodiments. Figure 2 is a schematic diagram of a test flow of one of the creative embodiments. Figure 3 is a schematic diagram of one of the precision testing procedures of the creation. Figure 4 is a schematic diagram of the resolve signal of the present embodiment. Fig. 5 is a schematic diagram showing the accuracy test of the peripheral circuit setting of one of the embodiments of the present invention. Figure 6 is a schematic diagram of the one-state response test process of the creation.

Claims (8)

一種測試系統,其包含有: 一旋轉變壓器解碼器; 一即時模擬器,用來執行一測試流程,該測試流程包含以下步驟: 對該旋轉變壓器解碼器之一週邊電路設置進行一精度測試,以產生一第一測試結果; 對該旋轉變壓器解碼器進行一解角器轉數位轉換器動態響應測試,以產生一第二測試結果;以及 根據該第一測試結果及該第二測試結果,判斷該旋轉變壓器解碼器是否通過測試;以及 一示波器,用來記錄該即時模擬器模擬該旋轉變壓器解碼器在一指定轉速下所產生的複數個訊號。A test system comprising: a resolver decoder; an instant simulator for performing a test flow, the test flow comprising the steps of: performing a precision test on a peripheral circuit setting of one of the resolver decoders, Generating a first test result; performing a resolver-to-digital converter dynamic response test on the resolver decoder to generate a second test result; and determining the first test result and the second test result Whether the resolver decoder passes the test; and an oscilloscope for recording the instant simulator to simulate a plurality of signals generated by the resolver decoder at a specified rotational speed. 如請求項1所述之測試系統,其中該測試流程另包含: 該即時模擬器決定該旋轉變壓器解碼器之複數個週邊電路參數; 該即時模擬器根據該複數個週邊電路參數,模擬該旋轉變壓器解碼器在一指定轉速下所產生的複數個訊號;以及 該即時模擬器根據該複數個訊號,判斷該旋轉變壓器解碼器是否於一誤差範圍之內; 其中,該指定轉速為每分鐘15000至18000轉(Revolution Per Minute,RPM),且該複數個訊號包含一正弦訊號及一餘弦訊號。The test system of claim 1, wherein the test flow further comprises: the instant simulator determining a plurality of peripheral circuit parameters of the resolver decoder; the instant simulator simulating the resolver according to the plurality of peripheral circuit parameters a plurality of signals generated by the decoder at a specified rotational speed; and the instant simulator determines, according to the plurality of signals, whether the resolver decoder is within an error range; wherein the specified rotational speed is 15000 to 18000 per minute Revolution Per Minute (RPM), and the plurality of signals include a sine signal and a cosine signal. 如請求項2所述之測試系統,其中該即時模擬器為一LabCAR即時模擬器。The test system of claim 2, wherein the instant simulator is a LabCAR instant simulator. 如請求項2所述之測試系統,其中該即時模擬器係根據一Matlab之一解角器轉數位轉換器演算法,以根據該複數個訊號所解碼出的一角度值及一速度值,判斷該旋轉變壓器解碼器是否於該誤差範圍之內。The test system of claim 2, wherein the instant simulator is based on a Matlab one-dimensional resolver-to-digital converter algorithm to determine an angle value and a speed value decoded according to the plurality of signals. Whether the resolver decoder is within this error range. 如請求項4所述之測試系統,其中該解角器轉數位轉換器演算法係根據一角度閉鎖跟蹤演算法及該複數個訊號,判斷該旋轉變壓器解碼器是否通過測試。The test system of claim 4, wherein the resolver to digital converter algorithm determines whether the resolver decoder passes the test according to an angle locking tracking algorithm and the plurality of signals. 如請求項1所述之測試系統,其中該測試流程另包含: 該即時模擬器決定該旋轉變壓器解碼器之複數個內部參數; 該即時模擬器根據該複數個內部參數,模擬在一指定轉速下該旋轉變壓器解碼器產生一模擬結果;以及 該即時模擬器根據該模擬結果,判斷該旋轉變壓器解碼器在該指定轉速下是否滿足一動態響應; 其中,該指定轉速為每分鐘15000至18000轉。The test system of claim 1, wherein the test flow further comprises: the instant simulator determining a plurality of internal parameters of the resolver decoder; the instant simulator is simulated at a specified speed according to the plurality of internal parameters The resolver decoder generates a simulation result; and the instant simulator determines, according to the simulation result, whether the resolver decoder satisfies a dynamic response at the specified rotational speed; wherein the designated rotational speed is 15000 to 18000 revolutions per minute. 如請求項6所述之測試系統,其中該即時模擬器為一LabCAR即時模擬器。The test system of claim 6, wherein the instant simulator is a LabCAR instant simulator. 如請求項7所述之測試系統,其中該LabCAR即時模擬器包含有一輸入輸出板,該輸入輸出板在該指定轉速下產生一時間同步訊號,以分析該旋轉變壓器解碼器之一實際轉速,並據以判斷該旋轉變壓器解碼器在該指定轉速下是否滿足該動態響應。The test system of claim 7, wherein the LabCAR instant simulator includes an input/output board that generates a time synchronization signal at the specified rotational speed to analyze an actual rotational speed of one of the resolver decoders, and It is determined whether the resolver decoder satisfies the dynamic response at the specified rotational speed.
TW107204382U 2018-02-09 2018-04-03 Testing system TWM563642U (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
??201810132261.7 2018-02-09
??201820230408.1 2018-02-09
CN201810132261.7A CN110133392A (en) 2018-02-09 2018-02-09 Test method and its associated test system
CN201820230408 2018-02-09

Publications (1)

Publication Number Publication Date
TWM563642U true TWM563642U (en) 2018-07-11

Family

ID=63642016

Family Applications (2)

Application Number Title Priority Date Filing Date
TW107204382U TWM563642U (en) 2018-02-09 2018-04-03 Testing system
TW107111777A TW201935029A (en) 2018-02-09 2018-04-03 Testing method and testing system thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW107111777A TW201935029A (en) 2018-02-09 2018-04-03 Testing method and testing system thereof

Country Status (1)

Country Link
TW (2) TWM563642U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109581044A (en) * 2019-01-29 2019-04-05 上海理工大学 Voltage check device and working method applied to rotary transformer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI740676B (en) 2020-10-12 2021-09-21 財團法人工業技術研究院 Pulse-width modulation signal observation circuit and hardware-in-the-loop simulation device having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109581044A (en) * 2019-01-29 2019-04-05 上海理工大学 Voltage check device and working method applied to rotary transformer
CN109581044B (en) * 2019-01-29 2020-11-24 上海理工大学 Voltage detection device applied to rotary transformer and working method

Also Published As

Publication number Publication date
TW201935029A (en) 2019-09-01

Similar Documents

Publication Publication Date Title
WO2021114419A1 (en) Calibration method, apparatus and device for rotary magnetoelectric encoder
US7797584B2 (en) SATA interface tester and testing method
CN102175140B (en) System and method for measuring shaft system misalignment based on eddy current sensor
CN104459588A (en) System and method for current sensor test
TWM563642U (en) Testing system
CN108759658B (en) Method for analyzing and compensating angle measurement error of induction synchronizer
CN104504197A (en) Archimedes spiral planar thread measurement model and eccentric parameter correction method
CN204287217U (en) A kind of rotating shaft speed precision pick-up unit
CN107561162A (en) A kind of reflectoscope automatic verification system
CN201047798Y (en) Virtual vibration table detecting apparatus
CN204101578U (en) Inertia turntable angular speed calibrating installation
CN201993421U (en) System for automatically testing front ends of millimeter waves
CN110133392A (en) Test method and its associated test system
CN103308928A (en) Pseudo-range precision measurement system of satellite navigation signal simulator
CN107861033B (en) Calibration method and system for positioning error of oscillation wave partial discharge detection system
Piccato et al. A portable rotating disk prototype for LDA calibration
US6515486B1 (en) Method and structure to determine low threshold voltage and high threshold voltage
TWI723520B (en) Rotary encoder accuracy estimation apparatus and estimation method therefor
CN110779723A (en) Hall signal-based precise fault diagnosis method for variable-speed working condition motor bearing
CN105137235B (en) A kind of function detecting method of rotary transformer electric bridge
TWI835494B (en) Automatic measurement method for signal jitter
CN102075261A (en) Method and system for automatically testing millimeter-wave front end
CICON et al. Investigation of continuously traversing microphone system for mode measurement[Final Report]
JPWO2021260921A5 (en) Backlash amount measuring device, backlash amount measuring method, and backlash amount measuring program
Feng et al. A method for analyzing serial bus protocols with standalone clock signals