TWM519766U - Touch device - Google Patents

Touch device Download PDF

Info

Publication number
TWM519766U
TWM519766U TW104217183U TW104217183U TWM519766U TW M519766 U TWM519766 U TW M519766U TW 104217183 U TW104217183 U TW 104217183U TW 104217183 U TW104217183 U TW 104217183U TW M519766 U TWM519766 U TW M519766U
Authority
TW
Taiwan
Prior art keywords
touch
bridging
layer
substrate
bridge
Prior art date
Application number
TW104217183U
Other languages
Chinese (zh)
Inventor
余晶
邱宗科
蘇雲聰
林雅璐
Original Assignee
宸鴻科技(廈門)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宸鴻科技(廈門)有限公司 filed Critical 宸鴻科技(廈門)有限公司
Publication of TWM519766U publication Critical patent/TWM519766U/en

Links

Landscapes

  • Position Input By Displaying (AREA)
  • Manufacture Of Switches (AREA)

Abstract

A touch device comprises a substrate, a plurality of bridge units, and a touch circuit layer. The bridge units are spaced apart from one other and are disposed on the substrate. Each of the bridge units has a bridging layer, and at least one buffer structures. The buffer structures extend respectively from a side wall of the bridging layer to the substrate to form a ramp. The buffer structures are disposed respectively at two opposite ends of each bridging layer and locations between the two opposite ends of each bridging layer. The touch circuit layer has a plurality of first touch electrodes spaced apart from one other and arranged on the substrate along a first direction. The first touch electrodes are superimposed respectively on the bridging layers, and cover the ramps of the buffer structures.

Description

觸控裝置 Touch device

本新型是有關於一種觸控技術,特別是指一種觸控裝置。 The present invention relates to a touch technology, and more particularly to a touch device.

現有的觸控裝置包含一基板、多個彼此相間隔設置在基板上的橋接層及一用以產生觸控訊號的觸控電路層。觸控電路層包括多個沿一第一軸線方向設置在基板,且分別位於橋接層之間的第一觸控電極。而每一第一觸控電極的兩端分別延伸至鄰近的橋接層上,並藉由橋接層使得相鄰的第一觸控電極彼此電連接。然而由於橋接層的厚度遠大於第一觸控電極的厚度,使得第一觸控電極容易在由基板向上延伸至橋接層的區域斷裂,而導致觸控裝置的功能異常。 The touch device includes a substrate, a plurality of bridge layers spaced apart from each other on the substrate, and a touch circuit layer for generating touch signals. The touch circuit layer includes a plurality of first touch electrodes disposed on the substrate along a first axis direction and respectively located between the bridge layers. The two ends of each of the first touch electrodes respectively extend to the adjacent bridge layers, and the adjacent first touch electrodes are electrically connected to each other by the bridge layer. However, since the thickness of the bridge layer is much larger than the thickness of the first touch electrode, the first touch electrode is easily broken in a region extending from the substrate to the bridge layer, resulting in abnormal function of the touch device.

本新型提供一種觸控裝置。 The present invention provides a touch device.

觸控裝置包含:一基板、多個橋接單元及一觸控電路層。 The touch device includes: a substrate, a plurality of bridge units, and a touch circuit layer.

該等橋接單元彼此相間隔地設置在該基板,且 各包括一橋接層及至少一緩衝結構,各該緩衝結構分別由該橋接層之側壁延伸至該基板而形成一斜坡。 The bridge units are disposed on the substrate at a distance from each other, and Each of the buffer structures includes a bridge layer and at least one buffer structure, and each of the buffer structures extends from the sidewall of the bridge layer to the substrate to form a slope.

該觸控電路層包括多個沿一第一方向間隔地設置在該基板的第一觸控電極,該等第一觸控電極分別重疊於至少一橋接層,並且覆蓋設於該緩衝結構的該斜坡。 The touch circuit layer includes a plurality of first touch electrodes disposed on the substrate at a distance from the first direction, and the first touch electrodes are respectively overlapped with the at least one bridge layer, and the cover is disposed on the buffer structure. Slope.

在一些實施態樣中,該等斜坡的斜率小於85度。 In some implementations, the slope of the ramps is less than 85 degrees.

在一些實施態樣中,各該緩衝結構還覆蓋各該橋接層。 In some implementations, each of the buffer structures also covers each of the bridge layers.

在一些實施態樣中,該等橋接層的厚度範圍各介於0.3微米至0.4微米之間,該等緩衝結構之斜坡的厚度不小於0.5微米。 In some embodiments, the bridging layers each have a thickness ranging from 0.3 microns to 0.4 microns, and the slope of the buffer structures has a thickness of no less than 0.5 microns.

在一些實施態樣中,該等橋接層是由導電材料所製成,且相鄰之各該第一觸控電極藉由各該橋接層電連接。 In some implementations, the bridging layers are made of a conductive material, and each of the adjacent first touch electrodes is electrically connected by each of the bridging layers.

在一些實施態樣中,該等橋接層呈長條狀,且各該緩衝結構分別位於各該橋接層的至少一末端。 In some embodiments, the bridging layers are elongated, and each of the buffer structures is located at at least one end of each of the bridging layers.

在一些實施態樣中,該等橋接層呈長條狀,且各該緩衝結構分別位於各該橋接層的兩相反末端之間。 In some embodiments, the bridging layers are elongated and each of the buffer structures is located between opposite ends of each of the bridging layers.

在一些實施態樣中,該等橋接單元各包括多個緩衝結構,該等橋接層呈長條狀,且該等緩衝結構分別設置在各該橋接層的兩相反末端及兩相反末端之間。 In some embodiments, the bridging units each include a plurality of buffer structures, the bridging layers are elongated, and the buffer structures are respectively disposed between opposite ends and opposite ends of each of the bridging layers.

在一些實施態樣中,該等橋接單元還各包括一間隔於該緩衝結構的絕緣結構,該絕緣結構橫跨該橋接層 且延伸至該基板;該觸控電路層還包括多個分別沿一第二方向設置在該基板並跨越該絕緣結構上的第二觸控電極。 In some implementations, the bridging units each further include an insulating structure spaced apart from the buffer structure, the insulating structure spanning the bridging layer And extending to the substrate; the touch circuit layer further includes a plurality of second touch electrodes respectively disposed on the substrate along a second direction and spanning the insulating structure.

在一些實施態樣中,各該絕緣結構設置在各該橋接層與各該第二觸控電極之間,使各該第一觸控電極與各該第二觸控電極彼此電性絕緣。 In some embodiments, each of the insulating structures is disposed between each of the bridge layers and each of the second touch electrodes, such that each of the first touch electrodes and each of the second touch electrodes are electrically insulated from each other.

在一些實施態樣中,該等緩衝結構及該等絕緣結構由絕緣材料所製成。 In some embodiments, the buffer structures and the insulating structures are made of an insulating material.

本新型透過設置緩衝結構,用以在橋接層的側壁與基板之間形成斜坡,可避免第一觸控電極因橋接層與基板之間的高低落差而斷裂,進而導致觸控裝置的功能異常的問題。 The present invention provides a buffer structure for forming a slope between the sidewall of the bridge layer and the substrate, thereby preventing the first touch electrode from being broken due to the height difference between the bridge layer and the substrate, thereby causing abnormal function of the touch device. problem.

1‧‧‧基板 1‧‧‧Substrate

2‧‧‧遮蔽層 2‧‧‧shading layer

21‧‧‧圖案 21‧‧‧ pattern

3‧‧‧橋接單元 3‧‧‧Bridge unit

31‧‧‧橋接層 31‧‧‧Bridge layer

32‧‧‧絕緣結構 32‧‧‧Insulation structure

33‧‧‧緩衝結構 33‧‧‧ Buffer structure

331‧‧‧斜坡 331‧‧‧ slope

4‧‧‧觸控電路層 4‧‧‧Touch circuit layer

41‧‧‧第一觸控電極 41‧‧‧First touch electrode

42‧‧‧第二觸控電極 42‧‧‧Second touch electrode

5‧‧‧訊號傳送層 5‧‧‧Signal transmission layer

A‧‧‧第一方向 A‧‧‧First direction

B‧‧‧第二方向 B‧‧‧second direction

本新型之其他的特徵及功效,將於參照圖式的實施例詳細說明中清楚地呈現,其中:圖1是一立體圖,說明本新型觸控裝置的一實施例;圖2是關於圖1中觸控裝置的一局部放大圖;圖3是依據本新型一實施例的觸控裝置的一部分剖面示意圖;圖4是依據本新型另一實施態樣的觸控裝置的一部分剖面示意圖;及圖5是依據本新型另一實施例的觸控裝置的一部分剖面示意圖。 The other features and advantages of the present invention will be apparent from the detailed description of the embodiments of the present invention. FIG. 1 is a perspective view illustrating an embodiment of the novel touch device; FIG. 2 is related to FIG. FIG. 3 is a cross-sectional view showing a portion of a touch device according to another embodiment of the present invention; FIG. 4 is a cross-sectional view showing a portion of the touch device according to another embodiment of the present invention; and FIG. A schematic cross-sectional view of a portion of a touch device in accordance with another embodiment of the present invention.

參閱圖1、2與3,為本新型觸控裝置之一實施例,其中,圖1是一立體圖,說明本新型觸控裝置的一實施例;圖2是關於圖1中觸控裝置的一局部放大圖;圖3是依據本新型之實施例的觸控裝置的一部分剖面示意圖。本新型觸控裝置包含一基板1、一遮蔽層2、多個橋接單元3、一觸控電路層4及一訊號傳送層5。 1 , 2 and 3 are an embodiment of the touch device of the present invention. FIG. 1 is a perspective view of an embodiment of the touch device of FIG. FIG. 3 is a partial cross-sectional view of a touch device according to an embodiment of the present invention. The touch device comprises a substrate 1, a shielding layer 2, a plurality of bridging units 3, a touch circuit layer 4 and a signal transmission layer 5.

基板1的材質選自於由玻璃、聚碳酸酯、聚對苯二酸乙二脂、聚甲基丙烯酸甲脂、聚碸,及其他環烯共聚物所組成的群體,但不以此為限。此外,為了確保生產過程中基板1的結構強度與耐用性,亦可對基板1的表面進行強化處理,使基板1具有較佳的結構強度及耐用程度。 The material of the substrate 1 is selected from the group consisting of glass, polycarbonate, polyethylene terephthalate, polymethyl methacrylate, polyfluorene, and other cycloolefin copolymers, but not limited thereto. . In addition, in order to ensure the structural strength and durability of the substrate 1 during the production process, the surface of the substrate 1 may be reinforced to provide the substrate 1 with better structural strength and durability.

遮蔽層2設置在基板1周圍,且通常是由有色光阻或有色油墨所製成,並用以形成觸控裝置周圍部分的非可視區。且遮蔽層2上還形成一個或多個圖案21,圖案21可依據需求設計成首頁鍵、返回鍵、視窗切換鍵等功能鍵的圖標(Icon)。 The shielding layer 2 is disposed around the substrate 1 and is typically made of colored photoresist or colored ink and is used to form a non-visible area of the surrounding portion of the touch device. Moreover, one or more patterns 21 are formed on the shielding layer 2, and the pattern 21 can be designed as an icon (Icon) of function keys such as a home key, a return key, and a window switching key according to requirements.

橋接單元3彼此相間隔地設置在基板1,並各包括一橋接層31、一絕緣結構32及多個緩衝結構33(此處緩衝結構33的數量是以四個為例,但不以此為限)。橋接層31主要是由金屬或金屬氧化物(例如氧化銦錫(Indium Tin Oxide,ITO))等導電材料所製成,可提供電傳導的路徑。緩衝結構33與絕緣結構32主要是由例如聚亞醯胺(Polyimide)的高分子絕緣材料所製成。每一緩衝結構33覆 蓋部分橋接層31,並由橋接層31之側壁延伸至基板1而形成一斜坡331,該斜坡331具體來說為緩衝結構33由較高的橋接層31的頂面延伸至較低的基板1的頂面而成,因此形成介於橋接層31與基板1之間的高度漸變結構(見圖3)。並且,在一些實施態樣中,斜坡331的斜率小於85度。優選的,斜坡331的斜率可以是75度、60度、45度、30度、15度或10度。每一絕緣結構32則橫跨橋接層31且延伸至基板1,並相間隔於緩衝結構33。在本實施例中,橋接層31呈長條狀,並以陣列方式排列於基板1上;緩衝結構33同樣為長條狀,並分別位於橋接層31的兩相反末端及兩相反末端之間;絕緣結構32概呈矩形,並覆蓋於橋接層31的中央位置。但在不同的實施態樣中,橋接層31、絕緣結構32、緩衝結構33的形狀、數量、設置位置均可視需要而對應調整,不以此處揭露的內容為限。 The bridging units 3 are disposed on the substrate 1 at a distance from each other, and each includes a bridging layer 31, an insulating structure 32, and a plurality of buffer structures 33 (here, the number of the buffer structures 33 is four, but not limit). The bridging layer 31 is mainly made of a conductive material such as a metal or a metal oxide (for example, Indium Tin Oxide (ITO)) to provide an electrically conductive path. The buffer structure 33 and the insulating structure 32 are mainly made of a polymer insulating material such as polyimide. Each buffer structure 33 is covered Covering a portion of the bridging layer 31 and extending from the sidewall of the bridging layer 31 to the substrate 1 to form a ramp 331, in particular, the buffer structure 33 extends from the top surface of the higher bridging layer 31 to the lower substrate 1 The top surface is formed, thus forming a highly graded structure between the bridge layer 31 and the substrate 1 (see Fig. 3). Also, in some implementations, the slope of ramp 331 is less than 85 degrees. Preferably, the slope of the ramp 331 may be 75 degrees, 60 degrees, 45 degrees, 30 degrees, 15 degrees, or 10 degrees. Each of the insulating structures 32 spans the bridging layer 31 and extends to the substrate 1 and is spaced apart from the buffer structure 33. In this embodiment, the bridging layers 31 are elongated and arranged in an array on the substrate 1; the buffer structures 33 are also elongated and located between opposite ends and opposite ends of the bridging layer 31; The insulating structure 32 is substantially rectangular and covers the central position of the bridge layer 31. However, in different implementations, the shape, the number, and the position of the bridge layer 31, the insulating structure 32, and the buffer structure 33 may be adjusted as needed, and are not limited to the contents disclosed herein.

觸控電路層4主要是由透明導電材料所製成,較常見的透明導電材料為氧化銦錫、氧化銦鋅(Indium Zinc Oxide,IZO)、氧化鋁鋅(Aluminum Zinc Oxide,AZO)、氧化鋅(Zinc Oxide)、氧化銦鎵鋅(Indium Gallium Zinc Oxide,IGZO)、奈米碳管(Carbon Nano Tube,CNT)、奈米銀、奈米銅,或是其他透明導電材質與金屬或非金屬的合成物。 The touch circuit layer 4 is mainly made of a transparent conductive material. The more common transparent conductive materials are indium tin oxide, indium zinc oxide (IZO), aluminum zinc oxide (Aluminium Zinc Oxide, AZO), zinc oxide. (Zinc Oxide), Indium Gallium Zinc Oxide (IGZO), Carbon Nano Tube (CNT), Nano Silver, Nano Copper, or other transparent conductive materials with metal or non-metal composite.

觸控電路層4用以產生觸控訊號,包括多個第一觸控電極41及多個第二觸控電極42。第一觸控電極41沿一第一方向A間隔地設置在基板1,且兩端分別重疊於橋接層31而藉由橋接層31形成電連接,並同時覆蓋設於 各橋接層31的緩衝結構33。由於第一觸控電極41通常是由ITO等具有透明導電特性的金屬氧化物製作,此種金屬氧化物不像金屬材料具有良好的延展性,因此製作在高低落差較大的表面容易產生斷裂、破裂等問題。但本實施例在橋接層31與基板1之間鋪設形成斜坡331的緩衝結構33,使得第一觸控電極41能夠在基板1、緩衝結構33與橋接層31上連續延伸,而能避免結構斷裂之問題。且在本實施例中,橋接層31的厚度範圍介於0.3微米至0.4微米之間,而緩衝結構33的厚度不小於0.5微米,也就是說緩衝結構33的厚度大於橋接層31的厚度,如此能確保緩衝結構33完整地覆蓋橋接層31並在橋接層31的側壁形成斜坡331,進而避免第一觸控電極41在由基板1向上延伸至橋接層31的區域斷裂,而影響觸控裝置的功能。 The touch circuit layer 4 is configured to generate a touch signal, and includes a plurality of first touch electrodes 41 and a plurality of second touch electrodes 42. The first touch electrodes 41 are disposed on the substrate 1 at intervals in a first direction A, and the two ends are respectively overlapped with the bridge layer 31 to form an electrical connection by the bridge layer 31, and are simultaneously covered. The buffer structure 33 of each of the bridge layers 31. Since the first touch electrode 41 is usually made of a metal oxide having transparent conductive properties such as ITO, such a metal oxide does not have good ductility as a metal material, so that a surface having a large height difference is likely to be broken. Broken and other issues. However, in this embodiment, the buffer structure 33 forming the slope 331 is disposed between the bridge layer 31 and the substrate 1 so that the first touch electrode 41 can continuously extend on the substrate 1, the buffer structure 33 and the bridge layer 31, thereby avoiding structural breakage. The problem. In the present embodiment, the thickness of the bridging layer 31 ranges from 0.3 micrometers to 0.4 micrometers, and the thickness of the buffer structure 33 is not less than 0.5 micrometers, that is, the thickness of the buffer structure 33 is greater than the thickness of the bridging layer 31. It can be ensured that the buffer structure 33 completely covers the bridge layer 31 and forms a slope 331 on the sidewall of the bridge layer 31, thereby preventing the first touch electrode 41 from being broken in the region extending from the substrate 1 to the bridge layer 31, thereby affecting the touch device. Features.

第二觸控電極42沿一第二方向B設置在基板1並跨越絕緣結構32,且藉由絕緣結構32避免了第二觸控電極42與橋接層31直接接觸,進而使第二觸控電極42與第一觸控電極41彼此電性絕緣。 The second touch electrode 42 is disposed on the substrate 1 along the second direction B and spans the insulating structure 32. The insulating structure 32 prevents the second touch electrode 42 from directly contacting the bridge layer 31, thereby making the second touch electrode 42 and the first touch electrodes 41 are electrically insulated from each other.

訊號傳送層5設置於遮蔽層2之上,並且,訊號傳送層5與觸控電路層4電連接以傳送觸控電路層4所產生的觸控訊號。且訊號傳送層5通常藉由金屬材質製作,並透過遮蔽層2遮蔽以避免被使用者看見。 The signal transmission layer 5 is disposed on the shielding layer 2, and the signal transmission layer 5 is electrically connected to the touch circuit layer 4 to transmit the touch signals generated by the touch circuit layer 4. The signal transmission layer 5 is usually made of a metal material and shielded by the shielding layer 2 to avoid being seen by the user.

參閱圖4,為一剖面示意圖,說明本新型觸控裝置的另一實施態樣。本實施態樣與上述實施例的差別在於每一橋接單元3僅包括二緩衝結構33,且緩衝結構33分別 位於橋接層31的兩相反末端。由於在橋接層31的兩相反末端分別具有一緩衝結構33,使得鄰近此兩末端的第一觸控電極41能藉由此緩衝結構33延伸至橋接層31上,同樣避免了第一觸控電極41在由基板1向上延伸至橋接層31的區域斷裂。 Referring to FIG. 4, a cross-sectional view of another embodiment of the touch device of the present invention is illustrated. The difference between this embodiment and the above embodiment is that each bridging unit 3 includes only two buffer structures 33, and the buffer structure 33 respectively Located at opposite ends of the bridge layer 31. Since the buffer electrodes 33 are respectively disposed at opposite ends of the bridge layer 31, the first touch electrodes 41 adjacent to the two ends can extend to the bridge layer 31 by the buffer structure 33, and the first touch electrodes are also avoided. 41 breaks in a region extending upward from the substrate 1 to the bridging layer 31.

參閱圖5,為一剖面示意圖,說明本新型觸控裝置的另一實施態樣。本實施態樣與上述實施例的差別在於每一橋接單元3僅包括一緩衝結構33。此緩衝結構33位於橋接層31的一末端,並僅在橋接層31側壁與基板1之間形成一個斜坡331,且並無覆蓋橋接層31,因此緩衝結構33與橋接層31的厚度相近。而由於在橋接層31的一末端具有一緩衝結構33,使得鄰近此末端的第一觸控電極41能藉由此緩衝結構33延伸至橋接層31上。 Referring to FIG. 5, a cross-sectional view of another embodiment of the touch device of the present invention is illustrated. The difference between this embodiment and the above embodiment is that each bridging unit 3 includes only one buffer structure 33. The buffer structure 33 is located at one end of the bridge layer 31, and forms a slope 331 only between the sidewall of the bridge layer 31 and the substrate 1, and does not cover the bridge layer 31, so the buffer structure 33 is similar to the thickness of the bridge layer 31. Since a buffer structure 33 is provided at one end of the bridge layer 31, the first touch electrode 41 adjacent to the end can be extended to the bridge layer 31 by the buffer structure 33.

由上述之實施例與實施態樣可得知,緩衝結構33的數目可為一、二或四,但緩衝結構33的數目並不以此為限,意即緩衝結構33的數目亦可為三或五以上,且緩衝結構33設置的位置亦可依使用者在製程上的需求而位於橋接層31的兩相反末端、兩相反末端之間或是同時存在於兩相反末端與兩相反末端之間。 It can be seen from the above embodiments and implementations that the number of the buffer structures 33 can be one, two or four, but the number of the buffer structures 33 is not limited thereto, that is, the number of the buffer structures 33 can also be three. Or more than five, and the position of the buffer structure 33 may be located between the opposite ends of the bridge layer 31, between the opposite ends, or between the opposite ends and the opposite ends depending on the requirements of the user in the process. .

綜上所述,透過緩衝結構33的斜坡331避免了第一觸控電極41在由基板1向上延伸至橋接層31的區域斷裂,故確實能達成本新型之目的。 In summary, the slope 331 of the buffer structure 33 prevents the first touch electrode 41 from being broken in the region extending from the substrate 1 to the bridge layer 31, so that the purpose of the present invention can be achieved.

惟以上所述者,僅為本新型之實施例而已,當不能以此限定本新型實施之範圍,即大凡依本新型申請專 利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本新型專利涵蓋之範圍內。 However, the above is only an embodiment of the present invention, and it is not possible to limit the scope of the implementation of the present invention. The simple equivalent changes and modifications made by the scope of the patent and the contents of the patent specification are still within the scope of this new patent.

1‧‧‧基板 1‧‧‧Substrate

3‧‧‧橋接單元 3‧‧‧Bridge unit

31‧‧‧橋接層 31‧‧‧Bridge layer

32‧‧‧絕緣結構 32‧‧‧Insulation structure

33‧‧‧緩衝結構 33‧‧‧ Buffer structure

4‧‧‧觸控電路層 4‧‧‧Touch circuit layer

41‧‧‧第一觸控電極 41‧‧‧First touch electrode

42‧‧‧第二觸控電極 42‧‧‧Second touch electrode

Claims (11)

一種觸控裝置,包含:一基板;多個橋接單元,彼此相間隔地設置在該基板,該等橋接單元各包括一橋接層及至少一緩衝結構,各該緩衝結構分別由該橋接層之側壁延伸至該基板而形成一斜坡;及一觸控電路層,包括多個沿一第一方向間隔地設置在該基板的第一觸控電極,該等第一觸控電極分別重疊於至少一該橋接層,並且覆蓋該緩衝結構的該斜坡。 A touch device includes: a substrate; a plurality of bridging units disposed on the substrate at intervals from each other, the bridging units each including a bridging layer and at least one buffer structure, wherein each of the buffer structures is respectively formed by a sidewall of the bridging layer And extending to the substrate to form a slope; and a touch circuit layer comprising a plurality of first touch electrodes disposed on the substrate at a distance from the first direction, wherein the first touch electrodes are respectively overlapped with at least one of the first touch electrodes Bridging the layer and covering the slope of the buffer structure. 如請求項1所述觸控裝置,其中該斜坡的斜率小於85度。 The touch device of claim 1, wherein the slope of the slope is less than 85 degrees. 如請求項1所述觸控裝置,其中,各該緩衝結構還覆蓋各該橋接層。 The touch device of claim 1, wherein each of the buffer structures further covers each of the bridge layers. 如請求項3所述觸控裝置,其中,該等橋接層的厚度範圍各介於0.3微米至0.4微米之間,該等緩衝結構之斜坡的厚度不小於0.5微米。 The touch device of claim 3, wherein the thickness of the bridging layers ranges from 0.3 micrometers to 0.4 micrometers, and the thickness of the slope of the buffer structures is not less than 0.5 micrometers. 如請求項1所述觸控裝置,其中,該等橋接層是由導電材料所製成,且相鄰之各該第一觸控電極藉由各該橋接層電連接。 The touch device of claim 1, wherein the bridging layers are made of a conductive material, and each of the adjacent first touch electrodes is electrically connected by each of the bridging layers. 如請求項1所述觸控裝置,其中,該等橋接層呈長條狀,且各該緩衝結構分別位於各該橋接層的至少一末端。 The touch device of claim 1, wherein the bridging layers are elongated, and each of the buffer structures is located at at least one end of each of the bridging layers. 如請求項1所述觸控裝置,其中,該等橋接層呈長條狀,且各該緩衝結構分別位於各該橋接層的兩相反末端之 間。 The touch device of claim 1, wherein the bridging layers are elongated, and each of the buffer structures is located at opposite ends of each of the bridging layers. between. 如請求項1所述觸控裝置,其中,該等橋接單元各包括多個該緩衝結構,該等橋接層呈長條狀,且該等緩衝結構分別設置在各該橋接層的兩相反末端及兩相反末端之間。 The touch device of claim 1, wherein the bridge units each comprise a plurality of the buffer structures, the bridge layers are elongated, and the buffer structures are respectively disposed at opposite ends of each of the bridge layers and Between the opposite ends. 如請求項1所述觸控裝置,其中,該等橋接單元還各包括一間隔於該緩衝結構的絕緣結構,該絕緣結構橫跨該橋接層且延伸至該基板;該觸控電路層還包括多個分別沿一第二方向設置在該基板並跨越該絕緣結構上的第二觸控電極。 The touch device of claim 1, wherein the bridge units further comprise an insulating structure spaced apart from the buffer structure, the insulating structure spanning the bridge layer and extending to the substrate; the touch circuit layer further comprises a plurality of second touch electrodes respectively disposed on the substrate along a second direction and spanning the insulating structure. 如請求項9所述觸控裝置,其中,各該絕緣結構設置在各該橋接層與各該第二觸控電極之間,使各該第一觸控電極與各該第二觸控電極彼此電性絕緣。 The touch device of claim 9, wherein each of the insulating structures is disposed between each of the bridge layers and each of the second touch electrodes, such that each of the first touch electrodes and each of the second touch electrodes are in contact with each other Electrical insulation. 如請求項9所述觸控裝置,其中,該等緩衝結構及該等絕緣結構由絕緣材料所製成。 The touch device of claim 9, wherein the buffer structures and the insulating structures are made of an insulating material.
TW104217183U 2015-05-15 2015-10-27 Touch device TWM519766U (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510249080.9A CN106293169B (en) 2015-05-15 2015-05-15 Touch device and manufacturing method thereof

Publications (1)

Publication Number Publication Date
TWM519766U true TWM519766U (en) 2016-04-01

Family

ID=56361902

Family Applications (2)

Application Number Title Priority Date Filing Date
TW104217183U TWM519766U (en) 2015-05-15 2015-10-27 Touch device
TW104135253A TWI578215B (en) 2015-05-15 2015-10-27 Touch device and manufacturing method thereof

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW104135253A TWI578215B (en) 2015-05-15 2015-10-27 Touch device and manufacturing method thereof

Country Status (2)

Country Link
CN (1) CN106293169B (en)
TW (2) TWM519766U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI578215B (en) * 2015-05-15 2017-04-11 宸鴻科技(廈門)有限公司 Touch device and manufacturing method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109710106A (en) * 2018-12-12 2019-05-03 武汉华星光电半导体显示技术有限公司 Touch panel and display device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101859213B (en) * 2009-04-13 2012-08-29 群康科技(深圳)有限公司 Making method of capacitor-type touch panel
TWI416204B (en) * 2009-04-30 2013-11-21 Innolux Corp Method of fabricating a capacitive touch panel
KR101322981B1 (en) * 2009-12-01 2013-10-29 엘지디스플레이 주식회사 Display Device Comprising Touch Device
KR101779594B1 (en) * 2010-10-26 2017-09-19 엘지디스플레이 주식회사 Touch Screen Panel and Manufacturing Method thereof
TWI480782B (en) * 2013-01-31 2015-04-11 Henghao Technology Co Ltd Touch panel
CN104123023A (en) * 2013-04-24 2014-10-29 宸鸿科技(厦门)有限公司 Touch panel and manufacturing method thereof
CN104182067B (en) * 2013-05-21 2017-12-01 宸鸿科技(厦门)有限公司 A kind of contact panel and its manufacture method
TWM484740U (en) * 2013-12-06 2014-08-21 Wintek Corp Panel structure
CN106293169B (en) * 2015-05-15 2023-10-17 宸鸿科技(厦门)有限公司 Touch device and manufacturing method thereof
CN204667361U (en) * 2015-05-15 2015-09-23 宸鸿科技(厦门)有限公司 Contactor control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI578215B (en) * 2015-05-15 2017-04-11 宸鴻科技(廈門)有限公司 Touch device and manufacturing method thereof

Also Published As

Publication number Publication date
TW201640309A (en) 2016-11-16
CN106293169A (en) 2017-01-04
CN106293169B (en) 2023-10-17
TWI578215B (en) 2017-04-11

Similar Documents

Publication Publication Date Title
US20120182233A1 (en) Touch screen panel
TWI443569B (en) Capacitive touch panel
US9176611B2 (en) Touch screen panel including a plurality of relay patterns and an auxiliary pattern
US10545590B2 (en) Method of touch panel manufacturing with strengthening sheet disposed in periphery area at edge of connecting pad
KR20110093069A (en) Organic light emitting diode display and method for manufacturing the same
KR102194607B1 (en) Touch screen panel
TWI463363B (en) Touch-control pattern structure, manufacture method thereof and touch panel containing therein
KR20150055338A (en) Touch panel
KR20170064139A (en) Touch panel
US20140225869A1 (en) Touch panel
US20150060253A1 (en) Decorative substrate and touch panel
US9118329B2 (en) Touch screen panel fabrication method thereof
KR20150000464U (en) Touch panel
KR20120038868A (en) Touch panel
TWM484145U (en) Touch panel
WO2017181821A1 (en) Touch screen and display apparatus
KR102254179B1 (en) Touch display apparatus
KR101114416B1 (en) Capacitive overlay touch panel and manufacture method thereof
TWM519766U (en) Touch device
TW201704951A (en) Touch panel
TWM507021U (en) A jumper structure in a touch sensor and a fabricating method thereof, as well as a capacitive touch panel using the jumper structure
TW201445377A (en) Touch panel and sensing electrode structure thereof
US10503333B2 (en) Touch panel
KR101305684B1 (en) Touch panel
JP2014120038A (en) Touch panel and display device having the same provided

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees