TWM437537U - Battery heating circuit - Google Patents

Battery heating circuit Download PDF

Info

Publication number
TWM437537U
TWM437537U TW100221628U TW100221628U TWM437537U TW M437537 U TWM437537 U TW M437537U TW 100221628 U TW100221628 U TW 100221628U TW 100221628 U TW100221628 U TW 100221628U TW M437537 U TWM437537 U TW M437537U
Authority
TW
Taiwan
Prior art keywords
switch
energy
switching device
circuit
battery
Prior art date
Application number
TW100221628U
Other languages
Chinese (zh)
Inventor
Yao-Chuan Han
wen-hui Xu
Wei Feng
Qin-Yao Yang
Wen-Jin Xia
xian-yin Li
Original Assignee
Byd Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Byd Co Ltd filed Critical Byd Co Ltd
Priority to TW100221628U priority Critical patent/TWM437537U/en
Publication of TWM437537U publication Critical patent/TWM437537U/en

Links

Classifications

    • Y02E60/12

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

A battery heating circuit comprises: a switchgear, a switch control module, a first damping element, an energy storage circuit and an energy summation unit. The energy storage circuit for connecting with the battery comprises a first current storage element and a first charge storage element. The first damping element, the switchgear, the first current storage element and the first charge storage element are connected in series. The switch control module is connected with the switchgear for controlling the switchgear to switch on and off so as to control energy to flow between the battery and the energy storage circuit. The energy summation unit is connected with the energy storage circuit for summing up energy in the energy storage circuit and energy in the battery after the switchgear is first switched on and then switched off. The switch control module is further used for controlling the switchgear to switch off after a first positive half cycle of current flowing through the switchgear after the switchgear is first switched on. When the switchgear is switched off, a voltage applied to the switchgear is lower than a rated voltage of the switchgear.

Description

M437537 ___ 101年05月09日梭正替換頁 五、新型說明: 【新型所屬之技術領域】 [0001] 本實用新型屬於電子設備技術領域,尤其涉及一種電池 的加熱電路。 【先前技術】 [0002] 考慮到汽車需要在複雜的路況和環境條件下行駛,或者 有些電子設備需要在較差的環境條件中使用的情況,所 - 以,作為電動車或電子設備電源的電池就需要適應這些 _ 複雜的狀況。而且需要除了考慮這些狀況,還需考慮電 f 池的使用壽命及電池的充放電迴圈性能,尤其是當電動 車或電子設備處於低溫環境中時,更需要電池具有優異 的低溫充放電性能和較高的輸入輸出功率性能。 一般而言,如果在低溫條件下對電池充電的話,將會導 致電池的阻抗增大,極化增強,從而導致電池的容量下 降。 【新型内容】 [0003] 本實用新型的目的是針對電池在低溫條件下會導致電池 的阻抗增大,極化增強,由此導致電池的容量下降的問 題,提供一種電池的加熱電路。為了保持電池在低溫條 件下的容量,提高電池的充放電性能,本實用新型提供 了一種電池的加熱電路。 本實用新型提供的電池的加熱電路包括開關裝置、開關 控制模組、儲能電路以及能量疊加單元,所述儲能電路 用於與所述電池連接以構成回路,所述儲能電路包括電 .流記憶元件和電荷記憶元件,所述開關裝置、電流記憶 1002216#卩编號 A〇101 第4頁/共45頁 1013174733-0 M437537 » 1 101年.05月09日慘正替換頁 元件和電荷記憶元件串聯,所述開關控制模組與開關裝 .M437537 ___ May 09, 2010 Shuttle replacement page V. New description: [New technical field] [0001] The utility model belongs to the technical field of electronic devices, and in particular relates to a heating circuit for a battery. [Prior Art] [0002] Considering that a car needs to travel under complicated road conditions and environmental conditions, or some electronic devices need to be used in poor environmental conditions, the battery that is the power source for the electric vehicle or electronic device Need to adapt to these _ complex situations. In addition to considering these conditions, it is necessary to consider the service life of the battery and the charge and discharge loop performance of the battery, especially when the electric vehicle or electronic equipment is in a low temperature environment, it is more desirable that the battery has excellent low temperature charge and discharge performance and Higher input and output power performance. In general, if the battery is charged under low temperature conditions, the impedance of the battery will increase and the polarization will increase, resulting in a decrease in the capacity of the battery. [New content] [0003] The object of the present invention is to provide a heating circuit for a battery in which the battery is caused to increase in impedance and polarization is increased under low temperature conditions, thereby causing a decrease in capacity of the battery. In order to maintain the capacity of the battery under low temperature conditions and improve the charge and discharge performance of the battery, the present invention provides a heating circuit for the battery. The heating circuit of the battery provided by the utility model comprises a switch device, a switch control module, a energy storage circuit and an energy superposition unit, wherein the energy storage circuit is connected with the battery to form a loop, and the energy storage circuit comprises electricity. Flow memory element and charge memory element, the switching device, current memory 1002216#卩#A〇101 Page 4/45 pages 1013174733-0 M437537 » 1 101.05月09# Misplaced replacement page component and charge The memory elements are connected in series, and the switch control module and the switch are mounted.

置連接,用於控制開關裝置導通和關斷,以控制能量在 所述電池與所述儲能電路之間的流動,所述能量疊加單 元與所述儲能電路連接,用於在開關裝置導通再關斷後 ,將儲能電路中的能量與電池中的能量進行疊加;所述 開關控制模組用於在開關裝置導通後流經開關裝置的電 流的第一正半週期之後控制開關裝置關斷,且該開關裝 置關斷時施加到該開關裝置上的電壓小於該開關裝置的 額定電壓。 本實用新型提供的加熱電路能夠提高電池的充放電性能 ,並且在該加熱電路中,儲能電路與電池串聯,當給電 池加熱時,由於串聯的電荷記憶元件的存在,能夠避免 開關裝置失效短路引起的安全性問題,能夠有效地保護 電池。a connection for controlling the switching device to be turned on and off to control the flow of energy between the battery and the energy storage circuit, the energy superimposing unit being connected to the energy storage circuit for being turned on at the switching device After being turned off again, the energy in the energy storage circuit is superimposed with the energy in the battery; the switch control module is configured to control the switch device after the first positive half cycle of the current flowing through the switch device after the switch device is turned on And the voltage applied to the switching device when the switching device is turned off is less than the rated voltage of the switching device. The heating circuit provided by the utility model can improve the charging and discharging performance of the battery, and in the heating circuit, the energy storage circuit is connected in series with the battery. When the battery is heated, due to the existence of the series of charge memory elements, the switching device can be prevented from being short-circuited. The resulting safety problem can effectively protect the battery.

另外,由於回路中電流記憶元件的存在,在回路中存在 電流時關斷開關裝置而導致的電流突變為零可能會使得 回路中的電流記憶元件產生較大的感應電壓,由此可能 損壞回路中的其他電路元件(如開關裝置)。本實用新 型提供的加熱電路中,由於開關裝置的關斷時機可根據 開關裝置的額定電壓而選取的,可以避免因回路中的電 流記憶元件產生的感應電壓過大而損壞開關裝置,使得 加熱電珞的安全性更高,對整個電路影響較小。 同時,本實用新型的加熱電路中還提供了能量疊加單元 ,當開關裝置導通再關斷後,該能量疊加單元能夠將儲 能電路中的能量與電池中的能量進行疊加,當下一次控 制開關裝置導通時,提高加熱回路中的放電電流,由此 10022162^單編號 A〇101 第5頁/共45頁 1013174733-0 M437537 101年05月09日梭正替換k_ 提高加熱電路的工作效率。 本實用新型的其他特徵和優點將在隨後的具體實施方式 部分予以詳細說明。 【實施方式】 [0004] 以下結合附圖對本實用新型的具體實施方式進行詳細說 明。應當理解的是,此處所描述的具體實施方式僅用於 說明和解釋本實用新型,並不用於限制本實用新型。 需要指出的是,除非特別說明,當下文中提及時,術語 “開關控制模組”為任意能夠根據設定的條件或者設定 的時刻輸出相應的控制指令(例如具有相應占空比的脈 衝波形)從而控制與其連接的開關裝置相應地導通或關 斷的控制器,例如可以為PLC (可編程控制器)等;當下 文中提及時,術語“開關”指的是可以通過電信號實現 通斷控制或者根攄元裝置自身的特性實現通斷控制的開 關,既可以是單向開關,例如由雙向開關與二極體串聯 構成的可單嚮導通的開關等,也可以是雙向開關,例如 金屬氧化物半導體型場效應管(Metal Oxide Semiconductor Field Effect Transistor, MOSFET)或帶有反並續流二極體的IGBT (Insulated Gate Bipolar Transistor,絕緣柵雙極型電晶體)等 ;當下文中提及時,術語“雙向開關”指的是可以通過 電信號實現通斷控制或者根據元裝置自身的特性實現通 斷控制的可雙嚮導通的開關,例如MOSFET或帶有反並續 流二極體的IGBT等;當下文中提及時,單向半導體元件 指的是具有單嚮導通功能的半導體元件,例如二極體等 ;當下文中提及時,術語“電荷記憶元件”指任意可以 1013174733-0 臓⑽产單编號A0101 第6頁/共45頁 M437537 » 1 101年05月09日核正替換頁 實現電荷存儲的裝置,例如電容等;當下文中提及時,In addition, due to the presence of the current memory element in the loop, a sudden change in current caused by turning off the switching device when there is current in the loop may cause a large induced voltage to be generated in the current memory element in the loop, thereby possibly damaging the loop. Other circuit components (such as switching devices). In the heating circuit provided by the utility model, since the switching timing of the switching device can be selected according to the rated voltage of the switching device, the switching device can be prevented from being damaged due to excessive induced voltage generated by the current memory component in the circuit, so that the heating device is heated. It is more secure and has less impact on the entire circuit. At the same time, the heating circuit of the present invention further provides an energy superimposing unit. When the switching device is turned on and then turned off, the energy superimposing unit can superimpose the energy in the energy storage circuit and the energy in the battery, and control the switching device next time. When conducting, increase the discharge current in the heating circuit, thus 10022162^single number A〇101 Page 5/45 pages 1013174733-0 M437537 On May 09, 101, the shuttle is replacing k_ to improve the working efficiency of the heating circuit. Other features and advantages of the invention will be described in detail in the Detailed Description. [Embodiment] Hereinafter, specific embodiments of the present invention will be described in detail with reference to the accompanying drawings. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention. It should be noted that, unless otherwise specified, the term "switch control module" is used to control the output of a corresponding control command (for example, a pulse waveform having a corresponding duty ratio) according to a set condition or a set time. A controller that is turned on or off correspondingly to a switching device connected thereto, for example, may be a PLC (Programmable Controller) or the like; when referred to hereinafter, the term "switch" refers to an on-off control or an electrical signal. The switch of the switching device can realize the on-off control, and can be a one-way switch, for example, a one-way switch composed of a bidirectional switch and a diode in series, or a bidirectional switch, such as a metal oxide semiconductor type. MOSFET (Metal Oxide Semiconductor Field Effect Transistor (MOSFET) or IGBT (Insulated Gate Bipolar Transistor) with reversed-current diode); when referred to below, the term "bidirectional switch" " means that the on/off control can be achieved by electrical signals or according to the characteristics of the metadevice itself. A bidirectionally conductive switch that implements on-off control, such as a MOSFET or an IGBT with an anti-freewheeling diode; etc.; when referred to hereinafter, a unidirectional semiconductor component refers to a semiconductor component having a unidirectional conduction function, such as Diode, etc.; when referred to hereinafter, the term "charge memory element" means any can be 1013174733-0 臓 (10) production order number A0101 page 6 / total 45 pages M437537 » 1 May 09, 101 nuclear replacement page to achieve a device for charge storage, such as a capacitor, etc.; when mentioned below,

術語“電流記憶元件”指任意可以對電流進行存儲的裝 置,例如電感等;當下文中提及時,術語“正向”指能 量從電池向儲能電路流動的方向,術語“反向”指能量 從儲能電路向電池流動的方向;當下文中提及時,術語 “電池”包括一次電池(例如乾電池、鹼性電池等)和 二次電池(例如鋰離子電池、鎳鎘電池、鎳氫電池或鉛 酸電池等);當下文中提及時,術語“阻尼元件”指任 意通過對電流的流動起阻礙作用以實現能量消耗的裝置 ,例如電阻等;當下文中提及時,術語“主回路”指的 是電池與阻尼元件、開關裝置以及儲能電路串聯組成的 回路。The term "current memory element" refers to any device that can store current, such as an inductor or the like; as referred to hereinafter, the term "forward" refers to the direction in which energy flows from the battery to the tank circuit, and the term "reverse" refers to energy from The direction in which the energy storage circuit flows toward the battery; when referred to hereinafter, the term "battery" includes primary batteries (eg, dry batteries, alkaline batteries, etc.) and secondary batteries (eg, lithium ion batteries, nickel cadmium batteries, nickel hydride batteries, or lead acid). Battery, etc.; as used hereinafter, the term "damping element" refers to any device that, by obstructing the flow of current to achieve energy consumption, such as electrical resistance, etc.; as referred to hereinafter, the term "main circuit" refers to a battery and A circuit consisting of a damping element, a switching device, and a storage circuit in series.

這裏還需要特別說明的是,考慮到不同類型的電池的不 同特性,在本實用新型中,“電池”可以指不包含内部 寄生電阻和寄生電感、或者内部寄生電阻的阻值和寄生 電感的電感值較小的理想電池,也可以指包含有内部寄 生電阻和寄生電感的電池包;因此,本領域技術人員應 當理解的是,當“電池”為不包含内部寄生電阻和寄生 電感、或者内部寄生電阻的阻值和寄生電感的電感值較 小的理想電池時,第一阻尼元件R1指的是電池外接的阻 尼元件,第一電流記憶元件L1指的是電池外接的電流記 憶元件;當“電池”為包含有内部寄生電阻和寄生電感 的電池包時,第一阻尼元件R1既可以指電池外接的阻尼 元件,也可以指電池包内部的寄生電阻,同樣地,第一 電流記憶元件L1既可以指電池外接的電流記憶元件,也 可以指電池包内部的寄生電感。 10022162# 單編號 A〇101 第7頁/共45頁 1013174733-0 M437537 __ 101年05月09日梭正替換k 在本實用新型的實施例中,為了保證電池的使用壽命, 需要在低溫情況下對電池進行加熱,當達到加熱條件時 ,控制加熱電路開始工作,對電池進行加熱,當達到停 止加熱條件時,控制加熱電路停止工作。 在電池的實際應用中,隨著環境的改變,可以根據實際 的環境情況對電池的加熱條件和停止加熱條件進行設置 ,以對電池的溫度進行更精確的控制,從而保證電池的 充放電性能。 為了對處於低溫環境争的電池E進行加熱,本實用新型提 _ 供了一種電池E的加熱電路,如第1圖所示,該加熱電路 包括開關裝置1、開關控制模組100、第一阻尼元件R1、 儲能電路以及能量疊加單元,該儲能電路用於與所述電 池連接以構成回路,該儲能電路包括第一電流記憶元件 L1和第一電荷記憶元件C1,第一阻尼元件R1、開關裝置1 、第一電流記憶元件L1和第一電荷記憶元件C1串聯,開 關控制模組100與開關裝置1連接,用於控制開關裝置1導 通和關斷,以控制能量在電池E與該儲能電路之間的流動 | ,能量疊加單元與儲能電路連接,用於在開關裝置1導通 再關斷後,將儲能電路中的能量與電池中的能量進行疊 加;所述開關控制模組100用於在開關裝置1導通後流經 開關裝置1的電流的第一正半週期之後控制開關裝置1關 斷,且該開關裝置1關斷時施加到該開關裝置1上的電壓 小於該開關裝置1的額定電壓。需要說明的是,上述儲能 電路僅為本實用新型的優選實施方式,該儲能電路只要 能滿足能量的存儲即可,從而與電池E之間進行能量流動 。因此本領域技術人員可基於此思想對上述儲能電路進 10022162^賊删1 第8頁/共45頁 1013174733-0 M437.537 101年.05月09日核正替換頁 行等同的修改或變化以達到儲能的效果,這些均應包含 在本實用新型的保護之内。It should also be specially noted here that considering the different characteristics of different types of batteries, in the present invention, "battery" may refer to an inductor that does not contain internal parasitic resistance and parasitic inductance, or internal parasitic resistance and parasitic inductance. An ideal battery with a small value may also be referred to as a battery pack including internal parasitic resistance and parasitic inductance; therefore, those skilled in the art should understand that when the "battery" does not contain internal parasitic resistance and parasitic inductance, or internal parasitic When the resistance of the resistor and the inductance of the parasitic inductance are small, the first damper element R1 refers to a damper element external to the battery, and the first current memory element L1 refers to a current memory element external to the battery; When the battery pack includes an internal parasitic resistance and a parasitic inductance, the first damper element R1 may be referred to as a damper element external to the battery, or may be a parasitic resistance inside the battery pack. Similarly, the first current memory element L1 may be Refers to the current memory component external to the battery, and can also refer to the parasitic inductance inside the battery pack. 10022162# Single No. A〇101 Page 7/Total 45 Page 1013174733-0 M437537 __ May 09th, 2017 Shuttle Replacement k In the embodiment of the present invention, in order to ensure the service life of the battery, it is required to be at a low temperature The battery is heated. When the heating condition is reached, the heating circuit is controlled to start working, and the battery is heated. When the heating condition is stopped, the heating circuit is stopped. In the practical application of the battery, as the environment changes, the heating condition of the battery and the stop heating condition can be set according to the actual environmental conditions to more accurately control the temperature of the battery, thereby ensuring the charge and discharge performance of the battery. In order to heat the battery E in a low temperature environment, the present invention provides a heating circuit for the battery E. As shown in FIG. 1, the heating circuit includes a switching device 1, a switch control module 100, and a first damping. An element R1, a tank circuit and an energy stacking unit for connecting to the battery to form a loop, the tank circuit comprising a first current memory element L1 and a first charge memory element C1, the first damping element R1 The switch device 1, the first current memory element L1 and the first charge memory element C1 are connected in series, and the switch control module 100 is connected to the switch device 1 for controlling the switch device 1 to be turned on and off to control the energy in the battery E and the a flow between the energy storage circuits | the energy superimposing unit is connected to the energy storage circuit for superimposing the energy in the energy storage circuit and the energy in the battery after the switching device 1 is turned on and off; the switch control mode The group 100 is for controlling the switching device 1 to be turned off after the first positive half cycle of the current flowing through the switching device 1 after the switching device 1 is turned on, and is applied to the switch device when the switching device 1 is turned off. It is less than the voltage on the rated voltage of the switching device 1. It should be noted that the above-mentioned energy storage circuit is only a preferred embodiment of the present invention, and the energy storage circuit can perform energy flow with the battery E as long as it can satisfy the storage of energy. Therefore, those skilled in the art can use the above-mentioned energy storage circuit to enter the above-mentioned energy storage circuit into a 10022162 ^ thief delete 1 page 8 / a total of 45 pages 1013174733-0 M437.537 101. 05. 09 09 nuclear replacement page line equivalent modification or change In order to achieve the effect of energy storage, these should be included in the protection of the present invention.

根據本實用新型的技術方案,當達到加熱條件時,開關 控制模组10 0控制開關裝置1導通,電池E與儲能電路串聯 構成回路,電池E可以通過回路放電,即對第一電荷記憶 元件C1進行充電,當回路中的電流經過電流峰值後正向 為零時,第一電荷記憶元件C1開始通過回路放電,即是 對電池E充電;在電池E的充放電過程中,回路中的電流 正向、反向均能流過第一阻尼元件R1,通過第一阻尼元 件R1的發熱可以達到給電池E加熱的目的,當達到停止加 熱條件時,開關控制模組100可以控制開關裝置1關斷, 加熱電路停止工作。According to the technical solution of the present invention, when the heating condition is reached, the switch control module 100 controls the switching device 1 to be turned on, the battery E and the energy storage circuit are connected in series to form a loop, and the battery E can be discharged through the loop, that is, to the first charge storage element. C1 is charged. When the current in the loop passes through the current peak and the forward direction is zero, the first charge memory element C1 starts to discharge through the loop, that is, the battery E is charged; during the charging and discharging of the battery E, the current in the loop Both the forward and the reverse flow can flow through the first damper element R1, and the heating of the first damper element R1 can achieve the purpose of heating the battery E. When the heating condition is reached, the switch control module 100 can control the switch device 1 to close Broken, the heating circuit stops working.

為了實現能量在電池E與儲能電路之間的往復流動,根據 本實用新型的一種實施方式,開關裝置1為第一雙向開關 K3,如第2圖所示。由開關控制模組100控制第一雙向開 關K3的導通與關斷,當需要對電池E加熱時,導通第一雙 向開關K3即可,如暫停加熱或者不需要加熱時關斷第一 雙向開關K3即可。 單獨使用一個第一雙向開關K3實現開關裝置1,電路簡單 ,佔用系統面積小,容易實現,但是為了實現對反向電 流的關斷,本實用新型還提供了如下開關裝置1的優選實 施方式。 優選地,開關裝置1包括用於實現能量從電池E流向儲能 電路的第一單向支路和用於實現能量從儲能電路流向電 池E的第二單向支路,開關控制模組100與第一單向支路 和第二單向支路分別連接,用於通過控制所連接的支路 1〇〇2216#料號删1 第9頁/共45頁 1013174733-0 M437537 __ 101年05月09日梭正替换頁 的導通和關斷來控制開關裝置1導通和關斷。 當電池需要加熱時,導通第一單向支路和第土單向支路 兩者,如暫停加熱可以選擇關斷第一單向支路和第二單 向支路中的一者或兩者,當不需要加熱時,可以關斷第 一單向支路和第二單向支路兩者。優選地,第一單向支 路和第二單向支路兩者都能夠受開關控制模組1〇〇的控制 ,這樣,可以靈活實現能量正向流動和反向流動。 作為開關裝置1的另一種實施方式,如第3圖所示,開關 裝置1可以包括第二雙向開關K4和第三雙向開關K5,第二 · 雙向開關K4和第三雙向開關K5彼此反向串聯以構成所述 第一單向支路和第二單向支路,開關控制模組100與第上 雙向開關K4和第三雙向開關K5分別連接,用於通過控制 第二雙向開關K4和第三雙向開關K5的導通和關斷來控制 第一單向支路和第二單向支路的導通和關斷。 當需要對電池E加熱時,導通第二雙向開關K4和K5即可, 如暫停加熱可以選擇關斷第二雙向開關K4和第三雙向開 關K5中的一者或者兩者,在不需要加熱時關斷第二雙向 _ 開關K4和第三雙向開關K5即可。這種開關裝置1的實現方 式能夠分別控制第一單向支路和第二單向支路的導通和 關斷,靈活實現電路的正向和反向能量流動。 作為開關裝置1的另一種實施方式,如第4圖所示,開關 裝置1包括第二開關K6、第二單向半導體元件D11、第三 開關K7以及單向半導體元件D12,第二開關K6和第二單向 半導體元件D11彼此串聯以構成所述第一單向支路,第三 開關K7與單向半導體元件D12彼此串聯以構成所述第二單 向支路,開關控制模組100與第二開關K6和第三開關K7分 10022162# 單編號 A〇101 第10頁/共45頁 1013174733-0 M437.537 101年.05月09日修正替換頁 別連接,用於通過控制第二開關K6和第三開關K7的導通 和關斷來控制第—單向支路和第二單向支路的導通和關 斷。在第4圖示出的開關裝置1中,由於兩個單向支路上 均存在開關(即第二開關K 6和第三開關κ 7 ),同時具備 能量正向和反向流動時的關斷功能。 優選地’開關裝置1還可以包括與第一單向支路和/或第 • =單向支路奉聯的電阻,用於減小電池E加熱回路的電流 ’避免回路令電流過大對電池E造成損害。例如,可以在 φ 帛3圖中示出的開關裝置1中添加與第二雙向開關K4和第 三雙向開關K5串聯的電阻R6,得到開關裝以的另一種實 現方式’如第5圖所示。第6圖中也示出了開關裝置i的一 種實施方式’其是在第4圖中示出的開關裝置工中的兩個 單向支路上分別串聯電阻R2、電阻^3得到的。 由於回路中第—電流記憶元件L1的存在,在回路中存在 電流時關斷開關裝置1 ’電流突變為零可能會使得回路中 的第一電流記憶元件L1產生較大的感應電壓,可能損壞 • 回路中的其他電路元件(如開關裝置1)。為了提高加熱 • 電路的安全性,根據本實騎型的技術方案,開關控制 • 板組100可對開關裝置1關斷的時機進行選擇,使得開關 裝置1關斷時施加到該開關裝置1上的電壓小於該開關裝 置1的額定電壓。可通過根據開關裝£1的額定電壓來確 定所述開關裝置1_的時機,可以避免因回路中的第一 電流記憶元件L1產生的感應電壓過大而損壞開關裝置卜 使得加熱電路的安全性更高,對整個電路影響較小。 其令,所述關斷時機例如可為流經開關裝置i的電流的負 。半峰錢過零㈣度到下—正半週期峰值前過零後、 10022162#單編號A0101 第11頁/共45頁 1013174733-0 M437537 ^ 101年05月09日修正替换頁 30度的時間區間,開關裝置1的關斷時刻可以是該時間區 間内的任意時刻。當然本實用新型並不限於此,具體的 時間區間應根據開關裝置1的額定電壓來確定,例如對於 不同的額定電壓而言,亦可為流經開關裝置1的電流的負 半週期峰值後過零前60度到下一正半週期峰值前過零後 6 0度的時間區間。 由於在對電池E迴圈充放電過程中,當對電池E反向充電 時,能量不會全部充回到電池E中,由此會導致電池E的 下一次正向放電中能量的減少,降低了加熱電路的加熱 _ 效率。因此,優選地,開關控制模組100用於在開關裝置 1導通後流經開關裝置1的電流經負半週期峰值後為零時 控制開關裝置1'關斷,以提高加熱電路的加熱效率,且此 時控制開關裝置1關斷,可使得第一電流記憶元件L1感應 產生的電壓最小,從而使得施加到該開關裝置1上的電壓 最小,藉此避免高電壓損壞開關裝置1。 優選地,如第7圖所示,該加熱電路還包括續流電路2 0, 該續流電路20用於在所述開關裝置1導通再關斷後,與電 | 池E和電流記憶元件L構成串聯回路,以保持電池E内電流 的流動。由此,在開關裝置1關斷後,通過控制續流電路 2 0工作,可以保持電流的繼續流動,從而能夠保護電路 中的其他電路元件(如開關裝置1),保證加熱電路的安 全性。該續流電路的使用使得上述開關裝置1的關斷時機 更為寬泛。 根據本實用新型的一種實施方式,開關控制模組100用於 在開關裝置1導通後流經開關裝置1的電流的負半週期峰 值後過零前控制開關裝置1關斷,如第8圖所示,續流電 l〇〇2216^Pm A_ 第12頁/共45頁 1013174733-0 M437537 -:-- ' ’ 101年05月09日梭正替換頁 路20可以包括相互串聯的第四開關K20和單向半導體元件 D20,開關控制模組100與第四開關K20連接,用於在開 關裝置1導通再關斷後,控制第四開關K20導通,而在流 向電池E的電流為電流預定值(例如為零)後,控制第四 開關K20關斷。所述續流電路20可以並聯在所述電池E兩 端,也可以一端連接到如第4圖所示的開關裝置1的第二 單向支路上的第三開關K7和單向半導體元件D12之間,另 一端連接到所述電池E。所述電流預定值為不會導致開關 * 裝置1關斷時施加到開關裝置1上的電壓大於或等於開關 ® 裝置1的額定電壓的電流值,該電流值可以根據開關裝置 1的額定電壓的大小進行設定。 根據本實用新型的另一種實施方式,開關控制模組100用. 於在開關裝置1導通後流經開關裝置1的電流的正半週期 峰值前過零後控制開關裝置1關斷,如第9圖所示,續流 電路20可以包括第四單向半導體元件D21、第二阻尼元件 R21和第三電荷記憶元件C21,所述第四單向半導體元件 D21與第二阻尼元件R21並聯之後再與所述第三電荷記憶 ^ 元件C21串聯,在開關裝置1導通再關斷後,第一電流記 憶元件L1可以通過第四單向半導體元件D21和第三電荷記 憶元件C21續流,第二阻尼元件R21用於釋放存儲在第三 電荷記憶元件C21上的能量。續流電路20可以並聯在電池 E兩端,也可以一端連接到如第4圖所示的開關裝置1的第 一單向支路上的第二開關K6和第二單向半導體元件Dili 間,另一端連接到電池E。 該能量疊加單元與該儲能電路連接,用於在開關裝置1導 通後再關斷時,將儲能電路中的能量與電池E中的能量進 10022162^^^ A0101 第13頁/共45頁 1013174733-0 M437537 101年05月09日梭正替換頁 行疊加,以使得在開關裝置1再次導通時,提高加熱回路 中的放電電流*從而提向加熱電路的工作效率。 根據本實用新型的一種實施方式,如第10圖所示,該能 量疊加單元包括極性反轉單元102,該極性反轉單元102 與儲能電路連接,用於在開關裝置1導通再關斷後,對第 —電荷記憶元件C1的電壓極性進行反轉,由於極性反轉 後的第一電荷記憶元件C1的電壓能夠與電池E的電壓串聯 相加,當開關裝置1再次導通時,能夠提高加熱回路中的 放電電流。In order to achieve reciprocating flow of energy between the battery E and the energy storage circuit, according to an embodiment of the present invention, the switching device 1 is a first bidirectional switch K3, as shown in Fig. 2. The first and second bidirectional switches K3 are controlled to be turned on and off by the switch control module 100. When the battery E needs to be heated, the first bidirectional switch K3 can be turned on, for example, when the heating is suspended or the heating is not required, the first bidirectional switch K3 is turned off. Just fine. The switching device 1 is realized by using a first bidirectional switch K3 alone. The circuit is simple, occupying a small system area and being easy to implement. However, in order to achieve the shutdown of the reverse current, the present invention also provides a preferred embodiment of the switching device 1 as follows. Preferably, the switching device 1 comprises a first one-way branch for realizing energy flow from the battery E to the energy storage circuit and a second one-way branch for realizing energy flow from the energy storage circuit to the battery E, the switch control module 100 Connected to the first one-way branch and the second one-way branch respectively, for controlling the connected branch 1〇〇2216#Item number deletion 1 Page 9/Total 45 page 1013174733-0 M437537 __ 101 year 05 On the 09th of the month, the shuttle is replacing the turn-on and turn-off of the page to control the switching device 1 to be turned on and off. When the battery needs to be heated, turning on both the first one-way branch and the first earth one-way branch, such as suspending heating, may choose to turn off one or both of the first one-way branch and the second one-way branch When the heating is not required, both the first one-way branch and the second one-way branch can be turned off. Preferably, both the first unidirectional branch and the second unidirectional branch are controllable by the switch control module 1 , such that energy forward flow and reverse flow can be flexibly achieved. As another embodiment of the switching device 1, as shown in FIG. 3, the switching device 1 may include a second bidirectional switch K4 and a third bidirectional switch K5, and the second bidirectional switch K4 and the third bidirectional switch K5 are connected in reverse series with each other. To form the first one-way branch and the second one-way branch, the switch control module 100 is respectively connected to the first bidirectional switch K4 and the third bidirectional switch K5 for controlling the second bidirectional switch K4 and the third The bidirectional switch K5 is turned on and off to control the on and off of the first one-way branch and the second one-way branch. When the battery E needs to be heated, the second bidirectional switches K4 and K5 may be turned on, and if the heating is suspended, one or both of the second bidirectional switch K4 and the third bidirectional switch K5 may be selectively turned off, when heating is not required. The second bidirectional _ switch K4 and the third bidirectional switch K5 can be turned off. The switching device 1 is implemented to control the conduction and deactivation of the first one-way branch and the second one-way branch, respectively, to flexibly realize the forward and reverse energy flow of the circuit. As another embodiment of the switching device 1, as shown in FIG. 4, the switching device 1 includes a second switch K6, a second unidirectional semiconductor element D11, a third switch K7, and a unidirectional semiconductor element D12, and a second switch K6 and The second unidirectional semiconductor elements D11 are connected in series to each other to constitute the first unidirectional branch, and the third switch K7 and the unidirectional semiconductor element D12 are connected in series to form the second unidirectional branch, and the switch control module 100 and the first The second switch K6 and the third switch K7 are divided into 10022162# single number A 〇 101 page 10 / total 45 pages 1013174733-0 M437.537 101 years. May 09 correction replacement page connection for controlling the second switch K6 And turning on and off of the third switch K7 to control the on and off of the first one-way branch and the second one-way branch. In the switching device 1 shown in Fig. 4, since the switches are present on both of the one-way branches (i.e., the second switch K 6 and the third switch κ 7 ), the power is turned off in the forward and reverse directions. Features. Preferably, the switching device 1 may further comprise a resistor associated with the first one-way branch and/or the •= one-way branch for reducing the current of the battery E heating circuit 'avoiding the loop causing excessive current to the battery E Cause damage. For example, a resistor R6 connected in series with the second bidirectional switch K4 and the third bidirectional switch K5 may be added to the switching device 1 shown in the φ 帛 3 diagram to obtain another implementation of the switch as shown in FIG. . Also shown in Fig. 6 is an embodiment of the switching device i which is obtained by series-connecting a resistor R2 and a resistor ^3 on two unidirectional branches in the switching device shown in Fig. 4. Due to the presence of the first current-memory element L1 in the loop, turning off the switching device 1' when the current is present in the loop may cause the first current-memory element L1 in the loop to generate a large induced voltage, which may be damaged. Other circuit components in the loop (such as switching device 1). In order to improve the safety of the heating circuit, according to the technical solution of the actual riding type, the switch control panel group 100 can select the timing of the switching device 1 to be turned off, so that the switching device 1 is applied to the switching device 1 when it is turned off. The voltage is less than the rated voltage of the switching device 1. By determining the timing of the switching device 1_ according to the rated voltage of the switch, it is possible to avoid damage to the switching device due to excessive induced voltage generated by the first current memory element L1 in the circuit, thereby making the heating circuit more secure. High, has less impact on the entire circuit. It is stated that the turn-off timing can be, for example, a negative current flowing through the switching device i. Half-peak money zero-crossing (four) degrees to the next - positive half-cycle peak before zero crossing, 10022162# single number A0101 page 11 / total 45 pages 1013174733-0 M437537 ^ May 09, 2011 revised replacement page 30 degree time interval The off time of the switching device 1 may be any time within the time interval. Of course, the present invention is not limited thereto, and the specific time interval should be determined according to the rated voltage of the switching device 1, for example, for different rated voltages, it may be after the negative half cycle peak of the current flowing through the switching device 1. The time interval from 60 degrees before zero to 60 degrees after zero crossing before the peak of the next positive half cycle. Since during the charging and discharging of the battery E, when the battery E is reversely charged, the energy is not fully charged back into the battery E, thereby causing a decrease in energy in the next forward discharge of the battery E, and a decrease in energy. The heating _ efficiency of the heating circuit. Therefore, preferably, the switch control module 100 is configured to control the switch device 1' to be turned off when the current flowing through the switch device 1 after the switch device 1 is turned on is zero after the peak of the negative half cycle, so as to improve the heating efficiency of the heating circuit. At this time, the control switching device 1 is turned off, so that the voltage induced by the first current memory element L1 can be minimized, so that the voltage applied to the switching device 1 is minimized, thereby preventing the high voltage from damaging the switching device 1. Preferably, as shown in FIG. 7, the heating circuit further includes a freewheeling circuit 20 for using the battery cell E and the current memory element L after the switching device 1 is turned on and off again. A series circuit is formed to maintain the flow of current in the battery E. Thereby, after the switching device 1 is turned off, by controlling the operation of the freewheeling circuit 20, the continuous flow of the current can be maintained, so that other circuit components (e.g., the switching device 1) in the circuit can be protected, and the safety of the heating circuit can be ensured. The use of the freewheeling circuit makes the switching timing of the above switching device 1 wider. According to an embodiment of the present invention, the switch control module 100 is configured to control the switch device 1 to turn off before the zero-period peak of the current flowing through the switch device 1 after the switch device 1 is turned on, as shown in FIG. Show, freewheeling l〇〇2216^Pm A_ Page 12 of 45 page 1013174733-0 M437537 -:-- ' 'May 09, 2011 shuttle replacement page 20 may include a fourth switch K20 in series with each other And the unidirectional semiconductor device D20, the switch control module 100 is connected to the fourth switch K20, and is configured to control the fourth switch K20 to be turned on after the switching device 1 is turned on and off again, and the current flowing to the battery E is a current predetermined value ( After, for example, zero), the fourth switch K20 is controlled to be turned off. The freewheeling circuit 20 may be connected in parallel across the battery E, or may be connected at one end to the third switch K7 and the unidirectional semiconductor component D12 of the second unidirectional branch of the switching device 1 as shown in FIG. The other end is connected to the battery E. The current predetermined value is a current value that does not cause the voltage applied to the switching device 1 when the switch* device 1 is turned off to be greater than or equal to the rated voltage of the switch device 1, and the current value may be based on the rated voltage of the switching device 1 Size is set. According to another embodiment of the present invention, the switch control module 100 controls the switch device 1 to turn off after the zero-crossing of the positive half-cycle of the current flowing through the switch device 1 after the switch device 1 is turned on, as in the ninth. As shown, the freewheeling circuit 20 may include a fourth unidirectional semiconductor component D21, a second damper component R21, and a third charge memory component C21. The fourth unidirectional semiconductor component D21 is connected in parallel with the second damper component R21. The third charge memory element C21 is connected in series. After the switching device 1 is turned on and off, the first current memory element L1 can be freewheeled by the fourth unidirectional semiconductor element D21 and the third charge memory element C21. The second damping element R21 is for releasing energy stored on the third charge memory element C21. The freewheeling circuit 20 may be connected in parallel across the battery E, or may be connected at one end to the second switch K6 and the second unidirectional semiconductor component Dili of the first unidirectional branch of the switching device 1 as shown in FIG. Connect one end to battery E. The energy superimposing unit is connected to the energy storage circuit for inputting energy in the energy storage circuit and energy in the battery E when the switching device 1 is turned on and off. 10022162^^^ A0101 Page 13 of 45 1013174733-0 M437537 On May 09, 101, the shuttle was replacing the page row stacking so that when the switching device 1 was turned on again, the discharge current* in the heating circuit was increased to improve the operating efficiency of the heating circuit. According to an embodiment of the present invention, as shown in FIG. 10, the energy superimposing unit includes a polarity inversion unit 102 connected to the energy storage circuit for after the switching device 1 is turned on and off again. The voltage polarity of the first charge storage element C1 is reversed, and the voltage of the first charge storage element C1 after polarity inversion can be added in series with the voltage of the battery E. When the switching device 1 is turned on again, the heating can be improved. The discharge current in the loop.

作為極性反轉單元102的一種實施方式,如第11圖所示, I 極性反轉單元10 2包括第一單刀雙擲開關J1和第二單刀雙 擲開關J2,第一單刀雙擲開關J1和第二單刀雙擲開關J2 分別位於第一電荷記憶元件C1兩端,第一單刀雙擲開關 J1的入線連接在儲能電路中,第一單刀雙擲開關J1的第 一出線連接第一電荷記憶元件C1的第一極板,第一單刀 雙擲開關J1的第二出線連接第一電荷記憶元件C1的第二 極板,第二單刀雙擲開關J2的入線連接在儲能電路中, | 第二單刀雙擲開關J 2的第一出線連接第一電荷記憶元件 C1的第二極板,第二單刀雙擲開關J2的第二出線連接在 第一電荷記憶元件C1的第一極板,開關控制模組100還與 第一單刀雙擲開關J1和第二單刀雙擲開關J2分別連接, 用於通過改變第一單刀雙擲開關J1和第二單刀雙擲開關 J2各自的入線和出線的連接關係來對第一電荷記憶元件 C1的電壓極性進行反轉。 根據該實施方式,可以預先對第一單刀雙擲開關J1和第 二單刀雙擲開關J2各自的入線和出線的連接關係進行設 2216#單编號删1 第14頁/共45頁 1013174733-0 M437537 -— ’ 101年.05月09日修正替換頁 置,使得當開關裝置K1導通時,第一單刀雙擲開關J1的 入線與其第一出線連接,而第二單刀雙擲開關J2的入線 與其第一出線連接,當開關裝置K1關斷時,通過開關控 制模組10 0控制第一單刀雙擲開關J1的入線切換到與其第 二出線連接,而第二單刀雙擲開關J2的入線切換到與其 第二出線連接,由此第一電荷記憶元件C1實現電壓極性 反轉的目的。 ' 作為極性反轉單元102的另一種實施方式,如第12圖所示 - ,極性反轉單元102包括第一單向半導體元件D3、第二電 ® 流記憶元件L2以及第一開關K9,第一電荷記憶元件Cl、 第二電流記憶元件L2和第一開關K9順次串聯形成回路, 第一單向半導體元件D3和串聯在第一電荷記憶元件C1與 第二電流記憶元件L2或第二電流記憶元件L2與第一開關 K9之間,開關控制模組100還與第一開關K9連接,用於通 過控制第一開關K 9導通來對第一電荷記憶元件C1的電壓 極性進行反轉。 根據上述實施方式,當開關裝置1關斷時,可以通過開關 ® ; 控制模組100控制第一開關K9導通,由此,第一電荷記憶 元件C1與第一單向半導體元件D3、第二電流記憶元件L2 以及第一開關K9形成LC振盪回路,第一電荷記憶元件C1 通過第二電流記憶元件L2放電,振盪回路上的電流流經 正半週期後,流經第二電流記憶元件L2的電流為零時達 到第一電荷記憶元件C1電壓極性反轉的目的。 作為極性反轉單元102的又一種實施方式,如第13圖所示 ,極性反轉單元1 02包括第一 DC-DC模組2和第二電荷記 憶元件C2,該第一DC-DC模組2與第一電荷記憶元件C1和 10022162^^^ A0101 第15頁/共45頁 1013174733-0 M437537 __ 101年05月09日按正替换頁 第二電荷記憶元件C2分別連接,開關控制模組100還與第 一DC-DC模組2連接,用於通過控制第一DC-DC模紐·2工作 來將第一電荷記憶元件C1中的能量轉移至第二電荷記憶 元件C2,再將第二電荷記憶元件C2中的能量反向轉移回 第一電荷記憶元件C1,以實現對第一電荷記憶元件C1的 電壓極性的反轉。 第—DC-DC模組2是本領域中常用的用於實現電壓極性反 轉的直流變直流轉換電路’本實用新型不對第一DC-DC模 · 組2的具體電路結構作任何限制,只要能夠實現對第一電 - 荷記憶元件C1的電壓極性反轉即可,本領域技術人員可 i 以根據實際操作的需要對其電路中的元件進行增加、替 換或刪減。 第14圖為本實用新型提供的第一DC_DC模組2的一種實施 方式,如第14圖所示,第一DC_DC模組2包括:雙向開關 Q1、雙向開關Q2 '雙向開關Q3、雙向開關Q4、第一變壓 器T1、單向半導體元仙4、單向半導體元件D5、電流記 隐元件L 3、雙向開關q 5、雙向開關q 6、第二變壓器τ 2、 單向半導體元件D6、單向半導體元件!)7、以及單向半導 i 體元件D8。 在該實施方式中,雙向開_、雙向開關⑽、雙向開關 Q3和雙向開關Q4為瞻ET,雙向開_5和雙向開關Q6為 IGBT。 第-變壓器T1的1腳、4腳、5腳為同名端,第二變壓器Τ2 的2腳與3腳為同名端。 °导瓶疋仟…的陽極與第—電荷記憶元件^ _21 一⑽Γ連接’ W件D7鳴與彻贿和雙 第16頁/共45頁 1013174733-0 M437537 -— ' 101年.05月09日慘正替換頁 向開關Q2的漏極連接,雙向開關Q1的源極與雙向開關Q3 的漏極連接,雙向開關Q2的源極與雙向開關Q4的漏極連 接,雙向開關Q3、雙向開關Q4的源極與第一電荷記憶元 件C1的b端連接,由此構成全橋電路,此時第一電荷記憶 元件C1的電壓極性為a端為正,b端為負。 在該全橋電路中,雙向開關Q1、雙向開關Q2為上橋臂, 雙向開關Q3、雙向開關Q4為下橋臂,該全橋電路通過第 ‘ 一變壓器T1與所述第二電荷記憶元件C2相連;第一變壓 — 器T1的1腳與第一節點N1連接、2腳與第二節點N2連接, 零 3腳和5腳分別連接至單向半導體元件D4和單向半導體元 件D5的陽極;單向半導體元件D4和單向半導體元件D5的 陰極與電流記憶元件L3的一端連接,電流記憶元件L3的 另一端與第二電荷記憶元件C2的d端連接;變壓器T1的4 腳與第二電荷記憶元件C2的c端連接,單向半導體元件D8 的陽極與第二電荷記憶元件C2的d端連接,單向半導體元 件D8的陰極與第一電荷記憶元件C1的b端連接,此時第二 電荷記憶元件C2的電壓極性為c端為負,d端為正。 ^ 其中,第二電荷記憶元件C2的c端連接雙向開關Q5的發射 極,雙向開關Q5的集電極與變壓器T2的2腳連接,變壓器 T2的1腳與第一電荷記憶元件C1的a端連接,變壓器T2的 4腳與第一電荷記憶元件C1的a端連接,變壓器T2的3腳連 接單向半導體元件D6的陽極,單向半導體元件D6的陰極 與雙向開關Q6的集電極連接,雙向開關Q6的發射極與第 一電荷記憶元件C1的b端連接。 其中,雙向開關Q1、雙向開關Q2、雙向開關Q3、雙向開 關Q4、雙向開關Q5和雙向開關Q6分別通過所述開關控制 10022162#單編號 A〇101 第17頁/共45頁 1013174733-0 M437537 _ 101年05月09日核正替换頁 模組100的控制來實現導通和關斷。 下面對所述第一DC-DC模組2的工作過程進行描述: 1、 在開關裝置1關斷後,開關控制模組10 0控制雙向開關 Q5、雙向'開關Q6關斷,控制雙向開關Q1和雙向開關Q4同 時導通以構成A相,控制雙向開關Q2、雙向開關Q3同時導 通以構成B相,通過控制妍述A相、B相交替導通以構成全 橋電路進行工作; 2、 當所述全橋電路工作時,第一電荷記憶元件C1上的能 量通過第一變壓器T1、單向半導體元件D4、單向半導體 _ 元件D5、以及電流記憶元件L3轉移到第二電荷記憶元件 C2上,此時第二電荷記憶元件C2的電壓極性為c端為負, d端為正。 3、 開關控制模組100控制雙向開關Q5導通,第一電荷記 憶元件C1通過第二變壓器T2和單向半導體元件D8與第二 電荷記憶元件C2構成通路,由此,第二電荷記憶元件C2 上的能量向第一電荷記憶元件C1反向轉移,其中,部分 能量將儲存在第二變壓器T2上;此時,開關控制模組100 ^ 控制雙向開關Q5關斷、雙向開關Q6閉合,通過第二變壓 器T2和單向半導體元件D6將儲存在第二變壓器T2上的能 量轉移至第一電荷記憶元件C1,此時第一電荷記憶元件 C1的電壓極性反轉為a端為負,b端為正,由此達到了將 第一電荷記憶元件C1的電壓極性反向的目的。 作為本實用新型的一種實施方式,可以通過將第一電荷 記憶元件C1中的能量直接與電池E中的能量進行疊加來提 高加熱電路的工作效率,也可以將第一電荷記憶元件C1 中的一部分能量消耗掉之後,再將第一電荷記憶元件C1 10022162# 單编號 A〇101 第18頁/共45頁 1013174733-0 M437537 • · 101年.05月09日修正替换頁 中的剩餘能量進行疊加。 因此,如第15圖所示,該加熱電路還包括與第一電荷記 憶元件C1連接的能量消耗單元,該能量消耗單元用於在 開關裝置1導通後再關斷時、該能量疊加單元進行能量疊 加之前對第一電荷記憶元件C1中的能量進行消耗。As an embodiment of the polarity inversion unit 102, as shown in FIG. 11, the I polarity inversion unit 10 2 includes a first single pole double throw switch J1 and a second single pole double throw switch J2, a first single pole double throw switch J1 and The second single-pole double-throw switch J2 is respectively located at two ends of the first charge memory element C1, and the incoming line of the first single-pole double-throw switch J1 is connected in the energy storage circuit, and the first outgoing line of the first single-pole double-throw switch J1 is connected to the first electric charge. a first plate of the memory element C1, a second output line of the first single-pole double-throw switch J1 is connected to the second plate of the first charge memory element C1, and an incoming line of the second single-pole double-throw switch J2 is connected in the energy storage circuit. The first outgoing line of the second single-pole double-throw switch J 2 is connected to the second plate of the first charge storage element C1, and the second outgoing line of the second single-pole double-throw switch J2 is connected to the first of the first charge storage element C1 The pole plate, the switch control module 100 is also respectively connected with the first single pole double throw switch J1 and the second single pole double throw switch J2, for changing the respective incoming lines of the first single pole double throw switch J1 and the second single pole double throw switch J2 The connection relationship with the outgoing line to the first charge Element C1 voltage polarity is inverted. According to this embodiment, the connection relationship between the incoming and outgoing lines of the first single-pole double-throw switch J1 and the second single-pole double-throw switch J2 can be set in advance. 2216# Single number deletion 1 Page 14 / Total 45 page 1013174733- 0 M437537 -— ' 101 years. May 09, the correction replacement page is set so that when the switching device K1 is turned on, the incoming line of the first single-pole double-throw switch J1 is connected to its first outgoing line, and the second single-pole double-throwing switch J2 is The incoming line is connected to the first outgoing line. When the switching device K1 is turned off, the switch of the first single-pole double-throw switch J1 is controlled to be connected to the second outgoing line through the switch control module 100, and the second single-pole double-throw switch J2 is connected. The incoming line is switched to be connected to its second outgoing line, whereby the first charge storage element C1 achieves the purpose of voltage polarity inversion. As another embodiment of the polarity inversion unit 102, as shown in FIG. 12, the polarity inversion unit 102 includes a first unidirectional semiconductor element D3, a second electric current memory element L2, and a first switch K9, A charge memory element C1, a second current memory element L2 and a first switch K9 are sequentially connected in series to form a loop, the first unidirectional semiconductor element D3 and the first charge memory element C1 and the second current memory element L2 or the second current memory are connected in series Between the element L2 and the first switch K9, the switch control module 100 is further connected to the first switch K9 for inverting the voltage polarity of the first charge memory element C1 by controlling the first switch K9 to be turned on. According to the above embodiment, when the switching device 1 is turned off, the switch module can be controlled by the control module 100; the first switch K9 is turned on, thereby, the first charge storage element C1 and the first unidirectional semiconductor device D3, the second current The memory element L2 and the first switch K9 form an LC tank circuit, and the first charge memory element C1 is discharged through the second current memory element L2, and the current flowing through the second current memory element L2 flows after the current on the oscillation circuit flows through the positive half cycle. When it is zero, the purpose of reversing the polarity of the voltage of the first charge memory element C1 is achieved. As still another embodiment of the polarity inversion unit 102, as shown in FIG. 13, the polarity inversion unit 102 includes a first DC-DC module 2 and a second charge memory element C2, the first DC-DC module 2 and the first charge memory element C1 and 10022162^^^ A0101 page 15 / total 45 page 1013174733-0 M437537 __ May 09, 101 is connected according to the positive replacement page second charge memory element C2, the switch control module 100 Also connected to the first DC-DC module 2 for transferring the energy in the first charge storage element C1 to the second charge storage element C2 by controlling the operation of the first DC-DC module 2, and then the second The energy in the charge storage element C2 is reversely transferred back to the first charge storage element C1 to effect an inversion of the voltage polarity of the first charge storage element C1. The first DC-DC module 2 is a DC-DC converter circuit commonly used in the art for realizing voltage polarity inversion. The present invention does not impose any limitation on the specific circuit structure of the first DC-DC module group 2, as long as It is sufficient to realize the polarity inversion of the voltage of the first charge-charge memory element C1, and those skilled in the art can add, replace or delete the elements in the circuit according to the needs of the actual operation. FIG. 14 is an embodiment of the first DC_DC module 2 provided by the present invention. As shown in FIG. 14, the first DC_DC module 2 includes: a bidirectional switch Q1, a bidirectional switch Q2, a bidirectional switch Q3, and a bidirectional switch Q4. , first transformer T1, unidirectional semiconductor element 4, unidirectional semiconductor element D5, current hidden element L 3, bidirectional switch q 5, bidirectional switch q 6 , second transformer τ 2 , unidirectional semiconductor element D6, unidirectional Semiconductor component !) 7, and unidirectional semiconductor body D8. In this embodiment, the bidirectional ON_, bidirectional switch (10), bidirectional switch Q3, and bidirectional switch Q4 are ET, bidirectional ON_5, and bidirectional switch Q6 are IGBTs. The 1st, 4th, and 5th pins of the first transformer T1 are the same name end, and the 2nd and 3rd pins of the second transformer Τ2 are the same name end. °Induction bottle 疋仟...the anode and the first -charge memory element ^ _21 one (10) Γ connection 'W piece D7 Ming and the bribe and double page 16 / a total of 45 pages 1013174733-0 M437537 -' ' 101.05月09日The misplaced replacement page is connected to the drain of the switch Q2, the source of the bidirectional switch Q1 is connected to the drain of the bidirectional switch Q3, the source of the bidirectional switch Q2 is connected to the drain of the bidirectional switch Q4, the bidirectional switch Q3, the bidirectional switch Q4 The source is connected to the b terminal of the first charge memory element C1, thereby constituting a full bridge circuit. At this time, the voltage polarity of the first charge memory element C1 is positive at the end a and negative at the b terminal. In the full bridge circuit, the bidirectional switch Q1, the bidirectional switch Q2 is an upper bridge arm, the bidirectional switch Q3, and the bidirectional switch Q4 are lower bridge arms, and the full bridge circuit passes through the first transformer T1 and the second charge storage element C2 Connected; 1 pin of the first transformer T1 is connected to the first node N1, 2 legs are connected to the second node N2, and pins 3 and 5 are respectively connected to the anode of the unidirectional semiconductor component D4 and the unidirectional semiconductor component D5. The cathode of the unidirectional semiconductor element D4 and the unidirectional semiconductor element D5 is connected to one end of the current memory element L3, and the other end of the current memory element L3 is connected to the d terminal of the second charge memory element C2; the 4th and the second of the transformer T1 The c-terminal connection of the charge memory element C2, the anode of the unidirectional semiconductor element D8 is connected to the d terminal of the second charge memory element C2, and the cathode of the unidirectional semiconductor element D8 is connected to the b terminal of the first charge memory element C1. The voltage polarity of the two charge storage element C2 is negative at the c-terminus and positive at the d-end. ^, the c terminal of the second charge memory element C2 is connected to the emitter of the bidirectional switch Q5, the collector of the bidirectional switch Q5 is connected to the pin 2 of the transformer T2, and the pin 1 of the transformer T2 is connected to the a terminal of the first charge memory element C1. 4 of the transformer T2 is connected to the a terminal of the first charge memory element C1, the 3 pin of the transformer T2 is connected to the anode of the unidirectional semiconductor component D6, and the cathode of the unidirectional semiconductor component D6 is connected to the collector of the bidirectional switch Q6, and the bidirectional switch The emitter of Q6 is connected to the b terminal of the first charge memory element C1. Wherein, the bidirectional switch Q1, the bidirectional switch Q2, the bidirectional switch Q3, the bidirectional switch Q4, the bidirectional switch Q5 and the bidirectional switch Q6 are respectively controlled by the switch 10022162# single number A 〇 101 page 17 / total 45 page 1013174733-0 M437537 _ On May 09, 101, the control of the replacement page module 100 was verified to be turned on and off. The following describes the working process of the first DC-DC module 2: 1. After the switching device 1 is turned off, the switch control module 10 controls the bidirectional switch Q5, the bidirectional 'switch Q6 is turned off, and the bidirectional switch is controlled. Q1 and the bidirectional switch Q4 are simultaneously turned on to form the A phase, the bidirectional switch Q2 is controlled, and the bidirectional switch Q3 is simultaneously turned on to form the B phase, and the A phase and the B phase are alternately turned on by the control to form a full bridge circuit to operate; When the full bridge circuit operates, the energy on the first charge memory element C1 is transferred to the second charge memory element C2 through the first transformer T1, the unidirectional semiconductor element D4, the unidirectional semiconductor_element D5, and the current memory element L3. At this time, the voltage polarity of the second charge storage element C2 is negative at the c-terminus and positive at the d-end. 3. The switch control module 100 controls the bidirectional switch Q5 to be turned on, and the first charge storage element C1 forms a path through the second transformer T2 and the unidirectional semiconductor element D8 and the second charge memory element C2, thereby forming the second charge memory element C2. The energy is reversely transferred to the first charge storage element C1, wherein part of the energy is stored on the second transformer T2; at this time, the switch control module 100^ controls the bidirectional switch Q5 to be turned off, the bidirectional switch Q6 to be closed, and the second pass The transformer T2 and the unidirectional semiconductor component D6 transfer the energy stored in the second transformer T2 to the first charge storage element C1, at which time the polarity of the voltage of the first charge storage element C1 is reversed to be negative at the a terminal and positive at the b terminal. Thereby, the purpose of reversing the polarity of the voltage of the first charge memory element C1 is achieved. As an embodiment of the present invention, the working efficiency of the heating circuit can be improved by superimposing the energy in the first charge storage element C1 directly with the energy in the battery E, and a part of the first charge memory element C1 can also be used. After the energy is consumed, the first charge memory element C1 10022162# single number A〇101 page 18/45 pages 1013174733-0 M437537 • · 101 years. May 09 correction of the remaining energy in the replacement page is superimposed . Therefore, as shown in FIG. 15, the heating circuit further includes an energy consuming unit connected to the first charge storage element C1, and the energy consuming unit is configured to perform energy when the switching device 1 is turned off and then turned off. The energy in the first charge storage element C1 is consumed before the superposition.

根據一種實施方式,如第16圖所示,能量消耗單元包括 電壓控制單元101,該電壓控制單元101用於在開關裝置1 導通再關斷後、能量疊加單元進行能量疊加之前將第一 電荷記憶元件C1兩端的電壓值轉換成電壓設定值。該電 壓設定值可以根據實際操作的需要進行設定。 如第16圖所示,電壓控制單元101包括第三阻尼元件R5和 第五開關K8,第三阻尼元件R5和第五開關K8彼此串聯之 後並聯在第一電荷記憶元件C1的兩端,開關控制模組100 還與第五開關K8連接,開關控制模組100還用於在控制開 關裝置1導通再關斷後控制第五開關K8導通。由此,第一 電荷記憶元件C1中的能量可以通過第三阻尼元件R5進行 消耗。According to an embodiment, as shown in FIG. 16, the energy consumption unit includes a voltage control unit 101 for using the first charge memory before the energy superimposing unit performs energy superposition after the switching device 1 is turned on and off again. The voltage value across component C1 is converted to a voltage set point. This voltage setting can be set according to the actual operation. As shown in Fig. 16, the voltage control unit 101 includes a third damper element R5 and a fifth switch K8, and the third damper element R5 and the fifth switch K8 are connected in series with each other and then connected in parallel at both ends of the first charge memory element C1, and the switch is controlled. The module 100 is also connected to the fifth switch K8. The switch control module 100 is further configured to control the fifth switch K8 to be turned on after the control switch device 1 is turned on and off. Thereby, the energy in the first charge storage element C1 can be consumed by the third damper element R5.

開關控制模組100可以為一個單獨的控制器,通過對其内 部程式的設置,可以實現對不同的外接開關的通斷控制 ,開關控制模組100也可以為多個控制器,例如針對每一 個外接開關設置對應的開關控制模組100,多個開關控制 模組100也可以集成為一體,本實用新型不對開關控制模 組100的實現形式做出任何限定。 下面結合第17圖-第22圖對電池E的加熱電路的實施方式 的工作方式進行簡單介紹。需要注意的是,雖然本實用 新型的特徵和元素參考第17圖-第22圖以特定的結合進行 10022162夢單編號 A〇101 第19頁/共45頁 1013174733-0 M437537 月09日修正 了描述,但每個特徵或元素可以在沒有其 的情況下單獨使用’或在與或不與其他特徵和元素結合 的各種情況下使用。本實用新型提供的電池E的加熱電路 的實施方式並不限於第17圖—第22圖所示的實現方式。另 外,所示的波形圖中的各個時間段之間的間隔時間可以 根據實際操作的需要進行調節。 在如第17圖所示的電池E的加熱電路中,第二開關κ6和第 二單向半導體元件D11串聯構成開關裝置i的第一單向支 路,單向半導體元件D12和第三開關K7串聯構成開關裝置 1的第二單向支路,該開關裝置1與第一阻尼元件以、第 一電荷記憶元件C1以及第一電流記憶元件!^串聯,第一 單向半導體元件D3 '第二電流記憶元件L2和第一開關K9 構成極性反轉單元1〇2,單向半導體元件D20和第四開關 Κ20構成續流電路2〇,開關控制模組可以控制第二開 關Κ6 '第三開關Κ7、第一開關Κ9和第四開關Κ20的導通 和關斷。第18圖為與第17圖的加熱電路對應的波形時序 圖,其中’ vci指的是第一電荷記憶元件C1的電壓值,I主 指的是流經開關裝置1的電流的電流值,I指的是極性The switch control module 100 can be a single controller. By setting the internal program, the on/off control of different external switches can be realized. The switch control module 100 can also be multiple controllers, for example, for each The external switch is provided with the corresponding switch control module 100, and the plurality of switch control modules 100 can also be integrated into one body. The present invention does not limit the implementation form of the switch control module 100. The operation of the embodiment of the heating circuit of the battery E will be briefly described below with reference to Figs. 17 to 22. It should be noted that although the features and elements of the present invention are referred to in the specific combination with reference to Fig. 17 to Fig. 22, 10022162, the dream list number A 〇 101, 19 pages, a total of 45 pages, 1013174733-0, M437, 537, revised description However, each feature or element may be used alone or in various instances with or without other features and elements. The embodiment of the heating circuit of the battery E provided by the present invention is not limited to the embodiment shown in Figs. 17 to 22. In addition, the interval between the various time periods in the waveform diagram shown can be adjusted according to the needs of the actual operation. In the heating circuit of the battery E as shown in Fig. 17, the second switch κ6 and the second unidirectional semiconductor element D11 are connected in series to constitute a first one-way branch of the switching device i, the unidirectional semiconductor element D12 and the third switch K7 The second unidirectional branch of the switching device 1 is formed in series, the switching device 1 is connected in series with the first damper element, the first charge storage element C1 and the first current memory element, the first unidirectional semiconductor element D3 'second The current memory element L2 and the first switch K9 constitute a polarity inversion unit 1〇2, the unidirectional semiconductor element D20 and the fourth switch Κ20 constitute a freewheeling circuit 2〇, and the switch control module can control the second switch Κ6 'the third switch Κ7 The first switch Κ9 and the fourth switch Κ20 are turned on and off. Fig. 18 is a waveform timing chart corresponding to the heating circuit of Fig. 17, wherein 'vci refers to the voltage value of the first charge storage element C1, and I main refers to the current value of the current flowing through the switching device 1, I Refers to polarity

Li 反轉回路的電流值,IC1指的是第一電荷記憶元件C1上的 電流值’丨〇20指的是單向半導體元件D20上的電流值。第 17圖所示的加熱電路的工作過程如下: a)開關控制模組1〇〇控制第二開關K6導通,電池E通過與 第二開關K6、第二單向半導體元件D11、第一電荷記憶元 件C1組成的回路進行正向放電(如第is圖中的ti時間段 所示); b)開關控制模組1〇〇控制第二開關K6在電流經過第一個 1013174733-0 10022162^單编號AO1。! 第20頁/共45頁 M437537 1101年.05月09日梭正替換頁 正半週朗峰值後為零時關斷; c) 開關控制模組100控制第三開關K7導通,電池E通過與 第一電荷記憶元件C1、第三開關Κ7、半導體裝置D12組成 的回路進行反向充電;開關控制模組100控制第三開關Κ7 在電流經過第一個負半週期峰值後過零前24度時關斷( 如第18圖中的t2時間段所示); d) 開關控制模組1〇〇在控制第三開關口關斷的同時,控 制第四開關K20.導通第一電流記憶元件L1通過第四開關 K20、單向半導體元件D20續流,開關控制模組1〇〇在流 向電池E的電流為零時控制第四開關κ 2 0關斷(如第18圖 中的t3時間段所示); e) 開關控制模組1〇〇控制第一開關K9導通,第一電荷記 憶元件C1通過第一單向半導體元件D3、第二電流記憶元 件L2和第一開關K9組成的回路放電,並達到電壓極性反 轉的目的,之後’開關控制模組1 〇〇控制第一開關K9關斷 (如第18圖中的t4時間段所示); f) 重複步驟a)至e),電池E不斷通過充放電實現加熱 ,直至電池達到停止加熱條件為止。 在如第19圖所示的電池E的加熱電路中,第二開關}(6和第 二單向半導體元件D11串聯構成開關裝置1的第一單向支 路,單向半導體元件D12和第三開關K7串聯構成開關裝置 1的第二單向支路,該開關裝置1與第一阻尼元件以、第 一電荷記憶元件C1以及第一電流記憶元件L1串聯,第一 單向半導體元件D3、第二電流記憶元件L2和第一開關K9 構成極性反轉單元102,第四單向半導體元件D21、第二 阻尼元件R 21和第三電荷記憶元件C 21構成續流電路2 〇, 10022162#單編號i A0101 第21頁/共45頁 1013174733-0 M437537 1101^ 05^ 開關控制模組100可以控制第二開關K6、第三開關!(7^^ 一開關K9的導通和關斷。第20圖為與第19圖的加熱電路 對應的波形時序圖,其中,vci指的是第一電荷記憶元件 C1的電壓值,I主指的是流經開關裝置1的電流的電流值 ,IL2指的是極性反轉回路的電流值,Ici指的是第一電荷 S己憶元件C1上的電流值,IC21指的是第三電荷記憶元件 C21上的電流值。第19圖所示的加熱電路的工作過程如下 a) 開關控制模組1〇〇控制第二開關K6、K7導通,電池E 通過與第二開關Κ6、第二單向半導體元件dii、第一電荷 記憶元件C1組成的回路進行正向放電(如第20圖中的u 時間段所示)以及與第三開關K7、單向半導體元件〇12、 第一電荷記憶元件C1組成的回路進行反向充電(如第2〇 圖中的t2時間段所示); b) 開關控制模組1〇〇控制第二的關K6、K7在電流的第二 個正半週期峰值前過零後25度時關斷(如第2〇圖中的t3 時間段所示),第一電流記憶元件Li通過第四單向半導 體元件D21和第三電荷記憶元件C21續流(如第2〇圖中的 t4時間段所示); c) 開關控制模組1〇〇控制第一開關K9導通’第一電荷記 憶元件C1通過第一單向半導體元件D3、第二電流記憶元 件L2和第一開關Κ9組成的回路放電,並達到電壓極性反 轉的目的,之後,開關控制模組1〇〇控制第一開關Κ9關斷 (如第20圖令的t5時間段所示); d) 重複步驟a)至c),電池e不斷通過充放電實現加熱 ’直至電池達到停止加熱條件為止。 1013174733-0 10022162产早编號第22頁/共45頁 M437537 - 101年.05月09日梭正替換頁 需要說明的是,第19圖中的續流電路20於tl和t2時間段 亦有電流流過,出於清楚繪示續流電路20於本加熱電路 内的作用的目的,第20圖中僅示出了續流電路20於體現 其具體作用的時間段的電流情況,而未示出續流電路20 於tl和t2時間段的電流情況,以避免混淆本實用新型。 在如第21圖所示的電池E的加熱電路中,使用一個第一雙 向開關K3構成開關裝置1,儲能電路包括第一電流記憶元 ' 件L1和第一電荷記憶元件C1,第一阻尼元件R1和開關裝 • 置1與所述儲能電路串聯,第一單向半導體元件D3、第二 ® 電流記憶元件L2和第一開關K9構成極性反轉單元102,開 關控制模組1 00可以控制第一開關K9和第一雙向開關K3的 導通和關斷。第22圖為與第21圖的加熱電路對應的波形 時序圖,其中,νπ指的是第一電荷記憶元件C1的電壓值 ,1±指的是流經第一雙向開關K3的電流的電流值,指 的是極性反轉回路的電流值。第21圖所示的加熱電路的 工作過程如下: a)開關控制模組100控制第一雙向開關K3導通,儲能電 ® 路開始工作,如第20圖所示的tl時間段,電池E通過第一 雙向開關K3、第一電荷記憶元件C1組成的回路進行正向 • 放電和反向充電(如第22圖中的tl時間段所示); b )開關控制模組1 00在流經第一雙向開關K3的電流的經 過負半週期峰值後為零時(即反向電流為零時)控制第 一雙向開關K3關斷; c)開關控制模組100控制第一開關K9導通,極性反轉單 元102工作,第一電荷記憶元件C1通過第一單向半導體元 件D3、第二電流記憶元件L2和第一開關K9組成的回路放 臓⑽产單編號腿01 第23頁/共45頁 1013174733-0 M437537 101年05月09日按正替換頁 電,達到電壓極性反轉的目的,之後,開關控制模組100 控制第一開關K9關斷(如第22圖中的t2時間段所示); d)重複步驟a)至c),電池E不斷通過充放電實現加熱 ,直至電池E達到停止加熱條件為止。 本實用新型提供的加熱電路能夠提高電池的充放電性能 ,並且在該加熱電路中,儲能電路與電池串聯,當給電 池加熱時,由於串聯的電荷記憶元件的存在,能夠避免 開關裝置失效短路引起的安全性問題,能夠有效地保護 電池。 另外,在本實用新型的加熱電路中,由於開關裝置的關 斷時機是根據開關裝置的額定電壓而選取的,可以避免 因回路中的電流記憶元件產生的感應電壓過大而損壞開 關裝置,使得加熱電路的安全性更高,對整個電路影響 較小。 同時,本實用新型的加熱電路中還提供了能量疊加單元 ,當開關裝置關斷後,該能量疊加單元能夠將儲能電路 中的能量與電池中的能量進行疊加,當下一次控制開關 裝置導通時*提1¾加熱回路中的放電電流*由此提尚加 熱電路的工作效率。 以上結合附圖詳細描述了本實用新型的優選實施方式, 但是,本實用新型並不限於上述實施方式中的具體細節 ,在本實用新型的技術構思範圍内,可以對本實用新型 的技術方案進行多種簡單變型,這些簡單變型均屬於本 實用新型的保護範圍。 另外需要說明的是,在上述具體實施方式中所描述的各 個具體技術特徵,在不矛盾的情況下,可以通過任何合 10022162^^^^ A〇101 第24頁/共45頁 1013174733-0 M437537 [ιοί年.05月09日核正替換ί] 適的方式進行組合,為了避免不必要的重複,本實用新 型對各種可能的組合方式不再另行說明。此外,本實用 新型的各種不同的實施方式之間也可以進行任意组合, 只要其不違背本實用新型的思想,其同樣應當視為本實 用新型所公開的内容。 【圖式簡單說明】 [0005]附圖是用來提供對本實用新型的進_步理解,並且構成 k 說明書的一部分,與下面的具體實施方式一起用於解釋 • 本實用新型,但並不構成對本實用新型的限制。在附圖 中: 第1圖為本實用新型提供的電池的加熱電路的示意圖,· 第2圖為第1圖中的開關裝置的一種實施方式的示意圖; 第3圖為第1圖中的開關裝置的一種實施方式的示意圖; 第4圖為第1圖中的開關裝置的一種實施方式的示意圖; 第5圖為第1圖中的開關裝置的一種實施方式的示意圖; 第6圖為第1圖中的開關裝置的一種實施方式的示意圖; • 第7圖為本實用新型提供的電池的加熱電路的一種優選實 施方式的示意圖; 第8圖為第7圖中的續流電路的一種實施方式的示意圖; 第9圖為第7圖中的續流電路的另一種實施方式的示意圖 » 第10圖為第1圖中的能量疊加單元的一種實施方式的示意 圖; 第11圖為第10圖中的極性反轉單元的一種實施方式的示 意圖; 第12圖為第10圖中的極性反轉單元的一種實施方式的示 10022162# 單編號 A0101 * 25 1 / Jt 45 I 1013174733-0 M437537 101年05月09日修正替换k 意圖; 第13圖為第10圖中的極性反轉單元的一種實施方式的示 意圖; 第14圖為第13圖中的第一DC-DC模組的一種實施方式的 示意圖; 第15圖為本實用新型提供的電池的加熱電路的—種優選 實施方式的示意圖; 第16圖為第15圖中的能量消耗單元的一種實施方式的示 意圖; 第17圖為本實用新型提供的電池的加熱電路的一種實施 方式的示意圖; 第18圖為第17圖的加熱電路所對應的波形時序圖; 圖第19圖為本實用新型提供的電池的加熱電路的一種實 施方式的示意圖; 第20圖為第19圖的加熱電路所對應的波形時序圖; 第21圖為本實用新型提供的電池的加熱電路的一種實施 方式的示意圖;以及 第22圖為第21圖的加熱電路所對應的波形時序圖。 【主要元件符號說明】 [0006] 100 :開關控制模組 L1:第一電流記憶元件 R1 :第一阻尼元件 E :電池 C1:第一電荷記憶元件 C2:第二電荷記憶元件 K 3 :第一雙向開關 1013174733-0 1〇。22162产單编號A0101 第26頁/共45頁 M437537 • · 101年05月09日修正替換頁 K4:第二雙向開關 K5:第三雙向開關 D3:第一單向半導體元件 D11 :第二單向半導體元件 D12:第三單向半導體元件 K6:第二開關 K7:第三開關 K8:第五開關 K9 :第一開關Li reverses the current value of the loop, and IC1 refers to the current value '丨〇20' on the first charge storage element C1 which refers to the current value on the unidirectional semiconductor element D20. The operation of the heating circuit shown in FIG. 17 is as follows: a) The switch control module 1 〇〇 controls the second switch K6 to be turned on, and the battery E passes through the second switch K6, the second unidirectional semiconductor component D11, and the first charge memory. The circuit composed of component C1 performs forward discharge (as shown in the ti time period in the is diagram); b) the switch control module 1 〇〇 controls the second switch K6 in the current through the first 1013174733-0 10022162^ No. AO1. ! Page 20 of 45 M437537 1101. On May 09, the shuttle is replacing the page with a positive half-week peak after zero peak; c) switch control module 100 controls the third switch K7 to conduct, battery E passes and A circuit composed of a charge storage element C1, a third switch Κ7, and a semiconductor device D12 performs reverse charging; the switch control module 100 controls the third switch Κ7 to close 24 degrees before the current passes through the first negative half cycle peak. Break (as shown in the t2 time period in Fig. 18); d) The switch control module 1〇〇 controls the fourth switch K20 while controlling the third switch port to be turned off. The first current memory element L1 is turned on. The four switch K20 and the unidirectional semiconductor component D20 are freewheeling, and the switch control module 1 控制 controls the fourth switch κ 20 to turn off when the current flowing to the battery E is zero (as shown in the t3 time period in FIG. 18) e) the switch control module 1〇〇 controls the first switch K9 to be turned on, and the first charge storage element C1 is discharged through the loop formed by the first unidirectional semiconductor element D3, the second current memory element L2 and the first switch K9, and reaches The purpose of voltage polarity reversal, followed by 'switch control mode Group 1 〇〇 controls the first switch K9 to turn off (as shown in the t4 time period in Figure 18); f) Repeat steps a) to e), battery E is continuously heated by charge and discharge until the battery reaches the stop heating condition until. In the heating circuit of the battery E as shown in Fig. 19, the second switch} (6 and the second unidirectional semiconductor element D11 are connected in series to constitute the first one-way branch of the switching device 1, the unidirectional semiconductor element D12 and the third The switch K7 is connected in series to form a second one-way branch of the switching device 1. The switching device 1 is connected in series with the first damping element, the first charge storage element C1 and the first current memory element L1, the first unidirectional semiconductor element D3, The two current memory elements L2 and the first switch K9 constitute a polarity inversion unit 102, and the fourth unidirectional semiconductor element D21, the second damper element R21 and the third charge memory element C21 constitute a freewheeling circuit 2 〇, 10022162# single number i A0101 Page 21 of 45 1013174733-0 M437537 1101^ 05^ The switch control module 100 can control the second switch K6 and the third switch! (7^^ One switch K9 is turned on and off. Figure 20 is A waveform timing diagram corresponding to the heating circuit of Fig. 19, wherein vci refers to the voltage value of the first charge storage element C1, I main refers to the current value of the current flowing through the switching device 1, and IL2 refers to the polarity Reverse the current value of the loop, Ici refers to the first electricity S has a current value on the component C1, and IC21 refers to the current value on the third charge storage element C21. The operation of the heating circuit shown in Fig. 19 is as follows: a) The switch control module 1 〇〇 controls the second switch K6 and K7 are turned on, and the battery E performs forward discharge through a loop composed of the second switch Κ6, the second unidirectional semiconductor element dii, and the first charge memory element C1 (as shown in the u time period in FIG. 20) and The circuit composed of the third switch K7, the unidirectional semiconductor element 〇12, and the first charge memory element C1 is reversely charged (as shown in the time period t2 in FIG. 2); b) the switch control module 1〇〇 control The second off K6, K7 is turned off 25 degrees after the zero crossing of the second positive half cycle of the current (as shown in the t3 time period in Fig. 2), the first current memory element Li passes the fourth The unidirectional semiconductor component D21 and the third charge memory component C21 are freewheeling (as shown in the t4 time period in FIG. 2); c) the switch control module 1 〇〇 controls the first switch K9 to conduct 'the first charge memory component C1 passes through the first unidirectional semiconductor element D3 and the second current memory element L2 The circuit formed by the first switch Κ9 discharges and achieves the purpose of voltage polarity reversal. Thereafter, the switch control module 1〇〇 controls the first switch Κ9 to be turned off (as shown in the t5 time period of the 20th figure); d) By repeating steps a) to c), the battery e is continuously heated by charging and discharging until the battery reaches the stop heating condition. 1013174733-0 10022162 Early date number 22 pages/total 45 pages M437537 - 101 years. May 09th shuttle replacement page It should be noted that the freewheeling circuit 20 in Fig. 19 also has time periods tl and t2 The current flows through, for the purpose of clearly illustrating the role of the freewheeling circuit 20 in the heating circuit, only the current of the freewheeling circuit 20 during the period in which it is embodied is shown in FIG. 20, and not shown. The current condition of the freewheeling circuit 20 during the time period t1 and t2 is to avoid confusing the present invention. In the heating circuit of the battery E as shown in Fig. 21, a switching device 1 is constructed using a first bidirectional switch K3, and the tank circuit includes a first current memory element L1 and a first charge memory element C1, the first damping The component R1 and the switch device 1 are connected in series with the energy storage circuit, and the first unidirectional semiconductor device D3, the second current storage device L2 and the first switch K9 constitute a polarity inversion unit 102, and the switch control module 100 can The first switch K9 and the first bidirectional switch K3 are controlled to be turned on and off. Figure 22 is a waveform timing chart corresponding to the heating circuit of Fig. 21, wherein νπ refers to the voltage value of the first charge storage element C1, and 1± refers to the current value of the current flowing through the first bidirectional switch K3. , refers to the current value of the polarity reversal circuit. The operation of the heating circuit shown in Fig. 21 is as follows: a) The switch control module 100 controls the first bidirectional switch K3 to be turned on, and the energy storage electric circuit starts to work. As shown in Fig. 20, the battery E passes. The circuit composed of the first bidirectional switch K3 and the first charge storage element C1 performs forward/discharge and reverse charging (as shown in the time period of tl in FIG. 22); b) the switch control module 100 is flowing through the first The current of a bidirectional switch K3 is zero after the peak of the negative half cycle (ie, when the reverse current is zero), and the first bidirectional switch K3 is controlled to be turned off; c) the switch control module 100 controls the first switch K9 to be turned on, and the polarity is reversed. The rotary unit 102 operates, and the first charge storage element C1 is looped through the first unidirectional semiconductor component D3, the second current memory component L2, and the first switch K9. (10) The production number is 01. Page 23/45 pages 1013174733 -0 M437537 On May 09, 101, according to the positive replacement page, the purpose of voltage polarity reversal is achieved. After that, the switch control module 100 controls the first switch K9 to be turned off (as shown in the t2 time period in Fig. 22). d) Repeat steps a) to c) and battery E continues to pass Heating to achieve discharge, until the battery E to a stop until the heating conditions. The heating circuit provided by the utility model can improve the charging and discharging performance of the battery, and in the heating circuit, the energy storage circuit is connected in series with the battery. When the battery is heated, due to the existence of the series of charge memory elements, the switching device can be prevented from being short-circuited. The resulting safety problem can effectively protect the battery. In addition, in the heating circuit of the present invention, since the turn-off timing of the switching device is selected according to the rated voltage of the switching device, the switching device can be prevented from being damaged due to excessive induced voltage generated by the current memory element in the circuit, so that heating The circuit is more secure and has less impact on the entire circuit. At the same time, the heating circuit of the present invention further provides an energy superimposing unit. When the switching device is turned off, the energy superimposing unit can superimpose the energy in the energy storage circuit with the energy in the battery, and when the next control switch device is turned on, * Lifting the discharge current in the heating circuit* thus the operating efficiency of the heating circuit. The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings. However, the present invention is not limited to the specific details in the above embodiments, and various technical solutions of the present invention may be implemented within the scope of the technical idea of the present invention. Simple variants, these simple variants are within the scope of protection of the present invention. In addition, it should be noted that the specific technical features described in the above specific embodiments may be passed through any combination of 10022162^^^^ A〇101 page 24/45 pages 1013174733-0 M437537. [ιοί年. May 09 nuclear replacement ί] The appropriate way to combine, in order to avoid unnecessary duplication, the present invention will not be further described in various possible combinations. In addition, any combination of the various embodiments of the present invention may be made in any combination, and as long as it does not deviate from the idea of the present invention, it should also be regarded as the disclosure of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS [0005] The accompanying drawings are provided to provide a further understanding of the invention and constitute a part of the specification, which is used together with the following specific embodiments to explain the present invention, but does not constitute Limitations on the present invention. In the drawings: Fig. 1 is a schematic view showing a heating circuit of a battery provided by the present invention, Fig. 2 is a schematic view showing an embodiment of the switching device in Fig. 1; and Fig. 3 is a switch in Fig. 1. A schematic view of an embodiment of a device; FIG. 4 is a schematic view of an embodiment of the switch device of FIG. 1; FIG. 5 is a schematic view of an embodiment of the switch device of FIG. 1; BRIEF DESCRIPTION OF THE DRAWINGS FIG. 7 is a schematic view of a preferred embodiment of a heating circuit for a battery provided by the present invention; FIG. 8 is an embodiment of a freewheeling circuit of FIG. FIG. 9 is a schematic diagram of another embodiment of the freewheeling circuit in FIG. 7 . FIG. 10 is a schematic diagram of an embodiment of the energy superimposing unit in FIG. 1; FIG. 11 is in FIG. A schematic diagram of an embodiment of a polarity inversion unit; Fig. 12 is an illustration of an embodiment of a polarity inversion unit in Fig. 10; 10022162# single number A0101 * 25 1 / Jt 45 I 1013174733-0 M437537 101 Correction of the replacement k intent on May 09; Figure 13 is a schematic diagram of an embodiment of the polarity inversion unit in Figure 10; Figure 14 is an embodiment of the first DC-DC module in Figure 13 Figure 15 is a schematic view of a preferred embodiment of a heating circuit for a battery provided by the present invention; Figure 16 is a schematic view of an embodiment of the energy consuming unit of Figure 15; A schematic diagram of an embodiment of a heating circuit for a battery provided; FIG. 18 is a waveform timing diagram corresponding to the heating circuit of FIG. 17; FIG. 19 is a schematic diagram of an embodiment of a heating circuit for a battery provided by the present invention 20 is a waveform timing diagram corresponding to the heating circuit of FIG. 19; FIG. 21 is a schematic diagram of an embodiment of a heating circuit of the battery provided by the present invention; and FIG. 22 is a heating circuit of FIG. Corresponding waveform timing diagram. [Main component symbol description] [0006] 100: switch control module L1: first current memory element R1: first damping element E: battery C1: first charge memory element C2: second charge memory element K3: first Bidirectional switch 1013174733-0 1〇. 22162 Production Order No. A0101 Page 26 of 45 M437537 • · May 09, 2011 Correction Replacement Page K4: Second Bidirectional Switch K5: Third Bidirectional Switch D3: First Unidirectional Semiconductor Element D11: Second Single To the semiconductor element D12: third unidirectional semiconductor element K6: second switch K7: third switch K8: fifth switch K9: first switch

R2、R3、R6:電阻 D4、D5、D6、D7、D20:單向半導體元件 K20:第四開關 D21 :第四單向半導體元件 R5:第三阻尼元件 R21 :第二阻尼元件 C21 :第三電荷記憶元件 J1 :第一單刀雙擲開關R2, R3, R6: resistors D4, D5, D6, D7, D20: unidirectional semiconductor element K20: fourth switch D21: fourth unidirectional semiconductor element R5: third damper element R21: second damper element C21: third Charge memory element J1: first single pole double throw switch

J2:第二單刀雙擲開關 L2 :第二電流記憶元件 101 :電壓控制單元 102:極性反轉單元 2:第一DC-DC模組J2: second single pole double throw switch L2: second current memory element 101: voltage control unit 102: polarity reversal unit 2: first DC-DC module

Ql、Q2、Q4、Q3、Q5、Q6:雙向開關 a、b、c、d :端 N1:第一節點 N2:第二節點 10022162^ A〇101 第27頁/共45頁 1013174733-0 M437537 101年05月09日修正替換頁 1、2、3 ' 4、5:腳(同名端) ΤΤ、T2 :變壓器 - L 3 :電流記憶元件 I i :流經開關裝置1的電流的電流值 單向半導體元件D2〇上的電流值 ιπ :第一電荷記憶元件C1上的電流值 tl、t2、t3、t4:時間段 vei :第一電荷記憶元件Cl的電壓值 I u:極性反轉回路的電流值 Ie21 :第三電荷記憶元件C21上的電流值 臓2162ί單编號A_ 第28頁/共45頁Ql, Q2, Q4, Q3, Q5, Q6: bidirectional switch a, b, c, d: terminal N1: first node N2: second node 10022162^ A〇101 page 27/total 45 page 1013174733-0 M437537 101 Corrected replacement page 1, 2, 3 ' 4, 5: foot (same name end) ΤΤ, T2: transformer - L 3 : current memory element I i : current value of current flowing through switching device 1 Current value ιπ on the semiconductor element D2: current value t1, t2, t3, t4 on the first charge memory element C1: time period vei: voltage value of the first charge memory element C1 Iu: current of the polarity inversion loop Value Ie21: Current value on the third charge memory element C21 臓 2162ί Single number A_ Page 28 of 45

1013174733-01013174733-0

Claims (1)

101年.05月09日梭正#^頁 M437537 • · 六、申請專利範圍: 1 . 一種電池的加熱電路,其特徵在於,該加熱電路包括: 開關裝置; 儲能電路,所述儲能電路用於與所述電池連接以構成回路 ,所述儲能電路包括第一電流記憶元件和第一電荷記憶元 件,且所述開關裝置、第一電流記憶元件和第一電荷記憶 元件串聯;101.05月09日梭正#^页 M437537 • · VI. Patent application scope: 1. A heating circuit for a battery, characterized in that the heating circuit comprises: a switching device; a storage circuit, the energy storage circuit For connecting to the battery to form a loop, the energy storage circuit includes a first current memory element and a first charge memory element, and the switching device, the first current memory element and the first charge memory element are connected in series; 開關控制模組,所述開關控制模組與開關裝置連接,用於 控制開關裝置導通和關斷,以控制能量在所述電池與所述 儲能電路之間的流動,所述開關控制模組還用於在所述開 關裝置導通後流經開關裝置的電流的第一正半週期之後控 制所述開關裝置關斷,且所述開關裝置關斷時施加到所述 開關裝置上的電壓小於所述開關裝置的額定電壓;和 能量疊加單元,所述能量疊加單元與所述儲能電路連接, 用於在開關裝置導通再關斷後,將所述儲能電路中的能量 與所述電池中的能量進行疊加。 2 .如申請專利範圍第1項所述的加熱電路,其特徵在於,所 述加熱電路還包括: 第一阻尼元件,所述第一阻尼元件與所述開關裝置、第一 電流記憶元件和第一電荷記憶元件串聯。 3 .如申請專利範圍第2項所述的加熱電路,其特徵在於,所 述第一阻尼元件為所述電池内部的寄生電阻,所述I一電 流記憶元件為所述電池内部的寄生電感, 或者,所述第一阻尼元件為外接電阻,所述第一電流記憶 元件為外接電感,所述第一電荷記憶元件為電容。 4 .如申請專利範圍第3項所述的加熱電路,其特徵在於,所 10022162#單編號 AQ1Q1 ^ 29 I / ^ 45 I 1013174733-0 M437537 101年05月09日核正替换頁 述能量疊加單元包括極性反轉單元,所述極性反轉單元與 所述儲能電路連接,用於在所述開關裝置導通再關斷後, 對所述第一電荷記憶元件的電壓極性進行反轉。 5 .如申請專利範圍第4項所述的加熱電路,其特徵在於,所 述極性反轉單元包括: 第一單刀雙擲開關;和 第二單刀雙擲開關,所述第一單刀雙擲開關和第二單刀雙 擲開關分別位於所述第一電荷記憶元件兩端,所述第一單 刀雙擲開關的入線連接在所述儲能電路中,所述第一單刀 雙擲開關的第一出線連接所述第一電荷記憶元件的第一極 板,所述第一單刀雙擲開關的第二出線連接所述第一電荷 記憶元件的第二極板,所述第二單刀雙擲開關的入線連接 在所述儲能電路中,所述第二單刀雙擲開關的第一出線連 接所述第一電荷記憶元件的第二極板,所述第二單刀雙擲 開關的第二出線連接在所述第一電荷記憶元件的第一極板 ,所述開關控制模組還與所述第一單刀雙擲開關和第二單 刀雙擲開關分別連接,用於通過改變所述第一單刀雙擲開 關和第二單刀雙擲開關各自的入線和出線的連接關係來對 所述第一電荷記憶元件的電壓極性進行反轉。 6 .如申請專利範圍第4項所述的加熱電路,其特徵在於,所 述極性反轉單元包括: 11第一單向半導體元件; 第二電流記憶元件;以及 第一開關,所述第一電荷記憶元件、第二電流記憶元件和 第一開關順次串聯形成回路,所述第一單向半導體元件和 串聯在所述第一電荷記憶元件與第二電流記憶元件或所述 10022162^编號 A〇101 第30頁/共45頁 1013174733-0 M437537 ~^-— 101年05月09日修正替換頁 第二電流記憶元件與第一開關之間,所述開關控制模組還 與所述第一開關連接,用於通過控制第一開關導通來對所 述第一電荷記憶元件的電壓極性進行反轉。 7 .如申請專利範圍第4項所述的加熱電路,其特徵在於,所 述極性反轉單元包括: 第一DC-DC模組;和 第二電荷記憶元件,所述第一DC-DC模組與所述第一電荷 ' 記憶元件和第二電荷記憶元件分別連接,所述開關控制模 • 組還與所述第一DC-DC模組連接,用於通過控制第一 ® D C - D C模組工作來將所述第一電荷記憶元件中的能量轉移 至所述第二電荷記憶元件,再將所述第二電荷記憶元件中 的能量反向轉移回所述第一電荷記憶元件,以實現對所述 第一電荷記憶元件的電壓極性的反轉。 8 .如申請專利範圍第1項所述的加熱電路,其特徵在於,所 述開關裝置為第一雙向開關。 9 .如申請專利範圍第1項所述的加熱電路,其特徵在於,所 述開關裝置包括: ^ 用於實現能量從電池流向儲能電路的第一單向支路;和 用於實現能量從儲能電路流向電池的第二單向支路,所述 開關控制模組與所述第一單向支路和第二單向支路分別連 接,用於通過控制所連接的支路的導通和關斷來控制開關 裝置導通和關斷。 10 .如申請專利範圍第9項所述的加熱電路,其特徵在於,所 述開關裝置包括: 第二雙向開關;和 第三雙向開關,所述第二雙向開關和第三雙向開關彼此反 10022162#單編號 A〇101 第31頁/共45頁 1013174733-0 M437537 101年05月09日修正替換k 向串聯以構成所述第一單向支路和第二單向支路,所述開 關控制模組與所述第二雙向開關和第三雙向開關分別連接 ’用於通過控制第二雙向開關和第三雙向開關的導通和關 斷來控制所述第一單向支路和第二單向支路的導通和關斷 〇 U .如申請專利範圍第9項所述的加熱電路,其特徵在於,所 述開關裝置包括: 第二開關; 第二單向半導體元件,所述第二開關和第二單向半導體元 件彼此串聯以構成所述第一單向支路; 第三開關;以及 12 導體it件,第二開關第二單向半導體元件第三開關 "早向半導體元倾此串聯以構成所述第二單向支路,所 迷開關控制模組與第二開關和第三開關分別連接,用於通 過控制第一開關和第三開關的導通和關斷來控制所述第一 早向支路和第二單向支路的導通和關斷。 ”請專利範圍第9項所述的加熱電路,其特徵在於,所 =關裝置還包括與所述第一單向支路和/或第二單向支 路串聯的電阻。 13 =請專利範圍第1項所述的加熱電路,其特徵在於,所 二=模組用於在所述開關裝置導通後流經所述開關 ^的電流經辦週期峰值後為零時控制所述開關裝置 14 it. Λαΐ專利範圍第1項所述的加熱電路,其特徵在於,所 迹加熱電路還包括: 續流電路,所述續流電 咖6#單编號麵 、_於在所述開關裝置導通再關斷 弟犯頁/共45頁 1013174733-0 M437537 15 . 16 .a switch control module, the switch control module being connected to the switch device for controlling the switch device to be turned on and off to control the flow of energy between the battery and the energy storage circuit, the switch control module Also for controlling the switching device to be turned off after the first positive half cycle of the current flowing through the switching device after the switching device is turned on, and the voltage applied to the switching device when the switching device is turned off is less than a voltage rating unit of the switching device; and an energy superimposing unit, wherein the energy superimposing unit is connected to the energy storage circuit, and configured to convert energy in the energy storage circuit to the battery after the switching device is turned on and off again The energy is superimposed. 2. The heating circuit of claim 1, wherein the heating circuit further comprises: a first damping element, the first damping element and the switching device, the first current memory element, and the A charge memory element is connected in series. 3. The heating circuit of claim 2, wherein the first damping element is a parasitic resistance inside the battery, and the I-current memory element is a parasitic inductance inside the battery. Alternatively, the first damper element is an external resistor, the first current memory element is an external inductor, and the first charge memory element is a capacitor. 4. The heating circuit according to claim 3, characterized in that: 10022162# single number AQ1Q1 ^ 29 I / ^ 45 I 1013174733-0 M437537 May 09, 101 nuclear replacement page energy superimposing unit A polarity inversion unit is included, and the polarity inversion unit is coupled to the tank circuit for inverting a voltage polarity of the first charge memory element after the switching device is turned on and off. 5. The heating circuit of claim 4, wherein the polarity inversion unit comprises: a first single pole double throw switch; and a second single pole double throw switch, the first single pole double throw switch And a second single-pole double-throw switch respectively located at two ends of the first charge memory element, wherein an incoming line of the first single-pole double-throw switch is connected in the energy storage circuit, and the first single-pole double-throw switch is first Connecting a first plate of the first charge memory element, a second output of the first single-pole double-throw switch connecting a second plate of the first charge storage element, the second single-pole double-throw switch The incoming line is connected in the energy storage circuit, the first outgoing line of the second single pole double throw switch is connected to the second plate of the first charge storage element, and the second output of the second single pole double throw switch is a wire is connected to the first plate of the first charge storage element, and the switch control module is further connected to the first single-pole double-throw switch and the second single-pole double-throw switch, respectively, for changing the first Single pole double throw switch and second single pole double Switch the connection relationship of each of the outgoing lines and to reverse the voltage polarity of the first charge of the memory element. 6. The heating circuit of claim 4, wherein the polarity inversion unit comprises: 11 a first unidirectional semiconductor element; a second current memory element; and a first switch, the first The charge storage element, the second current storage element, and the first switch are sequentially connected in series to form a loop, the first unidirectional semiconductor element and the first charge storage element and the second current memory element or the 10022162^ number A 〇101 Page 30/45 pages 1013174733-0 M437537 ~^-—May 09, 2011 Correction replacement page between the second current memory element and the first switch, the switch control module is also associated with the first And a switch connection for inverting a voltage polarity of the first charge storage element by controlling the first switch to be turned on. 7. The heating circuit of claim 4, wherein the polarity inversion unit comprises: a first DC-DC module; and a second charge memory element, the first DC-DC mode The group is respectively connected to the first charge 'memory element and the second charge memory element, and the switch control mode group is further connected with the first DC-DC module for controlling the first ® DC - DC mode The group works to transfer energy in the first charge storage element to the second charge storage element, and then reversely transfer energy in the second charge storage element back to the first charge storage element to achieve Inversion of the voltage polarity of the first charge storage element. 8. The heating circuit of claim 1, wherein the switching device is a first bidirectional switch. 9. The heating circuit of claim 1, wherein the switching device comprises: ^ a first one-way branch for effecting energy flow from the battery to the energy storage circuit; and for achieving energy from The energy storage circuit flows to the second one-way branch of the battery, and the switch control module is respectively connected to the first one-way branch and the second one-way branch for controlling the conduction of the connected branch Turn off to control the switching device to turn on and off. 10. The heating circuit of claim 9, wherein the switching device comprises: a second bidirectional switch; and a third bidirectional switch, the second bidirectional switch and the third bidirectional switch reversing each other 10022162 #单编号A〇101 Page 31/Total 45 Page 1013174733-0 M437537 Correction of the k-direction in series to form the first one-way branch and the second one-way branch, the switch control The module is respectively connected to the second bidirectional switch and the third bidirectional switch for controlling the first one-way branch and the second one-way by controlling on and off of the second bidirectional switch and the third bidirectional switch The heating circuit of claim 9, wherein the switching device comprises: a second switch; a second unidirectional semiconductor component, the second switch and The second unidirectional semiconductor elements are connected in series to each other to constitute the first one-way branch; the third switch; and 12 conductors, the second switch, the second unidirectional semiconductor element, the third switch " early semiconductor elements are connected in series Forming the second one-way branch, the switch control module is respectively connected to the second switch and the third switch, and is configured to control the first morning by controlling on and off of the first switch and the third switch Turning on and off the branch and the second one-way branch. The heating circuit of claim 9, wherein the means for closing further comprises a resistor in series with the first one-way branch and/or the second one-way branch. 13 = Please patent scope The heating circuit according to Item 1, wherein the second=module is configured to control the switching device 14 when the current flowing through the switch is zero after the switching device is turned on. The heating circuit of claim 1, wherein the heating circuit further comprises: a freewheeling circuit, the freewheeling coffee 6# single-numbered surface, _ being turned on at the switching device Turn off the offender's page / a total of 45 pages 1013174733-0 M437537 15 . 16 . 17 .17 . ιοί年05月09日按正替換頁 後,與所述電池和第一電流記憶元件構成串聯回路,以保 持所述電池内電流的流動。 如申請專利範圍第14項所述的加熱電路,其特徵在於,所 述續流電路包括: 相互串聯的第四開關和單向半導體元件’,所述開關控制模 組與所述第四開關連接,用於在所述開關裝置導通再關斷 後,控制所述第四開關導通,並在流向所述電池的電流到 達電流預定值之後,控制所述第四開關關斷。 如申請專利範圍第14項所述的加熱電路,其特徵在於,所 述續流電路包括: 第四單向半導體元件; 第二卩且尼元件,和 第三電荷記憶元件,所述第四單向半導體元件與第二阻尼 元件並聯之後再與所述第三電荷記憶元件串聯。 如申請專利範圍第1 -1 6項中任一項申請專利範圍所述的 加熱電路,其特徵在於,所述加熱電路還包括與所述第一 電荷記憶元件連接的能量消耗單元,該能量消耗單元用於 在所述開關裝置導通再關斷後、所述能量疊加單元進行能 量疊加之前,對所述第一電荷記憶元件中的能量進行消耗 18 .如申請專利範圍第17項所述的加熱電路,其特徵在於,所 述能量消耗單元包括: 電壓控制單元,所述電壓控制單元與所述第一電荷記憶元 件連接,用於在所述開關裝置導通再關斷後、所述能量疊 加單元進行能量疊加之前,將所述第一電荷記憶元件兩端 的電壓值轉換成電壓設定值。 10022162^^^ A〇101 第33頁/共45頁 1013174733-0 M437537 101年05月09日梭正替换k 19 .如申請專利範圍第18項所述的加熱電路,其特徵在於,所 述電壓控制單元包括: 第三阻尼元件;和 第五開關,所述第三阻尼元件和第五開關彼此串聯之後並 聯在所述第一電荷記憶元件的兩端,所述開關控制模組還 與所述第五開關連接,所述開關控制模組還用於在控制所 述開關裝置導通再關斷後控制所述第五開關導通。 臓2162#單編號A〇101 第34頁/共45頁 1013174733-0After the page is replaced by the positive page on May 09, the battery and the first current memory element are connected in series to maintain the flow of current in the battery. The heating circuit of claim 14, wherein the freewheeling circuit comprises: a fourth switch and a unidirectional semiconductor component 'connected in series with each other, wherein the switch control module is connected to the fourth switch And controlling the fourth switch to be turned on after the switching device is turned on and off again, and controlling the fourth switch to be turned off after the current flowing to the battery reaches a predetermined value of the current. The heating circuit of claim 14, wherein the freewheeling circuit comprises: a fourth unidirectional semiconductor component; a second 尼 元件 component, and a third charge memory component, the fourth The semiconductor element is connected in parallel with the second damper element and then connected in series with the third charge memory element. A heating circuit according to any one of claims 1 to 6, wherein the heating circuit further comprises an energy consuming unit connected to the first charge storage element, the energy consumption The unit is configured to consume energy in the first charge storage element after the energy switching unit performs energy superposition after the switching device is turned on and off again. 18 The heating according to claim 17 The circuit, wherein the energy consuming unit comprises: a voltage control unit, the voltage control unit being coupled to the first charge storage element, the energy superimposing unit after the switching device is turned on and off again The voltage values across the first charge storage element are converted to voltage set values prior to energy superposition. 10022162^^^ A〇101 Page 33 of 45 1013174733-0 M437537 The reheating circuit of claim 18 is the same as the heating circuit described in claim 18, characterized in that the voltage is The control unit includes: a third damping element; and a fifth switch, the third damping element and the fifth switch being connected in series with each other and then connected in parallel at both ends of the first charge storage element, the switch control module further The fifth switch is connected, and the switch control module is further configured to control the fifth switch to be turned on after controlling the switch device to be turned on and off again.臓2162#单单A〇101 Page 34 of 45 1013174733-0
TW100221628U 2011-11-16 2011-11-16 Battery heating circuit TWM437537U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100221628U TWM437537U (en) 2011-11-16 2011-11-16 Battery heating circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100221628U TWM437537U (en) 2011-11-16 2011-11-16 Battery heating circuit

Publications (1)

Publication Number Publication Date
TWM437537U true TWM437537U (en) 2012-09-11

Family

ID=47224598

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100221628U TWM437537U (en) 2011-11-16 2011-11-16 Battery heating circuit

Country Status (1)

Country Link
TW (1) TWM437537U (en)

Similar Documents

Publication Publication Date Title
US9209103B2 (en) Battery heating circuits and methods based on battery discharging and charging using resonance components in series and current limiting components
US8941358B2 (en) Heating circuits and methods based on battery discharging and charging using resonance components in series and freewheeling circuit components
TWI551486B (en) A electric vehicle running control system
TWI433429B (en) Battery heating circuit
TWM437537U (en) Battery heating circuit
TWI455443B (en) Battery heating circuit
TWI465001B (en) Battery heating circuit
TW201322585A (en) Battery heating circuit
TWI464999B (en) Battery heating circuit
TWI433428B (en) Battery heating circuit
TWI430537B (en) Battery heating circuit
TW201322586A (en) Battery heating circuit
TWI465000B (en) Battery heating circuit
TWM436948U (en) Battery heating circuit
TWI427894B (en) Battery heating circuit
TW201320534A (en) Battery heating circuit
TWI469473B (en) Battery heating circuit
TWI430536B (en) Battery heating circuit
TWM438034U (en) Battery heating circuit
TWM438031U (en) Battery heating circuit

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model