TWM430704U - Light emitting diode structure - Google Patents

Light emitting diode structure Download PDF

Info

Publication number
TWM430704U
TWM430704U TW100207234U TW100207234U TWM430704U TW M430704 U TWM430704 U TW M430704U TW 100207234 U TW100207234 U TW 100207234U TW 100207234 U TW100207234 U TW 100207234U TW M430704 U TWM430704 U TW M430704U
Authority
TW
Taiwan
Prior art keywords
light
emitting diode
type
layer
item
Prior art date
Application number
TW100207234U
Other languages
Chinese (zh)
Inventor
Chung-Guang Chao
Ming-Li Hu
Jung-Hsuan Chen
Shiu-Tong Liu
Original Assignee
Tera Xtal Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tera Xtal Technology Corp filed Critical Tera Xtal Technology Corp
Priority to TW100207234U priority Critical patent/TWM430704U/en
Publication of TWM430704U publication Critical patent/TWM430704U/en

Links

Landscapes

  • Led Devices (AREA)

Abstract

A light emitting diode (LED) comprises a substrate, a nanometer photonic crystal structure formed on the substrate, N-type epitaxy layer formed on the nanometer photonic crystal structure, a light emitting layer formed on the N-type epitaxy layer, a P-type epitaxy layer formed on the light emitting layer. A first electrode is formed on the N-type epitaxy layer to act as a N-type contact, and a second electrode is formed on the P-type epitaxy layer to act as a P-type contact.

Description

M430704 五、新型說明: 【新型所屬之技術領域】 本新型係有關於一種發光二極體(LED),特別是有關 於種具有光子晶體結構之高發光效率發光二極體結構及 其製造方法。 【先前技術】 近來世界能源的短缺導致油價不斷的飆漲,全球各個 國家莫不積極地投入節能產品的開發,例如省電燈泡便是 此、趨勢下的產物。隨著發光二極體(LED)技術的進步, 白光或其它顏色(例如:藍光)發光二極體的應用也逐漸開 展,其應用包括:液晶顯示器(LCD)背光板、印表機、用 於電腦之光學連接構件(optical interc〇nnects in computers)、指示燈、地面燈、逃生燈、醫療設備光 汽車儀錶及内裝燈、辅助照明、主照明等等'。簡而言之, 發光二極體係以背光源與照明功能為當前的主要應用。在 下-世代的照明市場中,將是發光二極體的天下。由於發 光二極體具有輕巧、省電及壽命長等優點,因此,符合了 世界的趨勢潮流。㉟、美、曰等國皆以舉國之力投入開發 的行列’而我國的發光二極體產業,在全球市場上,益論 研發以及製造均佔有舉足輕重的角色與地位。所以 光二極體領域的下-世代發Μ,台灣勢將不會缺席。 目前,發光二極體在白光市場的應用,已將小型昭明 市場’帶入另夕二境界。其中,手機的背光源已經被發 光-極體所取彳《早期的黃、綠光發光二極體到現在的 3 M430704 白光或監光發光一極體’已經將手機點綴的五彩繽紛。至 於個人數位助理(personal digital assistant : PDA)乃至液曰 顯示面板(TFT— LCD)的背光源,也都將成為發光二極體的 天下。其具有輕薄省電的優點將使其具有不可取代的地位。 就現階段而言,距離實際進入白光發光二極體照明時 代,尚有一段距離。若白光發光二極體要取代現階段照明 市場,發光效率至少要達到80 lm/W以上,這個目標也將 成為各國努力的目標之一。 • 在發光二極體的發光機制中,其發光效率取決於内部 的量子效率以及外部的取光效率,其中内部的量子發光效 率主要係由發光二極體的組成材料及其結晶性來控制。換 二之,發光二極體的發光效率主要係由磊晶的結構以及品 貝來决定,當磊晶層中有缺陷存在時,由於結構中的缺陷 係造成光子被吸收的主要因素,因此,發光二極體的發光 政率將會大幅度地降低。 •…傳、統之發光二極體之發光層所形成之光,在經由p型 半V體層與透明導電層之界面時會產生反射,使得該發光 塑極體之光取出效率(Hght e历以⑽叮)受到影 ^ 外,在發光二極體之發光表面增加粗糙化表面的圖 ’或疋形成光子晶體結構,均是於半導體層上直接加工, 1種方法^易使得發光層被破壞或是造成元件損傷。此 一丄由於藍寳石基板硬度高、耐腐蝕性強,因此加工上有 程疋的困難度’一般的加工方式主要係利用微影触刻製 電子束或雷射加工等方式於藍寶石基板製作特定的圖 4 M430704 二大::於ί述製程之限制,較難得到奈米級的圖樣及進 4丁大面積疋件的製作 Q狀進 設備及製作成本相對的較^述技術之製造過程較繁複且 射挛再二於某些發光二極體之半導體層(例如:GaN折 (折射^約略,)之間的折射係數差 =產Γ:/臨界角約只有20〜30度,造成大部分發 曰 的先只此在元件内部全反射,無法有效地出 、=:使内部的發光效率提高,外部的取光效率若= 法改善也疋枉然。 …、 因此’基於上述之問題,以及因應趨勢之需求,從象 文ί發光二極體之取光效率已成為重要的發展方、 體結構與其製造方法,其可以提高發光二極體的光取= 率⑽m灿如⑽efficiency),並可降低發光二極體蟲日曰 層之晶體缺陷’提高發光效率。 曰 【新型内容】 本新型之目的在於提供一種新賴的具有奈米級多 光子晶體結構之發光二極體結構與其製造方法。 本新型之另-目的在於提供一種可以改善蠢晶品質以 及增加外部取光效率以有效地提高發光二極體的發光 之發光二極體。 平 本㈣之又-目的在於提供一種可以簡化製程以 於大面積元件製造之發光二極體。 -種發光一極體’包括:基板;多孔性光子晶體結構, 5 M430704 开> 成於基板之上;第一型蟲晶層,形成於上述多孔性光子 晶體結構之上;發光層,形成於上述第一型磊晶層之上; 第一型磊晶層,形成於上述發光層之上;第一接觸電極, 形成於上述該第一型磊晶層之上;以及,第二接觸電極, 形成於上述第二型磊晶層之上。 一種發光二極體之製造方法,包括:首先,提供一基 板;接著,形成一多孔性光子晶體結構於基板之上;形成 一第一型磊晶層於上述多孔性光子晶體結構之上;之後, 形成一發光層於上述第一型磊晶層之上;隨後,形成一第 二型磊晶層於上述發光層之上;接著,形成一第一接觸電 極於上述第-型“層之上;之後,形成―第二接觸電極 於上述第二型磊晶層上。 上述夕孔性光子晶體結構包括利用純鋁薄膜進行陽極 處理製程所形成之多孔性氧化鋁薄膜。 【實施方式】M430704 V. New description: [New technical field] The present invention relates to a light-emitting diode (LED), in particular to a high luminous efficiency light-emitting diode structure having a photonic crystal structure and a method of manufacturing the same. [Prior Art] Recently, the shortage of energy in the world has led to soaring oil prices. Countries around the world are not actively investing in the development of energy-saving products. For example, energy-saving bulbs are the product of this trend. With the advancement of light-emitting diode (LED) technology, the application of white light or other color (for example, blue light) light-emitting diodes has gradually developed, including: liquid crystal display (LCD) backlight, printer, for Optical interc〇nnects in computers, indicator lights, ground lights, escape lights, medical equipment, light car instruments and interior lights, auxiliary lighting, main lighting, etc.' In short, the light-emitting diode system is currently the main application with backlight and lighting functions. In the next-generation lighting market, it will be the world of light-emitting diodes. Because the light-emitting diode has the advantages of light weight, power saving and long life, it conforms to the trend of the world. 35. The United States, China and other countries are all investing in the development of the country's power. While China's LED industry, in the global market, research and development and manufacturing have played a pivotal role and status. Therefore, the next generation of the field of light diodes will be delayed, and Taiwan will not be absent. At present, the application of light-emitting diodes in the white light market has brought the small Zhaoming market into the next realm. Among them, the backlight of the mobile phone has been lighted up - the polar yellow and green light emitting diodes to the current 3 M430704 white light or the light-emitting light pole has been embellished with colorful colors. As for the personal digital assistant (PDA) and even the backlight of the liquid crystal display panel (TFT-LCD), it will also become the world of light-emitting diodes. Its advantages of light and power saving will make it irreplaceable. At this stage, there is still a distance from the actual lighting age of white light emitting diodes. If the white light emitting diode is to replace the current lighting market, the luminous efficiency should be at least 80 lm/W or more. This goal will also become one of the goals of the countries. • In the illuminating mechanism of a light-emitting diode, the luminous efficiency depends on the internal quantum efficiency and the external light-receiving efficiency. The internal quantum luminescence efficiency is mainly controlled by the constituent materials of the light-emitting diode and its crystallinity. In other words, the luminous efficiency of the light-emitting diode is mainly determined by the structure of the epitaxial layer and the shape of the product. When there is a defect in the epitaxial layer, the photoreceptor is the main factor due to the defect in the structure. The luminous illuminance of the light-emitting diodes will be greatly reduced. • The light formed by the light-emitting layer of the light-emitting diode of the system is reflected by the interface between the p-type half-V body layer and the transparent conductive layer, so that the light extraction efficiency of the light-emitting diode body (Hght e calendar) In addition to (10) 叮), the image of the roughened surface is added to the light-emitting surface of the light-emitting diode or the photonic crystal structure is formed directly on the semiconductor layer, and one method makes the luminescent layer destroyed. Or cause component damage. Since the sapphire substrate has high hardness and high corrosion resistance, it is difficult to process the process. The general processing method is mainly based on lithography, such as electron beam or laser processing. Figure 4 M430704 Second:: In the process of the limitation of the process, it is more difficult to obtain the nano-scale pattern and the production of the Q-shaped large-scale components. Complex and incidental to the semiconductor layer of some light-emitting diodes (for example: GaN fold (refraction, approximate), the difference in refractive index = calving: / critical angle is only about 20 to 30 degrees, causing most The first one is only totally reflected inside the component, and cannot be effectively emitted. =: The internal luminous efficiency is improved, and the external light extraction efficiency is also improved if the method is improved. ..., therefore, based on the above problems, and The demand for the trend, the light extraction efficiency of the light-emitting diode has become an important development, body structure and manufacturing method, which can improve the light extraction rate of the light-emitting diode (10) m as (10) efficiency, and can be reduced Luminous two Said crystal defect layer of the body insect date 'improve the luminous efficiency.曰 【New content】 The purpose of this new model is to provide a new light-emitting diode structure with a nano-scale multiphotonic crystal structure and a manufacturing method thereof. Another object of the present invention is to provide a light-emitting diode which can improve the quality of the stray crystal and increase the external light extraction efficiency to effectively improve the light emission of the light-emitting diode. The purpose of this (4) is to provide a light-emitting diode that can simplify the manufacturing process for large-area components. - a light-emitting body 'includes: a substrate; a porous photonic crystal structure, 5 M430704 is opened on the substrate; a first type of insect layer is formed on the above porous photonic crystal structure; a light-emitting layer is formed On the first type epitaxial layer; a first type epitaxial layer formed on the light emitting layer; a first contact electrode formed on the first type epitaxial layer; and a second contact electrode Formed on the second type epitaxial layer. A method for manufacturing a light-emitting diode, comprising: firstly, providing a substrate; then, forming a porous photonic crystal structure on the substrate; forming a first type of epitaxial layer on the porous photonic crystal structure; Thereafter, a light-emitting layer is formed on the first type epitaxial layer; subsequently, a second type epitaxial layer is formed on the light-emitting layer; then, a first contact electrode is formed on the first-type layer Then, a second contact electrode is formed on the second type epitaxial layer. The porphyry photonic crystal structure includes a porous aluminum oxide film formed by an anode treatment process using a pure aluminum film.

本新型的-些實施例會詳細描述如下。然而, =描述的實施例外,本新型可以廣泛地在其它的實施例中 施饤’並且本新型之保護範圍並不受限於下述之實施 其係以後述的申請專利範圍為準。 句捉1、更〉月是的描述及更易理解本新型,圖干 =部分並沒有㈣其彳目収請圖,不㈣之細節t 也未元全繪出,以求圖示的簡潔。 刀 請參考圖示’其中所顯示僅僅是為了說明本新型 佳貫施例’並非用以限制本新型。—般降低蟲晶層之晶才= M430704 缺陷的方式係對藍寳石基板直接作表面的加工處理,以形 成微米級的凹凸結構。本新型利用陽極處理技術在基板(例 如監寶石基板)表面製造一層具有(週期性)奈米級孔洞之 一維光子晶體結構,此光子晶體結構不僅可以有效的改善 磊晶品質,增加内部量子發光效率,對於基板與磊晶層^ 間光全反射問題以及沿著界面產生的側向漏光情形,亦能 加以控制與減少,因此可以有效提高外部的取光效率。再 者,由於光子晶體效應亦可有效地控制出光波長,發出較 窄頻寬的光源。 ^在一實施例中,藉由調整發光層材料,使其發光介於 藍光範圍,利用本新型之多孔性氧化鋁光子晶體結構所產 生光激發光現象,以增加發光二極體之發光強度。 請參閱圖三,其係根據本新型之發光二極體結構之截 面圖。上述發光二極體結構,包括:一基板1〇、多孔性光 子晶體結構12、第一型磊晶層13、發光層15、第二型磊 曰曰層16、第一接觸電極14以及第二接觸電極17。舉一實 施例而言,上述基板10之材質可以為藍寶石(sapphire)、 氮化鎵(GaN)、氮化鋁(A1N)、碳化矽(SiC)或氮化鎵鋁 (GaAIN)。上述基板1〇經過一粗糙化的製程而將基板⑺ 之表面粗糙化而形成粗糙表面。舉一實施例而言,上述表 面粗糙化製程係首先在基板1〇表面形成一層金屬薄膜,例 如為鋁金屬薄膜1卜請參考圖一。舉例而言,上述純鋁薄 膜11可以透過蒸鍍、濺鍍或熱浸鍍的方式形成。然後,再 利用陽極處理技術在基板1〇表面形成奈米級多孔性氧化 7 /U4 金屬㈣12’例如為多孔性氧化紹薄膜i2 虛線處為形成孔洞之處。 圖一 曾^例而言’對於上述純紹薄膜之陽極處理係在〇.2〜05 莫耳》農度⑽的草酸(C2h2〇4)溶液,外加2〇〜6〇伏 電壓之環境下進行。隨著陽極處理之時間的改變,·多孔: 膜厚度逐漸增加,舉例而言,氧化㈣膜孔洞直 Γο 52::80,卡’孔洞與孔洞之間的距離(排列週期)約為 孔:二?,孔洞密度約為每平方公分具有⑽〜㈣個 孔^舉例=言,氧化紹薄膜之厚度為0.05〜⑽微米。 般而5,陽極處理(_dizati0n)金屬薄膜後呈 ,官狀㈣*tube)結構。形成此種結構型㈣過程^述 二門::通電時,鋁陽極表面的某些部位開始溶解,隨 平^1呂溶解量增加,而陽極表面開始呈現凹凸不 度’時間續增’由於凹凸不平造成溶解速率不一, 交快的部位逐漸凹陷,而溶解的銘離子逐漸形成氫氧 氧化二 =在表面,但是仍留有孔隙以供溶解反應 仃 又時間之後,堆積的沉澱即形成管壁,管壁 =成份包含水氧化銘或勝狀氫氧化銘,其中愈磁 土中央含水量愈少’愈接近純氧化鋁 即為銘溶解沉積的區域,沉積愈久則愈緻密。電解紅域 2酸性溶液進行陽極處理時,酸性電解質會分解純 =屬表面,並且開始成長氧化層。純銘金屬表面分解造 同的產生’同時孔洞底部會形成阻障層使得氧化 曰“屬銘隔離,當孔洞形成趨於穩定時,則將以一定逮 8 M430704 率開始成長,形成類似蜂巢結構的氧化鋁層。 陽極處理時操作電壓會影響孔洞、孔距與細胞的大 J匕們之間的關係是成正比的。換言之,施加的電壓越 大,其孔洞、孔距與細胞也相對的較大。 鋁金屬陽極處理所使用的電解液可以包括很多種,其 中每種電解液的主要化學成份不同,經其處理後的薄膜 组織不同,孔洞性質也因之有所差異。舉例而言,上述電 解液包括:(1)硫酸液’例如15〜2〇%硫酸,操作電壓為14〜22 伏特、電流密度為UA/dm〕、環境溫度18〜2st、處理 夺門10 60刀4里,其可以形成孔洞週期為〜奈米。(2) 草魷液,例如包含〇,3莫耳或3〜5wt%草酸(c汨2〇4),電壓 為40〜60伏特、電流密度為wa/m、環境溫度μ, =、處理時間40〜60分鐘,其可以形成孔洞週期為%〜12〇 ^米。(3)磷酸液,例如含1〇%磷酸,電壓為ι〇〜ΐ2伏特、 環境溫度23〜25。(:、處理時間2〇〜3G分鐘,其可以形成孔 洞週期為480〜520奈米。 刑與Ϊ述=^ €解液之成分組成以及其操作條件僅係本新 i牛出之實施例,並非用以限定本新型。 f新型之發光二極體可以包括—N型半導體層Η,形 成於夕孔性氧化!呂薄膜12之上。心半導體蟲晶層^可 以透過化學氣相沉積(CVD)、有機金屬化學氣相沉積 __)方式形成。另外,一發紗15 半v體層13之上。上述發光層15為一主動層⑽〜 ㈣、、可以由複數個井層(well layer)與複數個阻障層 9 M430704 (barrier layer)交互堆疊而形成。一 P型半導體磊晶層μ, 形成於上述發光層15之上,同樣地,P型半導體層16可 以透過化學氣相沉積(CVD)、有機金屬化學氣相沉積 (MOCVD)方式形成。上述p型半導體層16或n型半導體 層13之材質可以選自氮化鎵(GaN)、氮化銦鎵(inGaN)、氮 化鎵系或氮基(nitride-based)半導體磊晶之一。 第一接觸電極14,形成於上述P型半導體層13之表 面,其係用以作為P型接點或N型接點。另外,一第二接 觸電極17,形成於上述N型半導體層16之上,其係用以 作為N型接點或P型接點。上述二接觸電極,其材質可以 選自鈦/紹(TiAl)、鈦/紹/鈦/金(Ti/Al/Ti/Au)及鈦/|呂/鎳/金 (Ti/Al/Ni/Au)合金之一。 此外,本新型亦提供發光二極體之製造方法,其主要 步驟包括:首先,提供一基板1〇。接著,形成一多孔性光 子曰a體結構1 2於基板1 〇之上。上述多孔性光子晶體纟士構 12係透過純鋁薄膜進行陽極處理製程而形成之多孔性氧 化鋁薄膜。舉一實施例而言,上述基板10之材質包括藍寶 石(sapphire)、氣化鎵(GaN)、氮化紹(A1N)、碳化石夕(siC) 或氮化鎵鋁(GaAIN)。 然後,形成一 N型半導體層13於多孔性光子晶體結 構12之上。之後,形成發光層15於上述N型半導體層 之上。上述發光層15為一主動層(active iayer),其可以由 複數個井層(well layer)與複數個阻障層(barrier layer)交互 堆豐而形成。接著,形成一 P型半導體層16於發光層15 M430704 之上。 然後’形成-第一電極Mn型半導體層13之表面, 其係用來作為N型接觸電極。之後,形心第二電極Η 於^型半導體層16上,其係用來作為p型接觸電極。上 述一電極,其材質可以選自氮化鈦、鈦/鋁(TiAl)、鈦/鋁/ 欽 /金(Ti/Al/Ti/Au)及鈦 /紹 /鎳 /金(Ti/Ai/Ni/Au)合金之一。Some of the embodiments of the present invention will be described in detail below. However, the implementation of the invention is not limited, and the present invention can be widely practiced in other embodiments, and the scope of protection of the present invention is not limited to the following embodiments, which are subject to the scope of the following patent application. The sentence capture 1, the more the month is the description and easier to understand the new type, the figure = part does not have (four) its eye-catching picture, not (four) the details t are not drawn, in order to simplify the illustration. Knives Please refer to the illustrations 'These are shown for illustrative purposes only and are not intended to limit the invention. The crystal of the insect layer is generally reduced = M430704 The defect is directly processed by the surface of the sapphire substrate to form a micron-sized concave-convex structure. The present invention utilizes anodizing technology to fabricate a photonic crystal structure having a (periodic) nano-scale pore on the surface of a substrate (for example, a gemstone substrate). The photonic crystal structure can not only effectively improve the epitaxial quality but also increase the internal quantum luminescence. The efficiency can be controlled and reduced for the total light reflection between the substrate and the epitaxial layer and the lateral light leakage along the interface, so that the external light extraction efficiency can be effectively improved. Moreover, since the photonic crystal effect can also effectively control the wavelength of light, a light source of a narrower bandwidth is emitted. In one embodiment, by adjusting the material of the light-emitting layer such that the light is in the blue light range, a photoexcited light phenomenon is generated by the porous alumina photonic crystal structure of the present invention to increase the light-emitting intensity of the light-emitting diode. Please refer to FIG. 3, which is a cross-sectional view of the light emitting diode structure according to the present invention. The light emitting diode structure includes: a substrate 1 , a porous photonic crystal structure 12 , a first type epitaxial layer 13 , a light emitting layer 15 , a second type of stretching layer 16 , a first contact electrode 14 , and a second Contact electrode 17. In one embodiment, the material of the substrate 10 may be sapphire, gallium nitride (GaN), aluminum nitride (A1N), tantalum carbide (SiC) or gallium aluminum nitride (GaAIN). The substrate 1 is subjected to a roughening process to roughen the surface of the substrate (7) to form a rough surface. In one embodiment, the surface roughening process first forms a metal film on the surface of the substrate 1 , for example, an aluminum metal film 1 . For example, the above-mentioned pure aluminum film 11 can be formed by vapor deposition, sputtering or hot dip plating. Then, an anodizing treatment technique is used to form a nano-sized porous oxide 7 / U4 metal (4) 12' on the surface of the substrate 1 to be, for example, a hole in the dotted line of the porous oxide film i2 to form a hole. In the first example, the anodic treatment of the above-mentioned pure film is carried out in an environment of 草.2~05 Moer (10) oxalic acid (C2h2〇4), plus an environment of 2〇~6〇V. . With the change of the time of the anode treatment, the porous film thickness is gradually increased. For example, the oxidation (4) film hole is straight Γ 52::80, and the distance between the hole and the hole (arrangement period) is about the hole: ? The density of the holes is about (10) to (four) holes per square centimeter. For example, the thickness of the oxide film is 0.05 to 10 micrometers. As usual, 5, anodized (_dizati0n) metal film, after the official (four) * tube) structure. The formation of this type of structure (four) process ^ two doors:: When energized, some parts of the surface of the aluminum anode began to dissolve, with the amount of dissolution of the flat ^ 1 Lu increased, and the surface of the anode began to show irregularities 'time continues to increase' due to unevenness The dissolution rate is different, the fast-moving part is gradually sag, and the dissolved ionic ions gradually form hydrogen oxy-oxidation 2 = on the surface, but there are still pores for the dissolution reaction. After a while, the deposited precipitate forms the tube wall. Tube wall = composition contains water oxidation or sulphuric acid, in which the less water content in the central part of the magnetic soil, the closer to pure alumina is the area where the deposit is dissolved, and the longer the deposition, the denser it is. Electrolytic red domain 2 When the acidic solution is anodized, the acidic electrolyte decomposes purely to the surface and begins to grow the oxide layer. The pure metal surface decomposes the same kind of production. At the same time, the bottom of the hole will form a barrier layer, so that the yttrium oxide is isolated. When the hole formation tends to be stable, it will start to grow at a rate of 8 M430704, forming a honeycomb structure. Alumina layer. The operating voltage during anode treatment affects the relationship between pores and pores and the size of the cells. In other words, the larger the applied voltage, the larger the pores and pores are compared with the cells. The electrolyte used in the anodizing of aluminum metal may include many kinds, and the main chemical composition of each electrolyte is different, and the pore structure of the treated film is different, and the pore properties are also different. For example, The above electrolyte solution comprises: (1) a sulfuric acid liquid 'for example, 15 to 2% sulfuric acid, an operating voltage of 14 to 22 volts, a current density of UA/dm, an ambient temperature of 18 to 2 st, and a treatment of 10, 60 knives and 4 knives. It can form a hole period of ~Nano. (2) Grasshopper liquid, for example, containing strontium, 3 moles or 3~5wt% oxalic acid (c汨2〇4), voltage of 40~60 volts, current density is wa/ m, ambient temperature μ, =, For a time of 40 to 60 minutes, it can form a hole period of %~12〇^m. (3) Phosphoric acid, for example, containing 1% phosphoric acid, voltage ι〇~ΐ2 volt, ambient temperature 23~25. (:, The processing time is 2〇~3G minutes, which can form a hole period of 480~520 nm. The composition of the liquid and the operating conditions are only the embodiment of the new i cow, not used The novel light-emitting diode can include an -N-type semiconductor layer Η, which is formed on the smectic oxidized 吕 薄膜 film 12. The core semiconductor crystallization layer can be CVD, organic Formed by metal chemical vapor deposition __). In addition, a hair yarn 15 is above the semi-v body layer 13. The light-emitting layer 15 is an active layer (10)~(4), and may be composed of a plurality of well layers and a plurality of layers. A barrier layer 9 M430704 (barrier layer) is formed by alternately stacking. A P-type semiconductor epitaxial layer μ is formed on the light-emitting layer 15, and similarly, the P-type semiconductor layer 16 can be transparently deposited by chemical vapor deposition (CVD). Formed by organometallic chemical vapor deposition (MOCVD). The above p-type half The material of the bulk layer 16 or the n-type semiconductor layer 13 may be selected from one of gallium nitride (GaN), indium gallium nitride (inGaN), gallium nitride based or nitride-based semiconductor epitaxial. 14. The surface of the P-type semiconductor layer 13 is formed as a P-type contact or an N-type contact. Further, a second contact electrode 17 is formed on the N-type semiconductor layer 16, Used as an N-type contact or a P-type contact. The above two contact electrodes may be made of titanium/salt (TiAl), titanium/sand/titanium/gold (Ti/Al/Ti/Au), and titanium/| One of Lu/Al/Ni (Ti/Al/Ni/Au) alloys. In addition, the present invention also provides a method of manufacturing a light-emitting diode, the main steps of which include: first, providing a substrate 1 〇. Next, a porous photonic germanium a body structure 12 is formed over the substrate 1 . The porous photonic crystal gentleman structure 12 is a porous aluminum oxide film formed by performing an anodizing process through a pure aluminum film. In one embodiment, the material of the substrate 10 includes sapphire, gallium hydride (GaN), nitriding (A1N), carbonized stone (siC) or gallium aluminum nitride (GaAIN). Then, an N-type semiconductor layer 13 is formed over the porous photonic crystal structure 12. Thereafter, the light-emitting layer 15 is formed on the above-mentioned N-type semiconductor layer. The luminescent layer 15 is an active iayer, which can be formed by a plurality of well layers interacting with a plurality of barrier layers. Next, a P-type semiconductor layer 16 is formed over the light-emitting layer 15 M430704. Then, the surface of the first electrode Mn-type semiconductor layer 13 is formed, which is used as an N-type contact electrode. Thereafter, the centroid second electrode is applied to the semiconductor layer 16, which serves as a p-type contact electrode. The above electrode may be made of titanium nitride, titanium/aluminum (TiAl), titanium/aluminum/chin/gold (Ti/Al/Ti/Au), and titanium/sau/nickel/gold (Ti/Ai/Ni). /Au) One of the alloys.

J用上述夕孔性氧化銘薄膜之特性,使得上述發光層 15所形成之發光路徑在N型半導體層13與基板w之界面 之間降低反射率,使得大部分激發之光可以輻射至元件之 外部。結果使得本新型之發光二極體之取光效率⑴咖 atractlon efflciency)提高。另外,此光子晶體結構也能有 政的改善磊晶品質,增加内部量子發光效率。 本新型的主要優點如下: 1.利用陽極處理製程於(藍寶石)基板上達到表面粗化 ::效果’⑤了能有效提昇内部發光效率之外,也可以簡化 ‘程,避免因製程加工所造成的損害。 利用光子晶體效應’可以有效的改善蟲晶品質以及 宜”属光問題’而結構本身週期性的凹凸型態亦可以減少 土板與磊晶層之間的全反射情形,增加光的取出效率。 3.本新型之製程簡易且適合用於大面積元件的製造。 新别本新⑨以^佳實施例說明如上,然其並非用以限定本 :主張之專利權利範圍。其專利保護範圍當視後附之 :巧專利範圍及其等同領域而定。凡熟悉此領域之技藝 在不脫離本專利精神或範圍内,所作之更動或潤飾, M430704 句屬於本新型所揭示精神下所完成之等效改變或設計,且 應包含在下述之申請專利範圍内。 【圖式簡單說明】 藉由以下詳細之描述結合所附圖示,將可輕易的了解 上述内容及此項新型之諸多優點,其中: 圖為根據本新型之基板上形成金屬薄膜之截面圖。 圖二為根據本新型之基板上形成多孔性光子晶體結構J is characterized in that the light-emitting path formed by the light-emitting layer 15 reduces the reflectance between the interface between the N-type semiconductor layer 13 and the substrate w, so that most of the excited light can be radiated to the element. external. As a result, the light extraction efficiency (1) coffee atractlon efflciency of the novel light-emitting diode is improved. In addition, this photonic crystal structure can also effectively improve the epitaxial quality and increase the internal quantum luminous efficiency. The main advantages of this new model are as follows: 1. Use the anodizing process to achieve surface roughening on the (sapphire) substrate: the effect '5 can effectively improve the internal luminous efficiency, and can also simplify the 'process, avoiding the process processing Damage. The use of the photonic crystal effect can effectively improve the quality of the crystallites and the "light problem", and the periodic irregular shape of the structure itself can also reduce the total reflection between the soil and the epitaxial layer and increase the efficiency of light extraction. 3. The process of the present invention is simple and suitable for the manufacture of large-area components. The new Benben 9 is described above as a preferred embodiment, but it is not intended to limit the scope of the claimed patent rights. Included in the following: the scope of the patents and their equivalents. The skills of the art in this field are modified or retouched without departing from the spirit or scope of this patent. The M430704 sentence is equivalent to the spirit of the present invention. Modifications or designs are included in the scope of the following claims. [Simplified Description of the Drawings] The above and other advantages of the novel can be readily understood by the following detailed description in conjunction with the accompanying drawings. The figure shows a cross-sectional view of a metal thin film formed on a substrate according to the present invention. Fig. 2 shows a porous photonic crystal structure formed on a substrate according to the present invention.

_圖二為根據本新型之具有多 二極體之戴面圖。 孔性光子晶體結構之發光 【主要元件符號說明】 基板.· 10_ Figure 2 is a front view of a multi-diode according to the present invention. Luminous photonic crystal structure luminescence [Main component symbol description] Substrate.· 10

铭金屬薄瞑·.u 多孔性氧化鋁薄膜..12 N型半導體層..13 第一電極.· 14 發光層· · j 5 P型半導體層..16 第一電極· · 1, 12铭金属薄瞑·.u Porous Alumina Film: 12 N-type semiconductor layer..13 First electrode.· 14 Light-emitting layer · · j 5 P-type semiconductor layer..16 First electrode · · 1, 12

Claims (1)

M430704 六、申請專利範圍: 1· 一種發光二極體,包括: 基板; 多孔性光子晶體結構,形成於該基板之上; 第一型磊晶層,形成於該多孔性光子晶體結構之上; 發光層,形成於該第一型磊晶層之上; 第二型磊晶層,形成於該發光層之上; 第一接觸電極,形成於該第一型磊晶層之上;以及 第一接觸電極,形成於該第二型蠢晶層之上。 2. 如請求項第1項之發光二極體,其中該基板之材質包括 藍寶石、氮化鎵、氮化鋁、碳化矽或氮化鎵鋁。 3. 如明求項第1項之發光二極體,更包括一緩衝層形成於 該基板之上。 4. 如T求項第3項之發光二極體,其中該緩衝層之材質包 括氮化鎵、氮化鋁或氮化鎵鋁。 5. 如請求項第Μ之發光二極體,其中該多孔性光子晶體 層之孔洞大小為3〇〜8〇奈米。 6.如。月求項第1項之發光二極體,其中該多孔性光子晶體 層之孔洞排列週期為4〇〜52〇奈米。 13 8. 如 請求項第1項之發光二 極 層之孔洞密度為每平方公分具有 ’其中該多孔性光子晶體 108〜1012個孔洞。 其中該多孔性光子 如吻求項第1項之發光二極體, 層包括多孔性氧化鋁薄膜。 膜係對^第8項之發光二極體,其中該多孔性氧化銘薄 、“柄薄膜進行陽極處理製程所形成。 长項第9項之發光二極體,其中該純銘薄膜係透過 瘵鍍、濺鍍或熱浸鍍之方法所形成。 11. =項第9項之發光二極體,其中該陽極處理之電解 工 巩奴液、鉻酸液、草酸液、磷酸液、硼酸液或酒 石&液或其組合溶液。 ’其中該氧化鋁薄膜之厚 12.如請求項第9項之發光二極 度為0.05〜1〇〇微米。 曰曰 13·如叫求項第1項之發光二極體,其巾該多孔性光子 結構係藉由陽極處理所形成。 14.如二,項第i項之發光二極體,其中該第一型磊晶層之 材^可以選自I化鎵、氮化钢鎵、ll化鎵系或氮基半導 M430704 體蠢晶之_ 15_如睛求項楚 材質可/ 項之發光二極體,其中該第二型磊晶層之 乂選自氮化鎵、氮化銦鎵、氮化鎵系或氮基半導 體站晶之一 16.M430704 VI. Patent application scope: 1. A light-emitting diode comprising: a substrate; a porous photonic crystal structure formed on the substrate; a first type epitaxial layer formed on the porous photonic crystal structure; a light emitting layer formed on the first type epitaxial layer; a second type epitaxial layer formed on the light emitting layer; a first contact electrode formed on the first type epitaxial layer; and a first A contact electrode is formed over the second type of stray layer. 2. The light-emitting diode of claim 1, wherein the substrate comprises sapphire, gallium nitride, aluminum nitride, tantalum carbide or aluminum gallium nitride. 3. The light-emitting diode of claim 1, further comprising a buffer layer formed on the substrate. 4. The light-emitting diode of item 3 of claim 2, wherein the material of the buffer layer comprises gallium nitride, aluminum nitride or aluminum gallium nitride. 5. The light-emitting diode of claim 3, wherein the porous photonic crystal layer has a pore size of from 3 Å to 8 Å. 6. For example. The light-emitting diode of item 1 of the present invention, wherein the porous photonic crystal layer has a hole arrangement period of 4 〇 to 52 〇 nanometer. 13 8. The hole density of the light-emitting diode layer of item 1 of the claim has a diameter of 108 to 1012 per square centimeter of the porous photonic crystal. The porous photon is the light-emitting diode of the first item, and the layer comprises a porous alumina film. The film system is the light-emitting diode of the eighth item, wherein the porous oxide is thin and the "handle film is formed by an anodizing process. The light-emitting diode of item 9 of the long term, wherein the pure film is transmitted through the crucible. Formed by plating, sputtering or hot dip plating. 11. = Item 9 of the light-emitting diode, wherein the anodized electrolysis work, chromic acid, oxalic acid, phosphoric acid, boric acid or Tartar & or a combination solution thereof. 'Where the thickness of the aluminum oxide film is 12. The luminous dipole of item 9 of claim 9 is 0.05 to 1 micron. 曰曰13· a light-emitting diode, wherein the porous photonic structure is formed by anodization. 14. The light-emitting diode according to item 2, wherein the first type of epitaxial layer is selected from the group consisting of Gallium, carbon steel gallium, ll gallium or nitrogen based semiconducting M430704 stupid crystal _ 15_ as the eye can be found in the material of the material / item of the light-emitting diode, which is the second type of epitaxial layer One selected from the group consisting of gallium nitride, indium gallium nitride, gallium nitride or nitrogen based semiconductors. 〇月求項第1項之發光二極體,其中該第一 該第二型為P型,或該第一型為p型與言 型。 /、° 型為N型與 第二型為N 15In the light-emitting diode of item 1, the first second type is a P type, or the first type is a p type and a speech type. /, ° type is N type and second type is N 15
TW100207234U 2006-11-03 2006-11-03 Light emitting diode structure TWM430704U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100207234U TWM430704U (en) 2006-11-03 2006-11-03 Light emitting diode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100207234U TWM430704U (en) 2006-11-03 2006-11-03 Light emitting diode structure

Publications (1)

Publication Number Publication Date
TWM430704U true TWM430704U (en) 2012-06-01

Family

ID=46722538

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100207234U TWM430704U (en) 2006-11-03 2006-11-03 Light emitting diode structure

Country Status (1)

Country Link
TW (1) TWM430704U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9831384B2 (en) 2013-04-25 2017-11-28 Epistar Corporation Light emitting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9831384B2 (en) 2013-04-25 2017-11-28 Epistar Corporation Light emitting device

Similar Documents

Publication Publication Date Title
TWI396297B (en) Light emitting diode structure and manufacturing method of the same
CN101777615B (en) Method for preparing GaN substrate with porous surface and GaN substrate prepared by using the method
WO2022135304A1 (en) Alingan ultraviolet light-emitting diode grown on nano-patterned substrate, and preparation method therefor
CN108615797B (en) AlGaN base uv-LED device and preparation method thereof with surface phasmon rotary table nano-array
CN206602125U (en) A kind of AlGaInP light emitting diodes thin film chip structure
An et al. Increased light extraction from vertical GaN light-emitting diodes with ordered, cone-shaped deep-pillar nanostructures
CN106601884B (en) Zno-based nano rod/compound UV LED of Quantum Well and preparation method thereof
WO2023137814A1 (en) Method for manufacturing high-voltage led chip
CN106816511A (en) Light emitting diode chip and manufacturing method thereof
CN108520911A (en) A kind of preparation method of the InGaN base blue LEDs with nanoporous GaN distribution Bragg reflectors
CN110808315A (en) Method for increasing GaN Micro-LED color conversion efficiency
TWI336961B (en) Light emitting diode structure and manufacturing method of the same
CN104319328A (en) GaN-based LED chip surface roughening method
TWM430704U (en) Light emitting diode structure
TW200822385A (en) Light emitting diode structure and manufacturing method of the same
TWI335678B (en) Light emitting diode structure and manufacturing method of the same
CN101740704B (en) Method for manufacturing GaN-based LED with photonic crystal structure
Sung et al. InGaN/GaN light emitting diodes grown on nanoimprint-based hollow-patterned sapphire substrates
CN109830583A (en) A kind of preparation method of the blue light-emitting diode with GaN/ lar nanometric cavities
CN102487113A (en) GaN-based light-emitting diode (LED) epitaxial wafer capable of improving luminous efficiency, and preparation method and application thereof
CN214043695U (en) AlInGaN ultraviolet light emitting diode based on nano-pattern substrate
Li et al. Bright and Stable Yellow Quantum Dot Light‐Emitting Diodes Through Core–Shell Nanostructure Engineering
CN103840059A (en) White LED chip and preparation method thereof
CN102299219A (en) Nano-patterned substrate and preparation method thereof and light emitting diode
Chen et al. Zigzag and Helical AlN Layer Prepared by Glancing Angle Deposition and Its Application as a Buffer Layer in a GaN‐Based Light‐Emitting Diode

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model