TWM424629U - Using improved stepped impedance resonators duplexer - Google Patents

Using improved stepped impedance resonators duplexer Download PDF

Info

Publication number
TWM424629U
TWM424629U TW100220410U TW100220410U TWM424629U TW M424629 U TWM424629 U TW M424629U TW 100220410 U TW100220410 U TW 100220410U TW 100220410 U TW100220410 U TW 100220410U TW M424629 U TWM424629 U TW M424629U
Authority
TW
Taiwan
Prior art keywords
impedance resonator
step impedance
opening
open
square open
Prior art date
Application number
TW100220410U
Other languages
Chinese (zh)
Inventor
Zheng-Yuan Hong
Rui-Yuan Yang
zhi-qin Lin
Jia-Sheng Lin
Original Assignee
Tung Fang Design University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tung Fang Design University filed Critical Tung Fang Design University
Priority to TW100220410U priority Critical patent/TWM424629U/en
Publication of TWM424629U publication Critical patent/TWM424629U/en

Links

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Description

五、新型說明: 【新型所屬之技術領域】 [0001] 本創作係關於一種雙工器,尤指一種使用改良型步階阻 抗共振器之雙工器。 【先前技術】 [0002] 可結合全球衛星定位系統(61〇531?口〇311;1〇11875-tem,GPS)(at 1.575GHz)以及無線區域網路 (Wireless Local Area Network, WLAN)(at IEEE 802. llb/g 2. 4/2. 45GHz)之多工服務的無線通訊系統 在現今是相當熱門,因此,相關的研究近年來漸趨重要 〇 又,因雙工器(Diplexer)可作為具有雙頻特性的無線通 訊系統之重要元件,故關於雙工器的研究亦漸趨重要, 其中,有一種使用步階式阻抗共振器之雙工器,因可兼 顧小尺寸、低***損耗,並同時達到高帶通隔離以及寬 止帶,所以是目前一種相當受到重視的設計。 然而,傳統使用步階式阻抗共振器之雙工器係利用傳統 步階阻抗共振器(the conventional SIR)(如第二圖所 示),以致於該傳統使用步階式阻抗共振器之雙工器所產 生的止帶寬度仍顯不足,帶通隔離度亦不足,從而使兩 通帶之間的訊號產生相互干擾的情形。 【新型内容】 [0003] 有鑒於先前技術的問題,本創作之目的在於,提供一可 產生較寬與深止帶以及高帶通隔離的雙工器,以減少兩 通帶之間的訊號相互干擾的情形。 表單编號A0101 第3頁/共20頁 為達上述之創作目的本創作之技術手段在於,提供一種 使用改良型步階阻抗共振器之雙工器,其主要包括: 一基板:具有一第一表面; 一第一帶通濾波器:設於該第一表面且包括相間隔之一 第一方形開路步階阻抗共振器以及一第二方形開路步階 阻抗共振器,且其等概呈相對稱,另該第一方形開路步 階阻抗共振器内部具有一第一中空區域,該第一中空區 域連通一第一開口,該第二方形開路步階阻抗共振器内 部具有一第二中空區域,該第二中空區域連通一第二開 口,且該第二開口與該第一開口相對,該第二方形開路 步階阻抗共振器設一第一信號輸出端; 一第二帶通濾波器:設於該第一表面且與該第一帶通濾 波器相間隔,並包括相間隔之一第三方形開路步階阻抗 共振器以及一第四方形開路步階阻抗共振器,且其等概 呈相對稱,另該第三方形開路步階阻抗共振器内部具有 一第三中空區域,該第三中空區域連通一第三開口,該 第四方形開路步階阻抗共振器内部具有一第四中空區域 ,該第四中空區域連通一第四開口,該第四開口與該第 三開口相對,且該第四方形開路步階阻抗共振器設有一 第二信號輸出端; 一輸入線:係為分支饋入結構且連接該第一方形開路步 階阻抗共振器以及該第三方形開路步階阻抗共振器,以 提供輸入電源與阻抗匹配,且該輸入線設有一信號輸入 端0 藉此,本創作可藉由使用改良型步階阻抗共振器,來提 供一可產生較寬與深止帶以及高帶通隔離的雙工器,以 表單编號A0101 第4頁/共20頁 減少兩通帶之間的訊號相互干擾的情形。 【實施方式】 [_]以下藉由圖式說明本創作之内容、特色與實施例俾使 責審查人員對於本創作有更進一步之瞭解。 請參閱第-圖所示,本創作使用改良型步階阻抗共振器 之雙工器的實施例,主要包括: 一基板(1):具有一第一表面(11); 一第一帶通濾波器(the first BPF)(2): 設於該第一表面(11)且包括相間隔之一第一方形開路步 階阻抗共振器(the first square open-loop SIR) (21 )以及一第二方形開路步階阻抗共振器(the first square open-loop SIR)(22),且其等概呈相 對稱,另該第一方形開路步階阻抗共振器(21)内部具有 一第一中空區域(211),該第一中空區域(211)連通一第 一開口(212) ’該第二方形開路步階阻抗共振器(22)内 部具有一第二中空區域(221),該第二中空區域(221)連 通一第二開口(222),且該第二開口(222)與該第一開口 (212)相對’該第二方形開路步階阻抗共振器(22)設一 第一信號輸出端(223);且由第一圖觀之,於實施例該第 一帶通濾波器(2)是設於該基板(1)左側的部分,以供應 用於WLAN,且其中心頻率為2. 4GHz ; 一第二帶通遽波器(the second BPF)(3): 設於該第一表面(11)且與該第一帶通濾波器(2)相間隔, 並包括相間隔之一第三方形開路步階阻抗共振器(the second BPF)(31)以及一第四方形開路步階阻抗共振器 (the fourth third square open-loop SIR)(32) 表單編號A0101 第5頁/共20頁 M424629 ,且其等概呈相對稱,另該第三方形開路步階阻抗共振 器(31)内部具有一第三中空區域(311),該第三中空區 域(311)連通一第三開口(312),該第四方形開路步階阻 抗共振器(32)内部具有一第四中空區域(321),該第四 中空區域(321)連通一第四開口(322),該第四開口 (322)與該第三開口(312)相對,且該第四方形開路步階 阻抗共振器(32)設有一第二信號輸出端(323);且由第 一圖觀之’於實施例該第二帶通濾波器(3)是設於該基板 (1)右側的部分,以供應用於GPS,且其中心頻率為 1.575GHz ; 一輸入線(inport line)(4): 係為分支饋入結構且連接該第一方形開路步階阻抗共振 器(21)以及該第三方形開路步階阻抗共振器(31),以提 供輸入電源與阻抗匹配,且該輸入線(4)設有一信號輸入 端(41) 〇 請參閱第一圖所示,進一步而言,於實施例該第一中空 區域(211)概呈「凸」字形,且該第二中空區域(221)概 呈與該第一中空區域(211)相反方向之「凸」字形,另該 第三中空區域(311)概呈「凸」字形,且該第四中空區域 (321)概呈與該第三中空區域(311)相反方向之「凸」字 形。 請參閱第一圖所示,於實施例該基板(1)為Duroid 5880 ’且其厚度為〇. 787mm,介電常數(die 1 ectric constant) 為 2. 2 , 損 失正切 ( i〇Ss tangent) 為 0. 0009 〇 此外’本創作具有62mmx32mm之小尺寸,即近似於0. 44 Ag x0. 23 AgC其中;lg為中心頻率k 575GHz之波導波 表單编號A0101 . 第6頁/共20頁 M424629 長);或近似於0.67又g x0.35Ag(其中Ag為令心頻率 2· 4GHz之波導波長)。 請參閱第二®所示,_統步階阻抗共振⑽結構示音 圖,並配合參閱第三圖所示,即本文所稱之改良型步階 阻抗共振器。其中,該改良型步階阻抗共振器(如第三圖 所示)係藉由f折傳統步階阻抗共振器(如第二圖所示)所 形成,且於實施财,該第—至第四之方賴路步階阻 抗共振器(21)、(22)、(31)、(32)係使用該改良型步V. New description: [New technology field] [0001] This work is about a duplexer, especially a duplexer using a modified step impedance resonator. [Prior Art] [0002] It can be combined with global satellite positioning system (61〇531? port 311; 1〇11875-tem, GPS) (at 1.575GHz) and Wireless Local Area Network (WLAN) (at IEEE 802. llb/g 2. 4/2. 45 GHz) multiplex service wireless communication systems are quite popular today, so related research has become increasingly important in recent years, because the duplexer (Diplexer) can be used as An important component of a wireless communication system with dual-frequency characteristics, so research on duplexers is becoming more and more important. Among them, there is a duplexer using a stepped impedance resonator, which can take care of small size and low insertion loss. At the same time, it achieves high bandpass isolation and wide bandstops, so it is currently a design that is highly valued. However, the conventional duplexer using the stepped impedance resonator utilizes a conventional stepped-resistance resonator (the conventional SIR) (as shown in the second figure), so that the conventional use of the stepped impedance resonator is duplexed. The width of the stop band produced by the device is still insufficient, and the band pass isolation is also insufficient, so that the signals between the two pass bands interfere with each other. [New Content] [0003] In view of the problems of the prior art, the purpose of the present invention is to provide a duplexer capable of generating a wide and deep stop band and a high band pass isolation to reduce the mutual signal between the two pass bands. The situation of interference. Form No. A0101 Page 3 of 20 The technical means for achieving the above-mentioned creation is to provide a duplexer using an improved step impedance resonator, which mainly comprises: a substrate: having a first a first band pass filter: disposed on the first surface and including one of the first square open step impedance resonators and a second square open step impedance resonator, and the like Symmetrically, the first square open-step impedance resonator has a first hollow region therein, the first hollow region is connected to a first opening, and the second square open-step impedance resonator has a second hollow region inside. The second hollow region is connected to a second opening, and the second opening is opposite to the first opening. The second square open step impedance resonator is provided with a first signal output end; a second band pass filter: Provided on the first surface and spaced apart from the first band pass filter, and includes a third-party open-circuit step impedance resonator and a fourth square open-step impedance resonator, and the like Correspondingly, the third open-circuit step impedance resonator has a third hollow region inside, and the third hollow region is connected to a third opening, and the fourth square open step impedance resonator has a fourth hollow region inside. The fourth hollow region is connected to a fourth opening, the fourth opening is opposite to the third opening, and the fourth square open-step impedance resonator is provided with a second signal output end; an input line is a branch feed The first square open-step impedance resonator and the third-party open-step impedance resonator are connected to provide input power and impedance matching, and the input line is provided with a signal input terminal 0. By using a modified step impedance resonator, a duplexer capable of generating a wide and deep stop band and a high band pass isolation can be provided by the form number A0101, page 4 / total 20 pages. The situation where the signals interfere with each other. [Embodiment] [_] The content, features and examples of the creation are explained below by the schema, and the examiner has a better understanding of the creation. Referring to the figure, the embodiment of the duplexer using the improved step impedance resonator mainly comprises: a substrate (1) having a first surface (11); a first band pass filter. The first BPF (2): is disposed on the first surface (11) and includes a first square open-loop SIR (21) and a first interval The first square open-loop SIR (22), and the first square open-loop SIR (22), and the first square open-step impedance resonator (21) has a first hollow inside a region (211), the first hollow region (211) is connected to a first opening (212). The second square open-step impedance resonator (22) has a second hollow region (221) inside, the second hollow The second opening (222) is connected to the second opening (222), and the second opening (222) is opposite to the first opening (212). The second square open step impedance resonator (22) is provided with a first signal output. End (223); and viewed from the first figure, in the embodiment, the first band pass filter (2) is disposed on the left side of the substrate (1) Partially supplied for WLAN, and having a center frequency of 2. 4 GHz; a second band pass filter (the second BPF) (3): disposed on the first surface (11) and connected to the first band The filter (2) is spaced apart and includes a third-party open-circuit impedance resonator (the second BPF) (31) and a fourth third open-loop impedance resonator (the fourth third open-loop) SIR) (32) Form No. A0101 Page 5 of 20 M424629, and its equivalent is symmetrical, and the third-party open-step impedance resonator (31) has a third hollow area (311) inside. The third hollow region (311) is connected to a third opening (312). The fourth square open-step impedance resonator (32) has a fourth hollow region (321) inside, and the fourth hollow region (321) is connected. a fourth opening (322), the fourth opening (322) is opposite to the third opening (312), and the fourth square open step impedance resonator (32) is provided with a second signal output end (323); And the second band pass filter (3) is a portion disposed on the right side of the substrate (1) for the embodiment. Applied to GPS, and its center frequency is 1.575 GHz; an input line (4): is a branch feeding structure and is connected to the first square open step impedance resonator (21) and the third party An open step impedance resonator (31) for providing input power and impedance matching, and the input line (4) is provided with a signal input terminal (41), please refer to the first figure, and further, in an embodiment The first hollow region (211) has a "convex" shape, and the second hollow region (221) has a "convex" shape opposite to the first hollow region (211), and the third hollow region (311) The outline is "convex", and the fourth hollow region (321) is substantially convex in the opposite direction to the third hollow region (311). Referring to the first figure, in the embodiment, the substrate (1) is Duroid 5880' and its thickness is 〇. 787 mm, the dielectric constant (die 1 ectric constant) is 2.2, and the loss tangent (i〇Ss tangent) 0. 0009 〇 In addition, 'this creation has a small size of 62mm x 32mm, which is similar to 0. 44 Ag x0. 23 AgC where; lg is the waveguide wave form number A0101 with center frequency k 575GHz. Page 6 of 20 M424629 Long); or approximately 0.67 and g x0.35Ag (where Ag is the waveguide wavelength of the heart frequency of 2·4 GHz). Refer to the second (shown in the second ®), the _step-step impedance resonance (10) structure diagram, and refer to the third diagram, which is referred to as the improved step impedance resonator. Wherein, the improved step impedance resonator (as shown in the third figure) is formed by f-folding a conventional step impedance resonator (as shown in the second figure), and in the implementation, the first to the first The four-step Lai step impedance resonators (21), (22), (31), (32) use the modified step

階阻抗共振器(如第三圖所示)。且一般而言,步階阻抗 八振器主要疋由-㊣阻抗段以及兩低阻抗段所形成其 中高阻抗段之特性阻抗為Z1,其電子長度為,該各低 阻抗段的特性阻抗為Z2 ’其等的電子長度為θ2,且步階 阻抗共振器的總電子長度係定義為,其阻抗比 OOUmpedance ratio)係定義為R= Z2/ z卜電子長 度比U)為α = 0 2/(01+02) = 2 Θ 2/0t。且在步階式 阻抗共振器的設計上,可經由調整阻抗比及電子長度比 來決疋其共振頻率。Order impedance resonator (as shown in the third figure). In general, the step impedance eight-oscillator is mainly formed by a positive-impedance section and two low-impedance sections, wherein the characteristic impedance of the high-impedance section is Z1, and the electron length is the characteristic impedance of the low-impedance section is Z2. 'The electron length of the equal-order is θ2, and the total electron length of the step-impedance resonator is defined as the impedance ratio of the OOUmpedance ratio is defined as R=Z2/z, and the electron length ratio U) is α = 0 2/( 01+02) = 2 Θ 2/0t. In the design of the stepped impedance resonator, the resonance frequency can be determined by adjusting the impedance ratio and the electron length ratio.

請參閱第四圖所示,係傳統步階阻抗共振器(如第二圖所 示)以及該改良型步階阻抗共振器(如第三圖所示)之模擬 頻率響應圖。由此圖可知,該改良型步階阻抗共振器(如 第三圖所示)的止帶無論在寬度或深度上皆優於傳統步階 阻抗共振器(如第二圖所示)。 請參閱第五圖所示,第五圖係本創作之幾何構造示意圖 ,並配合第一圖所示,其中該第一方形開路步階阻抗共 振器(21)以及該第二方形開路步階阻抗共振器(22)的阻 抗比00皆為0.53,電子長度比(α)皆為〇 69,且該第 表單編號Α0101 第7頁/共20頁 二方形開路步階阻抗共振器(31)以及該第四方形開路步 階阻抗共振器(32)的阻抗比(R)皆為〇. 53,電子長度比( α )皆為〇· 78。且以下則為本創作相關的結構參數 (structural parameters) : Lal = 18.93ram 'See Figure 4 for an analog frequency response diagram of a conventional step impedance resonator (shown in Figure 2) and the modified step impedance resonator (shown in Figure 3). As can be seen from the figure, the modified step impedance resonator (as shown in the third figure) is superior to the conventional step impedance resonator in width or depth (as shown in the second figure). Please refer to the fifth figure. The fifth figure is a schematic diagram of the geometric structure of the creation, and is shown in the first figure, wherein the first square open step impedance resonator (21) and the second square open step The impedance resonator (22) has an impedance ratio of 00 of 0.53, an electron length ratio (α) of 〇69, and the first form number Α0101, page 7 of 20 square open-circuit step impedance resonators (31) and The impedance ratio (R) of the fourth square open step impedance resonator (32) is 〇. 53, the electron length ratio (α) is 〇·78. And the following are the structural parameters related to the creation: Lal = 18.93ram '

La2 = 17.63mro、Lbl = 14· 23mm、Lb2 = 8. 24mm、La2 = 17.63mro, Lbl = 14·23mm, Lb2 = 8. 24mm,

Lcl-l〇.9mm、Lc2 = 39. 5mra、Wal=2. 15mm、Wa2 = 5. 2mm 、Wbl = 2·15mm、ffb2 = 5. 2ram、gl=3. 2ram、g2 = 3. 2mm、 δ1 = 0· Ymin、S2 = 0_ 7mm。 請參閱第六圖所示,係本創作之模擬頻率響應圖,其中 S11係表示返回損失(return i〇ss),S21 ' S31係表示 ***損失(Insertion loss),S23係表示隔離度 (Isolation)。由此圖可知,在兩偭通帶的緣邊分別存 在傳輸零點(Transmission zeros);而且,因為交互 抑制(the inter-re ject ion)表現的抑制程度(the rejection level)是大於36. 9dB,而為非常優異的表 現’因此沒有通帶受干擾;除此之外,由於良好的阻抗 匹配’可以在兩個頻帶之間獲得大於6〇dB的高隔離度 (S23)。 請參閱第七圖所示,係本創作於實測之頻率響應圖,其 中SI 1係表示返回損失(return loss),S21、S31係表 示***損失(Insertion loss),S23係表示隔離度 (Isolation)。由此圖可知,在本創作使用改良型步階 阻抗共振器之雙工器的第一通帶,包括中心頻率為 1.575GHz而具有1.8dB***損失S21,且於超過1.48GHz ’有一大於30dB的低頻部分止帶壓抑(8 1〇\^犷51:〇卩-band rejection),在 1.675至4. 5GHz之間,有一大於 表單編號A0101 第8頁/共20頁 25dB之 1¾頻部分止帶壓抑(a Higher stopband re-jection);另外,在第二通帶,包括中心頻率為 2. 43GHz而具有2. 3dB***損失S31,且於超過2. 32GHz ’有一大於35dB的低頻部分止帶壓抑(a lower stop-band rejection) ’ 在 2. 58 至.4· 5GHz之間 ,有 一大於 30dB之 1¾頻部分止帶壓抑(a Higher stopband reject ion) 。 因此,兩通帶的***損失,主要是來自於基板本身的介 電損失(dielectric loss)以及銅的金屬損失(copper metalisation loss),而且,使用改良型步階阻抗共 振器(如第三圖所示)可產生寬又深的止帶,可獲得大於 35dB之父互抑制程度(the inter-rejection level) ,而且沒有通帶是被干涉的;此外,藉由良好的阻抗匹 配,兩頻帶(channels)之間的隔離度(S23)較35dB好。 此外,由第六圖與第七圖可知,實測的結果和模擬的結 果是相當一致的。 簡言之,本創作之使用改良型步階阻抗共振器之雙工器 ,係可藉由使用改良型步階阻抗共振器(如第三圖所示) ,來提供一可產生較寬與深止帶以及高帶通隔離的雙工 器’以減少兩通帶之間的訊號相互干擾的情形。 綜上所述,本創作確實符合產業利用性,且未於申請前 見於刊物或公開使用,亦未為公眾所知悉,且具有非顯 而易知性,符合可專利之要件,爰依法提出專利申請。 惟上述所陳,為本創作產業上之較佳實施例,舉凡依本 創作申請專利範圍所作之均等變化,皆屬本案訴求標的 之範_。 表單編號A0101 第9頁/共20頁 M424629 【圖式簡單說明】 [0005] 第一圖係本創作之實施例的示意圖。 第二圖係傳統步階阻抗共振器的結構示意圖。 第三圖係改良型步階阻抗共振器的結構示意圖。 第四圖係傳統步階阻抗共振器以及改良型步階阻抗共振 器之模擬頻率響應圖。 第五圖係本創作之幾何構造示意圖。 第六圖係本創作之模擬頻率響應圖。 第七圖係本創作之實測頻率響應圖。 【主要元件符號說明】 [0006] (1)基板 (11)第一表面 (2) 第一帶通濾波器 (21) 第一方形開路步階阻抗共振器 (211) 第一中空區域 (212) 第一開口 (22) 第二方形開路步階阻抗共振器 (221) 第二中空區域 (222) 第二開口 (223) 第一信號輸出端 (3) 第二帶通濾波器 (31) 第三方形開路步階阻抗共振器 (311) 第三中空區域 (312) 第三開口 (32) 第四方形開路步階阻抗共振器 (321)第四中空區域 表單编號A0101 第10頁/共20頁 M424629 (322) 第四開口 (323) 第二信號輸出端 (4)輸入線 (41)信號輸入端Lcl-l〇.9mm, Lc2 = 39. 5mra, Wal=2. 15mm, Wa2 = 5. 2mm, Wbl = 2·15mm, ffb2 = 5. 2ram, gl=3. 2ram, g2 = 3. 2mm, δ1 = 0· Ymin, S2 = 0_ 7mm. Please refer to the sixth figure, which is the simulated frequency response diagram of the present creation, in which S11 is the return loss (return i〇ss), S21 'S31 is the insertion loss (Insertion loss), and S23 is the isolation (Isolation). . As shown in the figure, the transmission zeros are present at the edges of the two passbands; and the rejection level of the inter-rejection is greater than 36.9 dB, It is a very excellent performance 'so no passband is disturbed; in addition, a good isolation of more than 6 〇 dB can be obtained between the two bands due to good impedance matching (S23). Please refer to the figure 7 for the measured frequency response diagram, where SI 1 is the return loss, S21 and S31 are the insertion loss, and S23 is the isolation. . As can be seen from the figure, the first passband of the duplexer using the improved step impedance resonator in this creation includes a center frequency of 1.575 GHz and a 1.8 dB insertion loss S21, and a value greater than 30 dB over 1.48 GHz. The low-frequency part of the band is suppressed (8 1〇\^犷51: 〇卩-band rejection), between 1.675 and 4. 5GHz, there is a 13⁄4 frequency partial stop band suppression greater than the form number A0101 page 8 / total 20 pages 25dB (a Higher stopband re-jection); in addition, in the second passband, including a center frequency of 2.43 GHz with a 2.3 dB insertion loss S31, and at more than 2.32 GHz 'has a low frequency partial stop band suppression greater than 35 dB ( a lower stop-band rejection) ' Between 2.58 and .4·5 GHz, there is a higher stopband reject ion greater than 30 dB. Therefore, the insertion loss of the two-pass belt is mainly due to the dielectric loss of the substrate itself and the copper metalisation loss, and the improved step impedance resonator is used (as shown in the third figure). Shows that a wide and deep stop band can be produced, the inter-rejection level greater than 35 dB can be obtained, and no pass band is interfered; in addition, with good impedance matching, the two bands (channels) The isolation between (S23) is better than 35dB. In addition, as can be seen from the sixth and seventh figures, the measured results and the simulated results are quite consistent. In short, the duplexer using the improved step impedance resonator of this creation can provide a wider and deeper by using a modified step impedance resonator (as shown in the third figure). Stop band and high bandpass isolated duplexer' to reduce the interference of signals between the two passbands. In summary, this creation is indeed in line with the industrial use, and it has not been seen in the publication or public use before the application, nor is it known to the public, and it has non-obvious knowledge, meets the requirements of patentability, and filed a patent application according to law. . However, the above-mentioned statements are the preferred embodiments of the creative industry. The equivalent changes made by the scope of patent application for this creation are all examples of the subject matter of the case. Form No. A0101 Page 9 of 20 M424629 [Simple Description of the Drawings] [0005] The first drawing is a schematic diagram of an embodiment of the present creation. The second figure is a schematic diagram of the structure of a conventional step impedance resonator. The third figure is a schematic diagram of the structure of the improved step impedance resonator. The fourth figure is an analog frequency response diagram of a conventional step impedance resonator and an improved step impedance resonator. The fifth picture is a schematic diagram of the geometric structure of the creation. The sixth picture is the simulated frequency response diagram of the creation. The seventh picture is the measured frequency response diagram of the creation. [Main component symbol description] [0006] (1) substrate (11) first surface (2) first band pass filter (21) first square open step impedance resonator (211) first hollow region (212 ) First opening (22) Second square open step impedance resonator (221) Second hollow area (222) Second opening (223) First signal output (3) Second band pass filter (31) Triangular open step impedance resonator (311) Third hollow area (312) Third opening (32) Fourth square open step impedance resonator (321) Fourth hollow area Form No. A0101 Page 10 of 20 Page M424629 (322) Fourth opening (323) Second signal output (4) Input line (41) Signal input

表單編號A0101 第11頁/共20頁Form No. A0101 Page 11 of 20

Claims (1)

M424629 六、申請專利範圍: 1 . 一種使用改良型步階阻抗共振器之雙工器,包括: 一基板:具有一第一表面; 一第一帶通濾波器:設於該第一表面且包括相間隔之一第 一方形開路步階阻抗共振器以及一第二方形開路步階阻抗 共振器,且其等概呈相對稱,另該第一方形開路步階阻抗 共振器内部具有一第一中空區域,該第一中空區域連通一 第一開口,該第二方形開路步階阻抗共振器内部具有一第 二中空區域,該第二中空區域連通一第二開口,且該第二 開口與該第一開口相對,該第二方形開路步階阻抗共振器 設一第^一信號輸出端; 一第二帶通渡波器:設於該第一表面且與該第一帶通渡波 器相間隔,並包括相間隔之一第三方形開路步階阻抗共振 器以及一第四方形開路步階阻抗共振器,且其等概呈相對 稱,另該第三方形開路步階阻抗共振器内部具有一第三中 空區域,該第三中空區域連通一第三開口,該第四方形開 路步階阻抗共振器内部具有一第四中空區域,該第四中空 區域連通一第四開口,該第四開口與該第三開口相對,且 該第四方形開路步階阻抗共振器設有一第二信號輸出端; 一輸入線:係為分支饋入結構且連接該第一方形開路步階 阻抗共振器以及該第三方形開路步階阻抗共振器,以提供 輸入電源與阻抗匹配,且該輸入線設有一信號輸入端。 2.如申請專利範圍第1項所述之使用改良型步階阻抗共振器 之雙工器,其中該第一中空區域概呈「凸」字形,且該第 二中空區域概呈與該第一中空區域相反方向之「凸」字形 ,另該第三中空區域概呈「凸」字形,且該第四中空區域 100220410 表單编號A0101 第12頁/共20頁 1002066995-0 M424629 概呈與該第三中空區域相反方向之「凸」字形。 •如申請專利範圍第】項或第2項所述之使用改良型步階阻抗 共振器之雙工器,其中該第一方形開路步階阻抗共振器以 及該第二方形開路步階阻抗共振器的阻抗比(r)各為ο” ,電子長度比(α)各為〇.69,且該第三方形開路步階阻 抗共振器以及該第四方形開路步階阻抗共振器的阻抗比 (R)各為0.53’電子長度比(α)各為〇. 78» .如申請專利範圍第1項或第2項所述之使用改良型步階阻抗 共振器之雙工器’其中該基板為Dur〇id 5880,且其厚 度為0. 787mm、介電常數(dielectric constant)為 2. 2、損失正切(l〇Ss tangent)為0. 000 9。 1002066995-0 100220410 表單編號A0101 第13頁/共20頁M424629 VI. Patent Application Range: 1. A duplexer using a modified step impedance resonator, comprising: a substrate: having a first surface; a first band pass filter: disposed on the first surface and including One of the first square open-step impedance resonators and a second square open-step impedance resonator, and the likes are symmetrical, and the first square open-step impedance resonator has a first a hollow area, the first hollow area is connected to a first opening, the second square open step impedance resonator has a second hollow area inside, the second hollow area is connected to a second opening, and the second opening is The first opening is opposite, the second square open step impedance resonator is provided with a first signal output end; and a second band pass wave is disposed on the first surface and spaced apart from the first band passer And including a third-party open-circuit step impedance resonator and a fourth square open-step impedance resonator, and the likes are symmetrical, and the third-party open-circuit step impedance resonator is internally There is a third hollow region, the third hollow region is connected to a third opening, the fourth square open circuit impedance resonator has a fourth hollow region therein, and the fourth hollow region is connected to a fourth opening, the fourth opening Opposite the third opening, the fourth square open step impedance resonator is provided with a second signal output end; an input line is a branch feed structure and is connected to the first square open step impedance resonator and The third-party open-step step impedance resonator provides input power and impedance matching, and the input line is provided with a signal input end. 2. The duplexer using the improved step impedance resonator according to claim 1, wherein the first hollow region is substantially "convex" and the second hollow region is substantially identical to the first a convex shape in the opposite direction of the hollow region, and the third hollow region is generally convex, and the fourth hollow region 100220410 Form No. A0101 Page 12 of 20 1002066995-0 M424629 The "convex" shape of the opposite direction of the three hollow regions. The duplexer using the improved step impedance resonator as described in claim 2 or 2, wherein the first square open step impedance resonator and the second square open step impedance resonance The impedance ratio (r) of each device is ο", the electron length ratio (α) is 〇.69, and the impedance ratio of the third-party open-step impedance resonator and the fourth square open-step impedance resonator ( R) each of 0.53' electron length ratio (α) is 〇. 78». A duplexer using a modified step impedance resonator as described in claim 1 or 2 wherein the substrate is Dur〇id 5880, and its thickness is 0. 787mm, dielectric constant is 2. 2. Loss tangent (l〇Ss tangent) is 0. 000 9. 1002066995-0 100220410 Form No. A0101 Page 13 / 20 pages in total
TW100220410U 2011-10-28 2011-10-28 Using improved stepped impedance resonators duplexer TWM424629U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100220410U TWM424629U (en) 2011-10-28 2011-10-28 Using improved stepped impedance resonators duplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100220410U TWM424629U (en) 2011-10-28 2011-10-28 Using improved stepped impedance resonators duplexer

Publications (1)

Publication Number Publication Date
TWM424629U true TWM424629U (en) 2012-03-11

Family

ID=46461803

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100220410U TWM424629U (en) 2011-10-28 2011-10-28 Using improved stepped impedance resonators duplexer

Country Status (1)

Country Link
TW (1) TWM424629U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317589A (en) * 2017-06-16 2017-11-03 京信通信***(中国)有限公司 Micro-strip combiner and its radio circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107317589A (en) * 2017-06-16 2017-11-03 京信通信***(中国)有限公司 Micro-strip combiner and its radio circuit

Similar Documents

Publication Publication Date Title
CN110034361B (en) Miniaturized ultra-wideband filtering power division feed network for 5G communication and design method thereof
CN109755702B (en) Four-frequency differential band-pass filter
CN108767476A (en) A kind of filter, dielectric resonant aerial of simple and compact
CN103700910A (en) Complementary opening resonance ring and defect ground structure half module substrate integrated waveguide dual-band filter
WO2016161795A1 (en) Filter
Panda et al. A wide-band monopole antenna in combination with a UWB microwave band-pass filter for application in UWB communication system
CN110112526B (en) Microstrip power divider with dual-passband frequency response
CN107425250B (en) Planar wide-stop-band double-frequency filter
CN104681972B (en) There is the groove loading ultra-wideband monopole antenna of stabilising direction figure and good Out-of-band rejection ability simultaneously
CN202094255U (en) Triple-band band-pass filter based on hairpin resonator
CN111403861B (en) UIR loaded three-order dual-passband substrate integrated waveguide filter
Eun et al. A microstrip dual-band bandpass filter using feed line with SIR
TW201225409A (en) Wideband high frequency filter
CN111293390A (en) UIR loaded three-order dual-passband substrate integrated waveguide filter
CN109037873B (en) Mode composite transmission line with transition structure
TWM424629U (en) Using improved stepped impedance resonators duplexer
CN211980841U (en) Ultra-wideband filter with double-branch-node loaded bent T-shaped structure
Li et al. Dual-band ultra-wideband bandpass filter
CN109301414A (en) A kind of circular substrate integrated waveguide bandpass filter
CN202058840U (en) Triangular open loop coupling band-pass filter
CN105789774A (en) Ultra wideband dual-frequency pass-band filter based on stepped impedance resonator
CN111628255B (en) Compact wide-stop-band-pass filter based on packaging defected ground structure
CN209948010U (en) Ultra-wideband filter with miniaturized broadside coupling structure
US20070285193A1 (en) Bandpass filter
CN105789775A (en) Ultra wideband dual-frequency pass-band filter based on dual-mode stepped impedance stud resonator

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees