TWM417582U - Analog photovoltaic power circuit - Google Patents

Analog photovoltaic power circuit Download PDF

Info

Publication number
TWM417582U
TWM417582U TW100211349U TW100211349U TWM417582U TW M417582 U TWM417582 U TW M417582U TW 100211349 U TW100211349 U TW 100211349U TW 100211349 U TW100211349 U TW 100211349U TW M417582 U TWM417582 U TW M417582U
Authority
TW
Taiwan
Prior art keywords
circuit
voltage
power
light energy
current
Prior art date
Application number
TW100211349U
Other languages
Chinese (zh)
Inventor
Jing-Meng Liu
Original Assignee
Richtek Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Richtek Technology Corp filed Critical Richtek Technology Corp
Priority to TW100211349U priority Critical patent/TWM417582U/en
Publication of TWM417582U publication Critical patent/TWM417582U/en

Links

Landscapes

  • Amplifiers (AREA)

Description

M417582 * 五、新型說明: 【新型所屬之技術領域】 本新型係有關種光能電路(Photovoltaic Power Circuit),例如太陽能電池(Solar ωΐ Battery),特別是指一種 以類比元件製作的光能電路,其電路結構遠較數位光能電路 精簡。 【先前技術】 # 因應能源危機以及全球能源庫存量不足的問題,目前已 有越來越多的先進國家投入研究太陽能電池。太陽能電池屬 於光能電路的一種’其基本原理是利用半導體PN二極體接面 的特性,當該二極體接面接收到光能時,可將其轉換成電能, 並利用該電能對電池充電,以產生電力。二極體產生電能的 V-I (電壓一電流)關係如第1圖所示,其中實線表示電壓 與電流的關係,虛線表示電壓與電流的乘積,亦即功率 (power)。圖中假設所接收到的光能不變,故僅顯示一條曲 • 線’但若接收到的光能產生變化時,曲線也會相應變化。 如第1圖所示’最大電壓點Voc位於斷路位置,最大電 ’流點Isc位於短路位置,但若欲取得最大的能量輸出,則最 佳輸出點並非位於最大電壓或最大電流處,而是位於電能曲 線的最佳功率輸出點(Maximum Power Point, MPP),其對應之 電壓與電流分別為Vmpp與Impp。且由於所接收到的光能經 常並非定值,因此,在先前技術中,通常必須設計複雜精密 的數位電路,以供計算所萃取的電能是否位於該光能下的最 佳功率輸出點(以下簡稱Mpp)。 3 M417582 先刚技術數位光能電路之一例可參照美國專利第 =84970號’該案所揭示的電路大致如第2圖所示,其中光 %it#(photcm)ltaic device) 2所產生的電壓vin,通過-個功 stage) 3進行電壓轉換後成為輸出電壓%, 對負載4進行供電’該負載4例如可以是―個充電電池,而 功率輪出級3則例如可以是升壓電路、降壓電路、反壓電路、 返馳電路等。為了使辨輸出級3能適切地在MPP處萃取電 月b 路中②有—個數位控制器5,此數位控制器$中的數 位计算拉組51 (其例如為數位微控制器)根據輸入電壓Vin 的數值與?取電流/的触,不斷進行減以計算Wp,並 根據MPP片算最佳電壓值卯。所計算出的最佳電壓值 Vmpp再與輸入電壓%進行比較,以令控制電路52產生訊 號,決定如何控制功率輸出級3。第2圖所示之電路,其數 位控制器5之設計十分複雜,所需之電晶體元件數目相當 大’並且需要類比數位轉換器(ADC)來擷取電壓電流信號, 因此不但増加設計上的哪,且也勢必提高電路的整體成本。 另一先前技術揭示於美國專利申請公開案第 2006/0164065號,該案僅概略說明其包含「搜尋(search)」和 「擺動(dithering)」兩個模式,在啟始的搜尋模式中先掃瞄 (sweep)整個電壓—電流曲線,以從其中找到Μ??,接著才進 入正㊉1作模式(擺動模式),在此模式中根據該MPP點之 電流值操作,並進行間歇性地取樣更新(以上内容例如可參 考該案說明書第8段、第10段、第33段、第5圖,等等)。 然而’對於如何達成掃瞄步驟,該案並未詳細揭露電路細節。 M417582 雖然該案並未詳細揭露電路細節,但由其所說明的搜尋 模式與掃瞄步驟,可看出該案即使不進行電壓—電流值之乘 算(事實上在該案中無法看出如何省略電壓一電流值之乘算 步驟),也勢必需要用到許多辅助數位電路如記憶體或暫存 器、以及比較器之類,否則無法選擇並紀錄最佳功率點 MPP不但其電路相當複雜,*且掃^^步驟會佔據電路的有 效工作時間;如在啟始時間之外,因光源劇烈變化造成光能 φ 兀件脫離原有的電壓—電流曲線’則該案必須重新啟始搜尋 才吴式與掃瞒步驟,效率並不理想。 簡言之,上述美國專利申請公開案第2〇〇6/〇164〇65號必 須使用複雜的電路,先找到肅點後,才能進入擺賴式中 進行較簡單的類比電路操作,因此,並不理想。 【新型内容】 有鑑於此,本新型即針對上述先前技術之不足,提出一 種以類比元件製作的光能電路,以解決前述問題。 . 為達上叙目的,在本_的其巾—個實施例中提供 了-麵比統電路,包含:_組光能元件,其吸收光能而 產生輸入電壓,該輸人賴與輸人電流具有對應關係;功率 輸出級電路,接收該光能元件產生的輸入電壓,並產生一輸 出電壓;最佳電流點估算· ’其接受-職,並根據 ,入電流的變化方向與光能元件所產生功率的變化方向估 算對應於最佳功率輸出點的最佳電流點;以及類比比較控制 電路〃將該最佳電流點估算電路所估算的最佳電流點與 3電々丨L進行比車乂 ’並根據比較結果,控制該功率輸出級之 5 M417582 操作。 一就另-觀點言,本新型提供了一種類比光能電路,包含: 組光旎70件,其吸收光能而產生輸入電壓,該輸入電壓與 輸入電流具有對應_ ;功率輸出級電路,接收該光能元件 產生的輸入電壓,並產生一輸出電壓;最佳電壓點估算電路, 其接受-預定電壓,並根據輸入電流的變化方向與光能元件 所^生功率的變化方向,估算對應於最佳功率輸出點的最佳 電壓點;以及類比比較控制電路,其將該最佳電壓點估算電 路所估算的最佳輕點,與輸人電壓進行比較,並根據比較 結果,控制該功率輸出級之操作。 就再另-觀點言,本難提供了—麵比光能電路,包 含:-組絲元件,其吸收総而產生輸人電壓,該輸入電 壓與輸人電流具有職功率輸岐電路,接收該光能 元件產生的輸人電壓,將其轉換為輸出電壓以供應給一個負 載,最佳電流點估算祕,其齡—縣糕,並根據輸入 電流的變化方向與統元件所產生功率的變化方向,估算最 佳電流點’其中該功率的變化方向係得自—功率變化方向指 示電路^亥功率變化方向指示電路輸出一訊號,指示該功率 ,變化方向;以及類比比較控制電路,其將該最佳電流點估 算電路所估算的最佳電流點,與輸人電流進行比較,並根據 比較結果,控制該功率輸出級之操作。 入就又另-觀點言,本新型提供了一麵比光能電路包 含.一組光能元件’其吸收光能而產生輸人電壓,該輸入電 壓與輸入電流具有對應祕;功率輸出級電路,接收該光能 M417582 :牛產生的輪人電愿,將其轉換為輪出電愿以供應給一個負 載;最佳電壓點估算電路,其接受—預定糕,並根據輸入 電抓的邊化;jr向與光能元件所產生功料變化方向估 佳電壓點,其t該功率的變化方向係得自—功率變化方向指 不電路,該神變化方向指示電路輸出—訊號,指示該功率 ^的變化方n及類比比健織路,其將該最佳電壓點估 异電路所估算.的最佳電_,與輸人碰進行比較並根據 比較結果,控制該功率輸出級之電壓轉換操作。 底下藉甴對具體實施解加說明,當更容純解本新型 之目的、技術内容、特點及其所達成之功效。 【實施方式】 本新型的重點在於使用較先前技術精簡的類比電路元 1牛,來計算光能電路的最佳電流點Impp,因此命名為類比光 能電路。需說明的是’在本新财所稱之「類比電路」,係指 電路之主要功能由類比電路元件達成’但並不表示電路中完 全不使甩數位電路元件。 〃請參考第3圖,其中以示意電路圖的方式顯示本新型的 第-個實施例。如圖所示,本實施例中包含有―組光能元件 21,用以產生電能。光能元件21所產生的電壓,提供給功率 輸出級3作為其輸入電| Vin ;功率輸出級3例如可以是升 壓電路、降壓電路、反壓電路、返桃電路等。功率輸出級3 受類比比較控制電路5G (圖中簡稱比較控制電路以簡化圖 面)控制’從輸入端萃取電能’對輸出端供應輸出電流1〇说, 以產生輸出電壓Vo供應給負載4。其中,類比比較控制電路 M417582 5 0將輸入電流I in鎖定在最佳功率輸出點MPP所對應的最佳 電流點Impp (請參閱第1圖),其方式如下。 電流偵測電路8萃取有關輸入電流Iin的資訊,以電壓 訊號的形式(V(Iin)) ’輸入類比比較控制電路50。(以上所 述僅是舉例,代表輸入電流Iin的訊號亦可為其他類型的訊 號’例如電流訊號。)另方面’自光能元件21中,可取得有 關短路電流Isc (請參閱第1圖)的資訊,而v_IinREF為對 應於該短路電流Isc的代表電壓。(如何取得光能元件21短 路電流Isc之代表電壓V_IinREF,將於後文中參閱第Μ、16 圖說明。)電阻器R1與R2有適當的比例,使得節點抑處 的電壓與代表電壓V_IinREF的關係,大致等於最佳電流點 Impp與短路電流Isc的關係,例如為65%〜85%。 節點電壓VR和代表輸入電流iin的電壓訊號,可在類比 比較控制電路50中進行比較’並根據比較結果來啟動功率輸 出級3萃取電能。當代表輸入電流Iin的電壓訊號大於節點 電壓VR時,功率輸出級3減少從其輸入端萃取的電流;當 代表輸入電流Iin的電壓訊號小於節點電壓vr時,功率輸出 級3增加從其輸入端萃取的電流;換言之,根據比較控制的 ,制,最終可將代表輸入電流Iin的電壓訊號鎖定在節點電 壓VR的數值’亦即使輸入電流Iin等於大致等於最佳電流點M417582 * V. New description: [New technical field] This new type is related to Photovoltaic Power Circuit, such as Solar Ω Battery, especially a light energy circuit made of analog components. Its circuit structure is much smaller than the digital light circuit. [Prior Art] # In response to the energy crisis and the shortage of global energy stocks, more and more advanced countries are investing in solar cells. The solar cell belongs to a kind of light energy circuit. The basic principle is to utilize the characteristics of the junction of the semiconductor PN diode. When the junction of the diode receives the light energy, it can be converted into electrical energy, and the battery is utilized. Charge to generate electricity. The V-I (voltage-current) relationship in which the diode generates electrical energy is shown in Fig. 1, where the solid line indicates the relationship between voltage and current, and the broken line indicates the product of voltage and current, that is, power. The figure assumes that the received light energy does not change, so only one curve • line ' is displayed. However, if the received light energy changes, the curve will change accordingly. As shown in Figure 1, the maximum voltage point Voc is in the open position, and the maximum electric current point Isc is in the short-circuit position. However, if the maximum energy output is to be obtained, the optimal output point is not at the maximum voltage or the maximum current, but Located at the optimal power output point (MPP) of the energy curve, the corresponding voltage and current are Vmpp and Impp, respectively. And since the received light energy is often not constant, in the prior art, it is often necessary to design a sophisticated digital circuit for calculating whether the extracted electrical energy is at the optimal power output point of the light energy (below Referred to as Mpp). 3 M417582 A first example of a technical digital light-emitting circuit can be referred to US Pat. No.: 84,970. The circuit disclosed in the case is substantially as shown in Fig. 2, wherein the voltage generated by light %it#(photcm)ltaic device 2 Vin, through the voltage stage 3, becomes the output voltage %, and supplies power to the load 4. 'The load 4 can be, for example, a rechargeable battery, and the power wheel output 3 can be, for example, a boost circuit or a lower voltage. Voltage circuit, back pressure circuit, flyback circuit, etc. In order to enable the identification output stage 3 to appropriately extract the electric circuit b in the MPP, there is a digital controller 5, and the digits in the digital controller $ calculate the pull group 51 (which is, for example, a digital microcontroller) according to the input. What is the value of voltage Vin? Take the current/touch, continuously reduce it to calculate Wp, and calculate the optimal voltage value based on the MPP slice. The calculated optimum voltage value Vmpp is then compared to the input voltage % to cause the control circuit 52 to generate a signal that determines how to control the power output stage 3. In the circuit shown in Figure 2, the design of the digital controller 5 is very complicated, and the required number of transistor components is quite large, and an analog-to-digital converter (ADC) is required to extract the voltage and current signals, so that not only the design but also the design Which, and it is bound to increase the overall cost of the circuit. Another prior art is disclosed in U.S. Patent Application Publication No. 2006/0164065, which is only to be taken as an illustration of the "search" and "dithering" modes, which are first scanned in the initial search mode. Sweep the entire voltage-current curve to find Μ??, then enter the positive mode (swing mode), in which the operation is based on the current value of the MPP point, and intermittently sampled and updated. (For the above content, for example, refer to paragraph 8, paragraph 10, paragraph 33, figure 5, etc. of the case description). However, the case did not disclose the details of the circuit in detail on how to achieve the scanning step. M417582 Although the case does not disclose the details of the circuit in detail, the search mode and scanning step described by it can be seen that even if the voltage-current value is not multiplied (in fact, it cannot be seen in the case). Omitting the voltage-current value multiplication step), it is necessary to use many auxiliary digital circuits such as memory or register, and comparators, otherwise it is impossible to select and record the optimal power point. MPP is not only complicated, but its circuit is quite complicated. * and the sweeping step will occupy the effective working time of the circuit; if the light source φ is removed from the original voltage-current curve due to the drastic change of the light source, the case must be restarted. Wu style and broom steps are not ideal. In short, the above-mentioned U.S. Patent Application Publication No. 2〇〇6/〇164〇65 must use a complicated circuit, and after finding the point of elimination, it is possible to enter the pendulum type to perform a simple analog circuit operation, and therefore, not ideal. [New content] In view of the above, the present invention is directed to a light energy circuit fabricated by analog components in order to solve the aforementioned problems. In order to achieve the above, in the embodiment of the present invention, a surface-to-surface circuit is provided, comprising: a group of light energy elements, which absorb light energy to generate an input voltage, and the input and the input are input. The current has a corresponding relationship; the power output stage circuit receives the input voltage generated by the light energy component and generates an output voltage; the optimal current point is estimated to be 'accepted-position, and according to the direction of change of the incoming current and the light energy component The direction of change of the generated power is estimated to correspond to the optimal current point of the optimal power output point; and the analog comparison control circuit 比 compares the optimal current point estimated by the optimal current point estimation circuit with the 3 々丨L 'And according to the comparison result, control the 5 M417582 operation of the power output stage. In another aspect, the present invention provides a type of specific light energy circuit comprising: a set of 70 apertures that absorb light energy to generate an input voltage, the input voltage having a corresponding input current; a power output stage circuit, Receiving an input voltage generated by the light energy element and generating an output voltage; an optimal voltage point estimating circuit receiving the predetermined voltage and estimating the corresponding direction according to a direction of change of the input current and a direction of change of the power generated by the light energy element An optimum voltage point at an optimum power output point; and an analog comparison control circuit that compares the optimum light point estimated by the optimum voltage point estimation circuit with the input voltage and controls the power according to the comparison result Output level operation. In another point of view, it is difficult to provide a surface-to-light energy circuit, comprising: - a wire component that absorbs the enthalpy to generate an input voltage, the input voltage and the input current have a power transmission circuit, and receive the The input voltage generated by the light energy component is converted into an output voltage to be supplied to a load, and the optimal current point is estimated. The age of the county is based on the direction of change of the input current and the direction of the power generated by the component. Estimating the optimal current point 'where the direction of change of the power is derived from the power change direction indicating circuit ^H power change direction indicating circuit outputs a signal indicating the power, the direction of change; and the analog comparison control circuit, which is the most The optimum current point estimated by the good current point estimation circuit is compared with the input current, and the operation of the power output stage is controlled according to the comparison result. In addition, another point of view, the present invention provides a side of the light energy circuit comprising a set of light energy elements that absorb light energy to generate an input voltage, the input voltage and input current have a secret; power output stage circuit Receiving the light energy M417582: the wheel generated by the cow is willing to convert it into a wheel to be supplied to a load; the optimal voltage point estimation circuit accepts the predetermined cake and the edge according to the input power ;jr estimates the voltage point to the direction of the change of the power material produced by the light energy component, and the direction of the change of the power of the light is derived from the direction of the power change direction, and the direction of the change of the god indicates the output of the signal - indicating the power ^ The change side n and the analogy ratio of Jianzhi Road, which optimizes the best electric _ estimated by the optimal voltage point estimation circuit, compares with the input touch and controls the voltage conversion operation of the power output stage according to the comparison result. . Under the circumstance, we will explain the specific implementation and explain the purpose, technical content, characteristics and effects achieved by this new type. [Embodiment] The focus of the present invention is to calculate the optimum current point Impp of the light energy circuit using the analog circuit element which is reduced by the prior art, and is therefore named as an analog light circuit. It should be noted that the term "analog circuit" as used in this new financial system means that the main function of the circuit is achieved by analog circuit components, but it does not mean that the digital circuit components are not completely replaced in the circuit. Referring to Figure 3, a first embodiment of the present invention is shown in a schematic circuit diagram. As shown in the figure, the present embodiment includes a group light energy element 21 for generating electrical energy. The voltage generated by the light energy element 21 is supplied to the power output stage 3 as its input power | Vin; the power output stage 3 may be, for example, a boost circuit, a step-down circuit, a back pressure circuit, a return circuit, or the like. The power output stage 3 is controlled by the analog comparison control circuit 5G (referred to as a comparison control circuit for simplifying the drawing) to extract the electric energy from the input terminal to supply an output current to the output terminal to generate an output voltage Vo to be supplied to the load 4. Among them, the analog comparison control circuit M417582 5 0 locks the input current I in at the optimum current point Impp corresponding to the optimum power output point MPP (refer to Fig. 1) as follows. The current detecting circuit 8 extracts information on the input current Iin, and inputs the analog comparison control circuit 50 in the form of a voltage signal (V(Iin))'. (The above is only an example. The signal representing the input current Iin can also be other types of signals, such as current signals.) On the other hand, the short-circuit current Isc can be obtained from the light-emitting element 21 (see Figure 1). Information, and v_IinREF is a representative voltage corresponding to the short-circuit current Isc. (How to obtain the representative voltage V_IinREF of the short-circuit current Isc of the light energy element 21, which will be described later in Chapters 16 and 16). The resistors R1 and R2 have an appropriate ratio so that the voltage of the node suppresses the relationship with the representative voltage V_IinREF. Is approximately equal to the relationship between the optimum current point Impp and the short-circuit current Isc, for example, 65% to 85%. The node voltage VR and the voltage signal representative of the input current iin can be compared in the analog comparison control circuit 50' and the power output stage 3 is activated to extract electrical energy based on the comparison. When the voltage signal representing the input current Iin is greater than the node voltage VR, the power output stage 3 reduces the current drawn from its input; when the voltage signal representative of the input current Iin is less than the node voltage vr, the power output stage 3 is increased from its input. The extracted current; in other words, according to the comparison control, the voltage signal representing the input current Iin can be finally locked to the value of the node voltage VR' even if the input current Iin is equal to approximately equal to the optimum current point.

ImPP,如此即·可讓功率輸出級3處於最佳工作點萃取最大 電能。 < 類比比較控制電路50之最簡單作法,使用非常簡單的線 性穩麼電路即可達成,例如可參考第4圖之第二實施例;其 8 i M417582 •’ +,誤差放大器EA的類比輪出,可供控制功率輸出級3中 的功率電晶體3卜使其根據該類比輸出值的大小,決定導通 . 的程度,進而決定從光能元件21萃取電流的流量。 雜縣電路有功率損耗,如欲更械率簡取電能, 可贿_赋_魏(Switehing㈣此㈣例如使用脈 . 寬調變(PWM)電路來作為類比比較控制電路5〇(有關脈寬調 變電路_壓控制原理,因是習知技術且非本新型重點,在 此不予贅述。需強調的是,脈寬調變電路不是唯一的方法, 其它例如各種變麵變電路亦可用來作為類比比較控制電 路)’其作法舉-例如第5圖所示,此為本新型之第三實施 例,本實施例中,係在類比比較控制電路5〇中設置誤差放大 器EA接又:點VR處的電壓作為參考電壓,並以代表輸入 電=in的電壓訊號(V(Iin))為反饋電壓(知如洗她哪, 稱「前饋」feed-forward voltage或許更洽當),兩者進行比較。 其比較結果輸人味H CMP,以與-織波味;比較結果 • 即可提供給邏輯電路53,域生訊號控制功率輸出級3。當 • 然,徐以上作法外,還有其他作法,不予--牧舉,總之, - 重點是根據節點電壓VR和代表輸人電流Iin的電壓訊號的比 較結果,來控制功率輸出級3萃取電能,而節點電壓VR(約 • 對應於ImPP)僅需透過適當的分壓方式即可得到,並不需要 .. 使用複雜的數位計算模組。 熟悉本技術者,在閱讀本案後當可立即思及,以上所述 電路中,未必限於使用電阻器R1與R2來進行分壓;如使用 其它元件來達成分壓功能,例如使用任何直流阻抗可以相互 9 匹配的二元件,亦屬可行。甚至,類比比較控制電路50更可 直接比較電流訊號,如短路電流Isc或最佳電流Impp和輸入 電流Iin。凡此種種,都應屬於本新型概念的變形,均應包含 在本新型範圍之内。 請參照第6圖,此為本新型之第四實施例。本實施例中 不再詳示類比比較控制電路50的細節,僅以方塊圖表示。本 實施例中之參考電壓VREF可以是適當值之一固定電壓、或 如其他實知例取自光能元件21、或取自一組參考光能元件 (見後述第15、16圖)。固定電阻R3與可變電阻R4構成一 個可變分壓電路,此可變分壓電路對參考電壓進行分 壓’以決疋卽點VR處的電壓;換言之,可變電阻R4的阻值, 決定了節點VR處的電壓,使其電壓值對應於最佳電流點 在此需說明的是’可變電阻R4僅係本新型的其中一 個實施方式,使用其他的可變阻抗元件亦屬可行,甚至該可 變阻抗元件不必具有線性變化的特性(例如可使用金氧半場 效電晶體MOSFET、接面場效電晶體jpET、夾止式電阻 pinch-resistor等);重點是透過可變分壓電路,能夠調整節點 VR處的電壓,即達成目的。又,由於電阻R3與似的阻值 都可以經過適當設計,因此參考電壓VREF&不必須相等於 短路電流Isc的對應代表電壓v_IinREF (但當然,相等亦無 妨)。ImPP, that is, allows the power output stage 3 to be at the optimum operating point for maximum energy extraction. < The simplest method of the analog comparison control circuit 50 can be achieved by using a very simple linear stability circuit, for example, referring to the second embodiment of Fig. 4; its 8 i M417582 • ' +, the analog wheel of the error amplifier EA The power transistor 3 in the power output stage 3 can be controlled to determine the degree of conduction based on the magnitude of the analog output value, and thereby determine the flow rate of the current extracted from the light energy element 21. Miscellaneous circuit has power loss, if you want to take more power, you can take bribes _ Fu _ Wei (Switehing (four) this (four) for example using pulse. Wide modulation (PWM) circuit as analog comparison control circuit 5 〇 (related pulse width adjustment Variable circuit _ pressure control principle, because it is a well-known technology and not the focus of this new model, will not be repeated here. It should be emphasized that the pulse width modulation circuit is not the only method, other such as various variable surface change circuits It can be used as an analog comparison control circuit.] Its method is as shown in FIG. 5. This is the third embodiment of the present invention. In this embodiment, the error amplifier EA is set in the analog comparison control circuit 5A. : The voltage at the point VR is used as the reference voltage, and the voltage signal (V(Iin)) representing the input power = in is used as the feedback voltage (it is more appropriate to say that the feed-forward voltage is called "feeding forward") The comparison results in the comparison of the results of the human taste H CMP, with the - weave wave; comparison results • can be provided to the logic circuit 53, the domain signal control power output stage 3. When • Ran, Xu above There are other practices, not to - shepherd, in short - The focus is on controlling the power output stage 3 to extract electrical energy based on the comparison of the node voltage VR and the voltage signal representing the input current Iin, and the node voltage VR (corresponding to ImPP) can only be transmitted through an appropriate voltage division method. Obtained, does not need to use complex digital computing module. Those who are familiar with the technology, can immediately think after reading this case, the above mentioned circuit, is not necessarily limited to the use of resistors R1 and R2 for partial pressure; It is also possible to use other components to achieve the component voltage function, for example, using any two components whose DC impedance can be matched to each other. Even the analog comparison control circuit 50 can directly compare the current signal, such as the short-circuit current Isc or the optimum current Impp. Input current Iin. All of these should be included in the scope of the present invention. Please refer to Figure 6, which is a fourth embodiment of the present invention. The details of the analog comparison control circuit 50 are shown in a block diagram only. The reference voltage VREF in this embodiment may be a fixed voltage of one of the appropriate values, or as other examples. Taken from the light energy element 21 or taken from a set of reference light energy elements (see Figures 15 and 16 below). The fixed resistor R3 and the variable resistor R4 form a variable voltage dividing circuit, and the variable voltage dividing circuit The voltage is divided by the reference voltage to determine the voltage at the point VR; in other words, the resistance of the variable resistor R4 determines the voltage at the node VR so that its voltage value corresponds to the optimum current point. It is the 'variable resistor R4' which is only one of the embodiments of the present invention. It is also feasible to use other variable impedance components, and even the variable impedance component does not have to have linearly varying characteristics (for example, a gold-oxygen half-field effect transistor MOSFET can be used). , the junction field effect transistor jpET, pinch-type resistor pinch-resistor, etc.; the focus is through the variable voltage divider circuit, the voltage at the node VR can be adjusted, that is, the purpose is achieved. Further, since the resistor R3 and the similar resistance can be appropriately designed, the reference voltage VREF& does not have to be equal to the corresponding representative voltage v_IinREF of the short-circuit current Isc (but of course, it is equal).

可變電阻R4的阻值受可變電阻控制電路7所控制;其 控制方式如下。請對照第1圖,當V-I曲線位於MPP左方時, 電流上升、功率便上升,兩者的斜率同向;當曲線位於MPP M417582The resistance of the variable resistor R4 is controlled by the variable resistor control circuit 7; the control method is as follows. Please refer to Figure 1. When the V-I curve is located to the left of the MPP, the current rises and the power rises. The slopes of the two are in the same direction; when the curve is at MPP M417582

右方時,電流上升、功率便下降,兩者的斜率反向。換言之, 據光月b7°件21所輸出的電流(對應於輸人電流1h) ,斜f方向和輸㈣率的解方向,將兩者予⑽較以決 疋目則位於MPP的左方或右方,並據此調整可變電阻R 22以使節點VR處的電壓,朝向對應於最佳電流點Impp =堅移動。據此,在第6圖所示電路中,設有—個方向比 較電路60,此電路接文輸入電流此(以電壓訊號v伽On the right side, the current rises and the power drops, and the slopes of the two are reversed. In other words, according to the current output of the b7° element 21 (corresponding to the input current 1h), the direction of the oblique f direction and the output (four) rate, the two are given to the left of the MPP or Right, and adjust the variable resistor R 22 accordingly so that the voltage at the node VR is moved toward the optimum current point Impp = firmly. Accordingly, in the circuit shown in Fig. 6, a direction comparison circuit 60 is provided, and the circuit receives the input current (by voltage signal v gamma).

形式,此㈣應於雜元件21的輸出電流)和輸出端的功率 、(此即對應於光能元件21的輸{功率),對兩者的斜率方向 進行比較,其比較結果輸出至可變電阻控制電路7, 以調整可變電阻R4的阻值。 積 此實施例中藉由可變電阻控制電路7,調整可變電阻則 的阻值’而赃VR電壓的具體做法,乃是為了方便說明與 易於了解。其基本精神乃是提供—產生W龍的電路接 受斜率方向比較電路63的輸出信號控制,依—既定法則來調 升或調降VR電壓,此既定法則乃是:當電流、辨兩者的 斜率同向時,調降VR電壓;而當電流、功率兩者的斜率反 向時’調升VR電壓。凡依此方式控制參考電壓^,即應是 本新型所涵蓋之範圍。 & 方向比較電路60可以有各種實施方式,其作法舉一例如 圖示。詳言之,本實施例係以右方的功率計4〇量測輪出端的 功率(此即對應於光能元件21的輸出功率),並將其量測結 果輸入微分電路62 ;微分電路62的輸出,代表輪出端功: 的斜率。同時’微分電路61接受代表輸人電流的電壓v(iin)j M417582 對其進行微分’其輸出代表輸人電流Iin的斜率,亦即光能 元件21輸出電流的斜率。斜率方向比較電路63接收兩電路 61與62的輸出’根據之計算兩斜率的方向,並予以比較, 其比較結果可供可變電阻㈣電路7使用,狀決定如 整可變電阻R4的阻值。 _方向比較電路60的更詳細之電路結構,可參考第7圖 示的第五實施例’其中〇P1、〇P2為運算放A|§,而CM、 CP2為比較器,比較器cpi、cp2將運算放大器㈣肥 的輸出值與前-時點儲存在電容器C1、C2上的跨壓相 Z決定辨方向’岐斥朗舰的触,代表斜率方 狀向。應了解的是,本圖所示僅為眾多可能的實 …目的是供舉例說明,而非限制本新型的範圍。 7圖中之微分電路61、62,可以替換為其他高 ’亦可達成相似的效果,因為在本新型的概念下, 精翻斜率值,要得知光能元件21 ==斜率方向和輸出功率的大略斜率方向,將兩 者予j比較即可。又例如,比較器cpi、⑵之主要 ,的輸出轉換成數位訊號,以便供互 Η 進行運算,若適當設計運算放大器ορ卜0Ρ2 Α增益,使其類比輸出值可供邏輯電路充 Γ較電路63中’亦未必需要包含比較HOM、^ = 可此直接將運算放Α|| 〇ρ卜〇ρ2的輸紐進行比較。 可變電阻控制電路7的更詳細之電路結構,可參考第8、 圖所不的第六和第七實施例;同樣地,這兩圖所示僅係供 M417582 舉例說明’而非限制本新型的範圍。詳言之,在第8圓所示 實方良例中,當方向比較電路60的輸出為低位準時,上= PMOS P損導通,電㈣C7接受正方向的充電,並朝正: 向調整可變電阻R4;當方向比較電路6〇的輸出為高位準時, 下橋NMOS關導通,電容n C7接受貞方向的放電,並朝 負方向調整可變電阻R4。當然,上述的正負充電方向、圖中 的PMOS與NMOS電晶體開關位置,以及對可變電阻R4的 調整方向,可視方向比較電路60的輸出類型來決定,亦可能 為相反的安排方式;例如,若第7圖中之互斥或閘x〇r改 換為互斥反或閘XNOR,則上述正負向便應對換。 第9圖所示的實施例中包含有一個轉導放大器 (Transconductor) GM,其根據方向比較電路6〇的輸出和參 考電壓VB的比較結果,而產生相對應的電流對電容器〔7 進行充電,以控制可變電阻R4。參考電壓vs的數值可設定 在方向比較電路60的輸出高低位準之間,亦即當方向比較電 路60的輸出為低位準時,轉導放大器GM產生正電流,使 電谷器C7接受正方向的充電,並朝正方向調整可變電阻 R4,而备方向比較電路的輸出為高位準時,轉導放大器 GM產生負電流’使電容器C7接受負方向的放電,並朝負; 向調整可變電阻R4。與前述相似地,此處的正負方向(亦即 轉導放大器GM的正負輸入端連接位置),可視方向比較電 路60的輸出類型來決定,亦可能為相反的安排方式。 。月再回閱第1圖,根據本新型利用電流—功率關係來判 斷MPP時’光能元件受控的輸出參數可以是輸出電流或輸出 13 M417582 電壓。如第10圖所示,在本實施例中,係透過電流偵測電路 ㈣測輸入電流Iin (亦即光能元件21的輸出電流),並與功 率計40的輸出(對應於光能元件21的輸出功率),在方向比 較電路60中進行方向比較;其結果可據以調整可變電阻R4 的阻值’以使對參考電壓VREF’分壓所得節點vr,處的電 壓’朝向對應於最佳電流點Impp的電壓移動,而Im卯電流 值所對應的光能元件輸$電壓也必就是最佳電壓點。 比較控制電路50經回授控纖制把Vin穩定在Vm卯點而達 成相同目的。又、顯而易見地,由於電流-功率的斜率方向 關係和電壓—功率的斜率方向關係相反,因此方向比較電路 6〇或可變電阻控制電路7的詳細電路結構,必須將此考慮在 内,例如,若採用前述第7_9圖所示電路結構時,可在其間 加入適當的反相間,或使用互斥反或閘观⑽取代互斥或間 XOR ’或對換第8圖上下橋PMC)S與刪〇 或對換第9圖轉導放大器GM的正負輸入端,等等的置 同樣’此實施例中藉由可變電阻控制電路7,調整可變 —mi的阻值’而調整呢電㈣具體做法,乃是為了方便 1 兄明與易於了解。其基本精神乃是-產生VR賴的電路, 調方向比較電路63的輸出信號控制,依一既定法則來 1電電堡此既定法則乃是:當以光能元件之輸 VR電愚1 ’電流、功率兩者的斜率反向時,調升 ,而當電流、功率兩者的斜率同向時,調降^電壓。 :车 之輸出電流為控制標的時,電流、功率兩者的 ”降VR電壓;而當電流、功率兩者的斜率同 ,時,調升VR電Μ 〇凡依此方式控制參考電屢⑹,即應是 本新型所涵蓋之範園。 _電流制電路8有各鮮法,亦舉一例如第^圖;圖中 =示電路可_輸入電流如,將偵測結果轉換成電壓訊號, ^給方向比較電路60。同樣地,本圖所示僅為眾多可能的 實施型態之―,目的是供舉例說明,而祕制本新型的範圍。 在前述第6、7、1G圖的實施例中,因使用功率計4〇, 而功率計必須進行電流電壓的測量與乘算,故電路似乎顯得 ,雜’但事實上,在本新型的概念下並不需要使用非常精 密的功率計。如前所述,根據本新型,只需要得知光能元件 21輸出功率的大略變化方向即可,並不需要知道精確的功率 數,’因此功率計的電路可以十分精簡(容後於第13、14 圖詳述)’甚至可以根本不使用功率計。請參考帛12圖,此 為第10圖實施例的衍伸實施例,亦為本新型的第九實施例, 如圖中右方所示’由於負載4通常為電池,而電池的電壓變 化非常緩慢,故可用電流偵測電路41取代功率計40,僅量 測通往負載4的電流,轉換成電壓訊號輸入微分電路62,即 可達成電路目的。f流彳貞測電路W的具體結構,例如可參考 第11圖,又,第6、7圖電路的右方,亦可做相同的代換, 不另贅示。 如欲將負載4的電壓變化也考慮在内,則可使用功率趨 勢^來取代神計;所謂功率趨勢計,係將目前時點的功率 與前-時_功率相味,並產生與其差值對躺訊號。需 強調的是’裤趨勢計僅_示功錢化的方向即可,甚至 M417582 並不需要在數值上成比例地變化。功率趨勢計之實施例,舉 一例如第13圖所示,此為本新型的第十實施例;本實施例係 利用電阻熱度感應來估算功率趨勢。如圖所示,可使用雙載 子電晶體QBP來感測電阻Rs上的熱度變化;大致而言,雙載 子電晶體的基極對射極電壓變化(i/VBE)與溫度變化(^) 的關係約為Form, this (4) should be based on the output current of the impurity element 21 and the power at the output, (this corresponds to the input {power) of the light energy element 21, compare the slope directions of the two, and the comparison result is output to the variable resistor The control circuit 7 adjusts the resistance of the variable resistor R4. In the embodiment, the variable resistance of the variable resistor is adjusted by the variable resistance control circuit 7 and the VR voltage is used for convenience of explanation and ease of understanding. The basic spirit is to provide - the circuit that generates W-Long accepts the output signal control of the slope direction comparison circuit 63, and raises or lowers the VR voltage according to the established rule. The established rule is: when the current, the slope of the two is determined In the same direction, the VR voltage is lowered; and when the slopes of both current and power are reversed, the VR voltage is raised. Where the reference voltage ^ is controlled in this way, it should be the scope covered by the novel. The & direction comparison circuit 60 can have various embodiments, such as an illustration. In detail, in the present embodiment, the power of the output end of the measuring wheel is measured by the right power meter (this corresponds to the output power of the light energy element 21), and the measurement result is input to the differentiating circuit 62; the differentiating circuit 62 The output represents the slope of the wheel's output: At the same time, the 'differential circuit 61 receives the voltage v(iin)j M417582 representing the input current and differentiates it'. The output represents the slope of the input current Iin, that is, the slope of the output current of the photo-energy element 21. The slope direction comparison circuit 63 receives the outputs of the two circuits 61 and 62' according to which the directions of the two slopes are calculated and compares them, and the comparison result is used by the variable resistor (4) circuit 7, which determines the resistance of the variable resistor R4. . For a more detailed circuit configuration of the _direction comparison circuit 60, reference may be made to the fifth embodiment of the seventh diagram, wherein 〇P1 and 〇P2 are operational amplifiers A|§, and CM and CP2 are comparators, and comparators cpi and cp2 The output voltage of the operational amplifier (four) fertilizer and the voltage-phase Z stored on the capacitors C1 and C2 at the pre-time point determine the direction of the collision, representing the slope direction. It should be understood that the present invention is intended to be illustrative only and not limiting the scope of the present invention. 7 The differentiating circuits 61, 62 in the figure can be replaced with other high's, and a similar effect can be achieved, because in the concept of the present invention, the slope value is refined, and the light energy element 21 == slope direction and output power are known. The direction of the slope is roughly the same, and the two can be compared to j. For another example, the main output of the comparators cpi and (2) is converted into a digital signal for operation by the mutual ,. If the operational amplifier ορο 0 Ρ 2 Α gain is properly designed, the analog output value can be used to fill the logic circuit 63. The middle 'does not necessarily need to include the comparison HOM, ^ = can directly compare the operation of the || 〇ρ卜〇ρ2. For a more detailed circuit configuration of the variable resistance control circuit 7, reference may be made to the sixth and seventh embodiments of the eighth and the drawings; similarly, the two figures are only for the M417582 to illustrate 'not limiting the present invention. The scope. In detail, in the example shown in the eighth circle, when the output of the direction comparison circuit 60 is low, the upper = PMOS P loss is turned on, and the electric (four) C7 is charged in the positive direction, and the correction is made toward the positive direction: Resistor R4; When the output of the direction comparison circuit 6A is at a high level, the lower bridge NMOS is turned off, the capacitor n C7 receives the discharge in the x direction, and the variable resistor R4 is adjusted in the negative direction. Of course, the above positive and negative charging directions, the PMOS and NMOS transistor switching positions in the figure, and the adjustment direction of the variable resistor R4 are determined by the output type of the visible direction comparing circuit 60, and may be the opposite arrangement; for example, If the mutual exclusion or gate x〇r in Fig. 7 is changed to the exclusive reversal or the gate XNOR, the above positive and negative directions are dealt with. The embodiment shown in FIG. 9 includes a transconductor GM which generates a corresponding current to charge the capacitor [7] according to the comparison result of the output of the direction comparison circuit 6A and the reference voltage VB. To control the variable resistor R4. The value of the reference voltage vs can be set between the output high and low levels of the direction comparison circuit 60, that is, when the output of the direction comparison circuit 60 is at a low level, the transconductance amplifier GM generates a positive current, so that the electric grid C7 receives the positive direction. Charging, and adjusting the variable resistor R4 in the positive direction, and the output of the forward direction comparison circuit is high, the transconductance amplifier GM generates a negative current 'to cause the capacitor C7 to accept the discharge in the negative direction, and to the negative; to adjust the variable resistor R4 . Similarly to the foregoing, the positive and negative directions (i.e., the positive and negative input connection positions of the transconductance amplifier GM) are determined by the visual direction comparison circuit 60 output type, and may be the opposite arrangement. . Looking back at Figure 1 again, according to the present invention, the current-power relationship is used to determine the MPP. The controlled output parameter of the optical component can be the output current or the output 13 M417582 voltage. As shown in FIG. 10, in the present embodiment, the input current Iin (that is, the output current of the light energy element 21) is measured by the current detecting circuit (4), and the output of the power meter 40 (corresponding to the light energy element 21). The output power is compared in the direction comparison circuit 60; the result can be adjusted according to the resistance value of the variable resistor R4 so that the voltage v' at the node vr obtained by dividing the reference voltage VREF' corresponds to the most The voltage of the good current point Impp moves, and the voltage of the light energy component corresponding to the Im 卯 current value is also the optimum voltage point. The comparison control circuit 50 stabilizes Vin at the Vm point by feedback control of the fiber to achieve the same purpose. Moreover, it is obvious that since the direction-direction relationship of the current-power and the slope direction of the voltage-power are opposite, the detailed circuit configuration of the direction comparison circuit 6A or the variable resistance control circuit 7 must be taken into consideration, for example, If the circuit structure shown in the above Figure 7_9 is used, it is possible to add an appropriate inversion between them, or to use a mutually exclusive or gate view (10) instead of a mutually exclusive or inter-XOR 'or a swapped Fig. 8 upper and lower bridge PMC)S and Deleting or replacing the positive and negative input terminals of the transconductance amplifier GM of FIG. 9, and the like, in the embodiment, the variable resistance control circuit 7 is used to adjust the resistance value of the variable -mi to adjust the electric power (4) The specific method is to facilitate the 1 brother and easy to understand. The basic spirit is that the circuit that generates VR depends on the output signal control of the direction adjustment circuit 63. According to an established rule, the established rule of the electricity and electricity is that when the light energy component is used, the VR is 1 'current, When the slope of both powers is reversed, the voltage is raised, and when the slopes of both current and power are in the same direction, the voltage is lowered. When the output current of the vehicle is the control target, the current and power are both reduced to VR voltage; when the slopes of both current and power are the same, the VR power is increased. In this way, the reference power is controlled repeatedly (6). That is, it should be the model park covered by this new type. _ Current system 8 has various fresh methods, such as the first picture; in the figure = the circuit can input current, for example, to convert the detection result into a voltage signal, ^ The direction comparison circuit 60 is provided. Similarly, the figure is only for a number of possible implementations, and the purpose is to exemplify the scope of the present invention. The embodiments of the sixth, seventh, and first embodiments are described above. In the middle, because the power meter is used, the power meter must measure and multiply the current and voltage, so the circuit seems to be miscellaneous'. However, in the new concept, it is not necessary to use a very precise power meter. As described above, according to the present invention, it is only necessary to know the direction of the change in the output power of the light energy element 21, and it is not necessary to know the precise power number, so that the circuit of the power meter can be very simplified (after the 13th, 14 Figure details) 'Even can even root The power meter is not used. Please refer to FIG. 12, which is an extension embodiment of the embodiment of FIG. 10, and is also a ninth embodiment of the present invention, as shown in the right side of the figure, because the load 4 is usually a battery. The voltage of the battery changes very slowly, so the current detecting circuit 41 can be used instead of the power meter 40 to measure only the current to the load 4 and convert it into a voltage signal input differential circuit 62 to achieve the circuit purpose. For the specific structure of the circuit W, for example, refer to FIG. 11 and, in addition, the right side of the circuit of FIGS. 6 and 7 can be replaced by the same one, which is not shown. If the voltage variation of the load 4 is to be taken into account , you can use the power trend ^ to replace the gods; the so-called power trend meter, the current point of time power and the pre-time _ power taste, and produce a difference with the difference signal. It should be emphasized that the 'pants trend meter only _ indicates the direction of the credit, and even M417582 does not need to be proportionally changed in value. An embodiment of the power trend meter, as shown in FIG. 13, for example, is a tenth embodiment of the present invention; Embodiments use resistance heat sensitivity to estimate Rate trend. As shown, the bipolar transistor QBP can be used to sense the change in heat on the resistor Rs; roughly, the base-to-emitter voltage change (i/VBE) and temperature of the bipolar transistor The relationship of change (^) is approximately

dVQ^/dT ~ -2mV/°C 因此,可使用此溫度計的電壓變化值來代表功率趨勢,不過 需注意的是,此為反相之類比訊號,故後級電路中需對此做 相應的處理。 如不欲以溫度計來取代功率計,則請參閱第14圖,此為 本新型的第十一實施例,此電路亦可十分精簡地達成本新型 的目的。請同時對照第7圖,本實施例的電路等效包括了第 7圖中的功率計40、微分電路61、比較器CP2。詳言之,第 14圖電路中包含第一 RC電路(R181,C181),其取得有關該負 載電流的第一延遲訊號;第二RC電路(R182,C182),其取得 有關該負載電壓的第二延遲訊號;以及一類比電路18〇,根 據該第一延遲訊號、第二延遲訊號、有關該負載電流的訊號、 與有關該負載電壓的訊號,而決定該功率變化方向。類比電 路180乃是用來比較兩個乘積值的相對大小(以下描述都在相 對大小的概念中描述,而非描述絕對值),其中包含一第一類 比乘法電路181,用以產生一與該負載電壓和負載電流的乘 積成正相關之第一導出訊號";一第二類比乘法電路182, 用以產生一與該第一延遲訊號和該第二延遲訊號的乘積成正 相關之第二導出訊號z·2 ; 一總和節點(Summing Node)Z,用以 比較該第-導出訊號z7與該第二導出訊號ζ·2,以決定該功率 變化方向。 請參閱第15圖’如何根據光能元件21之短路電流isc 取得其代表電壓V_IinREF ’有各種方式,舉例*言,可提供 一組參考光能元件21A (參考光能元件21A的數目與光能元 件21可以元全相同或為其一個比例值,視代表電壓v_IinREF 的設定而定),並使此組參考光能元件21A處於短路狀態, 以產生短路電流Isc (或其比例值)(5電流複製電路81將短路 電流Isc複製為電流II,同樣地根據代表電壓v_IinR£F的設 疋而疋’此電流II可以相等於短路電流Isc或為其比例值。 電流11經過一個電流轉電壓電路8 2 ’其最簡單的形式例如為 電阻,亦可為其他較複雜的形式,便可將電流n轉換為代表 電壓V一IinREF,其中代表電壓v_IinREF與短路電流Isc的 關係,可由參考光能元件21A與光能元件21的關係、電流 複製電路81的複製比例、以及電流轉電壓電路82的轉換比 例來設定。在此實施例中,因電流複製電路81之輸入端電晶 體元件Ml上之跨壓Vgl相對於光能元件串21A之I-V曲 線,為一可忽略之小電壓,故此時光能元件串21八所輸出之 電流非常接近其短路電流ISC。如果採用電阻取壓再經放大器 放大的方式,則此跨壓更可大幅縮小。因此乃習知電路,在 此不加贅述。 第16圖顯示另一種實施方式,此實施例中無需另外設置 參考光能元件21A ’而是安排成:在正常操作下,光能元件 21產生輸入電M Vin提供給光能電路,但開關電路幻間歇 地將光能元件21透過電流複製電路81接地以取得短路電流dVQ^/dT ~ -2mV/°C Therefore, the voltage change value of this thermometer can be used to represent the power trend, but it should be noted that this is an analog signal of inversion, so it is necessary to do this in the latter stage circuit. deal with. If the thermometer is not to be replaced by a thermometer, please refer to Fig. 14, which is an eleventh embodiment of the present invention, and the circuit can also achieve the purpose of the novel. Referring to Fig. 7, the circuit of the present embodiment is equivalent to the power meter 40, the differential circuit 61, and the comparator CP2 in Fig. 7. In detail, the circuit of FIG. 14 includes a first RC circuit (R181, C181) that obtains a first delay signal related to the load current, and a second RC circuit (R182, C182) that obtains a phase related to the load voltage. And the analog signal is determined according to the first delay signal, the second delay signal, the signal about the load current, and the signal related to the load voltage. The analog circuit 180 is used to compare the relative sizes of the two product values (the following descriptions are all described in the concept of relative size, rather than describing the absolute value), including a first analog multiplication circuit 181 for generating a The first derivative signal of the product of the load voltage and the load current is positively correlated. A second analog multiplication circuit 182 is configured to generate a second derived signal that is positively correlated with the product of the first delay signal and the second delay signal. z·2 ; a summing node Z for comparing the first-derived signal z7 with the second derived signal ζ·2 to determine the power change direction. Please refer to Fig. 15 'How to obtain the representative voltage V_IinREF according to the short-circuit current isc of the light energy element 21'. There are various ways, for example, a set of reference light energy elements 21A can be provided (the number of reference light energy elements 21A and the light energy) The component 21 may be identical or a proportional value depending on the setting of the representative voltage v_IinREF, and the set of reference optical energy components 21A is short-circuited to generate a short-circuit current Isc (or a proportional value thereof) (5 current) The replica circuit 81 replicates the short-circuit current Isc as the current II, and likewise according to the setting of the representative voltage v_IinR£F, the current II can be equal to or equal to the short-circuit current Isc. The current 11 passes through a current-turning voltage circuit 8. 2 'The simplest form is, for example, a resistor, or other more complicated form, which can convert the current n into a representative voltage V_IinREF, wherein the relationship between the voltage v_IinREF and the short-circuit current Isc can be determined by the reference light energy element 21A. The relationship with the light energy element 21, the reproduction ratio of the current replica circuit 81, and the conversion ratio of the current-to-voltage circuit 82 are set. In this embodiment, the current is The voltage across the voltage Vgl of the input terminal transistor element M1 of the circuit 81 is opposite to the IV curve of the light energy element string 21A, which is a negligible small voltage. Therefore, the current outputted by the light energy element string 21 is very close to the short circuit current. ISC. If the resistor is used for voltage amplification and then amplified by the amplifier, the voltage across the amplifier can be greatly reduced. Therefore, it is a conventional circuit, which will not be described here. Figure 16 shows another embodiment, in this embodiment, no additional The reference light energy element 21A' is arranged to be arranged such that, under normal operation, the light energy element 21 generates input power M Vin to the light energy circuit, but the switching circuit phantom intermittently grounds the light energy element 21 through the current replica circuit 81 to Short circuit current

Isc,並以與第15圖實施例相似的方式轉換為電壓訊號。此 電麼訊號經取樣保持電路84予以保存後,輸出作為代表電屡 V_IinREF 〇 除了第I5、16圖外’另還可有多種其他根據光能元件 21之短路電流isc來取得代表電壓VjinREF的方式,或如果 在環境光源穩定而短路電流ISC為已知且變化不大的情況 下,甚至可在電路設計時直接將v_IinR£F設定為一或數個 固定值。 综合上述,先前技術中,為了計算精確的電流電壓值以 求得MPP,必須使用複雜的數位計算電路,其所使用的電晶 體元件數量至少在十幾萬個至數十萬個;如使用本新型的= 比電路,則元件數目可減少至千分之—以下。因此,本新型 顯較先前技術更為進步,並具有實用性。 以上已針對較佳實施例來說明本新型,唯以上所述者, 僅係為使也悉本技術者易於了解本新型的内容而已並非用 ^限定本_之侧翻。如前所述,對於熟悉本技術者, 當可在本新型精神内,立即思及各種等效變化。例如,所有 實施例中所示直接連接的^元件,可在其_人不影響主要 功能的電路,例如延遲電路、關電路、電阻電路等。又例 ’所有實施例中的故凡依本新型之概念與精神所為之均等 邊化或修飾,均應包括於本新型之申請專利範圍内。 【圖式簡單說明】 M417582 第1圖示出光能元件在相同光能下的電壓一電流關係圖。 第2圖為先前技術之光能電路的示意電路圖。 第3圖為本新型第一實施例的示意電路圖。 第4圖為本新型第二實施例的示意電路圖。 第5圖為本新型第三實施例的示意電路圖。 第6圖為本新型第四實施例的示意電路圖。 第7圖為本新型第五實施例的示意電路圖。Isc, and converted to a voltage signal in a similar manner to the embodiment of Figure 15. After the signal is saved by the sample and hold circuit 84, the output is used as the representative power V_IinREF. In addition to the first and fifth figures, there are various other ways to obtain the representative voltage VjinREF according to the short-circuit current isc of the light energy element 21. Or, if the ambient light source is stable and the short-circuit current ISC is known and the change is not large, v_IinR£F can be directly set to one or several fixed values even in circuit design. In summary, in the prior art, in order to calculate an accurate current and voltage value to obtain an MPP, a complicated digital calculation circuit must be used, which uses at least a few hundred thousand to several hundreds of thousands of transistor components; With the new = ratio circuit, the number of components can be reduced to less than a thousand. Therefore, the present invention is more advanced and practical than the prior art. The present invention has been described above with respect to the preferred embodiments, and the above description is merely for the purpose of making it easy for the person skilled in the art to understand the contents of the present invention and not to limit the rollover of the present invention. As mentioned above, for those skilled in the art, various equivalent changes can be immediately considered within the spirit of the present invention. For example, the directly connected components shown in all of the embodiments may be circuits in which the main function is not affected, such as a delay circuit, a shutdown circuit, a resistance circuit, and the like. Further, all of the embodiments are equally intended to be included in the scope of the present invention as defined by the concept and spirit of the present invention. [Simple description of the diagram] M417582 Figure 1 shows the voltage-current relationship of the light energy element under the same light energy. Figure 2 is a schematic circuit diagram of a prior art light energy circuit. Fig. 3 is a schematic circuit diagram of the first embodiment of the present invention. Fig. 4 is a schematic circuit diagram of a second embodiment of the present invention. Fig. 5 is a schematic circuit diagram of a third embodiment of the present invention. Fig. 6 is a schematic circuit diagram of a fourth embodiment of the present invention. Fig. 7 is a schematic circuit diagram of a fifth embodiment of the present invention.

第8圖為本新型第六實施例的示意電路圖。 第9圖為本新型第七實施例的示意電路圖。 第10圖為本新型第八實施例的示意電路圖。 第11圖舉例說明電流偵測電路的實施例。 第12圖為本新型第九實施例的示意電路圖。 第13圖為本新型第十實施例的示意電路圖。 第14圖為本新型第十一實施例的示意電路圖。Figure 8 is a schematic circuit diagram of a sixth embodiment of the present invention. Figure 9 is a schematic circuit diagram of a seventh embodiment of the present invention. Fig. 10 is a schematic circuit diagram of the eighth embodiment of the present invention. Figure 11 illustrates an embodiment of a current detecting circuit. Figure 12 is a schematic circuit diagram of a ninth embodiment of the present invention. Figure 13 is a schematic circuit diagram of a tenth embodiment of the present invention. Figure 14 is a schematic circuit diagram of the eleventh embodiment of the present invention.

第15、16圖說明如何根據光能元件21之短路電流Isc取 得代表電壓V_IinREF。 21A參考光能元件 31功率電晶體 40功率計 41電流偵測電路 50比較控制電路 51數位計算模組 52邏輯電路 【主要元件符號說明】 2光能元件 3功率輸出級 4負載 5數位控制器 7可變電阻控制電路 8電流偵測電路 21光能元件 M417582 60方向比較電路 61微分電路 62微分電路 63斜率方向比較電路 81電流複製電路 82電流轉電壓電路 83開關電路 84取樣保持電路 180類比電路 181第一類比乘法電路 182第二類比乘法電路Figures 15 and 16 illustrate how the representative voltage V_IinREF is obtained from the short-circuit current Isc of the light energy element 21. 21A reference light energy element 31 power transistor 40 power meter 41 current detection circuit 50 comparison control circuit 51 digital calculation module 52 logic circuit [main component symbol description] 2 light energy component 3 power output stage 4 load 5 digital controller 7 Variable resistance control circuit 8 current detecting circuit 21 light energy element M417582 60 direction comparison circuit 61 differential circuit 62 differential circuit 63 slope direction comparison circuit 81 current copy circuit 82 current turn voltage circuit 83 switch circuit 84 sample hold circuit 180 analog circuit 181 First analog multiplication circuit 182 second analog multiplication circuit

Cl, C2, C7, C181, C182, CR 電容器 CP1,CP2,CMP 比較器 DR二極體 EA誤差放大器 U第一導出訊號 /2第二導出訊號Cl, C2, C7, C181, C182, CR Capacitor CP1, CP2, CMP Comparator DR Diode EA Error Amplifier U First Derived Signal /2 Second Derived Signal

Ml電晶體元件 ΟΡ1,ΟΡ2運算放大器 QBP雙載子電晶體Ml transistor component ΟΡ1, ΟΡ2 operational amplifier QBP bipolar transistor

Rl, R2, R3, R4, R181, R182Rl, R2, R3, R4, R181, R182

Rs電阻 SW開關 20Rs resistance SW switch 20

Claims (1)

M417582 修正無劃線版 六、申請專利範圍: L 一種類比光能電路,包含: 一組光能元件,其吸收光能而產生輸入電壓,該輪入電 壓與輸入電流具有對應關係; 功率輸出級電路,接收該光能元件產生的輸入電壓,並 產生一輸出電壓;M417582 Fixed unlined version 6. Patent application scope: L An analog light energy circuit, comprising: a set of light energy components that absorb light energy to generate an input voltage, and the wheel-in voltage has a corresponding relationship with the input current; a stage circuit receiving an input voltage generated by the light energy element and generating an output voltage; η 最佳電流點估算電路,其接受一預定電壓,並根據輪入 電流的變化方向與光能元件所產生功率的變化方向,估算對 應於最佳功率輸出點的最佳電流點;以及 類比比較控制電路,其將該最佳電流點估算電路所估算 的最佳電流點,與輸入電流進行比較,並根據比較結果控 制該功率輸出級之操作。 2. 如申睛專利範圍第1項所述之類比光能電路,其中該最 佳電流點估算電路包括一個可變分壓電路,此可變分壓電路 對該預定電壓進行分壓,而纽最佳歧點。 3. 如申請專利範圍第1項所述之類比光能電路,其中該最 佳電流點估算電路包括一方向比較電路,此電路比較輸入電 壓的變化方向與光能元件所產生功率的變化方向,並根據比 較結果而控制該可變分壓電路。 4. 如申請專利範圍第1項所述之類比光能電路,其中該方 向比較電路包括: 第一向通濾波器,其接收代表輸入電流的訊號; 第二高通濾波器,其接收代表光能元件功率的訊號;以 及 21 M417582 修正無劃線版 Λ 斜率方向比較電路,接收第一與第二高通濾波器的輸 出’並產生比較結果。 5. 如申請專利範圍第4項所述之類比光能電路,其中該第 一與第二咼通瀘、波器為微分器。 6. 如申請專利範圍第4項所述之類比光能電路,其中該功 率輸出級電路供應電壓給一負載,且該代表光能元件功率的 訊號’係根據傳送給該負載的功率而得。 7. 如申請專利範圍第4項所述之類比光能電路,其中該功 率輸出級電路供應電壓給一負載,且該代表光能元件功率的 訊號,係根據流過該負載的電流而得。 8. 如申請專利範圍第3項所述之類比光能電路,其中該功 率輸出級電路供應電壓給一負載,且所述類比光能電路更包 括一個功率計’其量測傳送給該負載的功率,並將結果輸入 該方向比較電路。 9. 如申請專利範圍第3項所述之類比光能電路,其中該功 率輸出級電路供應電壓給一負載,且所述類比光能電路更包 括一個功率趨勢計,其量測傳送給該負載的功率趨勢,並將 結果輸入該方向比較電路。 10. 如申請專利範圍第9項所述之類比光能電路,其中該功 率趨勢計利用電阻熱度感應來估算功率趨勢。 11. 如申凊專利範圍第3項所述之類比光能電路,其中該功 率輸出級電路供應電壓給一負載,且所述類比光能電路更包 括一個電流偵測電路,其偵測流過該負載的電流,並將結果 輸入該方向比較電路。 22 M417582 修正無劃線版 . 10 n a. 12. 如申請專利範圍第1項所述之類比光能電路,其中該·〃· S電壓為固定電壓、或取自該組統藉、或取自—組參= 用之光能元件,該預定電壓對應於該組光能元件之短路電淀。 13. —種類比光能電路,包含: μ 一組光能元件,其吸枚光能而產生輸入電壓,該輸入 • 壓與輸入電流具有對應關係; ^ ^ 功率輸出級電路,接收該光能元件產生的輸入電壓, 產生一輸出電壓; ' 最佳電壓點估算電路,其接受一預定電壓,並根據輸入 電流的變化方向與光能元件所產生功率的變化方向,估^對 應於最佳功率輸出點的最佳電壓點;以及 類比比較控制電路,其將該最佳電壓點,與輸入電壓進 行比較,並根據比較結果,控制該功率輸出級之操作。 H.如申請專利範圍第13項所述之類比光能電路,其中該最 佳電壓點估算電路包括一個可變分壓電路,此可變分壓電路 • 對該預定電壓進行分壓,而產生最佳電流點。 • I5.如申請專利範圍第14項所述之類比光能電路,其中該最 佳電壓點估算電路包括-方向比較電路,此電路比較輸入電 流的變化方向與光能元件所產生功率的變化方向,並根據比 較結果而控制該可變分壓電路。 16.如申s青專利範圍第15項所述之類比光能電路其中該方 向比較電路包括: 第一高通濾波器’其接收代表輸入電流的訊號; • 第一馬通濾波器’其接收代表光能元件功率的訊號;以 23 M417582 修正無劃線版 IflO. 1〇· 06 及 斜率方向比較電路,接收第一與第二高通濾波器的輸 出,並產生比較結果。 17. 如申請專利範圍第16項所述之類比光能電路,其中該第 一與第二高通濾波器為微分器。 18. 如申請專利範圍第16項所述之類比光能電路,其中該功 率輸出級電路供應電壓給一負載,且該代表光能元件功率的 訊號’係根據傳送給該負載的功率而得。 19. 如申請專利範圍第16項所述之類比光能電路,其中該功 率輸出級電路供應電壓給一負载,且該代表光能元件功率的 訊號,係根據流過該負載的電流而得。 20. 如申請專利範圍第15項所述之類比光能電路,其中該功 率輸出級電路供應電壓給一負載,且所述類比光能電路更包 括一個功率計,其量測傳送給該負載的功率,並將結果輸入 該方向比較電路。 21. 如申請專利範圍第丨5項所述之類比光能電路,其中該功 率輸出級電路供應電壓給一負載,且所述類比光能電路更包 括-個功率趨勢計’其量測傳送給該負載的功率趨勢,並將 結果輸入該方向比較電路。 22. 如申請專利範圍第21項所述之類比光能電路,其中該功 率趨勢計利用電阻熱度感應來估算功率趨勢。 23. 如申請專利範圍帛ls項所述之類比光能電路,其中該功 率輸出級電路供應電壓給一負載,且所賴比光能電路更包 括-個電流細f路,其偵測流過該負載的電流,並將結果 24 M417582 修正無劃線版 輸入該方向比較電路。 ;c j ί年月η Optimum current point estimation circuit that accepts a predetermined voltage and estimates an optimum current point corresponding to an optimum power output point according to a direction of change of the wheel current and a direction of change of power generated by the light energy element; and analogy comparison A control circuit that compares the optimum current point estimated by the optimum current point estimation circuit with the input current and controls the operation of the power output stage based on the comparison result. 2. The analog light energy circuit of claim 1, wherein the optimal current point estimating circuit comprises a variable voltage dividing circuit, and the variable voltage dividing circuit divides the predetermined voltage. And New Zealand's best point. 3. The analog light energy circuit of claim 1, wherein the optimal current point estimation circuit comprises a direction comparison circuit that compares a direction of change of the input voltage with a direction of change of power generated by the light energy element, The variable voltage dividing circuit is controlled based on the comparison result. 4. The analog optical power circuit of claim 1, wherein the direction comparison circuit comprises: a first pass filter that receives a signal representative of the input current; and a second high pass filter that receives the representative light energy The signal of the component power; and 21 M417582 modified unlined version 斜率 slope direction comparison circuit, receiving the output of the first and second high-pass filters' and producing a comparison result. 5. The analog optical power circuit of claim 4, wherein the first and second pass transistors are differentiators. 6. The analog optical power circuit of claim 4, wherein the power output stage circuit supplies a voltage to a load, and the signal representing the power of the light energy element is derived from the power delivered to the load. 7. The analog optical power circuit of claim 4, wherein the power output stage circuit supplies a voltage to a load, and the signal representing the power of the light energy element is derived from a current flowing through the load. 8. The analog optical power circuit of claim 3, wherein the power output stage circuit supplies a voltage to a load, and the analog optical power circuit further includes a power meter that measures the transmission to the load. Power and enter the result into the direction comparison circuit. 9. The analog optical power circuit of claim 3, wherein the power output stage circuit supplies a voltage to a load, and the analog optical power circuit further includes a power trend meter, and the measurement is transmitted to the load. The power trend and enter the result into the direction comparison circuit. 10. The analog light energy circuit of claim 9, wherein the power trend meter utilizes resistance heat sensing to estimate power trends. 11. The analog optical power circuit of claim 3, wherein the power output stage circuit supplies a voltage to a load, and the analog optical circuit further includes a current detecting circuit that detects the flow The current of the load is input to the direction comparison circuit. 22 M417582 Corrected unlined version. 10 n a. 12. The analog light energy circuit of claim 1, wherein the voltage of the 〃·S is a fixed voltage, or taken from the group, or taken From the group of light energy components, the predetermined voltage corresponds to the short circuit of the group of light energy elements. 13. A type of light energy circuit comprising: μ a group of light energy elements that absorb light energy to generate an input voltage, the input and voltage have a corresponding relationship with the input current; ^ ^ a power output stage circuit that receives the light energy The input voltage generated by the component generates an output voltage; 'the optimum voltage point estimation circuit receives a predetermined voltage and estimates the optimum power according to the direction of change of the input current and the direction of the power generated by the light energy component. An optimum voltage point at the output point; and an analog comparison control circuit that compares the optimum voltage point with the input voltage and controls the operation of the power output stage based on the comparison. H. The analog optical power circuit of claim 13, wherein the optimum voltage point estimating circuit comprises a variable voltage dividing circuit, and the variable voltage dividing circuit • divides the predetermined voltage, And produce the best current point. 1. The analog optical power circuit of claim 14, wherein the optimum voltage point estimation circuit comprises a direction-direction comparison circuit that compares a direction of change of the input current with a direction of change of power generated by the light energy element. And controlling the variable voltage dividing circuit according to the comparison result. 16. The analog optical power circuit of claim 15, wherein the direction comparison circuit comprises: a first high pass filter that receives a signal representative of the input current; and a first pass filter that receives the representative The signal of the power of the optical component; the uncorrected IflO. 1〇· 06 and the slope direction comparison circuit are corrected by 23 M417582, and the outputs of the first and second high-pass filters are received, and a comparison result is generated. 17. The analog optical power circuit of claim 16, wherein the first and second high pass filters are differentiators. 18. The analog light energy circuit of claim 16, wherein the power output stage circuit supplies a voltage to a load, and the signal representing the power of the light energy element is derived from the power delivered to the load. 19. The analog optical power circuit of claim 16, wherein the power output stage circuit supplies a voltage to a load, and the signal representative of the power of the optical energy element is derived from a current flowing through the load. 20. The analog light energy circuit of claim 15, wherein the power output stage circuit supplies a voltage to a load, and the analog light energy circuit further comprises a power meter, the measurement being transmitted to the load Power and enter the result into the direction comparison circuit. 21. The analog optical power circuit of claim 5, wherein the power output stage circuit supplies a voltage to a load, and the analog optical power circuit further includes a power trend meter. The power trend of the load is entered into the direction comparison circuit. 22. The analog light energy circuit of claim 21, wherein the power trend meter utilizes resistance heat sensing to estimate power trends. 23. The analog optical power circuit of claim 1, wherein the power output stage circuit supplies a voltage to a load, and the light energy circuit further includes a current thin f path, and the detection flows through the load. The current and the result of the 24 M417582 correction without the scribe line input to the direction comparison circuit. ;c j ί年月 24.如申請專利範圍第13項所述之類比光能電路,其中該預 定電壓為固定電壓、或取自該組光能元件、或取自一組參考 用之光能元件,該預定電壓對應於該組光能元件之短路電流。 25· —種類比光能電路,包含: 一組光能元件,其吸收光能而產生輸入電壓,該輪入電壓與 輸入電流具有對應關係; 、24. The analog light energy circuit of claim 13, wherein the predetermined voltage is a fixed voltage, or is taken from the set of light energy elements, or is taken from a set of reference light energy elements, the predetermined voltage corresponding to Short circuit current of the group of light energy components. 25·—a type of light energy circuit comprising: a set of light energy elements that absorb light energy to generate an input voltage, and the wheel-in voltage has a corresponding relationship with an input current; 功率輸出級電路,接收該光能元件產生的輸入電壓,將其轉 換為輸出電壓以供應給一個負載; 最佳電流點估算電路,其接受一預定電壓,並根據輪入電流 的變化方向與光能元件所產生功率的變化方向,估算最佳電流 點’其中該功率的變化方向係得自—神變化方向指示電路^ 該功率變財向料電路輸職,指_功率的 向;以及a power output stage circuit that receives an input voltage generated by the light energy element and converts it into an output voltage for supply to a load; an optimum current point estimation circuit that accepts a predetermined voltage and changes direction according to the direction of the wheel current The direction of the change in the power generated by the component, the estimated current point 'where the direction of change of the power is derived from the direction change indicator circuit of the god change direction ^ the power change direction circuit input, refers to the direction of the power; 類比比較控制電路,其將該最佳電流點估算電路所估算的最 鮮妨战,雌觀㈣果,控制該功 26.如申請專利範圍第25項所述之類比光能電路,ί中外八 功率變化方向的訊號為數位訊號 ,指示d(V*I)/dt的正負號,盆 中d(V*I)為功率變化,出為時間變化。 27. 如申請專利範圍第25項所述之類比光能電路,其 變化方向指示電路包括: Λ 及 第RC電路,其取得有關該負載電流的第一延遲訊號; 第二RC電路’其取得有關該負載電壓的第二延遲訊號u;以 25 M417582 修正無劃線版 一類比電路’根據該第一延遲訊號、第二延遲訊號、有關 該負載電流的訊號、與有關該負載電壓的訊號,而決定該功率 變化方向。 28. 如申請專利範圍第27項所述之類比光能電路,其中該類比 電路包括: 一第一類比乘法電路,用以產生一與該負載電壓和負載電 流的乘積成正相關之第一導出訊號; 、 一第一類比乘法電路,用以產生一與該第一延遲訊號和該 第二延遲訊號的乘積成正相關之第二導出訊號; 一總和節點,用以比較該第一導出訊號與該第二導出訊 號,以決定該功率變化方向。 29. —種類比光能電路,包含: 一組光能元件,其吸收光能而產生輸入電壓,該輪入電壓與 輸入電流具有對應關係; ~ 功率輸出級電路,接收該光能元件產生的輸入電壓,將其轉 換為輸出電壓以供應給一個負載; 最佳電壓點估算電路,其接受一預定電壓,並根據輸入電流 的變化方向與光能元件所產生功率的變化方向,估算最佳電壓^ 點,其中該功率的變化方向係得自一功率變化方向指示電路, 該功率變化方向指示電路輸出一訊號,指示該功率的變化方 向;以及 類比比較控制電路,其根據該最佳電壓點,與輸入電壓進行 比較,並根據比較結果,控制該功率輸出級之電壓轉換操作。 30. 如申請專利範圍第29項所述之類比光能電路,其中該指示 功率變化方向的訊號為數位訊號,指示d(v*I)/dt的正負號, 26 M417582 ; 修正無劃線版 …… • d(V*_ ’其巾d(V*I)為功率變化,dt為時間變化。 . 31·如申請專利範圍第29項所述之類比光能電路,其中該功率 變化方向指示電路包括: 、^ 第一RC電路,其取得有關該負載電流的第一延遲訊號; 第二RC電路’其取得有關該負載電壓的第二延遲訊號;以 及 . 一類比電路,根據該第一延遲訊號、第二延遲訊號、有關 該負載電流的訊號、與有關該負載電壓的訊號,而決定該 • 變化方向。 32.如申請專利範圍第31項所述之類比光能電路,其中該類比 電路包括: 、^ -第-類比乘法電路’用以產生—與該負載電壓和負載電 流的乘積成正相關之第一導出訊號; -第二類比乘法電路’用以產生—與該第—延遲訊號和該 第二延遲訊號的乘積成正相關之第二導出訊號; 一總和淹點,用以比較該第一導出訊號與該第二導出訊 • 號,以決定該功率變化方向。 27Analog comparison control circuit, which is the most fascinating estimate of the optimal current point estimation circuit, and the female (4) fruit, controls the work. 26. For example, the analog light energy circuit described in claim 25, ί中外八The signal in the direction of power change is a digital signal indicating the sign of d(V*I)/dt, and the d(V*I) in the basin is the power change, which is a time change. 27. The analog light energy circuit of claim 25, wherein the change direction indicating circuit comprises: Λ and an RC circuit, which obtains a first delay signal related to the load current; and a second RC circuit a second delay signal u of the load voltage; correcting the unlined version of the analog circuit by 25 M417582 'based on the first delay signal, the second delay signal, the signal related to the load current, and the signal related to the load voltage, Determine the direction of this power change. 28. The analog optical circuit of claim 27, wherein the analog circuit comprises: a first analog multiplication circuit for generating a first derived signal positively correlated with a product of the load voltage and the load current a first analog multiplication circuit for generating a second derived signal positively correlated with a product of the first delay signal and the second delay signal; a sum node for comparing the first derived signal with the first Second, the signal is derived to determine the direction of the power change. 29. A type-specific light energy circuit comprising: a set of light energy elements that absorb light energy to generate an input voltage, the wheel-in voltage having a corresponding relationship with an input current; ~ a power output stage circuit receiving the light-emitting element Input voltage, which is converted into an output voltage for supply to a load; an optimum voltage point estimation circuit that accepts a predetermined voltage and estimates an optimum voltage according to a direction of change of the input current and a direction of change of power generated by the light energy element ^ a point, wherein the direction of change of the power is derived from a power change direction indicating circuit, the power change direction indicating circuit outputs a signal indicating a direction of change of the power; and an analog comparison control circuit according to the optimal voltage point, Comparing with the input voltage and controlling the voltage conversion operation of the power output stage according to the comparison result. 30. The analog optical power circuit of claim 29, wherein the signal indicating the direction of power change is a digital signal indicating a sign of d(v*I)/dt, 26 M417582; ...... d (V*_ 'the towel d (V*I) is the power change, and dt is the time change. 31. The analog light energy circuit of claim 29, wherein the power change direction indication The circuit includes: a first RC circuit that obtains a first delay signal related to the load current; a second RC circuit that acquires a second delay signal related to the load voltage; and an analog circuit that is based on the first delay a signal, a second delay signal, a signal related to the load current, and a signal related to the load voltage, and determining the direction of the change. 32. The analog optical circuit of claim 31, wherein the analog circuit The method includes: , a - analogy multiplication circuit for generating a first derived signal that is positively correlated with a product of the load voltage and the load current; - a second analog multiplication circuit for generating - and the first delay a second derived signal whose signal is positively correlated with the product of the second delayed signal; a summed flood point for comparing the first derived signal with the second derived signal to determine the direction of the power change.
TW100211349U 2011-06-22 2011-06-22 Analog photovoltaic power circuit TWM417582U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100211349U TWM417582U (en) 2011-06-22 2011-06-22 Analog photovoltaic power circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100211349U TWM417582U (en) 2011-06-22 2011-06-22 Analog photovoltaic power circuit

Publications (1)

Publication Number Publication Date
TWM417582U true TWM417582U (en) 2011-12-01

Family

ID=46449822

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100211349U TWM417582U (en) 2011-06-22 2011-06-22 Analog photovoltaic power circuit

Country Status (1)

Country Link
TW (1) TWM417582U (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI510877B (en) * 2013-10-23 2015-12-01 Ind Tech Res Inst Voltage compensation circuit and control method thereof
TWI664811B (en) * 2018-12-14 2019-07-01 Giga-Byte Technology Co.,Ltd. Power regulator and power regulating method
CN111324166A (en) * 2018-12-14 2020-06-23 技嘉科技股份有限公司 Power regulator and power regulation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI510877B (en) * 2013-10-23 2015-12-01 Ind Tech Res Inst Voltage compensation circuit and control method thereof
US9515544B2 (en) 2013-10-23 2016-12-06 Industrial Technology Research Institute Voltage compensation circuit and control method thereof
TWI664811B (en) * 2018-12-14 2019-07-01 Giga-Byte Technology Co.,Ltd. Power regulator and power regulating method
CN111324166A (en) * 2018-12-14 2020-06-23 技嘉科技股份有限公司 Power regulator and power regulation method
CN111324166B (en) * 2018-12-14 2021-09-03 技嘉科技股份有限公司 Power regulator and power regulation method

Similar Documents

Publication Publication Date Title
TWI331264B (en) Analog photovoltaic power circuit
JP5732873B2 (en) Method for calculating characteristics of solar cell and photovoltaic power generation system
Olalla et al. Performance of power-limited differential power processing architectures in mismatched PV systems
TW200928657A (en) Start-up circuit for reference voltage generation circuit
CN101871963A (en) Power voltage detection circuit
Enne et al. Dynamic integrated MPP tracker in 0.35 μm CMOS
TW201003081A (en) Sensor device
TWM417582U (en) Analog photovoltaic power circuit
TW201042416A (en) A maximum power tracking system for photovoltaic power generation systems
Chaurasia et al. Analysis of PV module with buck-boost and zeta converters with incremental conductance maximum power point tracking method
Wirateruna et al. Design of Maximum Power Point Tracking Photovoltaic System Based on Incremental Conductance Algorithm using Arduino Uno and Boost Converter
US9306443B2 (en) Analog photovoltaic power circuit with auto zero calibration
Chao et al. Evaluation of a photovoltaic energy mechatronics system with a built-in quadratic maximum power point tracking algorithm
KR101556386B1 (en) A solar inverter of improving efficiency, using dual maximum power point tracking
Kapoor et al. A novel control strategy to simulate solar panels
KR100415321B1 (en) Photovoltaic characteristic traceing method
US20120080950A1 (en) Analog photovoltaic power circuit
Ayop et al. Computation of current-resistance photovoltaic model using reverse triangular number for photovoltaic emulator application
US20150123649A1 (en) Sampling control for maximum power point tracking
Radwan et al. The non ideality effect of optimizing the P&O MPPT algorithm for PV battery charger applications
Rajendran et al. An event triggered-FOCV MPP technique with irradiance change detection block for next generation EH-converters
JP2013131658A (en) Solar battery and photovoltaic power generation system
Kalenteridis et al. A novel current sensing technique for photovoltaic MPPT applications
CN202257352U (en) Analog light energy circuit
CN207611304U (en) Linear temperature coefficient voltage follower circuit

Legal Events

Date Code Title Description
MK4K Expiration of patent term of a granted utility model