TWM374572U - Stacked disk-shaped optical lens array, stacked lens module - Google Patents

Stacked disk-shaped optical lens array, stacked lens module Download PDF

Info

Publication number
TWM374572U
TWM374572U TW98216879U TW98216879U TWM374572U TW M374572 U TWM374572 U TW M374572U TW 98216879 U TW98216879 U TW 98216879U TW 98216879 U TW98216879 U TW 98216879U TW M374572 U TWM374572 U TW M374572U
Authority
TW
Taiwan
Prior art keywords
optical
optical lens
array
stacked
disc
Prior art date
Application number
TW98216879U
Other languages
Chinese (zh)
Inventor
Huang-Chang Chen
zhi-peng Wang
De-Cheng Lin
san-wei Xu
Original Assignee
E Pin Optical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Pin Optical Industry Co Ltd filed Critical E Pin Optical Industry Co Ltd
Priority to TW98216879U priority Critical patent/TWM374572U/en
Publication of TWM374572U publication Critical patent/TWM374572U/en

Links

Landscapes

  • Lens Barrels (AREA)

Description

M374572 , 30 :影像感測元件(Image capture device,ICD ) 101、201 :光學中心軸(optical axis) 102 :黏膠槽(glue groove) 161、 261 :定位銷(alignment pin) 162、 262 :定位穴(alignment cavity) 200 :堆疊光學鏡片元件(stacked optical lens element) 313 :間隔片(spacer) 330 :黏膠(cement glue) • 五、新型說明: 【新型所屬之技術領域】 本創作係有關一種堆疊碟狀光學鏡片陣列、堆疊鏡頭模組, 尤其一種利用至少二碟狀光學鏡片陣列以堆疊組成一堆疊碟狀光 學鏡片陣列,再切割分離成單一的堆疊光學鏡片元件,並與所需 的光學元件裝設入鏡頭支架内而組成一堆疊鏡頭模組,以使用於 手機相機的光學鏡頭或其他光學系統的光學鏡頭等。 【先前技術】 ® 塑膠射出壓縮成型(resin inj ection-compression molding;)#;^ 目 j如已廣泛應用在需高精度尺寸及考慮光學性質的光學產品如 DVD、CD-ROM或光學鏡片等的製造。塑膠射出壓缩成型其操作 結合了射出成型以及壓縮成型兩種成型技術,主要是在一般射出 成型程序中再加入模具壓縮的程序,亦即在塑膠澆注初期,模具 不完全閉鎖,當部份塑膠材料注入模穴後,再利用壓力將模具閉 鎖,由澆注處向模穴内熔融的塑膠材料施加壓力以壓縮成型來完 成模穴充填。雜成财式相較於-紐城型,具有降低殘餘 應力(residual _s)、減少成品雙折射率差(difference记reftacti〇n M374572 • index)及可製成高精度尺寸的光學鏡片之優點;如美國專利 US2008/0093756、日本專利 JP2008-230005、JP2003-071874 等已 運用此成型方法製成光學鏡片。 光學鏡片已廣泛運用於手機相機的光學鏡頭等光學系統;在 組合光學鏡片或構成光學鏡頭’為光學成像效果,常需要以多片 不同屈光度的光學鏡片,以一定空氣間隔組合成為光學鏡片模 組。因此,當多片不同屈光度的光學鏡片組合時,各光學鏡片的 ^光學中心軸(叩tical axis)需要精密對正以避免解析度降低的問題, 鲁且各光學鏡片也需要以一定間距組合而成,故將耗費許多的工序 與精密校正,致產量無法提高,成本也難以下降;尤其在光學鏡 片陣列組合上,當光學鏡片陣列的光學中心軸產生偏移時,將影 響光學效果,因此光學鏡片陣列校正上更為繁複與重要。在光學 鏡片陣列製造上,如日本專利JP2001194508提出塑膠光學鏡片陣 列之製造方法;台灣專利TWM343166提出玻璃光學鏡片陣列之 製造方法。光學鏡片陣列製成後可以切割分離成為單一之光學鏡 片單元,以組裝於鏡頭模組(lensmodule)中。或者可以先將光學鏡 鲁 片陣列與其他光學元件(optical element)先組合成鏡頭次模組陣 列(lens submodule array),再切割成單一的鏡頭次模組(iens submodule) ’經與鏡頭支架(lens holder)、影像感測元件(image capture device)或其他光學元件組合後,製成鏡頭模組(iens module) ° 在鏡頭模組陣列製造上,美國專利US7,183,643、 US2007/0070511、WIPO 專利 W02008011003 等提出晶元級鏡頭 模組(Wafer level lens module)。如圖1,一般光學用的鏡頭模組陣 列通常包含一光闌911(aperture)、一表玻璃912(cover glass)、多片 光學鏡片及一紅外線濾光鏡片917(IR cut lens),如圖所示為三片式m 3 M374572 . 光學鏡片組,包含第一光學鏡片914(first lens)、第二光學鏡片 915(second lens)及第三光學鏡片916(third lens),各光學鏡片間以 間隔片913(spacer)隔開;經組合後形成一鏡頭模組陣列,經切割 後製成鏡頭模組。對於鏡頭模組的製造,如圖2、3,如美國專利 US2006/0044450揭示一晶元級的光學鏡片模組9100,其係先各在 一光學鏡片載板918 (lens substrate)上分別設置一陣列光學鏡片 914、915,並以間隔片913 (spacer)隔開而組成一陣列光學鏡片 模組900,再切開形成單一個光學鏡片模組9100。 • 然而,對於鏡頭模組陣列,當多片光學鏡片陣列組合時,各光 學鏡片陣列的對正(alignment)將影響鏡頭模組陣列的解析度,在多 片光學鏡片陣列之組合上,美國專利US2006/0249859提出使用紅 外線(infrared ray)產生基準點標號(fiducial marks)以組合晶元級鏡 片模組;在塑膠光學鏡片陣列之組合上,日本專利 JP2000-321526、JP2000-227505 揭露自聚焦(SELFOC)光學鏡片陣 列以凸塊(height)與凹隙(crevice)組合的方法,日本專利 JP2001 -042104提出採用不同深度的凹溝(recess),以避免微鏡片陣 • 列的翹曲變形;美國專利US7,187,501提出利用圓錐體 (cone-shapedprojection)以堆疊(staclc)多片的塑膠光學鏡片陣列。在 LED光源之組合鏡片、太陽能轉換系統之組合鏡片及手機相機之 光學鏡頭使用的光學鏡片模組陣列,常是由多種光學面不同形狀 •的光學鏡片陣列所組成。在習知塑膠光學鏡片陣列以凸體 (projection)與凹穴(hole)組合的方法申,由於塑膠光學鏡片陣列係 以塑膠射域形,在凸體與凹穴處會造成材料收縮而使尺寸發生 改變,其定位精度難以提高,致塑膠光學鏡片陣列中每個光學鏡 片的學中心軸產生位置上差異,各光學鏡片的光學中心轴較難以 定位,使用上有相當限制。 4 利用塑膝射出壓縮成型(resin injection-compression molding)方 法,由碟片中心為塑料澆注成型所製成的碟狀光學鏡片陣列,因 具有低的内應力、高精密度的優點;且碟狀光學鏡片陣列中心設 有碟孔,可利用碟孔在組合時提供定位之用。因此利用碟狀光學 鏡片陣列發展簡易且精密度高的光學鏡片模組陣列的製造方法, 以製成光學鏡片模組陣列,提供給手機相機的光學鏡頭使用,才 能符合量產化之良率與產量的需求。 【新型内容】 本創作之主要目的係提供一種堆疊碟狀光學鏡片陣列 (Stacked Disk-shaped Optical Lens Array)供光學系統之光學鏡頭使 用如相機的鏡頭、手機相機的鏡頭或單一個發光二極體之光學鎖 頭等,其係包含至少二片雜光學鏡片陣列(Disk_shaped 〇ptica] Lens Array)並藉黏膠以預定的間隔堆疊組合固 狀光學鏡片陣列係利用塑膠材料射出壓縮成成其型中= mjectum-compression molding)技術製成’為碟狀如圓形碟狀但不以 圓形為限’对心設-碟孔,具有—第―及第二光學面且各咬相 對應之光學作㈣及非光學作龍,且由第—及第二光學面之光 學作用區對應構成複數個以陣列排列之光學鏡片;其中至少一 狀光學鏡片陣列在其非光學作用區的周邊_ρ1ιβΓ壯設=二 點膠槽’藉黏膠槽内所設黏_化後,使鄰接組合二碟 片陣列可m定結合形成-堆㈣狀光學鏡牌列;又其中至= 碟狀光學鏡片陣列在其非光學作用區的周邊上設有至少—定二 構(alignment fixture),藉由定位機構使鄰 列可精密堆疊組合,以使各光學鏡#可對正絲t心軸 該堆疊碟狀雜鏡片_可在其非絲作_塗崎膠= M374572 * 疊方式再組合其他光學元件陣列(optical element array),其中該光 學元件陣列包含:光學鏡片(optical lens)所形成的陣列,或間隔片 (spacer)、光闌(啊找^)、表玻璃(c〇ver giass)、紅外線濾光鏡片 (IR-cutglass)等所形成的陣列;經切割堆疊碟狀光學鏡片陣列以分 離成(singularized)單一的堆疊光學鏡片元件(stackecl optical lens element)» 本創作另一目的係提供一種堆疊碟狀光學鏡片陣列以供給光 學系統之光學鏡頭使用,其係包含至少二片碟狀光學鏡片陣列並 _ 藉黏膠以預定的間隔組合固定而製成;其中該碟狀光學鏡片陣列 係利用塑膠材料射出壓縮成型技術製成,為碟狀如圓形碟狀但不 以圓形為限,且中心設一碟孔;其中至少一碟狀光學鏡片陣列在 其碟孔設導位結構(guidingstructure),藉由該導位結構以使該二碟 狀光學鏡片陣列堆疊組合;又二碟狀光學鏡片陣列之間可置入間 隔片以產生預定的空氣間隔,該間隔片以黏膠與相鄰接之碟狀光 學鏡片陣列組合固定。 本創作再一目的係提供一種堆疊鏡頭模組,包含至少一堆疊 •光學鏡片元件(stacked optical lens element)、一鏡頭支架(iens holder) 及至少一光學元件(opticalelement);其中,該堆疊光學鏡片元件係 由一堆疊碟狀光學鏡片陣列切割分離成單一元件(elemen〇而製 成;其中該光學元件包含:光學鏡片(optical lens)、間隔片(spacer)、 光闌(aperture)、表玻璃(cover glass)、紅外線濾光鏡片阪灿讲⑻ 等。 【實施方式】 參考圖10,本創作之堆疊碟狀光學鏡片陣列1〇〇係包含至少 一碟狀光學鏡片陣列1、2 ’籍黏膠以預定的間隔組合固定而製成。 ^碟狀光學鏡片_ 1(2)係_瓣材料射规贼型技術製 成,為圓形碟狀但不以圓形為限且中心設一碟孔13(23)如圖4所 第—及第二光學面11(21)、12(22)其各包含相對應之光 子區及非光學作用區,並由第一與第二光學面11(21)、12(22) 之光予作用區對應構成複數個以陣列排列之光學鏡片⑴⑽;其M374572, 30: Image capture device (ICD) 101, 201: optical central axis 102: glue groove 161, 261: alignment pin 162, 262: positioning Alignment cavity 200 : Stacked optical lens element 313 : spacer 330 : cement glue • V. New description: [New technical field] This creation is related to Stacking disc-shaped optical lens arrays, stacked lens modules, in particular, using at least two-disc optical lens arrays to stack a stack of disc-shaped optical lens arrays, and then cutting and separating into a single stacked optical lens element, and with the required optics The components are mounted in the lens holder to form a stacked lens module for use in an optical lens of a mobile phone camera or an optical lens of other optical systems. [Prior Art] ® plastic injection molding (resin injection-compression molding;) #; ^ 目 j has been widely used in optical products requiring high precision and optical properties such as DVD, CD-ROM or optical lens Manufacturing. The plastic injection compression molding operation combines two molding techniques of injection molding and compression molding, mainly adding a mold compression program in the general injection molding process, that is, in the initial stage of plastic casting, the mold is not completely locked, when part of the plastic material After being injected into the cavity, the mold is locked by pressure, and pressure is applied from the pouring place to the molten plastic material in the cavity to be compression-molded to complete the cavity filling. Compared with the Newcastle type, the hybrid form has the advantages of reducing the residual stress (residual _s), reducing the finished birefringence difference (difference reftacti〇n M374572 • index) and optical lenses that can be made into high precision dimensions; Such a molding method has been used to produce an optical lens, such as US Patent No. US2008/0093756, Japanese Patent JP2008-230005, JP2003-071874, and the like. Optical lenses have been widely used in optical systems such as optical lenses of mobile phone cameras; in combining optical lenses or forming optical lenses, optical imaging effects often require multiple optical lenses of different diopter to be combined into optical lens modules at a certain air gap. . Therefore, when a plurality of optical lenses of different diopter are combined, the optical axis of each optical lens needs precise alignment to avoid the problem of reduced resolution, and the optical lenses also need to be combined at a certain interval. As a result, many processes and precision corrections will be incurred, resulting in an inability to increase the yield and cost, and it is difficult to reduce the cost; especially in the optical lens array combination, when the optical central axis of the optical lens array is shifted, the optical effect will be affected, so the optical Lens array correction is more complicated and important. In the manufacture of an optical lens array, a manufacturing method of a plastic optical lens array is proposed in Japanese Patent JP2001194508, and a manufacturing method of a glass optical lens array is proposed in Taiwan Patent TWM343166. The optical lens array can be cut and separated into a single optical lens unit for assembly in a lens module. Alternatively, the optical mirror array and other optical elements can be first combined into a lens submodule array and then cut into a single lens submodule. Lens holder), image capture device or other optical components are combined to form the lens module (iens module) ° in the lens module array manufacturing, US patent US 7,183,643, US2007/0070511, WIPO patent W02008011003 et al. proposed a wafer level lens module. As shown in FIG. 1 , a lens module array for general optical use generally includes an aperture 911, a cover glass 912, a plurality of optical lenses, and an IR cut lens. The three-piece m 3 M374572 is shown. The optical lens set includes a first optical lens 914 (first lens), a second optical lens 915 (second lens), and a third optical lens 916 (third lens). The spacers 913 are separated by spacers; after being combined, a lens module array is formed, and after being cut, the lens module is formed. For the manufacture of the lens module, as shown in FIG. 2 and FIG. 3, a crystal-level optical lens module 9100 is disclosed in US Patent No. 2006/0044450, which is respectively disposed on an optical lens carrier 918 (lens substrate). The array of optical lenses 914, 915 are separated by spacers 913 to form an array of optical lens modules 900, and then cut into a single optical lens module 9100. • However, for a lens module array, when multiple optical lens arrays are combined, the alignment of each optical lens array will affect the resolution of the lens module array. In the combination of multiple optical lens arrays, US patents US 2006/0249859 proposes the use of infrared ray to generate fiducial marks to combine a crystal-level lens module; in the combination of a plastic optical lens array, Japanese Patent JP2000-321526, JP2000-227505 discloses self-focusing (SELFOC) The optical lens array is combined with a crevice and a crevice. Japanese Patent JP2001-042104 proposes the use of recesses of different depths to avoid warping deformation of the microlens array; US patent No. 7,187,501 proposes the use of a cone-shaped projection to stack a plurality of plastic optical lens arrays. An array of optical lens modules used in combination lenses of LED light sources, combined lenses of solar energy conversion systems, and optical lenses of mobile phone cameras are often composed of optical lens arrays of various optical surfaces. In the conventional plastic optical lens array, a combination of a projection and a hole is used. Since the plastic optical lens array is in the shape of a plastic lens, the material is shrunk at the convex and concave portions to make the size. When the change occurs, the positioning accuracy is difficult to increase, and the center axis of each optical lens in the plastic optical lens array is different in position. The optical central axis of each optical lens is difficult to locate, and the use is quite limited. 4 using the resin injection-compression molding method, the disc-shaped optical lens array made of plastic casting from the center of the disc has the advantages of low internal stress and high precision; The center of the optical lens array is provided with a dish hole, which can be used for positioning when combined. Therefore, the use of a disc-shaped optical lens array to develop a simple and highly precise method of manufacturing an optical lens module array to form an optical lens module array for use in an optical lens of a mobile phone camera can meet the mass production yield and Demand for production. [New Content] The main purpose of this creation is to provide a Stacked Disk-shaped Optical Lens Array for optical lenses of optical systems using lenses such as cameras, lenses for mobile phones, or a single LED. An optical lock head or the like, which comprises at least two arrays of Disk_shaped 〇ptica Lens Arrays, and which are stacked at predetermined intervals by an adhesive, and are assembled by a plastic material to be compressed into a shape. = mjectum-compression molding) technology made into 'disc like a circular dish but not limited to a circle' to the heart-disc hole, with - the first and second optical surface and the corresponding optical optics (4) and non-optical dragons, and the optically active regions of the first and second optical surfaces are correspondingly configured to form a plurality of optical lenses arranged in an array; wherein at least one of the optical lens arrays is disposed at a periphery of the non-optical active region _ρ1ιβ = Two-point glue tank 'By the adhesive layer in the adhesive tank, the adjacent two-disc array can be combined to form a stack-four (four) optical mirror card; and then to = disc optical mirror The array is provided with at least an alignment fixture on the periphery of the non-optical active area, and the adjacent columns can be accurately stacked and combined by the positioning mechanism, so that the optical mirrors can be aligned with the positive t-axis. The lenticular lens _ can be combined with other optical element arrays in a non-filament _ 涂 胶 胶 = M374572 * stacking manner, wherein the optical element array comprises: an array formed by optical lenses, or An array formed by spacers, apertures, c-ver giass, IR-cutglass, etc.; the array of disc-shaped optical lenses is cut and stacked to separate into Singularized) a single stacked optical lens element. Another object of the present invention is to provide an optical lens array for stacking a disk-shaped optical lens array for supplying an optical system, which comprises at least two disk-shaped optical lens arrays. _ is made by combining and fixing the adhesive at a predetermined interval; wherein the dish-shaped optical lens array is made by using a plastic material injection compression molding technique, which is a dish like a circular dish but not The circular shape is limited, and a disc hole is disposed in the center; wherein at least one of the disc-shaped optical lens arrays has a guiding structure in the disc hole, and the guiding structure is used to stack the two-disc optical lens arrays; Spacers may be placed between the two disc-shaped optical lens arrays to create a predetermined air gap, the spacers being fixed in combination with an adjacent array of disc-shaped optical lenses. A further object of the present invention is to provide a stacked lens module comprising at least one stacked optical lens element, an iens holder and at least one optical element; wherein the stacked optical lens The component is formed by cutting and separating a stacked disc-shaped optical lens array into a single component (the optical component comprises: an optical lens, a spacer, an aperture, a watch glass ( Cover glass), infrared filter lens, et al. (8), etc. [Embodiment] Referring to Figure 10, the stacked optical lens array 1 of the present invention comprises at least one disc-shaped optical lens array 1, 2 'adhesive Made by combining and fixing at predetermined intervals. ^Disc optical lens _ 1 (2) is made of squirrel material, which is a circular dish but not limited to a circle and has a hole in the center. 13(23) as shown in FIG. 4, and second optical surfaces 11 (21), 12 (22) each including a corresponding photonic region and a non-optical active region, and are composed of first and second optical surfaces 11 (21). ), 12 (22) light to the action area corresponding to the complex a plurality of optical lenses (1) (10) arranged in an array;

+至少-概光學鏡片_ 1(2)在其非光學作用區的周邊 enpheiy)上设有至少一黏膠槽1〇2如圖8所示藉由黏膠槽脱 内所設的黏膠330固化後,使二碟狀光學鏡片陣列卜2可固定结 ί形成一堆#碟狀光學鏡片陣列說又其中至少-個碟狀光學鏡 片陣列1(2)在其非光學作用區的㈣上設有至少—定位機構 16(15 ' 17、18)(ahgnmentfixture)如圖5_7所示,藉由該定位機構 16(15、π、18)可將雜光學鏡片_卜2精密堆疊組合,以使 各光學鏡片10可對正光學中心軸1G1。又該碟狀光學陣列仰 為碟狀如本實施例之圓形碟狀但不以圓形為限,如可為圓形碟狀 或方形碟狀等,係依據使用需求而配合_材料射纽縮成型之 成型模具的設計而製成。+ at least - the optical lens _ 1 (2) is provided with at least one adhesive groove 1 〇 2 on the periphery of the non-optical active area, as shown in Fig. 8. The adhesive 330 is provided by the adhesive groove as shown in FIG. After curing, the two-disc optical lens array 2 can be fixed to form a stack of disc-shaped optical lens arrays, wherein at least one of the disc-shaped optical lens arrays 1 (2) is disposed on the (four) of its non-optical active area. There are at least a positioning mechanism 16 (15' 17, 18) (ahgnmentfixture) as shown in Fig. 5-7, by means of the positioning mechanism 16 (15, π, 18), the hybrid optical lens can be precisely stacked to make each The optical lens 10 can be aligned with the positive optical center axis 1G1. Further, the dish-shaped optical array is inclined to a disk shape as in the circular dish shape of the embodiment, but is not limited to a circular shape, and may be a circular dish or a square dish, etc., and is matched according to the use requirement. It is made by the design of a molding die.

為使一碟狀光學則ρ翔卜2堆疊組合時可快速定位,可於 其碟孔13 23上叹導位結構191、291 (guiding structure)如圖6 所示之缺口型態,或將碟孔13、23製成多角形,或將碟孔i3、烈 切除一角作為導位結構192、292如圖7所示之缺角型態。 該黏膠槽102的形狀與型式不限於圓環形溝槽如圖8所示; 參考圖5.7,該定位機構16(15、17、18)的形狀無式秘於定位 銷(alignment ρίη)161、定位穴(alignment _Μ162、準直鏡 ^collimating lens)15、通孔(through hole)17 或十字刻線(reticle)18 等;該光學元件不限於光學鏡片、_片、光闌、表玻璃、紅外 線濾光鏡片、影像感測元件、太陽能光電半導體、電路板(pcB)[ M374572 等;該導位結構不限於導位缺口(guiding notch) (19ι、291)、導 位切角(guiding angle) (192、292)或多角形的碟孔。 參考圖10,該堆疊碟狀光學鏡片陣列1〇〇可在其非光學作用 區塗以黏膠330而再以堆疊方式組合其他光學元件陣列3(〇ptical dement army);光學元件陣列3可為光學鏡片(〇ptical lens)所形成 的陣列、間隔片(spacer)、光闌(aperture)、表玻璃(cover glass)、紅 外線滤光鏡片(IR-cut glass)所形成的陣列等。 該堆疊碟狀光學鏡片陣列100可藉切割以分離成(singularized) 單一的堆疊光學鏡片元件 200(stacked optical lens element)〇 參考圖13,本創作之堆疊碟狀光學鏡片陣列的製造方法包含 下列步驟: S1:提供-塑膠射出壓縮模具51,包含-上模具511(upperm〇ld) 及下模具512(lower mold)且分別設有上、下模仁(m〇ld _) 513、514及相對應之光學面成形模面5131、5141用以對應 形成複數個光學鏡片10;上模仁513及/或下模仁514設有 定位機構成形模面5132、5142 ;於上、下模具511、512 之一的中心設一進料口 521 ; 52 :利用塑膠射出壓縮成型方法製成一碟狀光學鏡片陣列毛胚 61 ’再切斷該毛胚61之豎堯道棒⑽以製成一碟狀光學鏡 片陣列1;該碟狀光學鏡片陣列i在非光學作用區設有黏膠 槽及/或定位機構161;進一步於切斷毛胚61之豎澆道棒614 時可同時形成一碟孔13與一導位結構191(192); 53 :以上述步驟製造另一碟狀光學鏡片陣列2 ;該碟狀光學鏡片 陣列2可不設有黏膠槽1〇2 ; 54 .在鄰接二碟狀光學鏡片陣列卜2間之黏膠槽1〇2塗佈黏膠 330,並藉導位結構191⑽),(292)將二碟狀光^ M374572 鏡片陣列1、2堆疊組合; S5 :以相對應之定位機構161 (162)、2犯(261)校準鄰接二 碟狀光學鏡片_卜2之光學中心軸1G1,使各光學鏡片 10、20可以對正光學中心IQ!; 56 ·固化該黏膠330卩形成一堆疊碟狀光學鏡片陣列; 57 ··進-步,將堆4碟狀光學鏡牌列⑽非光學作用區塗以 黏膠’以堆叠方式組合其他光學元件陣列3、313,固化談 黏膠330以形成-具有光學元件陣列3、313之堆疊碟狀= 學鏡片陣列100 ; S8 :切割該堆疊碟狀光學鏡片陣列以分離成單一的堆疊光 學鏡片元件 200(stackedopticallem element;); 本創作之堆疊鏡頭模組的製造方法,包含下列步驟: ssr利用如_之堆疊碟狀光學鏡牌列之製造方法μ·%, 製成一堆疊碟狀光學鏡片陣列1〇〇 ; 552 ·使用雷射或切割片,將該堆疊碟狀光學鏡片陣列觸切割 分離成單一的堆疊光學鏡片元件200 ;In order to make a disc-shaped optics, the ρ 卜 2 2 stacking combination can be quickly positioned, and the squeezing structure 191, 291 (guiding structure) can be formed on the dish hole 13 23 as shown in FIG. The holes 13, 23 are formed in a polygonal shape, or the dish holes i3 and the sharp cut corners are used as the guide structures 192, 292 as shown in Fig. 7. The shape and type of the adhesive groove 102 are not limited to the circular groove as shown in FIG. 8; referring to FIG. 5.7, the shape of the positioning mechanism 16 (15, 17, 18) is not secreted by the positioning pin (alignment ρίη) 161 Positioning hole (alignment _Μ162, collimating lens) 15, through hole 17 or cross reticle 18; the optical element is not limited to optical lens, _ film, diaphragm, watch glass, Infrared filter lens, image sensing element, solar photovoltaic semiconductor, circuit board (pcB) [M374572, etc.; the guiding structure is not limited to guiding notch (19ι, 291), guiding angle (192, 292) or polygonal disc holes. Referring to FIG. 10, the stacked optical lens array 1 can be coated with an adhesive 330 in its non-optical active area and then combined with other optical element arrays 3 in a stacked manner; the optical element array 3 can be An array formed by an optical lens, an spacer, an aperture, an array glass, an array formed by an IR-cut glass, or the like. The stacked disk-shaped optical lens array 100 can be cut to singularize a single stacked optical lens element. Referring to FIG. 13, the manufacturing method of the stacked disk-shaped optical lens array of the present invention comprises the following steps. : S1: providing - plastic injection compression mold 51, comprising - upper mold 511 (upperm〇ld) and lower mold 512 (lower mold) and respectively provided upper and lower mold cores (m〇ld _) 513, 514 and corresponding The optical surface forming mold faces 5131, 5141 are used to form a plurality of optical lenses 10; the upper mold core 513 and/or the lower mold core 514 are provided with positioning mechanism forming surface 5132, 5142; and the upper and lower molds 511, 512 A center is provided with a feed port 521; 52: a disk-shaped optical lens array blank 61 is formed by a plastic injection compression molding method, and the vertical bar (10) of the blank 61 is cut again to form a dish-shaped optical The lens array 1; the disc-shaped optical lens array i is provided with a glue groove and/or a positioning mechanism 161 in the non-optical active area; and further, when the vertical sprue bar 614 of the blank 61 is cut, a dish hole 13 can be simultaneously formed. a conductive structure 191 (192); 53: manufactured by the above steps a disc-shaped optical lens array 2; the disc-shaped optical lens array 2 may not be provided with an adhesive groove 1〇2; 54. Adhesive 330 is applied to the adhesive groove 1〇2 adjacent to the two-disc optical lens array And by using the guiding structure 191(10)), (292) stacking the two-disc light M374572 lens arrays 1, 2; S5: aligning the adjacent two-disc with the corresponding positioning mechanism 161 (162), 2 (261) Optical lens _ 2 optical center axis 1G1, so that each optical lens 10, 20 can be aligned with the optical center IQ!; 56 · curing the adhesive 330 卩 to form a stacked disk optical lens array; 57 · · step, The stack of 4 disc-shaped optical lens arrays (10) non-optical active regions are coated with an adhesive'. The other optical element arrays 3, 313 are combined in a stacked manner, and the adhesive 330 is cured to form - a stacked dish having optical element arrays 3, 313 = learning lens array 100; S8: cutting the stacked optical lens array to separate into a single stacked optical lens element 200 (stacked optical lens element;); the manufacturing method of the stacked lens module of the present invention, comprising the following steps: ssr utilization _The method of manufacturing the stacked disc optical mirror column μ·% , forming a stacked disc-shaped optical lens array 1 552; using a laser or a cutting sheet, the stacked disc-shaped optical lens array is cut and separated into a single stacked optical lens element 200;

553 :將該堆φ光學鏡片元件裝設入鏡頭支架3〇1中如圖 14,並組合所需要的(required)光學元件(〇ptical de_t), 如表玻璃311、光闌312、間隔片313、紅外線滤光片314、 間隔片313、具有影像感測元件3〇之電路板3,以製成一 堆疊鏡頭模組300。 如後: 為使本創作更為明確詳實’賊合下雜佳實_圖示詳述 〈實施例一 > 參考圖5、8、9、1G、13,本實施例為—具有定位機構16之 9 572 $碟狀光學陣列·包含及第二碟狀光學鏡片陣列 劍由魏光學鏡片陣列卜2係彻歸射出壓_型方法先 Γ光學鏡片陣列毛胚6卜再切斷毛胚61上之豐洗道棒 形成中央一碟孔13(23)而製成。 該第-碟狀光學鏡片陣列丄係一圓形碟狀直徑12〇腿且中央 ^一碟孔U直徑3〇酿,包含—第—及—第二光學面u、12各設 目對應的244個光學作用區(optlcal divisi〇n)輯應形成撕個 斤月形光學鏡片(Gptieal lens demen⑽並以等間距的陣列排列; 在各光學鏡片1G it邊的非光學作用區設有黏膠槽⑽如圖㈣ =又在第-碟狀光學鏡片陣列丨之週邊非絲制區以相隔 二角設二定位銷⑹及二定似162供作紋位賴% ;該定位 銷⑹及定位穴162係與光學中心轴1〇1平行且設定在預定位置 如圖5所示,但對於不同的應用實施例,定位銷⑹及定位穴162 可選擇相同或不同形式或佈設於不同位置。 第二碟狀光學鏡片陣列2係以相同方法製成而具有2料 月形光學鏡片20以對應於第一碟狀光學鏡片陣列i之光學鏡片 =,但可不必設置黏勝槽102,又其週邊之非光學作用區設有二定 疋位穴262 &二定位銷261供作為定位機構以分別對應於 定位銷161及定位穴162。 當堆疊組合時如圖13之步驟S4、S5、S6,先於第一碟狀光 學鏡片陣列1之黏膠槽1〇2卩塗膠設備(通稱點膠機)塗上黏膠 33〇,該黏膠330之材料不限制但以熱固型黏膠或紫外光固化型黏 膠(UV glue)較適合光學系統使用,本實施例係使用熱固型黏膠; 再藉二者間之定位機構如定位銷161/定位穴162分別與定位穴 262/定位銷261對應結合,使堆疊組合後之各光學鏡片ι〇、如的 光學中心軸ΗΠ、201相重合,形成一由二組244個新月形光學鏡「 片10、20所精密組合的堆疊碟狀光學鏡片陣列1〇〇。 參考圖10,該堆疊碟狀光學鏡片陣列1〇〇可進一步與光學元件 陣列3堆疊組合;因此本實施例光學鏡片陣列1〇〇如圖10所示可 =為包含一由二碟狀光學鏡片陣列卜2所堆疊組合之堆疊碟狀光 學鏡片陣列(1〇0)、一光學元件陣列3及一間隔片陣列313 ;其中 該光學元件陣列3係由244個光學元件30 (如影像感測元件30) 以陣列方式排列在一碟狀載板(disk_shapedsubstarte)3 (如電路板) 上所形成,且各光學元件30係對應於各光學鏡片1〇、2〇 ;其中該 間隔片陣列313係由一特定厚度的不透明塑膠片上設有244個通 孔所製成,以使光學鏡片2〇與光學元件3〇之間保持一預設的空 氣間隔(designed air spacing)。堆疊組合時,第一及第二碟狀光學鏡 片陣列1、2先堆疊組合成一堆疊碟狀光學鏡片陣列(1〇〇),再於 間隔片陣列313兩面塗以黏膠330(或於堆疊碟狀光學鏡片陣列及 光學元件陣列3之對應接合面上各塗以黏膠33〇),將堆疊碟狀光 學鏡片陣列、間隔片陣列313與光學元件陣列3依序堆疊,並將 光學元件陣列3與光學中心軸ι〇1對正後,送入烘箱中固化黏膠 330’即形成一具有244個光學鏡頭的堆疊碟狀光學鏡片陣列1〇〇。 參考圖9,為本實施例另一種堆疊組合方式,其中,該光學元 件陣列3之非光學作用區另設有4個定位鎖361作為定位機構; 該第一與第二碟狀光學鏡片陣列1、2分別另設有一導位結構 (guiding structure)如圖6所示導位缺口(guiding notch)形狀之導位 結構191 ;該碟孔13(23)與導位結構191(291)係由碟狀光學鏡片陣 列毛胚61切除豎澆道棒614所形成的,碟孔13(23)直徑為30mm, 導位結構191(291)的缺口尖角至碟孔13(23)邊緣之距離為0.8 mm ;該第二碟狀光學鏡片陣列2設有4個定位穴2於作為定位機 M374572 構以與光學元件陣列3之定位銷361對應配合。該定位銷361之 高度麵先設計以使定位鎖361與定位穴262對應組合後該第二 碟狀光學鏡片陣列2之各光學鏡片20與光學元件陣列3上各影像 感測元件30之間保持預定的空氣間隔。 參考圖9,堆纽合時,將第一、第二碟狀光學鏡片陣列卜 2及光學元件陣列3之非光學作用區塗以黏膠33(),置入組合架 (a_b㈣X㈣55中;該組合架%設有碟孔定位桿(a_吻 p〇_卜碟孔定位桿551上設有一碟孔定位凸輪(alignment ❿cam)552以與碟狀光學鏡片陣列1(2)、光學元件陣歹3之碟孔 13(23、33)的導位結構191(29卜39騎應配合;組合架55藉由碟 孔定位桿551及碟孔定位凸輪552,可將第一 '第二碟狀光學鏡片 陣列卜2及光學元件陣列3以一碟孔導位線1〇4(触硫职通啤 Μ先初步定位,以使後、續之精蚊位可一節躲裝時間而增進組 裝效率。 精密定位時,第-、第二碟狀光學鏡牌列卜2及光學元件 車歹J 3刀別以疋位機構(1幻、261、加、361)定位組合,使各光學 鏡片/〇、光學鏡片20及影像感測元件30可對正光學中心轴101, 送入烘箱中固化黏勝33〇,形成一具有244個光學鏡片的堆疊碟 狀光學鏡片陣列100。 '、 <實施例二> 參考圖6、12,本實施例為一具有準直鏡型態之定位機構i糊 且碟孔13、:23設有導位缺口型態之導位結構⑼、现之堆疊碟 狀光學鏡片陣列100,包含一第一及一第二碟狀光學鏡片陣列卜 2 〇 第-及第二碟狀光學鏡片陣列卜2,係以相同於實施例一之 M374572 製造方法製成而分別設有249個相對應之新月形光學鏡片1〇及雙 凸形光學鏡片20並以等間距的陣列排列;該碟狀光學鏡片陣列 1、2各為一圓形碟狀直徑12〇mm,中央各有一碟孔^直徑 為30mm及一導位缺口形狀之導位結構19卜291其係由碟狀光學 鏡片陣列毛胚61切除豎澆道棒614所形成的,導位結構”卜291 之缺口尖角至碟孔13、23邊緣長度為〇.8mm ;在各光學鏡片1〇、 20之週邊的非光學作用區分別設有黏膠槽1〇2、2〇2,且相隔 度角分別贿3餘職之準直鏡㈣驗响㈣鶴之定位機 構15、25如-雙凸或平凸形球面鏡片,當雷射光線經過準直鏡⑴) 時’可將雷射光線形成平行於光學中心抽之平形光線供校準 Mibmtion)使用;第一與第二碟狀光學鏡片陣列J、2之間設一間 隔片陣列313以使各光學鏡片1〇、2〇間保持設計的空氣間隔。 堆疊組合時,第-與第二光學· _卜2之黏膠槽 102 202先以塗膠设備先塗上|蹲33〇如紫外光固化型黏膠 _ Μ,_ 313 與第二碟狀 學兄片陣列2依序置入一組合架55中以進行如同實施例一及圖 9所示之初步定位,即組合架55藉由碟孔定位桿551及碟孔定位 凸輪552以將第一碟狀光學鏡片陣列卜間隔片陣列313與第二碟 ,光學鏡片陣列2以碟孔導位線轉触㈣義g㈣先初步 疋位。 精,定位時,使用一雷射校準儀57發出雷射光線571以通過 ^一及第二碟狀光學鏡片陣列卜2之準直鏡定位麵15、25,再 _ 1、2鄕各光學鏡片10、 的光于中心轴⑼、201重合,即相互對正於光學中心轴⑻; 再j射uv光線以固化黏膠330;再由組合架 -具有泌個由-新月形先學制、—間隔片及_雙凸光學卩 13 M374572 精密組合之光學鏡片組的堆疊碟狀光學鏡片陣列1〇〇。 <實施例三> 參考圖7、11,本實施例為一具有定位通孔叩7)且碟孔u 23設有導位切角型態之導位結構192、说的堆疊碟狀光學 陣列100 ’包含-第-及第二碟狀光學鏡片陣列卜2。553: The stack of φ optical lens elements is mounted in the lens holder 3〇1 as shown in FIG. 14, and the required optical elements (such as the watch glass 311, the aperture 312, and the spacer 313 are combined. The infrared filter 314, the spacer 313, and the circuit board 3 having the image sensing element 3 are formed to form a stacked lens module 300. For example: In order to make the creation more clear and detailed, the thief is better than the details. (Example 1) Referring to Figures 5, 8, 9, 1G, 13 , the present embodiment has a positioning mechanism 16 9 572 $ disc-shaped optical array · including and second disc-shaped optical lens array sword from Wei optical lens array 2 2 彻 归 归 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The abundance of the scrubbing rod is formed by forming a central dish 13 (23). The first-disc optical lens array is a circular disc-shaped diameter 12-legged and the central-disc hole U diameter 3 is brewed, and includes 244 corresponding to each of the first and second optical surfaces u and 12. The optically active regions (optlcal divisi〇n) should form a Gptieal lens demen (10) and arranged in an equally spaced array; a glue groove (10) is provided in the non-optical active region of the 1G it side of each optical lens. As shown in Figure (4) = in the non-silk area around the first-disc optical lens array, two positioning pins (6) and two 162 are provided for the ridge position; the positioning pin (6) and the positioning hole 162 are Parallel to the optical center axis 1〇1 and set at a predetermined position as shown in FIG. 5, but for different application embodiments, the positioning pin (6) and the positioning hole 162 may be selected in the same or different forms or disposed in different positions. The optical lens array 2 is made in the same way and has two moon-shaped optical lenses 20 to correspond to the optical lens of the first optical lens array i, but it is not necessary to provide the adhesive groove 102, and the peripheral non-optical The action area is provided with two fixed position holes 262 & two positioning pins 261 for making The positioning mechanism is respectively corresponding to the positioning pin 161 and the positioning hole 162. When the stacking is combined, the steps S4, S5, and S6 of FIG. 13 are applied to the adhesive groove 1〇2 of the first optical lens array 1 The device (commonly known as the dispenser) is coated with adhesive 33. The material of the adhesive 330 is not limited, but the thermosetting adhesive or the UV curing adhesive is suitable for the optical system. This embodiment is The thermosetting adhesive is used; and the positioning mechanism such as the positioning pin 161/positioning hole 162 is respectively combined with the positioning hole 262/positioning pin 261, so that the optical centers of the optical lenses, such as the stack, are combined. The shaft 201 and 201 are coincident to form a stacked disc-shaped optical lens array 1 精密 which is precisely combined by two sets of 244 crescent-shaped optical mirrors. Referring to FIG. 10, the stacked disc-shaped optical lens array 1 The 〇〇 can be further combined with the optical element array 3; therefore, the optical lens array 1 of the present embodiment can be as shown in FIG. 10 as a stacked optical lens comprising a stacked combination of two-disc optical lens arrays 2 Array (1〇0), an optical element array 3 and a spacer Array 313; wherein the optical element array 3 is formed by arranging 244 optical elements 30 (such as image sensing elements 30) in an array on a disk-shaped substrate (such as a circuit board), and each optical The component 30 corresponds to each of the optical lenses 1 〇, 2 〇; wherein the spacer array 313 is made of 244 through holes provided on a opaque plastic sheet of a specific thickness to make the optical lens 2 and the optical element 3 A predetermined air spacing is maintained between them. When stacked, the first and second disc-shaped optical lens arrays 1 and 2 are first stacked and assembled into a stacked disc-shaped optical lens array (1〇〇), and then the adhesive sheet 330 is coated on both sides of the spacer array 313 with adhesive 330 (or stacked discs). The optical lens array and the corresponding bonding surface of the optical element array 3 are each coated with an adhesive 33, and the stacked optical lens array, the spacer array 313 and the optical element array 3 are sequentially stacked, and the optical element array 3 is stacked. After alignment with the optical center axis ι〇1, the cured adhesive 330' is fed into the oven to form a stacked disk-shaped optical lens array 1 244 having 244 optical lenses. Referring to FIG. 9 , another stacking combination of the present embodiment, wherein the non-optical active area of the optical element array 3 is further provided with four positioning locks 361 as positioning mechanisms; the first and second optical lens arrays 1 2, respectively, a guiding structure (guiding structure) as shown in FIG. 6 is a guiding notch shape guiding structure 191; the dish hole 13 (23) and the guiding structure 191 (291) are separated by a dish The optical lens array blank 61 is formed by cutting the vertical sprue bar 614. The diameter of the dish hole 13 (23) is 30 mm, and the distance between the notched corner of the guiding structure 191 (291) to the edge of the dish hole 13 (23) is 0.8. The second disc-shaped optical lens array 2 is provided with four positioning holes 2 as a positioning machine M374572 to cooperate with the positioning pins 361 of the optical element array 3. The height of the positioning pin 361 is first designed to allow the positioning lock 361 and the positioning hole 262 to be combined to maintain the optical lens 20 of the second optical lens array 2 and the image sensing elements 30 on the optical element array 3. Scheduled air separation. Referring to FIG. 9, in the stacking, the non-optical active regions of the first and second optical lens arrays 2 and the optical element array 3 are coated with an adhesive 33() and placed in a combination frame (a_b(4)X(4)55; The rack % is provided with a disc hole positioning rod (a_ kiss p〇_ disc hole positioning rod 551 is provided with a disc positioning cam 552 for the disc-shaped optical lens array 1 (2), optical element array 3 The guiding structure 191 of the hole 13 (23, 33) of the disk (the 29-39 ride should be matched; the combination frame 55 can be the first 'second optical lens by the hole positioning rod 551 and the disk positioning cam 552 The array 2 and the optical element array 3 are first positioned with a dish lead line 1〇4 (the first step of the sulphur service is to make the assembly time more efficient.) At the same time, the first and second disc-shaped optical mirrors and the optical components 歹J 3 are positioned and combined by a clamping mechanism (1, 261, plus, 361) to make each optical lens/〇, optical lens 20 and the image sensing component 30 can be applied to the positive optical central axis 101, and sent to the oven to cure the adhesive 33 〇 to form a stacked dish having 244 optical lenses. Lens array 100. ', <Embodiment 2> Referring to Figures 6 and 12, this embodiment is a positioning mechanism i with a collimating mirror type and the dish holes 13, 23 are provided with a guide notch pattern. The guiding structure (9), the current stacked optical lens array 100, comprises a first and a second optical lens array, and the second and second optical lens arrays are the same as the implementation. The M374572 manufacturing method of the first example is formed by separately providing 249 corresponding crescent-shaped optical lenses 1 and double convex optical lenses 20 and arranged in an equally spaced array; the disc-shaped optical lens arrays 1 and 2 are each A circular dish having a diameter of 12 mm, and a center of each of the holes having a diameter of 30 mm and a guide notch shape of the guide structure 19 291 is removed by the disc-shaped optical lens array blank 61 from the vertical sprue rod 614 The length of the notched corner of the guide structure ” 291 to the edge of the dish hole 13 and 23 is 〇.8 mm; and the non-optical action area around the optical lenses 1〇, 20 is respectively provided with the glue groove 1〇2 2〇2, and the collimation mirrors of the three divisions of the separation angles respectively (four) acquiescence (four) crane positioning mechanism 15, 25 such as - A lenticular or plano-convex spherical lens that, when laser light passes through a collimating mirror (1), can be used to form a laser beam that is parallel to the optical center for calibration (Mibmtion); first and second dish optics A spacer array 313 is disposed between the arrays J and 2 to maintain a designed air gap between the optical lenses 1 and 2, and the first and second optical spacers 102 202 are first. Applying a coating device to the assembly frame 55 in the same manner as in the first embodiment, and applying the 蹲33, such as the ultraviolet curing adhesive _ Μ, _ 313 and the second disk-shaped learning film array 2 in sequence. The preliminary positioning shown in FIG. 9 is that the assembly frame 55 uses the disk hole positioning rod 551 and the disk hole positioning cam 552 to place the first disk-shaped optical lens array spacer array 313 and the second disk, and the optical lens array 2 as a disk. The hole guide line is touched (4). The g (four) is initially preliminarily clamped. Fine, positioning, using a laser calibrator 57 to emit laser light 571 to pass through the collimating mirror positioning surface 15, 25 of the first and second disc-shaped optical lens array 2, then _ 1, 2 鄕 each optical lens 10, the light coincides with the central axis (9), 201, that is, they are aligned with each other on the optical center axis (8); then the uv light is used to cure the adhesive 330; and then the combination frame - has a secret - crescent-shaped first system, - Spacer and _Double-convex optics 卩13 M374572 A stack of disc-shaped optical lens arrays of precision optical lens sets. <Embodiment 3> Referring to Figs. 7 and 11, the present embodiment is a stacked dish 192 having a positioning through hole 叩 7) and a dish hole u 23 having a guided chamfer pattern. The array 100' includes a -first and second dish-shaped optical lens array.

第一及第二碟狀光學鏡片陣列卜2皆係以補於實施例一、 二之製造方法製成,其中碟孔13、23為矩形且各設—導位 態之導位結構192、292如圖7所示(形成一不對稱五邊形),該 碟孔13(23)及導位結構192(292)係由碟狀光學鏡片陣列毛胚61以 ^具沖斷(pund他堯道棒614所形成。又在第一及第二碟狀光 鏡片陣列卜2的非光學作用區分別設二相對應之定位通孔Η、” =作献位機構,本實關之二定位通孔17、27係以相隔9〇产 角佈設如圖7所示但不以此為限。為較清楚說明,圖11中該二^ 位通孔17、27係以相隔180度角表示。 以一 堆疊組合時,先於第二碟狀光學鏡片陣列2之黏膠槽2〇2塗 如熱_黏膠但不關;再將第―、第二碟狀光學鏡 机il l2依序置入組合架55中以進行初步定位,該組合架% 叹有碟孔疋位桿551其與碟孔13、23及導位切角(192、2 j與位置對應配合,因此組合架55藉由碟孔定位桿如可將 2第二碟狀光學鏡牌列卜2以碟孔導位線1G4先初步定位; 用組。糸55之二組裝定位桿553(alignmentp〇ie)分別穿入 ^第二微光學鏡片_卜2之定位職17、27以使各光學 ^ 0站20的光學中心軸1(n、2〇1相互重合,即相互對正於光 III 1 ;經供箱固化黏膠330後她合架55取出,即完成 一.遺组合之堆疊碟狀光學鏡片_跳如此—次精蚊位而堆 疊組合,可節省組裝時間與增進組裝效率。 <實施例四> 參考圖7’本實施例為一具有十字刻線18(28)(她⑹作為定位 機構且碟孔13、23設有導位切角型態之導位結構192、292的堆 疊碟狀光學鏡片陣列100,包含一第一及第二碟狀光學鏡片陣列 1、2 ° •第-及第二雜光學鏡片_卜2㈣以相同於實施例三之 製造方法製成,與實_三不同處係在第_及第二雜光學鏡片 陣、2的非光學作用區相對位置分別設有十字刻線18⑽作 為定位機構’該十字刻線18(28)為極細的刻線(hairline),本實施 例之二個十字騎18(28)伽9()度祕設但不以此為限。 堆疊組合時’本實補類似於實侧三,綱孔13(功與導位 切角(192、292)先初步定位;於精密定位時(參考實施例二及 圖12),使用雷射校準儀57發出雷射光線571以通過第一及第二 碟狀光學鏡片陣列卜2之十字刻線18、28,再藉調整第一與第二 碟狀光學鏡片_卜2以使各光學鏡片1()、2()的光學中心轴、 201重合’即相互對正於光學中心軸1〇1 ;經固化黏勝33〇,由組 合架55取出,即完成_精密組合神疊碟狀光學鏡牌列⑽。 <實施例五> ,考圖14本實施例為一應用於具有照像功能之小型行動電 話使用的高精密堆疊鏡麵組·,其係由本創作之堆疊碟狀光學 鏡片陣列1GG經切割分離製成一堆疊光學鏡片元件2⑻,再與其他 光學元件及辆絲组裝祕成。本實補之堆疊鏡職組· 包含一堆疊光學鏡片元件200、一鏡頭支架301及其他光學元件, 本貫施例所使用之光學元件包含一表玻璃Μ〗、一光闌Μ〕、二間 M374572 隔片313、一紅外線濾光片314及一設於電路板3上之影像感測元 件30。 本實施例之製程如同實施例一至四,先製成一精密組合的堆 疊碟狀光學鏡片陣列100其包含一第一及第二碟狀光學鏡片陣列 1、2並利用黏膠330黏合固定;該第一及第二碟狀光學鏡片陣列 1、2各設有249個新月形光學鏡片10、2〇如實施例二,且藉前述 各實施例所述之導位結構與定位機構以使各光學鏡片1〇、2〇對正 光學中心軸101、201而精密定位組合;再經切割分離後製成248 # 個堆疊光學鏡片元件20〇(其中1個週邊尺寸不足,不能使用)其各 包含一新月形光學鏡片1〇、20並對正於光學中心軸。 組合時,先將表玻璃311裝入鏡頭支架301内;光闌312先 與堆疊光學鏡片元件200黏合再裝入鏡頭支架3〇1内;為使紅外 線遽光片314與光學鏡片20間保持預定的空氣間隔,於堆疊光學 鏡片元件200與紅外線濾光片314之間裝入一第一間隔片313;該 影像感測元件30係預設在電路板3a上;為使紅外線遽光片314 可與影像感測元件30保持預定的空氣間隔,於影像感測元件3〇 • 與紅外線濾光片314之間裝入一第二間隔片313,並藉第二間隔片 313與鏡頭支架301間之螺紋配合以固定前述各光學元件;最後再 將影像感測元件30及電路板3a以黏膠固定於鏡頭支架3〇1内, 形成一堆疊鏡頭模組300;藉由此堆疊鏡頭模組3〇〇之結構與製造 方法,可以改善習知技術中各光學元件以光學儀器一片片調整校 準及組裝之困難,可改善習知技術中難以對正學中心軸致解析度 難以提高之困難》 & 更進一步,為能大量生產降低組裝成本,本實施例之堆疊鏡 頭模組300可採用另一種組裝方式:如實施例一,針對各光學元 件先製成碟狀光學元件陣列如碟狀光闌陣列、碟狀第一間隔片陣「 精密本創作之堆叠碟狀光學鏡片陣列100 ί具有先學讀之堆疊光學鏡片元件如實施例-及圖1〇所 装二利-次組裝域頭支架301内而形成一堆疊鏡麵組3〇〇; 碟㈣5亥雜光闌陣列為具有252個通孔的不透明塑膠板所製成, 、、-間隔片陣列為具有預定厚度之252個通孔的不透明塑膝 反所製成’雜紅外職光板為由整片之紅外線濾光板裁製成碟 狀0 、 <實施例六> 如圖15,本實施例為應用於相機變焦鏡頭(z〇〇mlens)之堆疊 鏡頭模組300。為達變焦(z00ming)目的,以不同的光學鏡片組成 一光學鏡片群(optical lens group)’並藉由移動二光學鏡片群之間距 以達到變焦之光學效果。本實施例之堆疊鏡頭模組3⑻包含一第 一光學鏡片群31及一第二光學鏡片群32,該第一光學鏡片群31 包含一堆疊光學鏡片元件200、一鏡頭支架301及數個光學元件, 其中該堆疊光學鏡片元件200係由二光學鏡片1〇、20構成;該光 學元件包含:一表玻璃311、一光闌312及用以固定各光學元件與 鏡頭支架301之間隔片313。第二光學鏡片群32包含一第三光學 塑膠鏡片(third plastic lens element)60、一鏡頭支架302及數個光學 元件,設光學元件包括:二間隔片313、一紅外線濾光鏡片314、 一影像感測元件30及一電路板3a。 本實施例之製造方法為:如實施例一至四,先製成堆疊光學 鏡片元件200其包含二光學鏡片10、20及黏膠槽102 ;並先製備 一鏡頭支架301 ;將表玻璃311、光闌312、堆疊光學鏡片元件200 組裝於鏡頭支架301内以構成第一光學鏡片群31。另製作一第三 Γ r- 17 學·6G及製備—鏡頭支架302;將第三光學塑勝鏡片 5片313、一紅外線濾光鏡片314及另一間隔片313依序 架3〇2内,再將預設影像感測元件30之電路板如 裝於鏡頭支架302上,即構成第二光學鏡片群%。 ϋ夺將第光學鏡片群31裝設於鏡筒(lensbarrel)内(圖未 不)’藉由移動第—光學鏡片群31產生不_距離耐成變隹目 的。藉此’堆疊鏡麵組3⑽可_及快速製成 & 以可大幅降域作縣。 ®座顺 以上所示料摘作之較佳實細,對本創作*言僅是說明 ,的,而非限繼的。本領域具一般技術之人員理解,在本創作 專,要求所限定哺神和範_可對其進行許纽變,修改 至等效變更,但娜落人糊作的賴範_。 " 【圖式簡單說明】 圖1係習知一堆疊光學鏡片陣列示意圖; 圖2係習知另一堆疊光學鏡片陣列示意圖; 圖3係習知另一堆疊光學鏡片陣列示意圖; 圖4係本創作碟狀光學鏡片陣列示意圖;The first and second disc-shaped optical lens arrays 2 are all manufactured by the manufacturing method of the first embodiment and the second embodiment, wherein the dish holes 13 and 23 are rectangular and each of the guide positions 192 and 292 are provided. As shown in FIG. 7 (forming an asymmetric pentagon), the dish hole 13 (23) and the guiding structure 192 (292) are broken by the disc-shaped optical lens array blank 61 (pund him) The rod 614 is formed. In the non-optical action regions of the first and second disc-shaped optical lens arrays 2, two corresponding positioning through-holes are respectively provided, "= as a dedication mechanism, and the real-position two-position through-holes 17 and 27 are arranged at intervals of 9 inches, as shown in Fig. 7, but not limited thereto. For the sake of clarity, the two through holes 17, 27 in Fig. 11 are represented by angles of 180 degrees apart. When stacking and combining, the adhesive groove 2〇2 of the second optical lens array 2 is coated with heat_adhesive but not closed; then the first and second optical mirrors il l2 are sequentially placed into the combination. The frame 55 is used for preliminary positioning, and the combination frame sighs the disk hole arranging rod 551, which cooperates with the disk holes 13, 23 and the guide chamfer (192, 2 j and the position correspondingly, so the combination frame 55 is used by the dish If the positioning rod can be used, the second disc-shaped optical mirror card 2 can be initially positioned by the disc hole guide line 1G4; with the group 糸55 bis assembly positioning rod 553 (alignmentp〇ie) respectively penetrates the second micro The optical lens _ 2 positions the positions 17, 27 so that the optical central axes 1 (n, 2 〇 1 of the optical stations 0 are coincident with each other, that is, mutually aligned with the light III 1; after the adhesive 330 is cured by the supply box She takes out the frame 55, that is, completes the stacking of the disc-shaped optical lens of the last group. The stacking combination of the so-called fine mosquito bit can save assembly time and improve assembly efficiency. [Embodiment 4] Referring to Figure 7' The present embodiment is a stacked disk-shaped optical lens array 100 having a cross-cut 18 (28) (she (6) as a positioning mechanism and the dish holes 13, 23 are provided with a guided chamfered configuration 192, 292, including A first and second dish-shaped optical lens array 1, 2 ° • a first and a second hybrid optical lens _ 2 (4) are manufactured in the same manner as in the third embodiment, and the difference between the first and the second is in the The second optical lens array, 2, the non-optical action zone relative position is respectively provided with a cross-cut line 18 (10) as a positioning mechanism 'the cross The line 18 (28) is a very thin hairline, and the two cross rides of the present embodiment are 18 (28) gamma 9 () degrees secret but not limited thereto. Side three, the main hole 13 (the work and the guide cut angle (192, 292) first preliminary positioning; in the precise positioning (refer to the second embodiment and FIG. 12), the laser illuminator 57 is used to emit the laser light 571 to pass the first First and second disc-shaped optical lens arrays 2, cross stitch lines 18, 28, and then adjust the first and second disc-shaped optical lenses - 2 to make the optical axes of the optical lenses 1 (), 2 () 201 coincides with each other's alignment with the optical center axis 1〇1; after being cured and smashed by 33〇, it is taken out by the combination frame 55, that is, the _ precision combination god-shaped disc-shaped optical mirror plate (10) is completed. <Embodiment 5>, FIG. 14 This embodiment is a high-precision stacked mirror group used for a small mobile phone having a photographing function, which is cut by the present stacked disk-shaped optical lens array 1GG. Separated into a stacked optical lens element 2 (8), and then assembled with other optical components and wire. The stacked mirror group of the present invention includes a stacked optical lens element 200, a lens holder 301 and other optical components. The optical components used in the present embodiment include a watch glass 一, a light 阑Μ, and two The M374572 is provided with a spacer 313, an infrared filter 314, and an image sensing element 30 disposed on the circuit board 3. The process of the present embodiment is the same as the first embodiment of the first embodiment. The first embodiment of the present invention comprises a first and second disc-shaped optical lens arrays 1 and 2, which are bonded and fixed by an adhesive 330; The first and second disc-shaped optical lens arrays 1 and 2 are each provided with 249 crescent-shaped optical lenses 10 and 2, as in the second embodiment, and the positioning structure and the positioning mechanism described in the foregoing embodiments are used to make each The optical lenses 1〇, 2〇 are precisely positioned and combined with the positive optical central axes 101 and 201; after being cut and separated, 248 # stacked optical lens elements 20 〇 (one of which is insufficient in size and cannot be used) are included. A crescent-shaped optical lens 1 〇, 20 is aligned with the optical center axis. When assembled, the watch glass 311 is first loaded into the lens holder 301; the diaphragm 312 is first bonded to the stacked optical lens element 200 and then loaded into the lens holder 3〇1; in order to keep the infrared fluorescent sheet 314 and the optical lens 20 between predetermined a first spacer 313 is disposed between the stacked optical lens component 200 and the infrared filter 314; the image sensing component 30 is preset on the circuit board 3a; Maintaining a predetermined air gap with the image sensing element 30, and inserting a second spacer 313 between the image sensing element 3 and the infrared filter 314, and between the second spacer 313 and the lens holder 301 Threading to fix the optical components; finally, the image sensing component 30 and the circuit board 3a are adhesively fixed in the lens holder 3〇1 to form a stacked lens module 300; thereby stacking the lens module 3〇 The structure and manufacturing method of the cymbal can improve the difficulty of adjusting and calibrating the optical components of the optical components in the prior art, and can improve the difficulty in improving the resolution of the center axis of the conventional technology in the prior art.Further, in order to reduce the assembly cost in mass production, the stacked lens module 300 of the embodiment may adopt another assembly manner: as in the first embodiment, a disk-shaped optical element array such as a disk-shaped aperture array is first formed for each optical element. Disc-shaped first spacer array "Precisionly created stacked disc-shaped optical lens array 100 ί has the first-to-read stacked optical lens element as in the embodiment - and Figure 1 is installed in the second-second assembly domain head holder 301 Forming a stacked mirror group 3 〇〇; disc (4) 5 杂 杂 阑 array is made of opaque plastic sheet with 252 through holes, and the spacer array is opaque plastic knee with 252 through holes of predetermined thickness The reverse-made infrared light board is cut into a dish shape by the entire infrared filter board. <Embodiment 6> As shown in Fig. 15, the present embodiment is applied to a camera zoom lens (z〇〇mlens). The stacked lens module 300. For the purpose of zooming, an optical lens group is formed by different optical lenses and the optical effect of zooming is achieved by moving the distance between the two optical lens groups. Pile of examples The lens module 3 (8) includes a first optical lens group 31 and a second optical lens group 32. The first optical lens group 31 includes a stacked optical lens element 200, a lens holder 301 and a plurality of optical elements, wherein the stacked optical The lens element 200 is composed of two optical lenses 1 and 20; the optical element comprises: a watch glass 311, an aperture 312, and a spacer 313 for fixing each optical element and the lens holder 301. The second optical lens group 32 The invention comprises a third plastic lens element 60, a lens holder 302 and a plurality of optical components. The optical component comprises: two spacers 313, an infrared filter lens 314, an image sensing component 30 and a Circuit board 3a. The manufacturing method of the embodiment is as follows: as in the first to fourth embodiments, the stacked optical lens component 200 is first formed to include two optical lenses 10, 20 and an adhesive groove 102; and a lens holder 301 is prepared first; The crucible 312, the stacked optical lens element 200 is assembled in the lens holder 301 to constitute the first optical lens group 31. Another third Γ r- 17 learning · 6G and preparation - lens holder 302; the third optical plastic lens 5 313, an infrared filter lens 314 and another spacer 313 are arranged in the frame 3, 2 The circuit board of the preset image sensing component 30 is mounted on the lens holder 302 to form a second optical lens group. The plucking of the optical lens group 31 in the lens barrel (not shown) produces a non-distance resistance change by moving the first optical lens group 31. By this, the 'stacked mirror group 3 (10) can be made and quickly made into a county. ® 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺 顺Those of ordinary skill in the art understand that in this creation, the requirements of the gods and the genius can be changed, and the changes can be changed to the equivalent changes, but the singularity of Lai Fan. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic view of a stacked optical lens array; FIG. 2 is a schematic view of another stacked optical lens array; FIG. 3 is a schematic view of another stacked optical lens array; FIG. A schematic diagram of a disc-shaped optical lens array is created;

圖5係本創作具有定位銷與定位穴定位機構之碟狀光學鏡片 示意圖; J 圖6係本齡具有準直鏡定位機構鱗位細導位轉之碟狀 學鏡片陣列示意圖; 〃 ^ 圖7係本創作具有十字麟與通孔定位機構、導位 之碟狀光學鏡片陣列示意圖; 〇構 圖8係本創作具有黏膠槽之碟狀光學鏡片陣列示意圖; 圖9係本創作之堆疊碟狀光學鏡片陣列組裝示意圖; 創作之堆#碟狀光學鏡片_之示意圖一; 圖1係本創作之堆疊碟狀光學鏡片陣列之示意圖二; H系本4創作之堆叠碟狀光學鏡片陣列使用準直鏡定位機構校準 光學中心軸之示意圖; f係本作之堆㈣狀光學制陣列與堆疊鏡頭模組之製程示 思、圖; 圖14係本創作之堆疊鏡頭模組之示意圖一;及 圖15係本創作之堆疊鏡頭模組之示意圖二。 【主要元件符號說明】 I :碟狀光學鏡片陣列(Disk-shapedoptical lensarray) ίο :光學鏡片(optical lens element) II :第一光學面(first optical surface) 12 :第二光學面(second optical surface) 13、23 :碟孔(disk hole) 15、16、25 :定位機構(alignment fixture) 17、 27 :定位通孔(alignment through-hole) 18、 28 :十字刻線 19卜 291 :導位結構(guiding structure)(導位缺口 (guiding notch)) 192、292 :導位結構(guiding structure)(導位切角(guiding angle)) 100 :堆疊碟狀光學鏡片陣列(stacked disk-shaped optical lens array) 101、 201 :光學中心韩(optical axis) 102、 202 :黏膠槽(glue groove) 104 :碟孔導位線(disk hole guiding line) 161、261 :定位銷(alignment pin) M374572 162、262 :定位穴(alignment cavity) 2 :碟狀光學鏡片陣歹iJ(Disk-shaped optical lens array) 20 :光學鏡片(optical lens) 3 :光學元件陣列(optical dement array) 3a :電路板 30 :影像感測元件(Image capture device, ICD) 31 :第一鏡群組(first lens group) 301、302 :鏡頭支架(lens holder) 312 :光闌(aperture) 313 :間隔片(spacer)或間隔片陣列(spacer array) 314 :紅外線濾光鏡片(IR cut lens) 32 :第二鏡群組(second lens group) 200 :堆疊光學鏡片元件(stacked optical lens element) 300 :堆疊鏡頭模組(stacked lens module) 330 :黏膠(cement glue) 361 :定位銷(alignment pin) 51 :射出麼縮模具(injection-compressionmold) 511 :上模具(upper mold) 513 :上模仁(upper mold core) 5131 :上模成形模面(Upper m〇iding surface) 5132 :上模定位機構成形模面(Upper mo丨ding alignment surface) 512 :下模具(i〇Wer mold) 514 :下模仏(i〇Wer mold core) 5141 :下模成形模面(i〇wer m〇iding surface) 5142 :下模定位機構成形模面(i〇wer molding alignment surface) 521 :進料口 (feeding nozzle) M374572 522 :進料機(feeder) 5 5 :組合架(assembly fixture) 551 :碟孔定位桿(assembly pole) 552 :碟孔定位凸輪(alignment cam) 553 :組裝定位桿(alignment pole) 57 :雷射校準儀(Laser calibration instrument) 571 :雷射光(laser light) 60 :第三光學鏡片(third optical lens) 61 :碟狀光學鏡片陣列毛胚(primary product of Disk-shaped optical lens array) 614:賢洗道棒(down sprue stick) 900 :堆疊光學鏡片陣列(stacked lens array) 910、914、915、916、920 :陣列光學鏡片(optical lens array) 913、930 :間隔片(spacer) 911 :光闌(aperture) 912 :表玻璃(cover lens) 917 :紅外線滤光鏡片载板(IR cut lens substrate) 918 :光學鏡片載板(lens substrate) 919 :影像感測元件(Image capture device, ICD ) 9100 :堆疊鏡頭模組(stacked lens module) 9103 :澆道棒(sprue stick) 9104 :豎洗道棒(down sprue stick) 9511 :上模具(upper mold) 9512 :下模具(lower mold) 952 :塑膠材料(resin material) 961 :電路板(PCB substrate) 21FIG. 5 is a schematic view of a disc-shaped optical lens having a positioning pin and a positioning hole positioning mechanism according to the present invention; FIG. 6 is a schematic diagram of a disc-shaped lens array with a fine guide position of a collimating mirror positioning mechanism at the present age; 〃 ^ FIG. This is a schematic diagram of a disc-shaped optical lens array with a cross-column and through-hole positioning mechanism and a guide; 〇Fig. 8 is a schematic diagram of a disc-shaped optical lens array having a glue groove; FIG. 9 is a stacked disc-shaped optical of the present creation. Schematic diagram of lens array assembly; schematic diagram of the creation of the disc-shaped optical lens _; Figure 1 is a schematic diagram of the stacked disc-shaped optical lens array of the present invention; H-series 4 of the stacked disc-shaped optical lens array using the collimating mirror Schematic diagram of the alignment mechanism calibrating the optical center axis; f is the process description and diagram of the stack (four) optical array and the stacked lens module; FIG. 14 is a schematic diagram 1 of the stacked lens module of the present invention; The schematic diagram of the stacked lens module of this creation is two. [Description of main component symbols] I: Disk-shaped optical lens array ίο : optical lens element II: first optical surface 12: second optical surface 13, 23: Disk hole 15, 16, 25: Alignment fixture 17, 27: Alignment through-hole 18, 28: Cross scribe 19 291: Guide structure ( Guiding structure) (guiding notch) 192, 292: guiding structure (guiding angle) 100: stacked disk-shaped optical lens array 101, 201: optical center optical axis 102, 202: glue groove 104: disk hole guiding line 161, 261: alignment pin M374572 162, 262: Alignment cavity 2: Disk-shaped optical lens array 20: optical lens 3: optical dement array 3a: circuit board 30: image sensing Image capture device (ICD) 31: First lens group 301, 302: lens holder 312: aperture 313: spacer or spacer array 314: infrared filter lens (IR cut) Lens) 32 : second lens group 200 : stacked optical lens element 300 : stacked lens module 330 : cement glue 361 : locating pin ( Alignment pin) 51 : injection-compression mold 511 : upper mold 513 : upper mold core 5131 : upper mold surface (Upper m〇iding surface) 5132 : upper mold Upper mo丨ding alignment surface 512 : lower mold (i〇Wer mold) 514 : lower mold 仏 (i〇Wer mold core) 5141 : lower mold forming surface (i〇wer m〇iding surface 5142 : i〇wer molding alignment surface 521 : feeding nozzle M374572 522 : feeder 5 5 : assembly fixture 551 : dish hole positioning Assembly pole 552 : Alignment cam 553 : Assembly positioning rod (al Igment pole) 57 : Laser calibration instrument 571 : Laser light 60 : Third optical lens 61 : Primary optical disc array (primary product of Disk-shaped optical Lens array) 614: down sprue stick 900: stacked lens array 910, 914, 915, 916, 920: optical lens array 913, 930: spacer ( Spacer) 911 : aperture 912 : cover lens 917 : IR cut lens substrate 918 : optical lens carrier 919 : image sensing component (Image capture Device, ICD ) 9100 : stacked lens module 9103 : sprue stick 9104 : down sprue stick 9511 : upper mold 9512 : lower mold ) 952 : Resin material 961 : PCB substrate 21

Claims (1)

六 、申請專利範圍: 種堆疊雜光學鏡片陣列,包含至少二碟狀光學鏡片陣列, U碟狀光學鏡片陣列設有複數個光學鏡片; 其中該堆#獅光學鏡牌舰藉微絲鏡片_上所設 =定位機構以對正各光學鏡片之光學中心轴,且以預定的間隔 藉黏膠組合固定而製成; 其中該碟狀絲鏡牌列係_歸射4_成型方法且由 中心進行塑材繞注成型所製成,為碟狀且其中心設有一碟孔, 其上並以陣列辨列方式佈設複數個光學鏡片,且在非光學作用 區的周邊上設有至少一黏膠槽及至少一定位機構。 2如申清專利細第i項所述之堆叠碟狀光學鏡片陣列,其 碟狀光學鏡>!陣列之碟孔上設有至少—導位結構。、“ 3、 如申凊專利細第2項所述之堆疊碟狀光學鏡片陣列,其中談 導位結構顧自下顺構之—誠其組合:導位缺口及導位^ 角。 4、 如申請專利範圍第!項所述之堆_狀光學鏡牌列,其十該 定位機構储自下舰構之—種或細合:定位銷、定位穴^ 準直鏡、通孔及十字刻線》 5、如申請專利侧第1項所述之堆㈣狀光學鏡>{_,其中該 至少二碟狀光學鏡>{陣狀間進—步包含間則陣列,該間隔 片陣列係藉黏膠與相鄰接之碟狀光學鏡片陣列組合固定以產生 預定的空氣間隔。 6、 如申請專利範圍第丨項所述之堆疊雜光學陣列,其中該 黏膠為熱固型供可經由加熱後固化。 7、 如申請專利範圍第1項所述之堆疊碟狀光學鏡片陣列,其中該 黏膠為紫外線固化型供可經由紫外線照射後固化。 22 8、—/4572 種堆疊鏡頭模組,包含至少一 架及至少-光學元件,其中 f學鏡片元件、-鏡頭走 堆疊光學鏡片元件與該等光件;’_駿合並固定該等 列域分 其+該堆曼碟狀光學鏡片陣列係由申請專利範圍第i項至第7 項任一項所述之堆疊碟狀光學鏡片陣列所構成。Sixth, the scope of application for patents: a stack of hybrid optical lens arrays, comprising at least two disc-shaped optical lens arrays, U-disc optical lens arrays are provided with a plurality of optical lenses; wherein the pile of #狮 optical mirrors ships by microfilament lenses _ The positioning mechanism is formed by aligning the optical central axes of the optical lenses and fixing them at predetermined intervals by a combination of adhesives; wherein the disc-shaped mirrors are _represented by the molding method and are performed by the center. The plastic material is formed by a coil forming process, and has a dish hole and a hole in the center thereof, and a plurality of optical lenses are arranged on the array and at least one adhesive groove is arranged on the periphery of the non-optical active area. And at least one positioning mechanism. 2 The stacked disc-shaped optical lens array according to the above-mentioned patent fine item i, wherein the disc-shaped optical mirror>! is provided with at least a guide structure on the disc hole. "3. For example, the stacked disc-shaped optical lens arrays described in the second paragraph of the application of the patent, wherein the structure of the guide is taken from the bottom-construction--the combination of the guide: the gap and the guide angle. Applying for the _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 5. The stack (four)-shaped optical mirror according to item 1 of the patent application side, wherein the at least two-disc optical mirrors are arranged in an array, and the spacer array is The adhesive is combined with the adjacent disk-shaped optical lens array to produce a predetermined air gap. 6. The stacked hybrid optical array of claim 2, wherein the adhesive is a thermosetting type 7. The stacked disc-shaped optical lens array according to claim 1, wherein the adhesive is UV-curable for curing by ultraviolet irradiation. 22 8, - 4572 stacked lens modules , comprising at least one and at least - an optical component, wherein a lens element, a lens-carrying optical lens element, and the light member; '_Jun merges and fixes the column area and the stack of the manned optical lens array is any one of the items i to 7 of the patent application scope The stacked disc-shaped optical lens array described in the item is constructed. 9、如申請專利範圍第8項所述之堆疊鏡頭模組,其中該光學元件 係選自下列所述之一種或其組合:光學鏡片、光闌、表玻璃、 紅外線濾光鏡片、影像感測元件、太陽能光電半導體、發光二 極體、電路板。9. The stacked lens module of claim 8, wherein the optical component is selected from the group consisting of: an optical lens, a diaphragm, a watch glass, an infrared filter lens, and image sensing. Components, solar photovoltaic semiconductors, light-emitting diodes, circuit boards. 23twenty three
TW98216879U 2009-09-11 2009-09-11 Stacked disk-shaped optical lens array, stacked lens module TWM374572U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98216879U TWM374572U (en) 2009-09-11 2009-09-11 Stacked disk-shaped optical lens array, stacked lens module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98216879U TWM374572U (en) 2009-09-11 2009-09-11 Stacked disk-shaped optical lens array, stacked lens module

Publications (1)

Publication Number Publication Date
TWM374572U true TWM374572U (en) 2010-02-21

Family

ID=50591946

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98216879U TWM374572U (en) 2009-09-11 2009-09-11 Stacked disk-shaped optical lens array, stacked lens module

Country Status (1)

Country Link
TW (1) TWM374572U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103178052A (en) * 2011-12-22 2013-06-26 奇景光电股份有限公司 Wafer to wafer connection structure
TWI480961B (en) * 2011-12-05 2015-04-11 Himax Tech Ltd Wafer-to-wafer bonding structure

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI480961B (en) * 2011-12-05 2015-04-11 Himax Tech Ltd Wafer-to-wafer bonding structure
CN103178052A (en) * 2011-12-22 2013-06-26 奇景光电股份有限公司 Wafer to wafer connection structure
CN103178052B (en) * 2011-12-22 2015-11-18 奇景光电股份有限公司 Wafer is to wafer connection structure

Similar Documents

Publication Publication Date Title
US8102600B2 (en) Stacked disk-shaped optical lens array, stacked disk-shaped lens module array and method of manufacturing the same
US20100265597A1 (en) Rectangular stacked glass lens module with alignment member and manufacturing method thereof
TW201109164A (en) Stacked disk-shaped optical lens array, stacked lens module and their method of manufacturing thereof
US8023208B2 (en) Miniature stacked glass lens module
KR101966478B1 (en) Method for manufacturing passive optical components, and devices comprising the same
US20100284089A1 (en) Stacked optical glass lens array, stacked lens module and manufacturing method thereof
US20100157428A1 (en) Glass lens array module with alignment member and manufacturing method thereof
JP3160406U (en) Rectangular laminated glass lens module (Rectangular stacked glass lens module)
CN105223702B (en) Device with touch-control Yu three-D image display function
TWI596368B (en) Electronic device and method of manufacture thereof
CN105223703B (en) Device with touch-control Yu three-D image display function
JP2011059688A (en) Disk-shaped optical lens array and manufacturing method thereof
TWM374572U (en) Stacked disk-shaped optical lens array, stacked lens module
TWM374573U (en) Stacked disk-shaped optical lens array, stacked disk-shaped lens module array
JP3154617U (en) Laminated optical lens array and laminated lens module thereof
CN201522557U (en) Stacked disc-shaped optical lens array and stacked disc-shaped lens module array
JP3157641U (en) Optical glass lens array module
JP3154933U (en) Stacking lens module positioning lens holder
KR20100010466U (en) Rectangular stacked glass lens module
CN201518062U (en) Stacked disk-shaped optical lens array and stacked lens module
KR20100011246U (en) Miniature stacked glass lens module
CN102023320A (en) Stacked disc-shaped optical lens array, stacked lens module and manufacture method thereof
TWI412808B (en) Method for producing lens module
CN102023319A (en) Stacked disc-shaped optical lens array, stacked disc-shaped lens module array and preparation method thereof

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees