TWM367340U - Stacked optical glass lens array, stacked lens module - Google Patents

Stacked optical glass lens array, stacked lens module Download PDF

Info

Publication number
TWM367340U
TWM367340U TW98207830U TW98207830U TWM367340U TW M367340 U TWM367340 U TW M367340U TW 98207830 U TW98207830 U TW 98207830U TW 98207830 U TW98207830 U TW 98207830U TW M367340 U TWM367340 U TW M367340U
Authority
TW
Taiwan
Prior art keywords
optical
lens
array
stacked
optical glass
Prior art date
Application number
TW98207830U
Other languages
Chinese (zh)
Inventor
Jian-Min Wu
xue-lin Chen
san-wei Xu
Original Assignee
E Pin Optical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by E Pin Optical Industry Co Ltd filed Critical E Pin Optical Industry Co Ltd
Priority to TW98207830U priority Critical patent/TWM367340U/en
Publication of TWM367340U publication Critical patent/TWM367340U/en

Links

Landscapes

  • Lens Barrels (AREA)

Description

M367340 103、 103a、103b :第三光學面 104、 104a、104b :第四光學面 111 ··黏膠槽(glue groove) 12:第二光學玻璃鏡片陣列(second optical glass lens array) 121、121a、121b :定位槽(alignment notch) 13 :黏膠(cement glue) 14 :光學中心軸(optical axis) 五、新型說明: 【新型所屬之技術領域】 本創作係有關一種堆疊光學玻璃鏡片陣列、堆疊鏡頭 模組,尤指一種利用至少二片光學玻璃鏡片陣列,先經對 正其光學中心軸後再以黏膠槽内所設黏膠堆疊組合而製成 之精密組合之堆疊光學玻璃鏡片陣列,再利用該堆疊光學 玻璃鏡片陣列以定位機構切割分離成單一的堆疊光學鏡片 元件,再配合所需的光學元件裝設入鏡頭支架内以組成一 堆疊鏡頭模組,供使用於LED光源之組合鏡片、太陽能轉 換系統之組合鏡片、及手機相機的光學鏡頭等。 【先前技術】 精密玻璃模造成型(glass precision molding)技術已 大量應用於製造高解析度、穩定性佳且成本較低廉的非球 面模造玻璃鏡片,如美國專利US2006/0107695、 US2007/0043463,台灣專利 TW095101830、TW095133807, 曰本專利JP63-295448等,其係利用玻璃在高溫軟化的特 性,將一玻璃元材(或玻璃預型體,glasspreform)於上、下 模具中加熱軟化,再將上、下模具對應閉合並施壓,使上、 下模具之光學模面轉印至軟化的玻璃預型體上,經冷卻後 分開上、下模具取出而成為一具有上、下模具模面的模造 玻璃鏡片。而為能降低製造成本’日本專利jp63_3〇42〇i、 2 M367340 美國專利US2005/041215提出玻璃模造成型的鏡片陣列 (lens array);對於製成單一鏡片,在此稱為鏡片元件(lens element ),曰本專利JP02-044033提出使用移動玻璃材料以 多次模造方式以製成具有多個光學鏡片的鏡片毛胚,再進 一步裁切成多個鏡片元件。 玻璃模造成型的光學鏡片已開始大量運用於LED光源 之組合鏡片、太陽能轉換系統之組合鏡片、及手機相機的 光學鏡頭;組合鏡片或光學鏡頭,為光學成像效果,常需 要以多片不同屈光度的光學鏡片,以一定空氣間隔組合成 •為光學鏡片模組。因此,當多片不同屈光度的光學鏡片組 合時,各光學鏡片的光學中心軸(optical axis)需要精密對正 以避免解析度降低的問題,且各光學鏡片也需要以一定間 距組合而成,故將耗費許多的工序與精密校正,致產量無 法提高,成本也難以下降;尤其在光學鏡片陣列組合上, 當光學鏡片陣列的光學中心軸產生偏移時,將影響光學效 果,因此光學鏡片陣列校正上更為繁複與重要。在光學鏡 片陣列製造上,如日本專利JP2001194508提出塑膠光學鏡 片陣列之製造方法;台灣專利TW M343166提出玻璃光學 鏡片陣列之製造方法。光學鏡片陣列製成後可以切割分離 ® 成為單一之光學鏡片單元,以組裝於鏡頭模組(lens module) : 中。或者可以先將光學鏡片陣列與其他光學元件(optical element)先組合成鏡頭次模組陣列(lens submodule array), 再切割成單一的鏡頭次模組(lens submodule),經與鏡頭支 架(lens holder)、影像感測器(image capture device)或其他光 學元件組合後,製成鏡頭模組(lens module)。 在鏡頭模組陣列製造上,美國專利US7,183,643、 US2007/007051 卜 WIPO 專利 W02008011003 等提出晶元 級鏡頭模組(*&amp;【61*16¥61卜1151110如卜)。如圖1,一般光學用 的鏡頭模組陣列通常包含一光闌711 (aperture)、一表玻璃 712(cover glass)、多片光學鏡片及一紅外線濾光鏡片 M367340 717(IR cut lens),如圖所示為三片式光學鏡片組,包含第一 光學鏡片 714(firstlens)、第二光學鏡片 715(secondlens)及 第三光學鏡片716(third lens),各光學鏡片間以間隔片 713(spacer)隔開;經組合後形成一鏡頭模組陣列,經切割 後製成鏡頭模組。另如WIPO專利W02008/063528以堆疊 方式製成鏡頭模組,如圖2,將光闌711、第一光學鏡片 714、間隔片713、第二光學鏡片715、間隔片713、第三 光學鏡片716、影像感測器717、電路板718,封裝(packing) 於封裝體(encapsulant)719中,構成一鏡頭模組。 然而,對於鏡頭模組陣列,當多片光學鏡片陣列組合 時,各光學鏡片陣列的對正(alignment)將影響鏡頭模組陣 列的解析度,在多片光學鏡片陣列之組合上,美國專利 US2006/0249859提出使用紅外線(infrared ray)產生基準點 標號(fiducial marks)以組合晶元級鏡片模組;在塑膠光學鏡 片陣列之組合上,日本專利jP2000-321526、JP2000-227505 揭露雙凸型光學鏡片陣列以凸塊(height)與凹隙(crevice)組 合的方法;美國專利US7,187,501提出利用圓錐體 (cone-shaped projection)以堆疊(stack)多片的塑膠光學鏡片 陣列。然而,在LED光源之組合鏡片、太陽能轉換系統之 ⑩組合鏡片及手機相機之光學鏡頭使用的光學鏡片模組陣 列,常是由多種面不同形狀的光學鏡片陣列所組成。在習 知塑膠光學鏡片陣列以突出部(pr〇jecti〇n)與凹穴(h〇le)組 合的方法中,由於塑膠光學鏡片陣列係以塑膠射出成形, 在凸塊與凹隙處會造成材料收縮而使尺寸發生改變,其定 位精度難以提高,致光學中心軸較難定位,使用上有相當 限制。模造玻璃製成鏡片,其折射率比塑膠為佳 ,且可而才 熱,已漸應用於各種光學系統巾;由於模&amp;玻璃製成的光 學鏡片陣列’其收縮問題柏對較小,因此發展簡易且精密 度兩的光學玻璃鏡片模組陣列,提供給LED光源之組合鏡 片、太陽能轉換系統之組合鏡片、及手機相機的光學鏡頭 4 M367340 使用,才能符合量產化之良率與量產化的需求。 【新型内容】 本創作之目的係提供一種堆疊光學玻璃鏡片陣列 (Stacked Optical Glass Lens Array)供使用於光學系統之光 學鏡頭,其包含至少二片光學玻璃鏡片陣列(optical glass lensarray) ’並藉黏膠以預定的間隔組合固定而製成;其中 光學玻璃鏡片陣列係利用多穴玻璃模造(multi-cavity glass molding)方法製成,包含光學作用區及非光學作用區,其 中至少一光學玻璃鏡片陣列在其非光學作用區的周邊 I (periphery)上設有至少一個黏膠槽(glue groove)供設置黏 膠,以使鄰接組合的二光學玻璃鏡片陣列可藉由黏膠槽内 設的黏膠固化後而固定結合。 本創作再一目的係提供一種堆疊光學玻璃鏡片陣列供 使用於光學系統之光學鏡頭,其包含至少二光學玻璃鏡片 陣列,並藉黏膠以預定的間隔組合固定而製成,其中至少 一光學玻璃鏡片陣列在其非光學作用區的周邊上設有至少 一定位槽(alignment notch),藉由定位槽可精密切割光學玻 璃鏡片陣列以分離成單一的堆疊光學鏡片元件(stacked optical lens element)供使用於堆疊鏡頭模組(Stacked Lens ^ Module) ° 本創作又一目的係提供一種堆疊鏡頭模組(Stacked Lens Module),其包含至少一堆疊光學鏡片元件、一鏡頭支 架(lens holder)及相配合之光學元件(optical element),其中 該堆疊光學鏡片元件係由一堆疊光學玻璃鏡片陣列切割分 離成單一元件(element)而製成;其中該光學元件係選自光 學鏡片(optical lens)、間隔片(spacer)、光闌(aperture)、表 玻璃(cover glass)、紅外線濾光鏡片(IR-cut glass)、影像感 測器(image capture device)、太陽能光電半導體 (photoelectric device)、電路板(PCB)中之一種或其組合。 其中該堆疊光學玻璃鏡片陣列及堆疊鏡頭模組的製 5 M367340 法,包含下列步驟: si :提供一玻璃元材; 52 :提供一光學玻璃鏡片陣列模具包含第一與第二光學 面模具,其分別設具光學面成形模面;又第一光學 面模具及/或第二光學面模具設有黏膠槽成形模面; 53 :將上述玻璃元材置於第一與第二光學面模具内’利 用加熱器加溫並加壓,以模造成形一光學玻璃鏡片 陣列,其具有光學作用區及非光學作用區,且在光 學作用區具有光學面,在非光學作用區具有黏膠槽; 54 :以上述步驟製造另一光學玻璃鏡片陣列,且進一步 可在S2或S4步驟之第一光學面模具或第二光學面 模具設置至少一定位槽成形模面,以可在其非光學 作用區形成至少一定位槽; s5 :在鄰接組合之二光學玻璃鏡&gt;!陣列之黏膠槽内塗置 黏膠; S6 :以雷射光校準對正鄰接組合二光學玻璃鏡片陣列之 光學中心轴; S7:固化該黏膠以組成一精密對準光學中心軸之堆疊光 學玻璃鏡片陣列; 58 :切割該堆疊光學玻璃鏡片陣列以分離成單一的堆疊 光學鏡片元件(stacked optical lens element),其中可 依據定位槽所形成的定位點(alignment marks)進行 切割以達精密製造之目的,; 59 :將堆疊光學鏡片元件裝設入鏡頭支架中,並組合其 他光學元件,以形成一堆疊鏡頭模組。 、 本創作之光學玻璃鏡片陣列、堆疊光學玻璃鏡片陣列 ,堆疊鏡頭模組可藉由上述製法及其結構,而達成精密組 σ及量產化效果。 【實施方式】 本創作之堆疊光學玻螭鏡片陣列係包含至少二光學玻 6 M367340 璃鏡片陣列,並利用黏膠以預定的間隔組合固定形成;如 圖3,第一與第二光學玻璃鏡片陣列11、12係利用多穴玻 璃模造(multi-cavity glass molding)方法製成,各包含光學作 用區及非光學作用區;第一光學玻璃鏡片陣列11在第二光 學面102(102a、102b、…)之非光學作用區的周邊上設有黏 膠槽111,該黏膠槽111可為一圓周狀溝狀槽;藉由設於黏 膠槽111内的黏膠13固化後,使鄰接組合之二光學玻璃鏡 片陣列11、12可固定結合並對正光學中心轴(optical axis)14,形成一堆疊光學玻璃鏡片陣列1〇。 進一步,第二陣列光學玻璃鏡片12在第四光學面 ® 104(104a、104b、…)之非光學作用區的周邊上設有定位槽 121(121a、121b、…),定位槽 121a(121b、…)可為一圓周 狀V型槽,其圓心位於第四光學面i〇4a(i〇4b、...)的光學 中心軸上,且每一個定位槽的半徑可為相同,藉由相鄰之 二定位槽121(121a、121b、…)之交點可構成二定位點122 如圖4所示,供可沿定位點122精密切割堆疊光學玻璃鏡 片陣列10以分離成單一堆疊光學鏡片元件1〇〇(如圖9之步 驟 S8)。 再進一步’本創作之堆疊鏡頭模組3〇如圖13係由前 • 述之單一堆疊光學鏡片元件與所需的各種光學元件(如 311、312、313、314、315)組裝於一鏡頭支架 301(lens holder) 内所構成。 該黏膠槽111的形狀與型式不限於圓周狀溝狀槽,該 定位槽121的形狀與型式不限於圓周狀之v型槽,光學元 件亦不限於光學鏡片、間隔片、光闌、表玻璃、紅外線濾 光鏡片、影像感測器、太陽能光電半導體、電路板(PCB) 等。 本創作之堆疊光學玻璃鏡片陣列及堆疊鏡頭模組的製 造方法如圖9所示:利用一玻璃元材21置入一多模穴之第 一與第二光學面模具51、52中,第一光學面模具'η設有 7 M367340 光學面成型之第一光學面成形模面(first optical mold surface)511(511a、511b、…),第二光學面模具52設有光 學面成型之第二光學面成形模面(second optical mold surface) 521(521a、521b、…)及黏膠槽成形模面(giue groove mold surface)524(524a、524b、...);經由加熱管 225(heater) 加溫並施以加壓模造’即為多穴玻璃模造(multi-cavity glass molding)方法,以一次模造成具有多個光學作用區的第一 光學玻璃鏡片陣列11 ;以同樣方法模造第二光學玻璃鏡片 陣列12,且第二陣列光學玻璃鏡片12同時形成至少一定 位槽121(121a、121b、…)如圖3所示;再於第一與第二光 &gt; 學玻璃鏡片陣列11、12之間的黏膠槽111中塗設黏膠13, 經組合後固化黏膠13,以製成一堆疊光學玻璃鏡片陣列 10 ;再沿定位槽121所形成的定位點122如圖4所示,切 割該堆疊光學玻璃鏡片陣列10,分離形成單一的堆疊光學 鏡片元件100 ;於製造堆疊鏡頭模組30時,將堆疊光學鏡 片元件100裝設入鏡頭支架301中,並組合其他光學元件, 以形成一堆疊鏡頭模組。 為使本創作更為明確詳實’兹配合下列較佳實施例圖 示詳述如後: •〈實施例-〉 參考圖3,本實施例為一 4x4 (即具有16個光學玻璃 鏡片)之堆疊光學玻璃鏡片陣列1〇,包含第一光學玻璃鏡 片陣列11及第二光學玻璃鏡片陣列12 ’並利用黏膠13黏 合固定;第一光學玻璃鏡片陣列11設有16 (4χ4)個第一 光學面101(101a、l〇lb、…)及16 (4x4)個第二光學面 102(102a、102b、…)且在第二光學面102上設有16 (4x4) 個圓周狀梯型(外寬内窄)溝狀槽之黏膠槽111 ;第二光學 玻璃鏡片陣列12設有丨6 (4x4)個第三光學面l〇3(103a、 103b、…)、16 (4x4)個第四光學面 104(104a、l〇4b、…)。 組合該堆疊光學玻璃鏡片時,先將第二光學玻璃鏡 8 M367340 片陣列12置入一組合治具(assembly fixture)内(圖未示); 再於第一光學玻璃鏡片陣列11之各黏膠槽111中塗以黏膠 13,該黏膠13為熱固化型黏膠,再置入組合沿具内並堆疊 於第二光學玻璃鏡片陣列12上;使第一與第二光學玻璃鏡 片陣列11、12固定於組合治具内,並送入烘箱以固化黏膠 13,即形成一對正光學中心軸14之堆疊光學玻璃鏡片陣列 10 ° &lt;實施例二&gt; 參考圖12,本實施例之堆疊光學玻璃鏡片陣列係應用 _ 於太陽能轉換系統;在太陽能轉換系統中,為使太陽光線 之轉換效率,南’太陽能轉換模組(s〇lar transformati〇n module)40常堆疊使用多個光學玻璃鏡片陣列,使太陽光線 能於太陽能光電半導體416上聚焦,使太陽能光電半導體 416將太陽能轉變成電力由電路板417而輸至外界。本實 施例之太陽能轉換模組40係包含··一堆疊光學玻璃鏡片陣 列ίο其由二光學玻璃鏡片陣列n、12組成、一電路板417 其上設有以陣列排列之太陽能光電半導體416,其中該堆 疊光學玻璃鏡片陣列10如同實施例一,其第一光學玻璃鏡 片陣列11具有16個新月型光學作用區,其第二光學玻璃 鏡片陣列12亦具有16個相對應之新月型光學作用區。為 使堆疊光學玻璃鏡片陣列1〇有最佳的聚光效果,第一與 二光學玻璃鏡片陣列11、12之間保持固定的間距,本^施 例中,第-光學玻璃鏡片陣列U之像侧凸面與第二光學破 璃鏡片陣列12之物侧凹面的間距為〇.5mm,第二光學玻璃 鏡片陣列12之彳凸面與太陽能光電半導體416的間距為 l〇mm。為使太陽光線經過堆疊光學玻璃鏡片陣列1〇,可 以聚焦在太陽能光電半導體416 ±,組合時,太陽能 半導體416之中心可對正堆疊光學破璃鏡片陣列1〇的 中心軸14。 9 M367340 &lt;實施例三&gt; 參考圖10、11 ’本實施例係應用於高精密手機鏡頭使 用之堆疊光學鏡片元件100,其係由一堆疊光學玻璃鏡片 陣列10切割分離形成;該堆疊光學玻璃鏡片陣列10為一 4x4之堆疊光學玻璃鏡片陣列,包含一第一光學玻璃鏡片 陣列11及一第二光學玻璃鏡片陣列12,並利用黏膠13黏 合固定;第一光學玻璃鏡片陣列11設有16 (4x4)個第一 光學面101(101a、101b、…)及16 (4x4)個第二光學面 102(102a、102b、…)且在第二光學面1〇2上設有16 (4x4) 個圓周狀梯型溝狀槽之黏膠槽ill;第二光學玻璃鏡片陣列 _ 12 設有 16(4x4)個第三光學面 103(103a、103b、…)、4x4 個第四光學面104(104a、104b、…)及在第四光學面104上 設有16 (4x4)個圓周狀V型槽之定位槽121(121a、 121b、…),且各定位槽I21(121a、121b、…)之圓心分別位 於相對應各第四光學面104(104a、104b、…)之光學中心軸 14上。 由於本實施例係應用於高精密手機鏡頭使用,因此在 組合堆疊光學玻璃鏡片陣列10時,第一光學玻璃鏡片陣列 11與第二光學玻璃鏡片陣列12之光學中心軸14需對正以 • 滿足精密公差範圍;組合時,先將第二光學玻璃鏡片陣列 12置入一組合治具(assembly fixture)(圖未示)内;再於第一 光學玻璃鏡片陣列11之黏膠槽111塗設黏膠13,再置入組 合置具内以堆疊於第二光學玻璃鏡片陣列12上,並利用雷 射光140進行光學中心軸之校準;當雷射光140穿過第二 光學玻璃鏡片陣列12之光學中心軸14’,先使雷射光140 與光學中心轴14’重合,再左右移動調整第一光學玻璃鏡片 陣列11,使雷射光140與第一光學玻璃鏡片11陣列之光學 中心軸14重合,即完成二光學中心軸14 ’、14的校準;通 常此校準僅在4x4的對角光學面校準即可。 在本實施例中,該黏膠13為紫外線固化型黏膠,經校 M367340 21學!V&quot;^14、14後’將第一與第二光學玻璃鏡片陣 _ 、i 合治具内’送人紫外線固化爐後,固化 黏膠13以形成堆疊光學玻璃鏡片陣列1〇。 如圖u (同時參考圊4),在第四光學面1〇4上設有 j X )個圓周狀V型槽之定位槽121(121a、121b、…), ΐίϊ二定位槽121之間如定位槽121a與定位槽㈣, If ΐί定位點122 (如圖4所示),連接定位點m可構 j刀。,(d1Clnglme)15 (亦如圖9之步驟S8所示),使用 輪沿切割線15可分離形成16個堆㈣學鏡片元件M367340 103, 103a, 103b: third optical surface 104, 104a, 104b: fourth optical surface 111 · glue groove 12: second optical glass lens array 121, 121a, 121b: Alignment notch 13 : Cement glue 14 : Optical axis A. New description: [New technical field] This is a stack of optical glass lens arrays and stacked lenses. A module, in particular, a stacked optical glass lens array that utilizes at least two optical glass lens arrays, which are first aligned with their optical center axes and then assembled by a combination of adhesives disposed in the adhesive grooves. The stacked optical glass lens array is separated into a single stacked optical lens component by a positioning mechanism, and then assembled into a lens holder with a required optical component to form a stacked lens module for use in a combined lens of the LED light source. A combination lens of a solar energy conversion system, and an optical lens of a mobile phone camera. [Prior Art] Precision glass molding technology has been widely used to manufacture aspherical molded glass lenses with high resolution, good stability and low cost, such as US Patent US2006/0107695, US2007/0043463, Taiwan Patent TW095101830, TW095133807, 曰Patent JP63-295448, etc., which utilizes the characteristics of softening of glass at high temperature, heats and softens a glass element (or glass preform) in the upper and lower molds, and then upper and lower. The mold is closed and pressed to transfer the optical mold surface of the upper and lower molds to the softened glass preform, and after cooling, the upper and lower molds are separated to form a molded glass lens having upper and lower mold faces. . In order to reduce the manufacturing cost, a lens array of a glass mold type is proposed in Japanese Patent No. JP-A-62, i., 2, M 367, 340, and a lens element is formed as a single lens. Japanese Patent No. 02-044033 proposes to use a moving glass material in a multiple molding manner to produce a lens blank having a plurality of optical lenses, which are further cut into a plurality of lens elements. Glass mold-type optical lenses have begun to be widely used in combination lenses for LED light sources, combined lenses for solar energy conversion systems, and optical lenses for mobile phone cameras; combined lenses or optical lenses, which are optical imaging effects, often require multiple diopter Optical lenses are combined at a certain air gap into an optical lens module. Therefore, when a plurality of optical lenses of different refracting powers are combined, the optical axis of each optical lens needs precise alignment to avoid the problem of reduced resolution, and each optical lens also needs to be combined at a certain interval. It will cost a lot of processes and precision correction, resulting in no increase in output and cost reduction; especially in the combination of optical lens arrays, when the optical central axis of the optical lens array is offset, the optical effect will be affected, so the optical lens array is corrected. It is more complicated and important. In the manufacture of an optical lens array, a manufacturing method of a plastic optical lens array is proposed as in Japanese Patent No. 2001194508, and a manufacturing method of a glass optical lens array is proposed in Taiwan Patent TW M343166. Once the optical lens array is fabricated, it can be cut and separated into a single optical lens unit for assembly in a lens module: . Or the optical lens array and other optical elements can be first combined into a lens submodule array, and then cut into a single lens submodule, and the lens holder (lens holder) ), an image capture device or other optical components are combined to form a lens module. In the manufacture of the lens module array, a wafer-level lens module (*&amp; [61*16¥61卜1151110) is proposed in US Patent No. 7,183,643, US2007/007051, WIPO Patent W02008011003, and the like. As shown in FIG. 1, a lens module array for general optical use generally includes an aperture 711, a cover glass 712, a plurality of optical lenses, and an infrared filter lens M367340 717 (IR cut lens), such as The figure shows a three-piece optical lens set comprising a first optical lens 714 (first lens), a second optical lens 715 (secondlens) and a third optical lens 716 (third lens) with a spacer 713 (spacer) between the optical lenses. Separated; after assembly, a lens module array is formed and cut into a lens module. In addition, the lens module is fabricated in a stacked manner as in WIPO Patent WO2008/063528, as shown in FIG. 2, the aperture 711, the first optical lens 714, the spacer 713, the second optical lens 715, the spacer 713, and the third optical lens 716. The image sensor 717 and the circuit board 718 are packaged in an encapsulant 719 to form a lens module. However, for a lens module array, when multiple optical lens arrays are combined, the alignment of each optical lens array will affect the resolution of the lens module array. In the combination of multiple optical lens arrays, US Patent US2006 /0249859 proposes the use of infrared ray to generate fiducial marks to combine the crystal-level lens modules; in the combination of plastic optical lens arrays, Japanese patents jP2000-321526, JP2000-227505 disclose lenticular optical lenses The array is a combination of a height and a crevice; US Pat. No. 7,187,501 proposes the use of a cone-shaped projection to stack a plurality of plastic optical lens arrays. However, an array of optical lens modules used in combination lenses of LED light sources, combination lenses of solar energy conversion systems, and optical lenses of mobile phone cameras are often composed of optical lens arrays of various shapes and shapes. In the conventional method of combining a plastic optical lens array with a protrusion and a recess, since the plastic optical lens array is formed by plastic injection, it may be caused at the bump and the recess. When the material shrinks and the size changes, the positioning accuracy is difficult to increase, and the optical center axis is difficult to position, and the use is quite limited. Molded glass is made into a lens, which has better refractive index than plastic, and can be heated. It has been gradually applied to various optical system towels; since the optical lens array made of die &amp; glass has a small shrinkage problem, The development of a simple and precise optical glass lens module array, which is used for combination lens of LED light source, combined lens of solar energy conversion system, and optical lens 4 M367340 of mobile phone camera, can meet the mass production yield and mass production. Demand. [New content] The purpose of the present invention is to provide a stacked optical glass lens array (Arrayed Optical Glass Lens Array) for use in an optical lens of an optical system, which comprises at least two optical glass lens arrays The glue is made by combining and fixing at a predetermined interval; wherein the optical glass lens array is formed by a multi-cavity glass molding method, including an optical action zone and a non-optical action zone, wherein at least one optical glass lens array At least one glue groove is provided on the periphery of the non-optical active area for providing adhesive, so that the adjacent optical glass lens array can be glued through the adhesive groove. After curing, it is fixedly bonded. A further object of the present invention is to provide an optical lens array for stacking optical glass lenses for use in an optical system, comprising at least two optical glass lens arrays, which are formed by a combination of adhesives at predetermined intervals, at least one optical glass. The lens array is provided with at least one alignment notch on the periphery of the non-optical active area, and the optical glass lens array can be precisely cut by the positioning groove to be separated into a single stacked optical lens element for use. Stacked Lens ^ Module ° Another object of the present invention is to provide a stacked lens module (Stacked Lens Module) comprising at least one stacked optical lens element, a lens holder and a matching An optical element, wherein the stacked optical lens element is formed by cutting and separating a stacked optical glass lens array into a single element; wherein the optical element is selected from the group consisting of an optical lens and a spacer ( Spacer), aperture, cover glass, infrared filter lens (IR-cut glass), an image capture device, a solar photovoltaic device, a circuit board (PCB), or a combination thereof. The 5 M367340 method of the stacked optical glass lens array and the stacked lens module comprises the following steps: si: providing a glass element; 52: providing an optical glass lens array mold comprising first and second optical surface molds, Each of the first optical surface mold and/or the second optical surface mold is provided with an adhesive groove forming die surface; 53: the glass element is placed in the first and second optical surface molds 'Using a heater to heat and pressurize to form an optical glass lens array having an optically active region and a non-optical active region, and having an optical surface in the optically active region and a glue groove in the non-optical active region; : fabricating another optical glass lens array by the above steps, and further, at least one positioning groove forming die surface may be disposed on the first optical surface mold or the second optical surface mold of the step S2 or S4 to form a non-optical active region thereof At least one positioning groove; s5: coating the adhesive in the adhesive groove of the adjacent optical glass mirror &gt;! array; S6: aligning the right adjacent combined optical glass lens array with the laser light Optical central axis; S7: a stacked optical glass lens array that cures the adhesive to form a precisely aligned optical central axis; 58: dicing the stacked optical glass lens array to separate into a single stacked optical lens element ), which can be cut according to the alignment marks formed by the positioning grooves for precision manufacturing purposes; 59: Mounting the stacked optical lens elements into the lens holder and combining other optical components to form a stack Lens module. The optical glass lens array, the stacked optical glass lens array and the stacked lens module of the present invention can achieve the precision group σ and the mass production effect by the above-mentioned manufacturing method and structure. [Embodiment] The stacked optical glass lens array of the present invention comprises at least two optical glass 6 M367340 glass lens arrays, and is formed by a combination of adhesives at predetermined intervals; as shown in FIG. 3, the first and second optical glass lens arrays. 11, 12 is made by multi-cavity glass molding method, each comprising an optical action zone and a non-optical action zone; the first optical glass lens array 11 is on the second optical face 102 (102a, 102b, ... An adhesive groove 111 is disposed on the periphery of the non-optical active area, and the adhesive groove 111 can be a circumferential groove-shaped groove; after the adhesive 13 provided in the adhesive groove 111 is solidified, the adjacent combination is The two optical glass lens arrays 11, 12 can be fixedly bonded to the positive optical axis 14 to form a stacked optical glass lens array. Further, the second array optical glass lens 12 is provided with positioning grooves 121 (121a, 121b, ...) on the periphery of the non-optical active area of the fourth optical surface 104 (104a, 104b, ...), and the positioning groove 121a (121b, ... can be a circumferential V-shaped groove whose center is located on the optical central axis of the fourth optical surface i〇4a (i〇4b, ...), and the radius of each positioning groove can be the same, by phase The intersection of the adjacent two positioning slots 121 (121a, 121b, ...) may constitute two positioning points 122 as shown in FIG. 4, for precisely cutting the stacked optical glass lens array 10 along the positioning point 122 to be separated into a single stacked optical lens element 1 〇〇 (step S8 of Figure 9). Further, the stacked lens module 3 of the present invention is assembled into a lens holder by a single stacked optical lens element as described above and various optical elements (such as 311, 312, 313, 314, 315) as required. 301 (lens holder) is composed. The shape and shape of the adhesive groove 111 are not limited to the circumferential groove-shaped groove. The shape and shape of the positioning groove 121 are not limited to the circumferential v-shaped groove, and the optical element is not limited to the optical lens, the spacer, the diaphragm, the watch glass. , infrared filter lenses, image sensors, solar photovoltaics, circuit boards (PCB), etc. The manufacturing method of the stacked optical glass lens array and the stacked lens module of the present invention is as shown in FIG. 9 : using a glass element 21 to be placed in the first and second optical surface molds 51 and 52 of a multi-cavity, first The optical surface mold 'n is provided with a first optical mold surface 511 (511a, 511b, ...) formed by 7 M367340 optical surface, and the second optical surface mold 52 is provided with a second optical surface formed by optical surface molding. Second optical mold surface 521 (521a, 521b, ...) and giue groove mold surface 524 (524a, 524b, ...); via heating tube 225 (heater) Warming and applying pressure molding 'that is a multi-cavity glass molding method, the first optical glass lens array 11 having a plurality of optically active regions is formed in a single mold; the second optical glass is molded in the same manner. The lens array 12, and the second array of optical glass lenses 12 simultaneously form at least one positioning groove 121 (121a, 121b, ...) as shown in FIG. 3; and then the first and second light> glass lens arrays 11, 12 Adhesive 13 is applied to the adhesive groove 111. The adhesive 13 is post-cured to form a stacked optical glass lens array 10; the positioning point 122 formed along the positioning groove 121 is cut as shown in FIG. 4, and the stacked optical glass lens array 10 is cut to form a single stacked optical. The lens element 100; when manufacturing the stacked lens module 30, the stacked optical lens element 100 is mounted in the lens holder 301, and other optical elements are combined to form a stacked lens module. In order to make the creation more clear and detailed, the following detailed description of the following preferred embodiments is as follows: • <Example-> Referring to Figure 3, this embodiment is a stack of 4x4 (i.e., having 16 optical glass lenses). The optical glass lens array 1A includes a first optical glass lens array 11 and a second optical glass lens array 12' and is adhered and fixed by an adhesive 13; the first optical glass lens array 11 is provided with 16 (4χ4) first optical surfaces. 101 (101a, l〇lb, ...) and 16 (4x4) second optical faces 102 (102a, 102b, ...) and 16 (4x4) circumferential ladders on the second optical face 102 (outer width) The inner optical narrow groove groove 111; the second optical glass lens array 12 is provided with 丨6 (4x4) third optical faces l3 (103a, 103b, ...), 16 (4x4) fourth optics Face 104 (104a, l〇4b, ...). When the stacked optical glass lens is combined, the second optical glass mirror 8 M367340 array 12 is first placed in a combination fixture (not shown); and the adhesives of the first optical glass lens array 11 are further The groove 111 is coated with an adhesive 13, which is a thermosetting adhesive, which is then placed in the assembly and stacked on the second optical glass lens array 12; the first and second optical glass lens arrays 11, 12 is fixed in the combination jig and sent to the oven to cure the adhesive 13, that is, the stacked optical glass lens array forming a pair of positive optical central axes 14; &lt;Second Embodiment&gt; Referring to FIG. 12, this embodiment Stacked optical glass lens arrays are applied to solar energy conversion systems; in solar energy conversion systems, in order to convert solar light conversion efficiency, south solar energy conversion modules (s〇lar transformati〇n module) 40 are often stacked using multiple optical glasses. The lens array enables solar light to be focused on the solar photovoltaic semiconductor 416, causing the solar photovoltaic semiconductor 416 to convert solar energy into electricity that is transmitted from the circuit board 417 to the outside. The solar energy conversion module 40 of the present embodiment comprises a stack of optical glass lens arrays, which are composed of two optical glass lens arrays n, 12, and a circuit board 417 having solar photovoltaic semiconductors 416 arranged in an array thereon. The stacked optical glass lens array 10 is the same as the first embodiment, the first optical glass lens array 11 has 16 crescent-shaped optical active regions, and the second optical glass lens array 12 also has 16 corresponding crescent-shaped optical effects. Area. In order to achieve optimal concentrating effect of the stacked optical glass lens array 1 , a fixed spacing is maintained between the first and second optical glass lens arrays 11 , 12 , and in this embodiment, the image of the first optical glass lens array U The distance between the convex surface of the convex surface and the concave surface of the second optical glass lens array 12 is 〇5 mm, and the distance between the convex surface of the second optical glass lens array 12 and the solar photovoltaic semiconductor 416 is 10 mm. In order to pass the solar light through the stacked optical glass lens array 1 , it is possible to focus on the solar photovoltaic semiconductor 416 ±. When combined, the center of the solar semiconductor 416 can be aligned with the central axis 14 of the stack of optical lens arrays 1 . 9 M367340 &lt;Example 3&gt; Referring to Figures 10 and 11 'This embodiment is applied to a stacked optical lens element 100 for use in a high-precision mobile phone lens, which is formed by cutting and separating a stacked optical glass lens array 10; The glass lens array 10 is a 4×4 stacked optical glass lens array, comprising a first optical glass lens array 11 and a second optical glass lens array 12, and is bonded and fixed by the adhesive 13; the first optical glass lens array 11 is provided 16 (4x4) first optical faces 101 (101a, 101b, ...) and 16 (4x4) second optical faces 102 (102a, 102b, ...) and 16 (4x4) on the second optical face 1〇2 a plurality of adhesive grooves ill of a circumferential trap groove; the second optical glass lens array _ 12 is provided with 16 (4x4) third optical faces 103 (103a, 103b, ...), 4x4 fourth optical faces 104 (104a, 104b, ...) and positioning grooves 121 (121a, 121b, ...) of 16 (4x4) circumferential V-shaped grooves are provided on the fourth optical surface 104, and each positioning groove I21 (121a, 121b, ... The center of the center is located at the optical central axis 14 of each of the fourth optical faces 104 (104a, 104b, ...) . Since the present embodiment is applied to a high-precision mobile phone lens, when the stacked optical glass lens array 10 is combined, the optical central axes 14 of the first optical glass lens array 11 and the second optical glass lens array 12 need to be aligned to meet The precision tolerance range; in combination, the second optical glass lens array 12 is first placed in a combination fixture (not shown); and then the adhesive groove 111 of the first optical glass lens array 11 is coated with a viscosity The glue 13 is placed in the assembly to be stacked on the second optical glass lens array 12, and the optical center axis is calibrated by the laser light 140; when the laser light 140 passes through the optical center of the second optical glass lens array 12 The shaft 14' first overlaps the laser light 140 with the optical central axis 14', and then moves the left and right optical lens arrays 11 to adjust the laser light 140 to coincide with the optical central axis 14 of the array of first optical glass lenses 11 Calibration of the two optical central axes 14', 14; typically this calibration is only calibrated on a 4x4 diagonal optical surface. In this embodiment, the adhesive 13 is a UV-curable adhesive, and is taught by M367340 21! V&quot;^14,14' after the first and second optical glass lens arrays _, i After the human UV curing oven, the adhesive 13 is cured to form a stacked optical glass lens array. As shown in FIG. 5 (refer to 圊4 at the same time), j×) positioning grooves 121 (121a, 121b, . . . ) of circumferential V-shaped grooves are provided on the fourth optical surface 1〇4, and between the two positioning grooves 121. The positioning groove 121a and the positioning groove (4), If ΐί positioning point 122 (as shown in FIG. 4), the connection positioning point m can be configured as a knife. , (d1Clnglme) 15 (also shown in step S8 of Fig. 9), 16 piles (four) of learning lens elements can be separated and formed using the wheel cutting line 15

丄母it隹疊光學鏡片元件100的第一、二、三及四光學 面之光學中心可以對正,且每個堆疊光學鏡片元件1〇〇外 型尺寸均一,可方便提供給手機鏡頭使用。 &lt;實施例四&gt; 參考圖13,本實施例係將一堆疊光學鏡片元件1〇〇應 用於一手機相機鏡頭模組30 ;本實施例之鏡頭模組30包 含一堆疊光學鏡片元件100、一鏡頭支架301及數個光學 元件’其中相配合之光學元件包含一表玻璃311、一光闌 312、間隔片313、一紅外線濾光鏡片314、一影像感測器 315及一電路板316。 本實施例之應用方法如第三實施例,先製成一堆疊光 學鏡片元件100其包含一第一光學玻璃鏡片元件(first glass lens element) 141及一第二光學玻璃鏡片元件(second glass lenselement)142及至少一黏膠槽111 ;先製備一鏡頭支架 301 ;再將表玻璃311、光闌312、堆疊光學鏡片元件100、 間隔片313、紅外線濾光鏡片314依序組裝於鏡頭支架301 内;再將預先設有影像感測器315之電路板316組裝於鏡 頭支架301上以構成一完整之鏡頭模組30。藉此,鏡頭模 組30可簡便及快速製成,符合量產規模而可大幅降低製作 成本。 M367340 &lt;實施例五&gt; 參考圖14,本實施例係將堆疊光學鏡片元件100應用 於相機變焦鏡頭(Zoom lens)之鏡頭模組30中,為達變焦 (Zooming)目的,以不同的光學鏡片組成一光學鏡片群 (optical lens group),藉由移動光學鏡片群彼此間距以達到 變焦之光學效果。在本實施例申,鏡頭模組30包含一第一 光學鏡片群31及一第二光學鏡片群32,第一光學鏡片群 31包含一堆疊光學鏡片元件1〇〇、一鏡頭支架301及數個 光學元件,其中堆疊光學鏡片元件100係由一第一光學玻 璃鏡片元件151及一第二光學玻璃鏡片元件152構成;該 * 光學元件包含一表玻璃311及一光闌312;第二光學鏡片 群32包含一第三光學塑膠鏡片元件(third plastic lens element)153、一鏡頭支架302及數個光學元件,設光學元 件包括:一間隔片313、一紅外線濾光鏡片314、一影像感 測器315及一電路板316。 本實施例之應用方法如實施例三,先製成堆疊光學鏡 片元件100其包含第一光學玻璃鏡另元件151、第二光學 玻璃鏡片元件152及黏膠槽in ;並先製備一鏡頭支架 301 ;將表玻璃311、光闌312、堆疊光學鏡片元件1〇〇組 • 裝於鏡頭支架301内以構成第一光學鏡片群31。另由射出 成型方法製作第三光學塑膠鏡片元件153,及製備一鏡頭 支系302,將第二光學塑膠鏡片153、間隔片313、紅外線 濾光鏡片314依序組襞於鏡頭支架302内,再將預先設於 電路板316之影像感測器315組裝於鏡頭支架302上,構 成第二光學鏡片群32。 使用時,將第一光學鏡片群31裝設於鏡筒(lens barrel) 内(圖未示),藉由移動第一光學鏡片群31產生不同的距離 而逹成變焦目的。藉此,鏡頭模組30可簡便及快速製成, 符合量產規模以可大幅降低製作成本。 玆再說明本創作之堆疊陣列光學玻璃鏡片10及堆疊 12 M367340 光學鏡片元件100 (以實施例三為例)之製法:利用一玻 璃元材21置入一多模穴之第一光學面模具51與第二光學 面模具52中’經由加熱管225(heater)加溫並加壓模造,以 製成一第一光學玻璃鏡片陣列11 ;再以相同方法製成一第 二光學玻璃鏡片陣列12。 第一光學玻璃鏡片陣列11之模具如圖5、6所示,其 中在第一光學面101之第一光學面模具51之模座513上設 有第一光學面成形模面(first optical mold surface) 511 (511a、511b、…),其為凹面且以4χ4陣列排列,且各成 形模面511 (511a、511b...)之間距相同,可以玻璃模造成 ® 型方法製成一 4x4的第一光學玻璃鏡片陣列Η之第一光學 面101。在第二光學面102之第二光學面模具52之模座523 上設有第二光學面成形模面521 ( 521a、521b...),其為凸 面且以4x4陣列排列,且各成形模面511a (511b、…)之間 距相同,可以玻璃模造成型方法製成4x4的第一光學玻璃 鏡片陣列11之第二光學面102;在第二光學面成形模面521 (521a、521b...)之外圍設有黏膠槽成形模面(glue groove mold surface) 524( 524a、524b…),其為圓周狀之梯形凸面, 可以製成第二光學面之圓周狀黏膠槽111。 • 第二光學玻璃鏡片陣列12之模具如圖7、8所示,其 中第三光學面103之第三光學面模具53如圖7所示,在模 座533上設有第三光學面成形模面531 ( 531a、531b...), 其為凸面且以4x4陣列排列,各成形模面之間距相同,可 以玻璃模造成型方法製成4x4的第二光學玻璃鏡片陣列12 之第三光學面103。第四光學面104之第四光學面模具54 如圖8所示,在模座543上設有第四光學面成形模面(fourth optical mold surface) 541 ( 541a、541b..·),其為凹面且以 4x4陣列排列,各成形模面之間距相同,可以玻璃模造成 型方法製成4x4的第二光學玻璃鏡片陣列12之第四光學面 104 ;在第四光學面成形模面541 ( 541a、541b...)之外圍設 M367340 有定位槽成形模面(alignment notch mold surface) 545 (545a、545b…),其為圓周狀v形凸面,其圓心位於第四 光學面之光學中心軸14上,且每個定位槽成形模面545 ( 545a、545b..·)之半徑與v形凸面均相同。 參考圖9 ’堆疊光學玻璃鏡片陣列10及堆疊光學鏡片 元件100之製法包含下列步驛: S1 :提供一破璃元材21 ; 、&gt;s2:提/共一光學玻璃鏡片陣列第一光學面模具51與第 二光學面模具52,且分別設具第一光學面成形模面511The optical centers of the first, second, third and fourth optical surfaces of the abutting optical lens element 100 can be aligned, and each of the stacked optical lens elements has a uniform outer size and can be conveniently provided for use in a mobile phone lens. &lt;Fourth Embodiment&gt; Referring to FIG. 13, the present embodiment is to apply a stacked optical lens element 1 to a mobile phone camera lens module 30. The lens module 30 of the present embodiment includes a stacked optical lens element 100. A lens holder 301 and a plurality of optical components include a watch glass 311, a diaphragm 312, a spacer 313, an infrared filter lens 314, an image sensor 315, and a circuit board 316. Application Method of the Present Embodiment As in the third embodiment, a stacked optical lens element 100 is first formed, which comprises a first glass lens element 141 and a second glass lens element. 142 and at least one glue groove 111; first prepare a lens holder 301; then, the watch glass 311, the aperture 312, the stacked optical lens element 100, the spacer 313, the infrared filter lens 314 are sequentially assembled in the lens holder 301; The circuit board 316, which is provided with the image sensor 315 in advance, is assembled on the lens holder 301 to form a complete lens module 30. Thereby, the lens module 30 can be easily and quickly manufactured, and the production scale can be greatly reduced. M367340 &lt;Embodiment 5&gt; Referring to FIG. 14, the present embodiment applies the stacked optical lens element 100 to the lens module 30 of a Zoom lens for zooming purposes and different optics. The lenses form an optical lens group that is optically spaced by moving the optical lens groups to each other to achieve an optical effect of zooming. In this embodiment, the lens module 30 includes a first optical lens group 31 and a second optical lens group 32. The first optical lens group 31 includes a stacked optical lens element 1 , a lens holder 301 and a plurality of The optical component, wherein the stacked optical lens component 100 is composed of a first optical glass lens component 151 and a second optical glass lens component 152; the optical component comprises a surface glass 311 and a diaphragm 312; and the second optical lens group 32 includes a third plastic lens element 153, a lens holder 302 and a plurality of optical components. The optical component comprises: a spacer 313, an infrared filter lens 314, and an image sensor 315. And a circuit board 316. The application method of this embodiment is as follows. First, the stacked optical lens component 100 is first formed to include a first optical glass mirror component 151, a second optical glass lens component 152, and an adhesive groove in; and a lens holder 301 is prepared first. The watch glass 311, the aperture 312, and the stacked optical lens element 1 are assembled in the lens holder 301 to constitute the first optical lens group 31. The third optical plastic lens component 153 is formed by the injection molding method, and a lens support 302 is prepared. The second optical plastic lens 153, the spacer 313, and the infrared filter lens 314 are sequentially assembled in the lens holder 302, and then The image sensor 315 previously provided on the circuit board 316 is assembled on the lens holder 302 to form a second optical lens group 32. In use, the first optical lens group 31 is mounted in a lens barrel (not shown), and the first optical lens group 31 is moved to generate different distances for zooming purposes. Thereby, the lens module 30 can be easily and quickly manufactured, and is in a mass production scale to greatly reduce the production cost. The method for manufacturing the stacked array optical glass lens 10 and the stacked 12 M367340 optical lens element 100 (for example, the third embodiment) is described. The first optical surface mold 51 is placed in a multi-cavity hole by using a glass element 21. And the second optical surface mold 52 is heated and pressure molded via a heating tube 225 to form a first optical glass lens array 11; and a second optical glass lens array 12 is formed in the same manner. The mold of the first optical glass lens array 11 is as shown in FIGS. 5 and 6, wherein a first optical mold surface is provided on the mold base 513 of the first optical surface mold 51 of the first optical surface 101. 511 (511a, 511b, ...) which are concave and arranged in an array of 4χ4, and the distance between the forming faces 511 (511a, 511b...) is the same, and the glass mold can be made into a 4x4 A first optical face 101 of an array of optical glass lenses. A second optical surface forming surface 521 (521a, 521b...) is disposed on the mold base 523 of the second optical surface mold 52 of the second optical surface 102, which is convex and arranged in a 4×4 array, and each forming mold The surfaces 511a (511b, ...) are the same distance, and the second optical surface 102 of the 4x4 first optical glass lens array 11 can be formed by a glass mold forming method; the second optical surface forming surface 521 (521a, 521b... The periphery of the filter is provided with a glue groove mold surface 524 (524a, 524b...) which is a trapezoidal convex surface in a circumferential shape and can be formed into a circumferential adhesive groove 111 of the second optical surface. The mold of the second optical glass lens array 12 is as shown in Figs. 7 and 8, wherein the third optical surface mold 53 of the third optical surface 103 is provided with a third optical surface forming mold on the mold base 533 as shown in Fig. 7 . The faces 531 ( 531a, 531b...) are convex and arranged in a 4x4 array, and the distance between the forming faces is the same, and the third optical face 103 of the 4x4 second optical glass lens array 12 can be formed by a glass mold forming method. . The fourth optical surface mold 54 of the fourth optical surface 104 is provided with a fourth optical mold surface 541 (541a, 541b..) on the mold base 543 as shown in FIG. Concave and arranged in a 4x4 array, the distance between the forming faces is the same, the fourth optical surface 104 of the 4x4 second optical glass lens array 12 can be formed by a glass mold forming method; and the molding surface 541 is formed on the fourth optical surface (541a, The outer periphery of the 541b...) M367340 has an alignment notch mold surface 545 (545a, 545b...) which is a circumferential v-shaped convex surface whose center is located on the optical central axis 14 of the fourth optical surface. And the radius of each positioning groove forming surface 545 (545a, 545b..) is the same as the v-shaped convex surface. Referring to FIG. 9 'the method of stacking the optical glass lens array 10 and the stacked optical lens element 100 comprises the following steps: S1: providing a broken glass element 21;, &gt;s2: lifting/common optical glass lens array first optical surface The mold 51 and the second optical surface mold 52 are respectively provided with a first optical surface forming surface 511

^lb··.)與第二光學面成形模面521 ( 521a、 Ί·. 光學面模具52設有黏膠槽成形模面524 (524a ' 524b...); 元材放置於第—光學面模具51與第二 力加溫並加壓以模造-第 應之4x4個第,個第一光學面與相對 具有4x4個轉Μ第二光學面之非光學作用區 光學=璃dn製玻璃鏡片陣列12;該 4x4個第四光學^ 2且,有楚,,第三光學面與相對應之 4x4個圓周狀^之非光,用區具有 塗以黏膠13 ; 先學玻璃鏡片陣列(11、12)之黏膠槽111 S6:使用雷私土,^ (η、⑵之光學校準及對正二光學玻璃鏡片陣列 與此13形成—堆叠光學玻璃鏡片陣列10; 1曰0;、密對準光學中心的堆疊光學玻璃鏡片陣列 S8:堆疊光學破域 位槽121a與定位片^列1G之二健位槽121(如定 腎Ulb)之父點可形成二個定位點122(如 14 M367340 圖 4 戶if —、 lin 吓不),連接二定位點122可構成切割線(dicing ’使用續石砂輪沿切割線15切割可分離形成16個 —的堆疊光學鏡片元件1〇〇 ; Q Ο 中,·將堆疊光學鏡片元件100裝設入一鏡頭支架301 .組合其他光學元件,以形成一堆疊鏡頭模組30。 30、=創作之堆疊光學玻璃鏡片陣列1〇及堆疊鏡頭模組 化效果可藉由上述製法及其結構,而達成精密組合及量產^lb··.) and the second optical surface forming die surface 521 (521a, Ί·. The optical surface mold 52 is provided with a glue groove forming die surface 524 (524a '524b...); the material is placed on the first optical The surface mold 51 and the second force are heated and pressurized to mold - the fourth 4x4th, the first optical surface and the non-optical active area optical optical glass with the 4x4 switching second optical surface Array 12; the 4x4 fourth optical ^ 2, and Chu, the third optical surface and the corresponding 4x4 circular non-light, the area has a glue 13; first learn the glass lens array (11 12) Adhesive groove 111 S6: using Rayleigh soil, ^ (η, (2) optical calibration and alignment of two optical glass lens arrays with this 13 - stacked optical glass lens array 10; 1 曰 0; The stacked optical glass lens array S8 of the quasi-optical center: the parenting point of the stacked optical breakage groove 121a and the two positioning groove 121 of the positioning piece 1G (such as the kidney Ulb) can form two positioning points 122 (such as 14 M367340 Figure 4 household if —, lin scare, connect the two positioning points 122 to form a cutting line (dicing 'use the continuous stone grinding wheel along the cutting line 15 can be separated and formed 16-stacked optical lens elements 1 〇〇; Q Ο, the stacked optical lens elements 100 are mounted in a lens holder 301. The other optical elements are combined to form a stacked lens module 30. 30, = Creation Stacked optical glass lens array 1〇 and stacked lens modular effects can be achieved by the above-mentioned manufacturing method and its structure, achieving precision combination and mass production

是養=上所示僅為本新型之較佳實施例,對本新型而言僅 新性的,、而非限制性的。本專業技術人員理解,在本 變,$利要求所限定的精神和範圍内可對其進行許多改 &gt;改,甚至等效變更,但都將落入本新型的保護範圍 【圖式簡單說明】 知—光學_鏡片模 意圖; ϊ3 iL知一鏡頭模組封裝示意圖; 〜);糸本創作之堆疊光學玻璃鏡片陣列示意圖(實施例 係本創作堆疊光學麵鏡片陣列之定位槽上視示意 具之上視及侧面剖視示意圖 圖9係本堆具之上視及侧面剖視示意圖, 製造流程示意圖f瑩先學破璃鏡片陣列與堆疊鏡頭模組之 鏡㈣肋離成單一 M367340 圖12係本創作之堆疊光學玻璃鏡片陣列應用於太陽能轉 換模組之示意圖(實施例二); 圖13係本創作之堆疊光學鏡片元件應用於手機相機鏡頭 模組示意圖(實施例四);及 圖14係本創作之堆疊光學鏡片元件應用於相機變焦鏡頭 模組之示意圖(實施例五)。 【主要元件符號說明】 I 〇 .堆疊光學玻璃鏡片陣列(stacked optical glass lens array) 100 .堆疊光學玻璃鏡片元件(stacked optical glass lens element) 101、 101a、101b:第一光學面 102、 102a、102b :第二光學面 103、 103a、103b :第三光學面 104、 104a、104b :第四光學面 II ··第一光學玻璃鏡片陣列(first optical glass lens array) III :黏勝槽(glue groove) 12 :第二光學玻璃鏡片陣列(second optical glass lens array) 121、121a、121b :定位槽(alignment notch) 122 :定位點(alignment marks) 13 :黏膠(cement glue) 14 :光學中心轴(optical axis) 140:雷射光(collimating light) 15 :切割線(dicing line) 141、 151 :第一光學玻璃鏡片元件(first glass lens element) 142、 152:第二光學玻璃鏡片元件(second glass lens element) 153 :第三光學塑膠鏡片元件(third plastic lens element) 21 :玻璃元材(glass blank) 225 :加熱器(heater) 30 :鏡頭模組(lens module) 31 :第一光學鏡片群(first optical lens group) M367340 32:第二光學鏡片群(second optical lens group) 301 :鏡頭支架(lens holder) 311 :表玻璃(cover glass) 312 :光闌(aperture) 313 :間隔片(spacer) 314 :紅外線濾光鏡片 315 :影像感測器(image sensor) 40 :太陽能轉換模組 415 :太陽能光電半導體(solar die) 416:電路板(PCB) 51 :第一光學面模具(first optical mold) 511、511a、511b :第一光學面成形模面(first optical mold surface) 52:第二光學面模具(second optical mold) 513、523、533、543 :模座 521、521a、521b :第二光學面成形模面(seconcj optical mold surface) 524、524a、524b:黏膠槽成形模面(giue groove mold surface) 53:第三光學面模具(third optical mold) • 531、531a、531b :第二光學面模面(second optical mold surface) 54:第四光學面模具(fourth optical mold) 541、541a、541b·第四光學面成形模面(fourth optical mold surface) 545、545a、545b :定位槽成形模面(aiignment notch mold surface) 17It is a preferred embodiment of the present invention, which is only new and not limiting. It will be understood by those skilled in the art that many changes, modifications, and even equivalents may be made in the spirit and scope of the present invention, but all of them fall within the scope of the present invention. 】 知 _ _ _ lens mold intention; ϊ 3 iL know a lens module package schematic; ~); 糸 创作 之 之 堆叠 堆叠 堆叠 堆叠 堆叠 堆叠 堆叠 ( ( ( ( ( ( 堆叠 堆叠 堆叠 堆叠 堆叠 堆叠 堆叠 堆叠 堆叠 堆叠 堆叠 堆叠 堆叠 堆叠 堆叠 堆叠 堆叠 堆叠 堆叠 堆叠 堆叠 堆叠Top view and side cross-sectional view Figure 9 is a schematic view of the top and side of the stack, the manufacturing process diagram f Yingxian glass lens array and stacked lens module mirror (four) ribs into a single M367340 Figure 12 The schematic diagram of the stacked optical glass lens array of the present invention is applied to the solar energy conversion module (Example 2); FIG. 13 is a schematic diagram of the stacked optical lens component of the present invention applied to the camera lens module of the mobile phone (Embodiment 4); The schematic diagram of the stacked optical lens component of the present invention is applied to a camera zoom lens module (Embodiment 5). [Main component symbol description] I 堆叠. Stacked light Stacked optical glass lens array 100. Stacked optical glass lens element 101, 101a, 101b: first optical surface 102, 102a, 102b: second optical surface 103, 103a, 103b : third optical surface 104, 104a, 104b: fourth optical surface II · first optical glass lens array III: glue groove 12: second optical glass lens array (second Optical glass lens array 121, 121a, 121b: alignment notch 122: alignment marks 13: cement glue 14: optical axis 140: collimating light 15 : dicing line 141, 151: first glass lens element 142, 152: second glass lens element 153: third optical plastic lens element (third Plastic lens element) 21 : glass blank 225 : heater 30 : lens module 31 : first optical lens group M367340 32: Second optical lens group 301 : lens holder 311 : cover glass 312 : aperture 313 : spacer 314 : infrared filter lens 315 : image sense Image sensor 40: solar energy conversion module 415: solar photovoltaic semiconductor 416: circuit board (PCB) 51: first optical mold 511, 511a, 511b: first optical surface First optical mold surface 52: second optical mold 513, 523, 533, 543: mold base 521, 521a, 521b: second optical surface forming mold surface (seconcj optical mold surface) 524, 524a, 524b: giue groove mold surface 53: third optical mold • 531, 531a, 531b: second optical mold surface 54 : fourth optical mold 541, 541a, 541b. fourth optical mold surface 545, 545a, 545b: aiignment notch mold surface 17

Claims (1)

M367340 六、申請專利範圍: 1、 一種堆疊光學玻璃鏡片陣列,包含至少二個光風 鏡片陣列,利用黏膠以預定的間隔組合固定而製予破璃 其特徵在於:該光學玻璃鏡片陣列係利用多穴 $;、 (multi-cavity glass molding)方法製成,具有以陣模造 ,數個光學玻璃鏡片,而形成光學作用區及非光 其中,該光學玻璃鏡片陣列在非光學作用區 有黏膠槽供塗設黏膠(cement glue),藉以利:。邊上设 =接組合之二光學玻璃鏡片陣列以預定的間g二亡、$相 2、 如申請專利範圍第1項所述之堆疊光學坡璃 其中至少一個光學玻璃鏡片陣列在其非光 見片陣列, 邊上設有至少一個定位槽。 作用區的周 3、 如申睛專利範圍第2項所述之堆疊光學 其中該定位槽為圓周形,並形成陣列形狀喝鏡片陣列, 在各光學玻璃鏡片之光學中心軸上。 且其圓心設 4、 如申請專利範圍第1項所述之堆疊光學破 其中該光學破璃鏡片陣列之間進一步包含,片陣列, 隔片以黏膠與相鄰接之光學玻璃鏡片陣二二,片,該間 以產生預定的空氣間隔。 、、、σ固定,用 5、 如申請專利範圍第1項所述之堆疊光學破 其中該黏膠為熱固型供可經由加熱後固化。’鏡片陣列, 6、 如申請專利範圍第1項所述之堆疊光學 =中該黏膠為紫外線固化型供可經由紫外各2日^^陣列, 7 —種堆疊鏡頭模組,包含至少一堆叠風 件、一鏡頭支架及至少一個光學元件;〖破續鏡片元 其特徵在於:該堆疊光學玻璃鏡片元件 破螭鏡片陣列切割分離而成為單一的元件;〜堆疊光學 M367340 其中該堆疊光學玻璃鏡片陣列包含至少二光學玻璃鏡片 陣列,且相鄰接組合之二光學玻璃鏡片陣列中至少一光 學玻璃鏡片陣列上設有黏膠槽供塗佈黏膠,藉以利用黏 膠以使相鄰接組合之二光學玻璃鏡片陣列以預定的間隔 組合固定; 其中該鏡頭支架係用以容納堆疊光學玻璃鏡片元件,並 與光學元件組合。 8、如申請專利範圍第7項所述之堆疊鏡頭模組,其中該光 學元件係選自下列所述之一或其組合:陣列光學玻璃鏡 片、光闌、表玻璃、紅外線滤光鏡片、影像感測器、太 陽能光電半導體、電路板。M367340 VI. Scope of Application: 1. A stacked optical glass lens array comprising at least two arrays of light-winding lenses, which are assembled and fixed at a predetermined interval by using adhesives, and are characterized in that: the optical glass lens array is utilized. a multi-cavity glass molding method, which has a plurality of optical glass lenses formed by array molding to form an optically active region and a non-lighting portion thereof. The optical glass lens array has a glue groove in a non-optical active region. For the application of cement glue, for the benefit of: The two optical glass lens arrays are arranged in a predetermined interval, and the stacked optical glazings as described in claim 1 are at least one of the optical glass lens arrays. The array of sheets has at least one positioning groove on the side. Week 3 of the active area, such as the stacking optics described in claim 2, wherein the positioning grooves are circumferentially shaped and form an array of shaped lens arrays on the optical central axes of the respective optical glass lenses. And the center of the circle is set as 4, as described in the scope of claim 1 of the stacking optical break, wherein the array of optically glazed lenses further comprises an array of sheets, and the spacers are provided with an adhesive and an adjacent optical glass lens array. , the sheet, to create a predetermined air gap. , , σ fixed, with 5, as described in the scope of claim 1 of the stack optical break wherein the adhesive is a thermosetting type can be cured by heating. 'Lens array, 6, as disclosed in the scope of claim 1 of the stacking optics = the viscose is UV-curable for UV-based 2 days ^ ^ array, 7 - stacked lens module, including at least one stack a wind piece, a lens holder and at least one optical component; the broken lens element is characterized in that the stacked optical glass lens element is cut and separated into a single component; ~ stacked optical M367340 wherein the stacked optical glass lens array </ RTI> comprising at least two optical glass lens arrays, and at least one optical glass lens array in the adjacent two optical glass lens arrays is provided with an adhesive groove for coating the adhesive, thereby utilizing the adhesive to make the adjacent combination The array of optical glass lenses is fixed in combination at predetermined intervals; wherein the lens holder is adapted to receive the stacked optical glass lens elements and combined with the optical elements. 8. The stacked lens module of claim 7, wherein the optical component is selected from one or a combination of the following: array optical glass lens, aperture, watch glass, infrared filter lens, image Sensors, solar photovoltaics, circuit boards.
TW98207830U 2009-05-07 2009-05-07 Stacked optical glass lens array, stacked lens module TWM367340U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW98207830U TWM367340U (en) 2009-05-07 2009-05-07 Stacked optical glass lens array, stacked lens module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW98207830U TWM367340U (en) 2009-05-07 2009-05-07 Stacked optical glass lens array, stacked lens module

Publications (1)

Publication Number Publication Date
TWM367340U true TWM367340U (en) 2009-10-21

Family

ID=44389118

Family Applications (1)

Application Number Title Priority Date Filing Date
TW98207830U TWM367340U (en) 2009-05-07 2009-05-07 Stacked optical glass lens array, stacked lens module

Country Status (1)

Country Link
TW (1) TWM367340U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI761197B (en) * 2021-04-29 2022-04-11 晶盛材料股份有限公司 Ultraviolet light array module

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI761197B (en) * 2021-04-29 2022-04-11 晶盛材料股份有限公司 Ultraviolet light array module

Similar Documents

Publication Publication Date Title
US8023208B2 (en) Miniature stacked glass lens module
US20100284089A1 (en) Stacked optical glass lens array, stacked lens module and manufacturing method thereof
US20100265597A1 (en) Rectangular stacked glass lens module with alignment member and manufacturing method thereof
US8077394B2 (en) Glass lens array module with alignment member and manufacturing method thereof
JP3160406U (en) Rectangular laminated glass lens module (Rectangular stacked glass lens module)
US8102600B2 (en) Stacked disk-shaped optical lens array, stacked disk-shaped lens module array and method of manufacturing the same
US20130033636A1 (en) Optical assembly including plenoptic microlens array
US20110063722A1 (en) Stacked disk-shaped optical lens array, stacked lens module and method of manufacturing the same
JP2008508545A (en) Camera module, array based on the same, and manufacturing method thereof
EP2369391B1 (en) Wafer lens unit and method for manufacturing the same
WO2010020062A1 (en) Method of manufacturing a pluralty of optical devices
JP3154617U (en) Laminated optical lens array and laminated lens module thereof
TWI725048B (en) Optical assemblies including a spacer adhering directly to a substrate
CN201522571U (en) Miniature stacked optical glass lens module
TWM367340U (en) Stacked optical glass lens array, stacked lens module
CN101872050A (en) Square stackable glass lens module and manufacturing method thereof
TWM367339U (en) Optical lens array module
CN201522557U (en) Stacked disc-shaped optical lens array and stacked disc-shaped lens module array
TWI402162B (en) Composite micro-lens and composite micro-lens array
CN201477271U (en) Square laminar glass lens module
TWM374573U (en) Stacked disk-shaped optical lens array, stacked disk-shaped lens module array
JP5650474B2 (en) Manufacturing method of Fresnel lens sheet
CN101762856A (en) Array optical glass lens module and manufacturing method thereof
KR20100011246U (en) Miniature stacked glass lens module
CN201522570U (en) Stacked optical glass lens array and stacked lens module

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees