TWM336419U - Thermostatic control device of hot-gas-by-pass refrigerating system - Google Patents

Thermostatic control device of hot-gas-by-pass refrigerating system Download PDF

Info

Publication number
TWM336419U
TWM336419U TW96221549U TW96221549U TWM336419U TW M336419 U TWM336419 U TW M336419U TW 96221549 U TW96221549 U TW 96221549U TW 96221549 U TW96221549 U TW 96221549U TW M336419 U TWM336419 U TW M336419U
Authority
TW
Taiwan
Prior art keywords
temperature
processing circuit
hot gas
control device
control
Prior art date
Application number
TW96221549U
Other languages
Chinese (zh)
Inventor
Fu-Jen Wang
Kuei-I Tsai
wei-ming Jiang
Yao-Jun Wang
yu-jun Lin
Chiwei Kao
Original Assignee
Nat Univ Chin Yi Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chin Yi Technology filed Critical Nat Univ Chin Yi Technology
Priority to TW96221549U priority Critical patent/TWM336419U/en
Publication of TWM336419U publication Critical patent/TWM336419U/en

Links

Landscapes

  • Control Of Temperature (AREA)

Abstract

A thermostatic control device of a hot-gas-by-pass refrigerating system includes a relay, a processing circuit, a converter, a temperature controller, a correction device, a sawtooth-wave generator and a temperature input signal modulation device. The relay is electrically connected to an electromagnetic valve of a hot-gas bypass loop of the refrigerating system. The processing circuit has a control signal output terminal electrically connected to the relay. The converter receives a temperature feedback signal and transmits the signal to the temperature controller. The temperature controller receives the temperature feedback signal and produces a control signal to the processing circuit. The correction device is connected between the temperature controller and the converter to correct the temperature feedback signal. The sawtooth-wave generator is connected between the temperature controller and the processing circuit to generates sawtooth-waves. The temperature input signal modulation device is connected between the temperature controller and the processing circuit.

Description

M336419 八、新型説明: 【新型所屬之技術領域】 本新型是有關於一種恆溫控制裝置,且特別是有關於 一種熱氣旁通冷凍系統的恆溫控制裝置。 【先前技術】 冷康糸統是現代生活中不可或缺的系統之一。冷殊系 統的應用範疇相當廣泛,較為常見的應用如冰箱、冷藏(凍) 櫃、製冰(雪)機、工具機的冷卻系統等。 現有的熱氣旁通冷凍系統主要包含一壓縮機、一冷凝 器、一毛細管及一蒸發器。其中壓縮機是使用啟停(〇n_〇ff) 的控制策略,因此,在冷凍系統的負載區間中,其溫度的 變化將會存在有餘冷與餘熱現象,造成無法實現高精度溫 度控制的嚴格要求。又太頻繁的啟動或停止壓縮機是容易 造成壓縮機的損壞,進而嚴重影響其使用的壽命。 另一種壓縮機的控制策略是採用變頻控制策略。一般 來”兒此變頻控制策略雖然可以提供作為精密温度控制 ^解決方案’但對於小型容量的冷;東系統而言,此-控制 策略的成本則顯得昂貴。此外,當使用變頻控制策略進行 溫度控制時,闵炎 口為了確保正常的回油量,所以存在有最低 轉速的限制。脅+ , 宁於小容量的冷凍系統而言,其省能效果亦 有限制。 【新型内容】 M336419 本新型的目的在於提供一種熱氣旁通冷凍系統的恆 溫控制裝置,用以有效達到冷凍系統高精度的溫度控制效 果,減少冷凍系統中電磁閥的作動,以提高冷凍系統整體 的使用壽命。 依照本新型之一實施例的一種熱氣旁通冷凍系統恆 显控制裝置’係用於控制熱氣旁通冷凍系統。其中冷凍系 統包含熱氣旁通迴路,熱氣旁通迴路包含一電磁閥。藉由 電磁闕配合負載變化而調整高溫氣態冷媒的旁通量,可有 效實現南精密度的溫控效果,且可改善傳統冷凍系統所採 用的壓縮機啟停的控制方式,進而增加壓縮機的使用時 間。此外相較於變頻控制方式,本新型又兼具有經濟可行 之優點。 恆溫控制裝置包含電驛、處理電路、轉換器、温度控 制器、杈正裝置、鋸齒波產生裝置以及溫度訊號輸入調變 裝置。電驛係電接於電磁閥。處理電路包含控制輸出訊號 端,控制輸出訊號端係電接於電驛。轉換器接收一溫度回 授訊號,並傳送到溫度控制器。溫度控制器,接收溫度回 授訊號並輸出一控制訊號由該處理電路接收。校正裝置係 電連接於溫度控制器與轉換器之間,以校正溫度回授訊 號。鋸齒波產生裝置電連接於溫度控制器與處理電路之間 以產生一連續鋸齒波。溫度訊號輸入調變裝置係電連接於 溫度控制器與處理電路之間。 在一實施例中,電驛為固態電驛。處理電路為脈衝寬 度調變(PWM)積體電路。溫度控制器為比例_積分·微分 M336419 (PID)控制器。 透過PWM處理電路與鋸齒波產生裝置的電容與電 感,使冷凍系統之熱氣旁通(hot-gas-by-pass)迴路上的電磁 閥可配合負載變化,進而調整高溫氣態冷媒的旁通量,有 效達到南精度的溫控效果’當負載區間的實際溫度達到設 定溫度時,恆溫控制裝置可適當地設計一延遲時間之後, 再驅動電磁閥作動,可在保持高精度溫控下減少電磁閥的 作動,同時有效增加電磁閥的使用壽命。 此外,應用依照本新型之實施利於工具機冷卻器測試 裝置中時,可將冷卻流體系統與可調整功率式模擬負載合 為一機,可彈性手動調控製加熱器之功率以模擬測試不同 製程負載對系統之影響。同時該控制裝置亦可提供製程系 統恆定流體溫度,進行變動負載量之條件,對製程流體控 制精度的性能影響之測試實驗。 【實施方式】 请參照第1圖所示,依據本創作一實施例之一種熱氣 旁通冷凍系統的恆溫控制裝置100係電氣地連接於一熱氣 旁通冷凍系統200,冷凍系統2〇〇為具有熱氣旁通 (hot-gas-by-pass)迴路的冷凍系統,並連接於一冷卻流體循 環系統300。 冷凍系統200包含一壓縮機21〇、一冷凝器220、一 乾燥過濾器230、一毛細管240、一蒸發器250、一熱氣旁 通迴路260。熱氣旁通迴路26〇的包含一電磁閥261,藉 M336419 由該電磁閥261配合負載變化而調整高溫氣應冷媒的旁通 量,可有效實現高精密度的溫控效果。 冷卻流體循環系統300包含一循環泵浦310、一怪溫 儲存裝置320、一溫度感測器330、一模擬負載裝置340。 當溫度感測器330進行感測負載區間的溫度時,傳送反饋 (feedback)—溫度回授訊號到恆溫控制裝置1〇〇,藉由怪溢 控制裝置100控制冷凍系統200的電磁閥261配合負載的 變化,可即時適當的調整電磁閥261(ON-OFF)動作藉以控 制高溫氣態冷媒的旁通量,可達到高精度的溫控效果。 控制裝置100包含一溫度控制器110、一處理電路 120、一電驛(Relay) 130、一轉換器140、一校正裝置150、 一溫度訊號輸入調變裝置160以及一鑛齒波產生裝置 170。溫度訊號輸入調變裝置160係電連接於溫度控制器 110與處理電路120之間。校正裝置150係電連接於溫度 控制器110與轉換器140之間。鋸齒波產生裝置17〇係電 連接於温度控制器110與處理電路120之間。處理電路120 係電連接於電驛130。轉換器140係電連接於溫度感測器 330,以接收溫度回授訊號。電驛13〇可為一固態電驛。 溫度控制器110包含一電源輸入端111、一溫度回授 信號輸入端112、一控制訊號輸出端113、一溫度顯示裝置 114以及一電源開關裝置115。電源輸入端η丨係連接於一 交流電源。溫度回授信號端112係電連接於校正裝置150, 以接收經轉換器140的溫度感測訊號。控制訊號輸出端113 係電連接於溫度訊號輸入調變裝置丨6〇。溫度顯示裝置114 M336419 包含一溫度顯示面板117以及一設定溫度顯示面板118。 電源開關裝置115包含複數按紐116。 在本實施例中,溫度控制器110可為一 PID(比例-積 分-微分)控制器。當溫度控制器11〇接收到溫度感測訊號 後’可於溫度顯示面板117顯示出溫度。 處理電路120係為一脈衝寬度調變(puise width Modulation,PWM )處理電路,可採用德州儀器TL 494 積體電路(請參考附件),並包含一控制電源輸入端121、 一鑛齒波接收端122以及一控制輸出訊號端123。當溫度 感測器330進行感測負載區間(恆溫儲存裝置32〇)的溫度 時,傳出溫度回授訊號。溫度回授訊號經轉換器14〇轉換 為電子訊號,並經校正裝置150後傳至温度控制器丨1 〇的 溫度回授訊號輸入端112處進行調整,並將實際溫度值顯 示於溫度顯示面板117上。 經調整後的電子訊號由溫度控制器11〇的控制訊號輸 出端113經溫度訊號輸入調變裝置16〇後送至處理電路 120内,並由經鑛齒波產生裝置17〇與輸入至處理電路12〇 的電壓訊號進行比較運算,其中藉由鋸齒波產生裝置17〇 的電容171與電阻172的值可使固態電驛13〇成為一具有 延遲時間的開關,同時使得固態電驛13〇所控制的電磁閥 261亦隨之而具有延遲時間後才作動的特性,進而當負載 區間的實際溫度達到設定溫度時,可適當地一延遲^間後 再驅動電磁閥261作動。所以本實施例可在保持高精度溫 控下減少電磁閥261的作動,同時增加電磁閥26〇的使用 M336419 壽命。 請參照第2圖,當溫度感測器330感測負載區間的工 作流體的溫度物理量,此物理量透過轉換器140動作,轉 換為溫度回授訊號141,以調整一設定溫度訊號142。設 定溫度訊號142與轉換後的溫度回授信號141,輸入溫度 控制器110的比較控制器119處理訊號後,以穩定的數位 訊號,供給處理電路120與固態電驛130。處理電路120 與固態電驛130輸出訊號功能為匹配與控制電磁閥 261(ON-OFF)作動,重複不間斷的循環此回圈,即可實現 保有高精度溫控效果下又能減少電磁閥的作動次數,有效 增加電磁閥261的使用壽命。 請參照第3圖,處理電路120的輸入訊號為溫度控制 器110輸出的控制訊號,而處理電路120的鋸齒波接收端 122接收一連續鋸齒波400,比較連續鋸齒波400與控制 訊號410兩電壓訊號,若連續鋸齒波400高於控制訊號 410,此時,處理電路120的控制輸出訊號端123的控制 輸出訊號為ON;反之,若低於控制訊號,處理電路ι2〇 的控制輸出訊號端123的控制輸出訊號為〇FF。 處理電路120的輸入訊號可調變電壓位準,可控制由 控制輸出訊號端123的輸出訊號之電壓高低,以透過固態 電驛130以同步控制電磁閥261之延遲時間。控制鋸齒波 產生裝置170之週期時間’時間較短時電磁閥261的 ON-OFF頻繁動作,但冷卻流體可提升控制精度,反之, 週期時間長時電磁閥261的ON-OFF動作減少,產生餘熱 11 M336419 現象精度無法維持。 雖然本新型已以一較佳實施例揭露如上,然其並非用 以限定本新型,任何熟習此技藝者,在不脫離本新型之精 神和範圍内,當可作各種之更動與潤飾,因此本新型之保 遵範圍當視後附之申請專利範圍所界定者為準。 【圖式簡單說明】 為讓本新型之上述和其他目的、特徵、優點與實施例 能更明顯易懂,所附圖式之詳細說明如下: 第1圖係繪示依照本新型一較佳實施例的一種熱氣旁 通冷凍系統的恆温控制裝置的線路圖。 第2圖係繪示第1圖中恆溫控制裝置的控制系統方塊 圖。 第3圖係繪示第1圖中恆溫控制裝置的波形圖。 【主要元件符號說明】 100 : 恆溫控制裝置 160 : 溫度訊號輸入調變裝置 110 : 溫度控制器 170 : 鋸齒波產生裝置 111 : 電源輸入端 171 : 電容 112 : 溫度回授信號輸入端 172 : 電阻 113 : 控制訊號輸出端 200 : 冷;東系統 114 : 溫度顯示裝置 210 : 壓縮機 115 : 電源開關裝置 220 : 冷凝器 116 : 按紐 230 : 乾燥過濾器 12 M336419M336419 VIII. New description: [New technical field] The present invention relates to a constant temperature control device, and in particular to a constant temperature control device for a hot gas bypass refrigeration system. [Prior Art] The cold and cold system is one of the indispensable systems in modern life. The application of the Cold Valley system is quite extensive, and the more common applications are refrigerators, refrigerated (freezing) cabinets, ice making (snow) machines, and cooling systems for machine tools. The existing hot gas bypass refrigeration system mainly comprises a compressor, a condenser, a capillary tube and an evaporator. The compressor is a control strategy that uses start-stop (〇n_〇ff). Therefore, in the load range of the refrigeration system, there will be residual cooling and residual heat in the temperature change, resulting in the inability to achieve high-precision temperature control. Claim. It is also easy to start or stop the compressor too often, causing damage to the compressor, which seriously affects the service life. Another compressor control strategy is to use a variable frequency control strategy. Generally, this variable frequency control strategy can provide a solution for precision temperature control ^ but for small capacity cold; for the East system, the cost of this control strategy is expensive. In addition, when using the variable frequency control strategy for temperature When controlling, Yanyankou has a minimum speed limit in order to ensure normal oil return. Threat +, rather than a small-capacity refrigeration system, its energy saving effect is also limited. [New content] M336419 The purpose of the invention is to provide a thermostatic control device for a hot gas bypass refrigeration system, which can effectively achieve the high temperature control effect of the refrigeration system and reduce the actuation of the solenoid valve in the refrigeration system to improve the overall service life of the refrigeration system. An embodiment of a hot gas bypass refrigeration system constant display control device is used to control a hot gas bypass refrigeration system. The refrigeration system includes a hot gas bypass circuit, and the hot gas bypass circuit includes a solenoid valve. Adjusting the bypass amount of the high-temperature gaseous refrigerant can effectively achieve the temperature control of the southern precision Therefore, the control mode of the compressor start-stop used in the conventional refrigeration system can be improved, thereby increasing the use time of the compressor. In addition, compared with the frequency conversion control mode, the present invention has the advantages of economic feasibility. Electric circuit, processing circuit, converter, temperature controller, correction device, sawtooth wave generating device and temperature signal input modulation device. The electric circuit is electrically connected to the electromagnetic valve. The processing circuit includes a control output signal terminal and a control output signal terminal. The electrical circuit is connected to the electric power. The converter receives a temperature feedback signal and transmits it to the temperature controller. The temperature controller receives the temperature feedback signal and outputs a control signal received by the processing circuit. The calibration device is electrically connected to the temperature. The controller and the converter are configured to correct the temperature feedback signal. The sawtooth wave generating device is electrically connected between the temperature controller and the processing circuit to generate a continuous sawtooth wave. The temperature signal input modulation device is electrically connected to the temperature controller. Between the processing circuit and the processing circuit. In one embodiment, the power is a solid state power. The processing circuit is pulse width modulation. (PWM) integrated circuit. The temperature controller is a proportional_integral-differential M336419 (PID) controller. The heat and gas-by-by-by-by-by-by-by-by- -pass) The solenoid valve on the circuit can be matched with the load change, and then adjust the bypass amount of the high-temperature gaseous refrigerant to effectively achieve the temperature control effect of the south precision. When the actual temperature of the load section reaches the set temperature, the constant temperature control device can be appropriately designed. After a delay time, the solenoid valve is actuated to reduce the actuation of the solenoid valve while maintaining high-precision temperature control, and at the same time effectively increase the service life of the solenoid valve. In addition, the application is beneficial to the machine tool cooler test device according to the implementation of the present invention. The cooling fluid system and the adjustable power analog load can be combined into one machine, and the power of the heater can be manually adjusted to simulate the influence of different process loads on the system. At the same time, the control device can also provide a test experiment for the constant fluid temperature of the process system, the conditions for varying the load, and the influence on the performance of the process fluid control accuracy. [Embodiment] Referring to Fig. 1, a thermostatic control device 100 of a hot gas bypass refrigeration system according to an embodiment of the present invention is electrically connected to a hot gas bypass refrigeration system 200 having a refrigeration system 2 A refrigeration system of a hot-gas-by-pass circuit is coupled to a cooling fluid circulation system 300. The refrigeration system 200 includes a compressor 21, a condenser 220, a drying filter 230, a capillary 240, an evaporator 250, and a hot gas bypass circuit 260. The hot gas bypass circuit 26A includes a solenoid valve 261, and the M336419 adjusts the bypass amount of the high-temperature gas to the refrigerant by the change of the load of the solenoid valve 261, thereby effectively achieving a high-precision temperature control effect. The cooling fluid circulation system 300 includes a circulation pump 310, a temperature storage device 320, a temperature sensor 330, and a simulated load device 340. When the temperature sensor 330 senses the temperature of the load interval, a feedback-temperature feedback signal is transmitted to the thermostat control device 1 , and the solenoid valve 261 of the refrigeration system 200 is controlled to match the load by the weir control device 100 . The change can immediately adjust the solenoid valve 261 (ON-OFF) action to control the bypass amount of the high-temperature gaseous refrigerant, and achieve high-precision temperature control effect. The control device 100 includes a temperature controller 110, a processing circuit 120, a relay 130, a converter 140, a calibration device 150, a temperature signal input modulation device 160, and a mineral tooth wave generating device 170. The temperature signal input modulation device 160 is electrically connected between the temperature controller 110 and the processing circuit 120. Correction device 150 is electrically coupled between temperature controller 110 and converter 140. The sawtooth wave generating device 17 is electrically connected between the temperature controller 110 and the processing circuit 120. Processing circuit 120 is electrically coupled to power port 130. Converter 140 is electrically coupled to temperature sensor 330 for receiving a temperature feedback signal. The electric raft 13 can be a solid state electric raft. The temperature controller 110 includes a power input terminal 111, a temperature feedback signal input terminal 112, a control signal output terminal 113, a temperature display device 114, and a power switch device 115. The power input terminal η is connected to an AC power source. The temperature feedback signal terminal 112 is electrically connected to the calibration device 150 to receive the temperature sensing signal via the converter 140. The control signal output terminal 113 is electrically connected to the temperature signal input modulation device 丨6〇. The temperature display device 114 M336419 includes a temperature display panel 117 and a set temperature display panel 118. The power switch device 115 includes a plurality of buttons 116. In the present embodiment, the temperature controller 110 can be a PID (proportional-integral-derivative) controller. When the temperature controller 11 receives the temperature sensing signal, the temperature can be displayed on the temperature display panel 117. The processing circuit 120 is a pulse width modulation (PWM) processing circuit, which can be used with a Texas Instruments TL 494 integrated circuit (please refer to the attached file), and includes a control power input terminal 121 and a mineral tooth wave receiving end. 122 and a control output signal terminal 123. When the temperature sensor 330 senses the temperature of the load section (the constant temperature storage device 32A), the temperature feedback signal is transmitted. The temperature feedback signal is converted into an electronic signal by the converter 14 and transmitted to the temperature feedback signal input terminal 112 of the temperature controller 丨1 经 through the calibration device 150 for adjustment, and the actual temperature value is displayed on the temperature display panel. 117. The adjusted electronic signal is sent from the control signal output terminal 113 of the temperature controller 11 through the temperature signal to the modulation device 16 and then sent to the processing circuit 120, and is input to the processing circuit by the mineral tooth wave generating device 17 The 12-inch voltage signal is compared, wherein the value of the capacitor 171 and the resistor 172 by the sawtooth generating device 17 turns the solid-state power supply 13 into a switch with a delay time, and at the same time, the solid-state power is controlled. The solenoid valve 261 also has the characteristic of being actuated after the delay time. When the actual temperature of the load section reaches the set temperature, the solenoid valve 261 can be actuated after a delay. Therefore, the present embodiment can reduce the operation of the solenoid valve 261 while maintaining high-precision temperature control, and at the same time increase the life of the solenoid valve 26〇 using M336419. Referring to FIG. 2, when the temperature sensor 330 senses the temperature physical quantity of the working fluid in the load section, the physical quantity is converted by the converter 140 to the temperature feedback signal 141 to adjust a set temperature signal 142. The temperature signal 142 and the converted temperature feedback signal 141 are set, and the comparison controller 119 of the input temperature controller 110 processes the signal and supplies the processing circuit 120 and the solid state power supply 130 with a stable digital signal. The processing circuit 120 and the solid-state power supply 130 output signal function are matched and controlled by the electromagnetic valve 261 (ON-OFF), and the loop is repeated without interruption, thereby realizing the high-precision temperature control effect and reducing the electromagnetic valve. The number of actuations effectively increases the service life of the solenoid valve 261. Referring to FIG. 3, the input signal of the processing circuit 120 is a control signal output by the temperature controller 110, and the sawtooth receiving end 122 of the processing circuit 120 receives a continuous sawtooth wave 400, and compares the voltage between the continuous sawtooth wave 400 and the control signal 410. Signal, if the continuous sawtooth wave 400 is higher than the control signal 410, at this time, the control output signal of the control output signal terminal 123 of the processing circuit 120 is ON; otherwise, if it is lower than the control signal, the control output signal terminal 123 of the processing circuit 〇2〇 The control output signal is 〇FF. The input signal of the processing circuit 120 can be adjusted to a voltage level, and the voltage level of the output signal controlled by the output signal terminal 123 can be controlled to pass through the solid state battery 130 to synchronously control the delay time of the solenoid valve 261. The cycle time of the sawtooth wave generating device 170 is controlled. When the time is short, the ON-OFF of the solenoid valve 261 is frequently operated, but the cooling fluid can improve the control accuracy. Conversely, when the cycle time is long, the ON-OFF action of the solenoid valve 261 is reduced, resulting in waste heat. 11 M336419 The accuracy of the phenomenon cannot be maintained. Although the present invention has been described above in terms of a preferred embodiment, it is not intended to limit the present invention, and it is to be understood that those skilled in the art can make various changes and modifications without departing from the spirit and scope of the present invention. The scope of the new warranty is subject to the definition of the scope of the patent application. BRIEF DESCRIPTION OF THE DRAWINGS The above and other objects, features, advantages and embodiments of the present invention will become more apparent and understood. A circuit diagram of a thermostatic control device for a hot gas bypass refrigeration system. Fig. 2 is a block diagram showing the control system of the thermostatic control device of Fig. 1. Fig. 3 is a waveform diagram showing the thermostat control device of Fig. 1. [Main component symbol description] 100 : Thermostat control device 160 : Temperature signal input modulation device 110 : Temperature controller 170 : Sawtooth wave generator 111 : Power input terminal 171 : Capacitor 112 : Temperature feedback signal input terminal 172 : Resistor 113 : Control signal output 200 : Cold; East system 114 : Temperature display device 210 : Compressor 115 : Power switch device 220 : Condenser 116 : Button 230 : Dry filter 12 M336419

溫度顯示面板 240 :毛細管 設定溫度顯示面板 250:蒸發器 117 : 118 : 119 :比較控制器 120 :處理電路 121 :控制電源輸入端 122 :鋸齒波接收端 123 ··控制輸出訊號端 130 :電驛 140 :轉換器 141 :温度回授訊號 142 :設定溫度訊號 150 :校正裝置 260 :熱氣旁通迴路 2 61 :電磁闊 300 :冷卻流體循環系統 310 :循環泵浦 320 :恆溫儲存裝置 330 :温度感測器 340 :模擬負載裝置 400 :連續鋸齒波 410 :控制訊號Temperature display panel 240: capillary set temperature display panel 250: evaporator 117: 118: 119: comparison controller 120: processing circuit 121: control power input terminal 122: sawtooth wave receiving end 123 · control output signal terminal 130: eMule 140: converter 141: temperature feedback signal 142: set temperature signal 150: calibration device 260: hot gas bypass circuit 2 61: electromagnetic wide 300: cooling fluid circulation system 310: circulating pump 320: constant temperature storage device 330: temperature sense 340: Analog load device 400: continuous sawtooth wave 410: control signal

1313

Claims (1)

M336419 九、申請專利範圍: • 1 · 一種熱氣旁通冷凍系統的恆溫控制裝置,係電連 接於冷/東系統的-熱氣旁通迴路的一電磁闊,該怪溫控 制裝置至少包含: 一電驛’係供電接於該電磁閥; 一處理電路,包含一控制輸出訊號端,該控制輸出訊 號端係電接於該電驛; # 一轉換器,係供接收一溫度回授訊號; 一溫度控制器,依據該溫度回授訊號輸出一控制訊號 由該處理電路接收; 杈正裝置,係電連接於該溫度控制器與該轉換器之 間; 鋸齒波產生裝置,係電連接於該溫度控制器與該處 理電路之間;以及 酿度訊號輸入調變裝置,係電連接於該溫度控制器 癱 與該處理電路之間。 2.如申請專利範圍第丨項所述之熱氣旁通冷凍系統 的〖互恤控制襞置,其中該電驛為一固態電驛。 、3·如申請專利範圍第1項所述之熱氣旁通冷凍系統 、里控制襞置,其中該處理電路為一脈衝寬度調變積體 電路。 M336419 1項所述之熱氣旁诵么、土 ^M336419 IX. Scope of application: • 1 · A thermostatic control device for a hot gas bypass refrigeration system, which is electrically connected to the electromagnetic bypass of the cold/east system-hot gas bypass circuit. The strange temperature control device comprises at least:处理 'system power supply is connected to the solenoid valve; a processing circuit includes a control output signal end, the control output signal end is electrically connected to the electric 驿; # a converter for receiving a temperature feedback signal; a controller, according to the temperature feedback signal output, a control signal is received by the processing circuit; a positive device is electrically connected between the temperature controller and the converter; and a sawtooth wave generating device is electrically connected to the temperature control And the processing signal input modulation device is electrically connected between the temperature controller and the processing circuit. 2. The inter-shirt control device of the hot gas bypass refrigeration system according to the scope of the patent application, wherein the electric raft is a solid state electric raft. 3. The hot gas bypass refrigeration system and the inner control device according to claim 1, wherein the processing circuit is a pulse width modulation integrated circuit. M336419 Item 1 of the hot gas, soil, soil ^ 如申請專利範圍第1 的恆溫控制裝置,其中該溫度控制 控制器。 5·如申請專利範圍第丨項所述之熱氣旁通冷凍系 的恆溫控制裝置,其中該溫度控制器包含一溫度顯示裝置 以及一電源開關裝置。 、 6.如申請專利範圍第5項所述之熱氣旁通冷凍系統 的恆溫控制裝置,其中該溫度顯示裝置包含一溫度顯示面 板以及一設定溫度顯示面板;該電源開關裝置包含複數按 7·如申請專利範圍第丨項所述之熱氣旁通冷束系統 的怪溫控制裝置,其中該鋸齒波產生裝置包含並聯的一電 容與一電阻。 十、圖式: 如次頁 15For example, the thermostatic control device of the first application patent range, wherein the temperature control controller. 5. The thermostatic control device for a hot gas bypass refrigeration system according to the scope of the invention, wherein the temperature controller comprises a temperature display device and a power switch device. 6. The thermostatic control device for a hot gas bypass refrigeration system according to claim 5, wherein the temperature display device comprises a temperature display panel and a set temperature display panel; the power switch device comprises a plurality of buttons. The strange temperature control device of the hot gas bypass cold beam system according to the above aspect of the invention, wherein the sawtooth wave generating device comprises a capacitor and a resistor connected in parallel. X. Schema: as the next page 15
TW96221549U 2007-12-18 2007-12-18 Thermostatic control device of hot-gas-by-pass refrigerating system TWM336419U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96221549U TWM336419U (en) 2007-12-18 2007-12-18 Thermostatic control device of hot-gas-by-pass refrigerating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96221549U TWM336419U (en) 2007-12-18 2007-12-18 Thermostatic control device of hot-gas-by-pass refrigerating system

Publications (1)

Publication Number Publication Date
TWM336419U true TWM336419U (en) 2008-07-11

Family

ID=44329438

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96221549U TWM336419U (en) 2007-12-18 2007-12-18 Thermostatic control device of hot-gas-by-pass refrigerating system

Country Status (1)

Country Link
TW (1) TWM336419U (en)

Similar Documents

Publication Publication Date Title
TWI573969B (en) Cascade floating intermediate temperature heat pump system
Qu et al. Experimental study of a control strategy for a cascade air source heat pump water heater
CN102901293B (en) The air-conditioner of fine adjustment electric expansion valve and control method thereof
CN202304241U (en) Water circulation cooling device
CN104676797A (en) Natural cooling air-cooled chiller unit and relative method and device
Li et al. An empirical model for independent control of variable speed refrigeration system
US8240160B2 (en) Thermal control system and method
CN107339820B (en) High-precision temperature-control water circulation cooling equipment
US20120031453A1 (en) Control System for Thermoelectric Devices
JP2018004097A5 (en)
CN201429257Y (en) Electronic expansion valve refrigeration system
CN112775715B (en) Cooling device and cooling control method
CN113834249A (en) Automatic adjusting method and system for refrigeration energy of environmental chamber
CN111536666B (en) Air conditioning system
JP6072670B2 (en) Heat pump hot water supply / heating system
WO2016066298A1 (en) A method for estimating thermal capacity of foodstuff
TWM336419U (en) Thermostatic control device of hot-gas-by-pass refrigerating system
JP2004125243A (en) Control method of temperature testing device and its device
CN109405378B (en) Work control method of semiconductor refrigeration sheet and dehumidifier
Aziz et al. Experimental evaluation on the use of capillary tube and thermostatic expansion valve with heat recovery hot spot water heater in air source refrigeration system
EP2000754A2 (en) Method for estimation the thermal load of a circuit for a service fluid at outlet from a refrigerating machine
KR100986253B1 (en) Temperature control method for chiller apparatus
Catano et al. Experimental identification of evaporator dynamics for vapor compression refrigeration cycle during phase transition
CN102997518B (en) The high-accuracy control method of heat-exchange system
Hua et al. The control of superheat and capacity for a variable speed refrigeration system based on PI control Logic