TWM329428U - High efficient dual-optics accommodating intraocular lens - Google Patents

High efficient dual-optics accommodating intraocular lens Download PDF

Info

Publication number
TWM329428U
TWM329428U TW96202285U TW96202285U TWM329428U TW M329428 U TWM329428 U TW M329428U TW 96202285 U TW96202285 U TW 96202285U TW 96202285 U TW96202285 U TW 96202285U TW M329428 U TWM329428 U TW M329428U
Authority
TW
Taiwan
Prior art keywords
mirror
intraocular lens
lens
refractive power
diopter
Prior art date
Application number
TW96202285U
Other languages
Chinese (zh)
Inventor
Jui-Teng Lin
Original Assignee
New Vision Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by New Vision Inc filed Critical New Vision Inc
Priority to TW96202285U priority Critical patent/TWM329428U/en
Publication of TWM329428U publication Critical patent/TWM329428U/en

Links

Landscapes

  • Prostheses (AREA)

Abstract

This novel device provides a dual-optic accommodative intraocular lens (AIOL) consisting of front and back optics and a pair of haptics. The said haptics are connected respectively to the upper and lower ends of the AIOL via the extended connectors. The said haptics are made of flexible materials. The said new device dual-optics AIOL offers an additional effects by the relative axial position (or separation) between the front and back optics to achieve a maximum accommodation amplitude (A) which may be 2 to 5 times of the conventional single-optics AIOL. The said optimum front and back optics correlation is determined by both of their relative position and structure

Description

M329428 1 八、新型說明: 【新型所屬之技術領域】 本實用新型涉及一種眼科設備,尤其是一種用以治療白内障術 後病人視力的雙鏡^可調人工晶狀體(Acco咖odating Intraocular Lens ’ 簡稱 AI0L)。 【先前技術】 老視(俗稱老花眼)是因年齡增加而造成的眼球變化。其可能 的治療方式含戴老花眼眼鏡或雙焦距眼鏡及手術方法如鞏&擴張 術(SEB)及睫狀肌切除術。對於白内障術後之老視治療,一調人 工晶狀體(AI0L)也是選擇之一。目前市場上提供的aiol均使用單 鏡式(single-optics),而雙鏡式(dual-optics)AIOL則尚未有 實際臨床。雙鏡式AI0L之概念雖然有Sarfaraz (美國專利 5, 275, 623,1994)及 Cumming (美國專利 6,197, 059,2001),M329428 1 VIII. New description: [New technical field] The utility model relates to an ophthalmic device, in particular to a double mirrored adjustable intraocular lens for treating vision of a patient after cataract surgery (Acco odating Intraocular Lens 'AI0L for short) ). [Prior Art] Presbyopia (commonly known as presbyopia) is an eyeball change caused by an increase in age. Possible treatments include presbyopic eyeglasses or bifocal lenses and surgical procedures such as Gong & Expansion (SEB) and ciliary muscle resection. For the treatment of presbyopia after cataract surgery, one-touch artificial lens (AI0L) is also one of the choices. The aiol currently available on the market uses single-optics, while the dual-optics AIOL has not yet been clinically valid. The concept of the two-mirror AI0L is in the form of Sarfaraz (US Patent 5, 275, 623, 1994) and Cumming (US Patent 6, 197, 059, 2001).

Tran (美國專利6, 616,691,2003 )等人提出,由於缺乏正確理論 及具體設計公式,而且受限於只有前鏡片能移動,其調節度娜 (Accommodating amplitude,以下簡稱“A”)都未能達到實用價 值之要求’ A值需至少3· 0D屈光度(diopter)以上。對於老視病 人’要^AIpL之A值需為正值,而對於幼兒白内障術後植入Ai〇L, 則要求“負’’ A值才能補償日後因眼轴增長而產生之近視移。 【新型内容】 發明目的及概述: 一 ^實用新型的目的在於改進現有理論及設計的不足,提供一 之難雙銳可調AJ1晶狀體⑽L),產生正繪在^到 10D之間,以及產生負A值-2.0D到-6.0D。 發明詳細說明: 本實^新型的目的是這樣實現的: 腳,晶狀體(皿)’其包括前鏡、後鏡及支 接伸出的連接部,其分別與前鏡和後鏡的端部相連 接在m腳射難變撕料製成。 Τ ’所述支腳與晶狀體之後壁帶(capsular bag)接 M329428 ΐ ° 收縮時,前後鏡之間距增加,進而產生視力調節作 而之八值,此值可為正或負由前後鏡之屈光力及其移動 方向來決定。 专新型之鏡片設計原理是根據下列所述之林氏新公式:(參 圖一)。 。 方程式(1) A = M(dSl) + W (dS2) Μ = (Π/P) Mo-C,Μ,= (P2/P)Mo, . Mo = (Z/1336)(2Pc+ZP), C = ζ2(ΠΡ2/1336), Z = 1 - S(Pc/1336), 其中各項符號表示: ⑩ dSi及dS2:分別為前後鏡片之轴向移動距,前移為正號,後移 為負號。 Π及P2:分別為前後鏡片之屈光力 P:為總屈光力 Ρ =Ρ1+Ζ,Ρ2,Ζ,=1-ρ,(Ρ1/1336)Tran (U.S. Patent 6,616,691, 2003) et al. suggest that due to the lack of correct theory and specific design formulas, and limited by the fact that only the front lens can move, its adjustment degree (hereinafter referred to as "A") failed. To meet the practical value of 'A value needs to be at least 3 · 0D diopter or more. For patients with presbyopia, the A value of AIPpL should be positive, and for Ai〇L after cataract surgery in children, the “negative” A value is required to compensate for the myopia shift caused by the axial growth in the future. The new content] The purpose and summary of the invention: The purpose of a utility model is to improve the existing theory and design deficiencies, to provide a difficult double-sharp adjustable AJ1 lens (10) L), which is generated between ^ and 10D, and produces a negative A The value is -2.0D to -6.0D. Detailed Description of the Invention: The purpose of the present invention is to achieve: a foot, a lens (dish) that includes a front mirror, a rear mirror, and a joint that protrudes and protrudes, respectively The ends of the front and rear mirrors are connected to each other in the m-foot shot. Τ 'The foot and the capsular bag are connected to the M329428 ΐ °, and the distance between the front and rear mirrors increases. The octave value of the vision adjustment is generated, which can be determined by the refractive power of the front and rear mirrors and the direction of its movement. The lens design principle of the special model is based on the new Lin's formula described below: (Refer to Figure 1) Equation (1) A = M(dSl) + W (dS2) Μ = (Π/P) Mo-C, Μ, = (P2/P)Mo, . Mo = (Z/1336)(2Pc+ZP), C = ζ2(ΠΡ2/1336), Z = 1 - S(Pc/1336), where the symbols indicate: 10 dSi and dS2: the axial movement distance of the front and rear lenses, respectively, the forward movement is a positive sign and the backward movement is a negative sign. Π and P2: respectively Refractive power P: is the total refractive power Ρ = Ρ 1 + Ζ, Ρ 2, Ζ, = 1 - ρ, (Ρ 1 / 1336)

Pc:為角膜屈光力 · S:為前鏡與角膜有效距離,S=p+(P2/P)p, ~ P:為前鏡與角膜的間距 P’ ··為前後鏡間距 上述公式提供兩種最佳設計方式; 對於正A值:要求Pl&gt;〇 (dSl&gt;0)及 P2&lt;0 (dS2&lt;0) 對於負A值:要求Pl〈〇 (dSl&lt;0)及 P2&gt;〇 (dS2&gt;0) • 本實用新型提供的雙鏡式可調人工晶狀體基於上述新的設計 公式,具有的優點是:該最佳設計乃基於方程式(1)所示,對於某 一特定AI0L總屈光力(P),Μ值正比於pi,或p—z,P2,因此, 大負P2值產生較大的Μ值,由此類推,為達到與μ,值之&quot;相加”效 應,則要求dS2&lt;0 (當Ρ2&lt;0時),以達到M,(S到)&gt;0。在滿足上述(a) 或(b)條件時,前後鏡相對位移產生”相加&quot;效應或最大八值。此最 大A值可為現有單鏡式AI0L之2到5倍。該最佳前後鏡之匹配關系由 其相對位移及兩者之結構同時決定。 μ 本新型以上所述之特點如果沒有上述的設計公式,則無法預 測。這也是現有技術達不到的。 以上特點可在下列具體實施例中進一步明確。 5 M329428 【實施方式】 最佳實施例: 實施例1 : 如第一圖所示,一種雙鏡式可調人工晶狀體(AIOL),其包括 前鏡1,及後鏡2,前後透鏡的距離為p,;前鏡和角膜3的距離 為P。本人工晶狀體通過調節相應的視肌肉,使得患者可以將成 像點4落到視網膜上。Pc: corneal refractive power · S: the distance between the anterior and the cornea, S = p + (P2 / P) p, ~ P: the distance between the anterior and the cornea P' · · for the front and rear mirror spacing Good design method; For positive A value: Require Pl&gt;〇(dSl&gt;0) and P2&lt;0 (dS2&lt;0) For negative A value: Require Pl<〇(dSl&lt;0) and P2&gt;〇(dS2&gt;0) • The dual-mirror adjustable intraocular lens provided by the present invention is based on the above new design formula, and has the advantage that the optimal design is based on equation (1), for a particular AI0L total refractive power (P), Μ The value is proportional to pi, or p-z, P2, therefore, the large negative P2 value produces a large Μ value, and so on, in order to achieve the "add" effect with μ, the value requires dS2 &lt; 0 (when Ρ 2 &lt; 0 o'clock, to reach M, (S to) &gt; 0. When the above condition (a) or (b) is satisfied, the relative displacement of the front and rear mirrors produces an "additional" effect or a maximum octave. This maximum A value can be 2 to 5 times that of the existing single mirror AI0L. The optimal front-to-back mirror matching relationship is determined by its relative displacement and the structure of both. μ The characteristics described above in this new model cannot be predicted without the above design formula. This is also not possible with the prior art. The above features can be further clarified in the following specific examples. 5 M329428 [Embodiment] Best Embodiment: Embodiment 1: As shown in the first figure, a double mirror adjustable intraocular lens (AIOL) includes a front mirror 1 and a rear mirror 2, and the distance between the front and rear lenses is p,; the distance between the anterior lens and the cornea 3 is P. The intraocular lens allows the patient to drop the imaging point 4 onto the retina by adjusting the corresponding optic muscle.

所述人工晶狀體為可塑性變型材料製成,例如用聚甲基丙烯酸 曱酯(PMMA),亞克力(Acrylic,丙烯酸纖維)或硅(Silicon)製 作。前鏡為正屈光力(Pl&gt;〇),在+15D到+60D之間,最佳值30D到 60D。後鏡為負屈光力(P2&lt;〇),最佳值—20到-10D。前鏡向前移(即 dSl&gt;0),後鏡應不動或向後移(dS2&lt;〇)同時應避免向前移,具 體原理見實施例3。此情況造成相減效果,降低效率。在上述結構 下’對於移動距dSl+dS2=L5咖,依新公式計算,可達到調節度 A=3D到10D,此值比一般單鏡式i〇L (A值約2 D),高出2到5倍。 實施例2 : 結構如第一圖所示,但是,與實施例丨相反,前鏡為負屈光力 (P1C0),在-40D到-5D,最佳值-30D到-10D。後鏡為正屈光力 (P2&gt;0),最佳值+20到+40 D。前鏡向前移(即dSl&gt;〇),後鏡可不 動或向後移(dS2&lt;0)。在上述結構下,對於移動距dsi+ds2=1 5 可達到調節度Α=-2· 0D到-6. 0D。 · 實施例3 如第一圖所示為本實用新型提供的雙鏡式可調人 工晶狀體 (AI0L)植入眼中之結構圖,前後鏡13,14,各有二 : f支腳與晶狀體後帶10之端部16連接。兩個支腳盥前徭 沾 角度18,19約為30到90度。當睫狀肌收縮時, 前後移’而關表現前鏡前移,後鏡不動,因1支腳 約90度。上述兩種情況都可達到正a值。所述該角爷 =(如圖4F、圖4E、圖4D所示)。使用材料可為或 _,亞克力(丙 __、二ΐ; 6 f1329428 於&quot;#π 實施例4: 本實施例類似於實施例3,但前後鏡對調位置,即前鏡為負屈 光力,後鏡為正屈光力,在此結構下,產生負Α值。 以上所述是本實用新型的具體實施例,用於對本實用新型作具體說 明,而非對本實用新型的限定。 【圖式簡單說明】 . 第一圖為本實用新型提供的AIOL原理圖(正A及負A); 第二圖為本實用新型提供的AIOL結構示意圖; 第三圖A為本實用新型提供的AIOL實施例3中前後鏡可以分別前後 移的示意圖; 瞻 第三圖B為本實用新型提供的AIOL實施例3中前鏡前移,後鏡不動 _ 的示意圖; 第四圖中4A到4F為本實用新型提供的為雙鏡式可調人工晶狀體中 透鏡的不同結構示意圖;第四圖中4A為雙凸透鏡結構,4B為平凸透 鏡結構,4C為凸凸透鏡組合結構,4D為雙凹透鏡結構,4E為平凹透 鏡結構,4F為凹凹透鏡結構。 【主要元件符號說明】 1,前鏡 2後鏡 3角膜 4成像點 P’前後透鏡的距離 p前鏡和角膜3的距離The intraocular lens is made of a plastically deformable material, for example, made of polymethyl methacrylate (PMMA), Acrylic (acrylic fiber) or silicon (Silicon). The front mirror is positive refractive power (Pl &gt; 〇), between +15D and +60D, and the optimum value is 30D to 60D. The back mirror is negative refractive power (P2 &lt; 〇), the best value - 20 to -10D. The front mirror is moved forward (ie, dSl &gt; 0), and the rear mirror should be moved or moved backward (dS2 &lt; 〇) while avoiding forward movement. See Example 3 for the specific principle. This situation results in a subtraction effect and reduces efficiency. Under the above structure, 'for the moving distance dSl+dS2=L5 coffee, according to the new formula, the adjustment degree A=3D to 10D can be achieved, which is higher than the general single mirror type i〇L (A value is about 2 D). 2 to 5 times. Example 2: The structure is as shown in the first figure, but, contrary to the embodiment, the front mirror has a negative refractive power (P1C0), at -40D to -5D, and an optimum value of -30D to -10D. The back mirror is positive refractive power (P2 &gt; 0), and the optimum value is +20 to +40 D. The front mirror moves forward (ie dSl> 〇) and the rear mirror can move backwards or backwards (dS2&lt;0). Under the above structure, the adjustment degree Α=-2·0D to -6. 0D can be achieved for the moving distance dsi+ds2=1 5 . · Example 3 As shown in the first figure, the structure of the double-mirror adjustable intraocular lens (AI0L) implanted in the eye is provided in the first embodiment, and the front and rear mirrors 13, 14 each have two: f legs and posterior lens strip The end 16 of the 10 is connected. The two legs are dipped at an angle of 18, 19 about 30 to 90 degrees. When the ciliary muscle contracts, it moves back and forth and the front mirror moves forward, and the posterior mirror does not move, because the 1 foot is about 90 degrees. In both cases, a positive a value can be achieved. The horn is = (as shown in Fig. 4F, Fig. 4E, Fig. 4D). The material used may be or _, acrylic (c__, bismuth; 6 f1329428 in &quot;#π. Example 4: This embodiment is similar to the embodiment 3, but the front and rear mirrors are reversed, that is, the front mirror is negative refractive power, after The mirror is a positive refractive power, and under this structure, a negative enthalpy value is generated. The above is a specific embodiment of the present invention, which is used to specifically describe the present invention, and is not intended to limit the present invention. The first figure is the AIOL schematic diagram (positive A and negative A) provided by the utility model; the second figure is the schematic diagram of the AIOL structure provided by the utility model; the third figure A is in the AIOL embodiment 3 provided by the utility model The schematic diagram of the mirror can be moved back and forth respectively; FIG. 3B is a schematic diagram of the front mirror moving forward and the rear mirror moving _ in the AIOL embodiment 3 provided by the utility model; 4A to 4F in the fourth figure is provided for the utility model Schematic diagram of different structures of the lens in the double-mirror adjustable intraocular lens; in the fourth figure, 4A is a lenticular lens structure, 4B is a plano-convex lens structure, 4C is a convex-convex lens combined structure, 4D is a biconcave lens structure, 4E is a plano-concave lens structure, 4F for Concave lens structure. The main element REFERENCE NUMERALS 1, before the mirror after the mirror 2 3 4 corneal imaging point P 'of the front and rear lenses and corneal distance p from the front lens 3

Claims (1)

M329428 九、申請專利範圍:M329428 IX. Patent application scope: ms 抛 1、 一種高效率雙鏡式可調人工晶狀體,其中包括前鏡、後鏡和支 腳,所述支腳為兩個,分別設在所述前鏡和後鏡的上下兩端, 每個支腳具有兩個伸出的連接部’其分別與前鏡和後鏡的端部 相連接;所述人工晶狀體為可塑性變型材料製成。 2、 如申請專利範園第1項所述之高效率雙鏡式可調人工晶狀體, 其中前鏡為正屈光度的透鏡,後鏡為負屈光度的透鏡。 3、 如申請專利範園第1項所述之高效率雙鏡式可調人工晶狀體, 其中所述前鏡為正屈光力Π&gt;0,屈光度至少+15 D,在+15 D到 +60 D之間;所述後鏡為負屈光力ρ2&lt;0,屈光度小於-2 D。 4、 士申請專利範圍第1項所述之高效率雙鏡式可調人工晶狀體, &gt;、中所述前鏡正屈光度為30 D到60 D;後鏡為負屈光力-ίο到 -20 D 〇 f請專利範園第1項所述之高效率雙鏡式可調人工晶狀體, 其^所述前鏡為負屈光度的透鏡,後鏡為正屈光度的透 、=請專利範圍第1項所述之高效率雙鏡式可調人工晶狀體, D: 9 所ίϋ效率雙鏡式可調人卫晶狀體, 鏡為雙凸、平凸或凸凹透鏡,後鏡為雙凹、平凹 10、ί中申;雙鏡式可調人工麵, 酸纖維即a_ 酸甲81即醜或亞克力丙烯 8Ms throw 1, a high-efficiency double-mirror adjustable intraocular lens, including a front mirror, a rear mirror and a leg, the legs are two, respectively disposed at the upper and lower ends of the front and rear mirrors, each The legs have two projecting connections 'which are respectively connected to the ends of the front and rear mirrors; the intraocular lens is made of a plastically deformable material. 2. For example, the high-efficiency double-mirror adjustable intraocular lens described in the first application of Patent Park, wherein the front mirror is a positive diopter lens and the rear mirror is a negative diopter lens. 3. A high-efficiency double-mirror adjustable intraocular lens as described in claim 1, wherein the front mirror is positive refractive power Π&gt;0, and the diopter is at least +15 D, at +15 D to +60 D. The back mirror has a negative refractive power ρ2 &lt; 0, and the diopter is less than -2 D. 4. The high-efficiency double-mirror adjustable intraocular lens described in item 1 of the patent application scope, &gt;, the front mirror has a positive refractive power of 30 D to 60 D; the rear mirror has a negative refractive power - ίο to -20 D 〇f Please refer to the high-efficiency double-mirror adjustable intraocular lens described in the first paragraph of Patent Fanyuan. The front mirror is a negative diopter lens, and the back mirror is a positive diopter. High-efficiency dual-mirror adjustable intraocular lens, D: 9 ϋ efficiency double-mirror adjustable human lens, mirror is biconvex, plano-convex or convex-concave lens, rear mirror is biconcave, flat concave 10, ί Shen; double mirror adjustable artificial surface, acid fiber is a_ acid A 81 is ugly or acrylic propylene 8
TW96202285U 2007-03-16 2007-03-16 High efficient dual-optics accommodating intraocular lens TWM329428U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96202285U TWM329428U (en) 2007-03-16 2007-03-16 High efficient dual-optics accommodating intraocular lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96202285U TWM329428U (en) 2007-03-16 2007-03-16 High efficient dual-optics accommodating intraocular lens

Publications (1)

Publication Number Publication Date
TWM329428U true TWM329428U (en) 2008-04-01

Family

ID=44322904

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96202285U TWM329428U (en) 2007-03-16 2007-03-16 High efficient dual-optics accommodating intraocular lens

Country Status (1)

Country Link
TW (1) TWM329428U (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10159562B2 (en) 2014-09-22 2018-12-25 Kevin J. Cady Intraocular pseudophakic contact lenses and related systems and methods
US10299910B2 (en) 2014-09-22 2019-05-28 Kevin J. Cady Intraocular pseudophakic contact lens with mechanism for securing by anterior leaflet of capsular wall and related system and method
US10945832B2 (en) 2014-09-22 2021-03-16 Onpoint Vision, Inc. Intraocular pseudophakic contact lens with mechanism for securing by anterior leaflet of capsular wall and related system and method
US11109957B2 (en) 2014-09-22 2021-09-07 Onpoint Vision, Inc. Intraocular pseudophakic contact lens with mechanism for securing by anterior leaflet of capsular wall and related system and method
US11938018B2 (en) 2014-09-22 2024-03-26 Onpoint Vision, Inc. Intraocular pseudophakic contact lens (IOPCL) for treating age-related macular degeneration (AMD) or other eye disorders

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10159562B2 (en) 2014-09-22 2018-12-25 Kevin J. Cady Intraocular pseudophakic contact lenses and related systems and methods
US10299910B2 (en) 2014-09-22 2019-05-28 Kevin J. Cady Intraocular pseudophakic contact lens with mechanism for securing by anterior leaflet of capsular wall and related system and method
US10842614B2 (en) 2014-09-22 2020-11-24 Onpoint Vision, Inc. Intraocular pseudophakic contact lenses and related systems and methods
US10945832B2 (en) 2014-09-22 2021-03-16 Onpoint Vision, Inc. Intraocular pseudophakic contact lens with mechanism for securing by anterior leaflet of capsular wall and related system and method
US11109957B2 (en) 2014-09-22 2021-09-07 Onpoint Vision, Inc. Intraocular pseudophakic contact lens with mechanism for securing by anterior leaflet of capsular wall and related system and method
US11432921B2 (en) 2014-09-22 2022-09-06 Onpoint Vision, Inc. Intraocular pseudophakic contact lenses and related systems and methods
US11571293B2 (en) 2014-09-22 2023-02-07 Onpoint Vision, Inc. Intraocular pseudophakic contact lens with mechanism for securing by anterior leaflet of capsular wall and related system and method
US11583386B2 (en) 2014-09-22 2023-02-21 Onpoint Vision, Inc. Intraocular pseudophakic contact lens with mechanism for securing by anterior leaflet of capsular wall and related system and method
US11903818B2 (en) 2014-09-22 2024-02-20 Onpoint Vision, Inc. Intraocular pseudophakic contact lenses and related systems and methods
US11938018B2 (en) 2014-09-22 2024-03-26 Onpoint Vision, Inc. Intraocular pseudophakic contact lens (IOPCL) for treating age-related macular degeneration (AMD) or other eye disorders

Similar Documents

Publication Publication Date Title
US11076947B2 (en) Intraocular accommodating lens and methods of use
TWI332830B (en) Accommodative intraocular lens system
US7354451B2 (en) Accommodating intraocular lens implant
TWI472319B (en) Accommodative intraocular lens system
JP4242829B2 (en) Adjustable intraocular lens
JP4261488B2 (en) Adjustable intraocular lens
JP4649086B2 (en) Intraocular lens with intermediate region
US7316713B2 (en) Accommodative intraocular lens system
CN201015617Y (en) High-efficiency bimirror type adjustable artificial crystalline lens
JP5819929B2 (en) Adjustable intraocular lens using trapezoidal phase shift
EP3426190A1 (en) Dual optic, curvature changing accommodative iol having a fixed disaccommodated refractive state
JP2011502713A5 (en)
JP2012505712A (en) Adjustable intraocular lens
US11147663B2 (en) Intraocular lens
US9351825B2 (en) Semi-flexible posteriorly vaulted acrylic intraocular lens for the treatment of presbyopia
TWM329428U (en) High efficient dual-optics accommodating intraocular lens
US20110184514A1 (en) Intraocular meniscus lens providing pseudo-accommodation
Kashani et al. Refractive lens exchange for presbyopia
JP2011520573A (en) Thin intraocular lens