TWM321111U - Light guide plate having micro-structure distribution, backlight module, and LCD - Google Patents

Light guide plate having micro-structure distribution, backlight module, and LCD Download PDF

Info

Publication number
TWM321111U
TWM321111U TW96207914U TW96207914U TWM321111U TW M321111 U TWM321111 U TW M321111U TW 96207914 U TW96207914 U TW 96207914U TW 96207914 U TW96207914 U TW 96207914U TW M321111 U TWM321111 U TW M321111U
Authority
TW
Taiwan
Prior art keywords
microstructure
guide plate
light guide
light source
light
Prior art date
Application number
TW96207914U
Other languages
Chinese (zh)
Inventor
Jee-Gong Chang
Chien-Wei Liu
Yu-Bin Fang
Yu-Te Lin
Wei-Pang Lin
Original Assignee
Jee-Gong Chang
Chien-Wei Liu
Yu-Bin Fang
Yu-Te Lin
Wei-Pang Lin
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jee-Gong Chang, Chien-Wei Liu, Yu-Bin Fang, Yu-Te Lin, Wei-Pang Lin filed Critical Jee-Gong Chang
Priority to TW96207914U priority Critical patent/TWM321111U/en
Publication of TWM321111U publication Critical patent/TWM321111U/en

Links

Landscapes

  • Planar Illumination Modules (AREA)

Description

M321111 •八、新型說明: :【新型所屬之技術領域】 本創作係有關於一種具有微結構分佈之導光板、背光 模組及LCD液晶顯示器,其主要係在於導光板上微結構之 鴿 分佈,於靠近光源處呈現二維變化,而遠離光源處則呈現 .一維變化,以供背光模組可達到高亮度與高均勻度,而大 幅提升LCD液晶顯示器之亮度。 【先前技術】 @ 按,目前一般LCD液晶顯示器所使用的背光模組構 造,如第十六圖所示,該背光模組包括有導光板(A)、複數 點狀之光源(B)、反射片(C)、擴散膜(D)與增亮膜(E);其 中導光板(A)係包含有入光面(A1)、底面(A2)、侧面(A3)及 、 出光面(A4),並於底面(A2)上設有微結構(A5),又光源(B) 則設置在導光板(A)之一侧邊,光源(B)通常採用發光二極 \ 體,導光板(A)的下方設置一反射片(C),其中導光板(A)底 籲面上佈置有微結構(A5)分佈,導光板(A)之上方設置擴散膜 ,(D),擴散膜(D)之上方設置兩片增亮膜(E),其中增亮膜(E) 的紋路互相垂直相加,又增亮膜(E)之上方係配合放置有液 晶面板(F)則可構成一 LCD液晶顯示器;光源(B)提供光線 從入光面(A1)進入導光板(A)内,光線在導光板(A)内因全 反射原理而在内部來回傳遞,傳遞到底面(A2)之微結構(A5) 時,因微結構(A5)可破壞導光板(A)全反射原理而使光線反 射或穿射出導光板(A),反射光線直接向出光面(A4)射出, ^ 經過擴散膜(D)與增亮膜(E)後到達上方之液晶面板(F),穿 M321111 •透光線經下方之反射片(C)反射回導光板(A),繼續傳遞; : 該微結構(A5)之紋路方向平行於光源(B)排列方向,如第十 七圖所示,其因可增加微結構(A5)表面直接接觸光源(B)所 .發散之光線,增加破壞全反射之機率,擴散膜(D)之功能可 將導光板(A)微結構(A5)所反射的光線分佈擴散化,以增加 • 均勻度,增亮膜(E)將光線往整個背光模組之正向集中,增 加正向上的亮度。 $ 請參考第十七圖,其中係為習知導光板(A)之微結構 (A5)分佈形態,該習知導光板(A)之微結構(A5)乃用刀具在 模仁上切割複數的V形紋路,切割的紋路相互平行,在X方 向上有一維濃密不均的排列,經由射出成型產生出來,微 結構(A5)的長度到達導光板(A)之兩侧面(A3),此技術稱之 、 為V-cut; V-cut所製造的條狀微結構(A5 )雖可有效把光線 直接集中在正向上,但其長度不易控制均勻度,尤其在靠 近光源(B)處,因光源(B)採用間隔的排列,在導光板(A)内 參產生亮暗相間的亮度分佈,採用V-cut之條狀微結構(A5)排 -列,則難以改善亮度不均的情形,其亮度分佈可參考附件 圖一,在x=l/10L、x=3/10L、x=5/10L、x=7/10L與X二9/10L 五個位置上沿Y方向測量亮度分佈,其中L表示導光板在X方 向之全長,掃描該五處之亮度分佈後,所得到附件圖二之 結果,在x=l/l〇L與x=3/10L處有特別的亮暗條紋分佈,在 L=0與x=l/l〇L之間,光源前處亮度較高,在光源之間的亮 度較低,在L=1/10L與x=3/10L之間,在光源之間的亮度因 〜兩個光源發光產生重疊而增高,反觀在光源前的亮度相對 較弱,在X=5/1GL之後,光源所發出的光線已均勻混合,一 維分佈之微結構可產高均句性的亮度分佈,其中例係 美國第刪3544〇號、第順297觀及㈣讀 號專專利案,因此在其亮度及均句度之表現上均不甚理想。 【新型内容】M321111 • Eight, new description: : [New technical field] This creation is about a light structure with a micro-structure distribution, backlight module and LCD liquid crystal display, which is mainly distributed in the micro-structure of the light guide plate. Two-dimensional changes appear near the light source, and one-dimensional changes appear away from the light source, so that the backlight module can achieve high brightness and high uniformity, and greatly improve the brightness of the LCD liquid crystal display. [Prior Art] @ Press, the backlight module structure currently used in general LCD liquid crystal displays, as shown in Fig. 16, the backlight module includes a light guide plate (A), a plurality of point light sources (B), and reflection a sheet (C), a diffusion film (D) and a brightness enhancement film (E); wherein the light guide plate (A) includes a light incident surface (A1), a bottom surface (A2), a side surface (A3), and a light exit surface (A4) And a microstructure (A5) is arranged on the bottom surface (A2), and a light source (B) is disposed on one side of the light guide plate (A), and the light source (B) is usually a light-emitting diode/body, and the light guide plate (A) A reflection sheet (C) is disposed under the substrate, wherein a microstructure (A5) is disposed on the bottom surface of the light guide plate (A), a diffusion film is disposed above the light guide plate (A), and (D), a diffusion film (D) Two brightening films (E) are arranged above, wherein the lines of the brightness enhancing film (E) are vertically added to each other, and the liquid crystal panel (F) is placed above the brightness enhancing film (E) to form an LCD liquid crystal. The display; the light source (B) provides light from the light incident surface (A1) into the light guide plate (A), and the light is transmitted back and forth inside the light guide plate (A) due to the principle of total reflection, and is transmitted to the inside. When the microstructure (A5) of the bottom surface (A2) is broken, the microstructure (A5) can destroy the principle of total reflection of the light guide plate (A) to reflect or penetrate the light guide plate (A), and the reflected light directly faces the light exit surface (A4). Eject, ^ After the diffusion film (D) and the brightness enhancement film (E) reach the upper liquid crystal panel (F), wear M321111 • The light transmission line is reflected back to the light guide plate (A) through the lower reflection sheet (C), and continues to pass. ; : The grain direction of the microstructure (A5) is parallel to the direction in which the light source (B) is arranged, as shown in Fig. 17, because the surface of the microstructure (A5) can be directly contacted with the light emitted by the light source (B). Increase the probability of destroying total reflection. The function of the diffusion film (D) diffuses the light distribution reflected by the microstructure (A5) of the light guide plate (A) to increase the uniformity. The brightness enhancement film (E) spreads the light to the whole. The positive concentration of the backlight module increases the brightness in the forward direction. $ Please refer to the seventeenth figure, which is the distribution of the microstructure (A5) of the conventional light guide plate (A). The microstructure (A5) of the conventional light guide plate (A) is cut by a cutter on the mold core. The V-shaped grain, the cut lines are parallel to each other, and the one-dimensional dense uneven arrangement in the X direction is generated by injection molding, and the length of the microstructure (A5) reaches the two sides (A3) of the light guide plate (A). The technology is called V-cut; the strip-shaped microstructure (A5) made by V-cut can effectively concentrate the light directly in the forward direction, but its length is not easy to control the uniformity, especially near the light source (B). Since the light source (B) is arranged in a space, the brightness distribution between the light and dark phases is generated in the light guide plate (A), and the strip-like microstructure of the strip-shaped microstructure (A5) of the V-cut is difficult to improve the uneven brightness. For the brightness distribution, refer to the attached figure 1. Measure the brightness distribution along the Y direction at five positions: x=l/10L, x=3/10L, x=5/10L, x=7/10L and X=9/10L. Where L is the total length of the light guide plate in the X direction, and after scanning the brightness distribution of the five places, the result of the attached figure 2 is obtained, at x=l/l〇L and x There is a special bright and dark fringe distribution at =3/10L. Between L=0 and x=l/l〇L, the brightness at the front of the light source is higher, and the brightness between the light sources is lower, at L=1/10L. Between x=3/10L, the brightness between the light sources increases due to the overlap of the two light sources, and the brightness before the light source is relatively weak. After X=5/1GL, the light emitted by the light source has Uniform mixing, one-dimensional distribution of microstructures can produce high uniformity of brightness distribution, of which the United States deleted 3,544 、, 顺顺297 and (4) read patents, so in its brightness and uniformity Performance is not ideal. [New content]

. 纟此’ f知具有微結構分佈之導光板、背光模組及LCD 、液晶顯示器,在亮度與均勾度等方面具有上述之缺點。 鲁本創作主要係在提供一種具有微結構分佈之導光板, 該導光板係包含有入光面、底面、侧面及出光面,並於底 面上設有微結構;光源,係設置於導光板之入光面,光源 係排列在一平行光源方向上,而垂直於該平行光源方向係 一垂直光源方向;其主要係在於:導光板靠近光源處,在 ^垂直光源方向及平行光源方向上,微結構之數量及/或形狀 ,分佈係呈現二維變化,而遠離光源處,且垂直光源方向, 微結構之數量及/或形狀分佈則呈現一維變化。 修 上述二維變化係為(χ)χ(γ)、(X 土η)χ(γ)、(χ 土 n)x(y 土 ΙΟ 、 (X±n±l)X(y±n) 、 (X土n±l)X(y±n土1)或(X)X(y) 、 (x)x(y ,土η)、(x±n)x(y±n)、(x±n)x(yl:n±1)、(x±n±i)x(y±n土D 之 遞增或遞減關係,其中x為垂直光源方向上之微結構數量、 y為平行光源方向上之微結構數量,η為-0之遞增或遞減之 整數。 上述一維變化之遞增或遞減關係為(χ±η),其中X為垂 直光源方向上之微結構數量,η為2 0之遞增或遞減之整數。 上述二維變化係為(x)x(y)、(x±n)x(y)、(x±n)x(y± M321111 η) 、 (x±n±l)x(y±n) 、 (x±n±i)x(y土n±1)或(χ)χ(7) 、 (x)x(y -±n) 、 (x土n)x(y±n) 、 (x±n)x(y±n±l) 、 (x±n±i)x(y±n±1)之 遞增或遞減關係,其中x為垂直光源方向上之微結構單位長 •度、Υ為平行光源方向上之微結構單位長度,n為g 〇之遞增 或遞減之整數。 上述一維變化之遞增或遞減關係為(χ±η),其中χ為垂 直光源方向上之微結構單位長度,]1為$ 〇之遞增或遞減之 _整數。 上述該微結構之形狀係包括長條形之屋頂狀、圓弧 狀、金字塔狀、半圓球狀、多邊形圓頂狀、彎曲狀。 上述該導光板上微結構分佈之形狀係包含兩種以上形 7一上述於二維變化時,《光板分別纟垂直光源方向及平 行光源方向上區分成複數等分,以形成矩形之網格,每個 網格係獨自增減微結構之數量或形狀大小。 =於-維變化時,導光板在垂直光源方向上 編形之網格,每個網格係在垂直光源方 -向上增減微結構之數量或形狀。 j述該網格内之微結構係呈規則排列或數排列。 創作係為-種以上述具有微 合而成之#光额。 K料板所組 上述背光模組, 擴散膜及增亮膜 本創作係為一種 片 其係包括有導光板、單點光源、反射 Ο 以上述具有微結構分佈之導光板所組 M321111 合而成之LCD液晶顯示器。 上述LCD液晶顯示器,其係包括有導光板、單點光源、 反射片、擴散膜、增亮膜及液晶面板。 本創作具有下列功效·· 1 ·本創作於靠近光源處,微結構之數量及/或形狀分佈 係呈現二維變化,當遠離光源處,微結構之數量及/或形狀 分佈則呈現一維變化,藉以使背光模組可達到高亮度與高 均勻度。 2·本創作係可供安裝組合於任何之LCD液晶顯示器使 用,而大幅提升LCD液晶顯示器之亮度。 【實施方式】 首先,本創作第一實施例,請參閱第一圖所示,本創 作主要係設有一導光板(1 ),該導光板(1)係包含有入光 面(11)、底面(12)、侧面(13)及出光面〔圖中未示〕,並 於底面(12)上設有微結構(14)、(15)。 光源(2),係設置於導光板(1)之入光面(11)。 本創作之導光板(1)於靠近光源(2)處,其微結構(14) 的分佈呈現二維的變化,即在X方向(垂直光源方向)與γ方 向(平行光源方向)上有微結構(14)、(15)之數量或形狀的 變化,其中光源方向指將複數光源(2)連結成一條線,此線 的方向稱為光源方向,亦即光源(2)係排列在一平行光源方 向上,而垂直於該平行光源方向係一垂直光源方向;當遠 離光源(2)處,微結構(15)僅呈現一維變化,即在X方向上 有微結構(15)之數量變化。 M321111 請參閱第二圖所示,本創作於導光板(1)上靠近光源(2) _處之微結構(14)的分佈,其中複數光源(2)設置在導光板(1) 之侧邊’光源(2 )係可為發光二極體,在導光板(1)入光面 ^ (11)旁採丨間隔之排列’且光源(2)之發光分佈為Lambert ian •分佈,即在光源(2)之正向上之發光強度最強,靠近光源(2) - 處導光板(1)内產生亮暗相間的亮度分佈,在光源(2)之正 鈿方(正向)因亮度最高,設置在此處之微結構(14)數量會 _較少,或者形狀較小,在光源(2)之間亮度最暗,設置在此 處的微結構(14)數量較多,或者形狀較大。 罪近光源(2)處之微結構(14)分佈設計方法,係將靠近 光源(2)處之導光板(1)分別在χ方向與γ方向區分成複數等 分,其係區分成棋盤狀之矩形的網格(G),每個網格((;)上 :有複數微結構(14),微結構(14)採用矩形陣列分佈,在每 —個網格(G)上可獨自增減微結構(14)數量或形狀大小,反應 該網格(G)之亮度變化,由於本創作第一實施例中之光源g 魯複數發光二極體組成,發光二極體採用間隔的排列,且發 、光=極體之發光分佈為Lambertian分佈,靠近光源處之 導光板(1)内產生亮暗相間的亮度分佈,微結構(14)分佈必 須按照不均勻的亮度分佈來變化,因此微結構(14)分佈呈 現二維分佈,以達到高均勻度及高亮度之效果。 本創作之微結構(14)在網格(g)内的數量變化乃增減 其行、列的變化,例如網格(G)内有χ行與γ列的微^構 (14),其數量為XXy個,若增加其數量時,如第三圖所示, 即單獨增加n列的微結構(⑷,其數量變化為⑻) M321111 xy或xx(y+l)個,若再增加微結構(14)數量,則再增加另外 :一行或另外一列的數量,即(x + l)x(y + l)或(x+l)x(y+l), 再增加則數量為(X+l + l)X(y+l)或(x+l)X(y+l + l)、(χ + 2)χ (y+1 + l)或(x+l + l)x(y+2)、…、(x+n)x(y+n)或(χ+η)χ (y+n)、(x+n+l)x(y+n)或(x+n)x(y+n+l),增加微結構(14) - 的方法以此輪流依次增加類推;若減少數量時,如第四圖 所示,即單獨減少一行或一列的微結構(14),其數量變化 鲁為(X-l)x(y)或(x)x(y-1)個,若再減少微結構數量,則再 減少另外一行或另外一列的數量,即 (y -1),再減少則數量為(X-1-l)x(y—1)或(x-lXy—i —D、 (X-2)x(y-1-1)或(χ-1-l)x(y—2)、…、(x-n)x(y-n)或(X一n) x(y-n)、(χ-n-l)x(y-η)或(χ—n)x(y—η—〇、(χ—η—1)x(y一η—1;) ,或D,減少微結構(14)的方法以此輪流依次 減少類推,故其數量上二維變化係為(X)X(y)、(x±n)x(y)、 (x±n)x(y±n)、(x±n±l)x(y±n)、(x土 φ (y) 、 (x)x(y±n) 、 (x±n)x(y±n) 、 (x±n)x(y±n±1) 、 (χ±η±1) _x(y±n±l)之遞增或遞減關係,其中x為垂直光源方向上之微 結構數量、y為平行光源方向上之微結構數量,n為之遞 增或遞減之整數。 本創作微結構之形狀如第五圖及第六圖所示,其形狀 包括但不限於長條形之屋頂狀微結構(14a)或圓弧狀微結 構(14b)為主,該形狀可凹入或凸出於導光板(丨)之底面 〔凸出於導光板之微結構未列圖示說明〕,第五圖(a)屋頂 狀微結構(14a)的上視投影面〔即χ—γ平面〕係長條形,侧 < s 11 M321111 •視投影面〔x-z投影面〕係三角形,調整屋頂狀微結構(14a) • 之形狀大小係调整其上視投影面之形狀,其改變在γ方向長 度變化,在X方向的寬度則維持不變,第五圖(b)表示增加 _屋頂狀微結構(14a)之長度,第五圖(c)則縮短屋頂狀微結 構(14a)之長度,當長度等於寬度時,屋頂狀微結構(14a) •形狀可視為金字塔型;請參考第六圖(a)所示,圓弧狀微結 構(14b)之上視投影面〔即X-Y平面〕係圓角長條形,侧視 投影面〔X-Z投影面〕係半圓弧形;調整圓弧狀微結構(14b) •之形狀大小係調整其上視投影面之形狀,其改變在Y方向長 度變化,在X方向的寬度則維持不變,第六圖(b)表示增加 圓弧狀微結構(14b)之長度,第六圖(c)則縮短圓弧狀微結 構(14b)之長度,當長度等於寬度時,圓弧狀微結構(14b) 形狀可視為半圓球型。 如第七圖所示,係為微結構(14)之形狀大小,調整微 結構(14)在網格(G)内的形狀大小乃同時增減網格(G)内微 隹結構(14)之單位長度,當增加形狀大小時,則同時增加網 _格(0)内所有微結構(14)之單位長度,當減少形狀大小時, 則縮短網格(G)内所有微結構(14)之單位長度,故其形狀上 二維變化同樣係為(x)x(y)、(x±n)x(y)、(x±n)x(y±n)、(X ±n±l)x(y±n) 、 (x±n±l)x(y±n±l)或(x)x(y) 、 (x)x(y±n)、 (x±n)x(y±n)、(x±n)x(y±n±l)、(x±n±l)x(y±n±l)之遞增或 遞減關係,其中x為垂直光源方向上之微結構單位長度、y 為平行光源方向上之微結構單位長度,η為-0之遞增或遞 ' 減之整數。 12 M321111 如第八圖所示’係為遠離光源(2)處之微結構(15)分 •佈,從光源(2)所發出的光線經過一段導光板(1)傳遞後, 已混合而無明顯的焭暗帶分佈,微結構(15)只需沿著垂直 •光源方向(X方向)做數量的變化,較靠近光源(2)處之條狀 的微結構(15)數量較少,較遠離光源(2)處之微結構(15)的 - 數量較多。 遠離光源(2)處之微結構(15)分佈設計方法係將遠離 鲁光源(2)處之導光板(1)在X方向上區分成複數等分,形成網 格(H)之長度與導光板(1)寬度同長,每個網格(H)上有複數 微結構(15),其中條狀之微結構(15)的長度與導光板(!)之 寬度同長;微結構(15)之長度與網格(H)之長度同長,在γ 方向的數量為1 ,因此只有在X方向上做數量變化,即微結 乂構(15)分佈係規則的一維排列,在每個網格(Η)上可獨自增 ,減微結構(15)數量,反應該網格(Η)之亮度變化,由於距離 光源(2)較遠,每個發光二極體所產生之光線已互相混合, 鲁產生亮暗相間的亮度分佈以不明顯,亮度分佈只跟光源(2) 的距離產生變化,遠離光源(2)處之微結構(15)呈現一維分 •佈,以達到高均勻度亮度之效果。 微結構(15)在網格(Η)内的數量變化乃增減其在X方向 的變化,例如網格(Η)内有X行的微結構,其數量為^固,若 增加其數量時,即增加一行的條狀之微結構(15),數量為 (χ+1)個,再增加則…(χ+η)個,增加微結構(15)的方法以 此類推,若減少數量時,即減少一行條狀之微結構(15), 、數量為(χ—1)個,再減少則".(X-η)個,減少微結構(15)的 M321111 方法以此類推,故其數量上一維變化之遞增或遞減關係為 (x±n),其中X為垂直光源方向上之微結構數量,η為2 〇之 遞增或遞減之整數。 請參考附件之圖三,係為本創作導光板組裝於背光模 組後實際之亮度分佈圖,其表示整體導光板之亮度分佈; 在圖中 x=l/10L、x=3/10L、X二5/10L、x=7/l〇L與x=9/10L五 個位置上沿Y方向測量亮度分佈,其中L表示導光板在X方向 之全長。掃描該五處之亮度分佈後,所得到如附件圖四之 結果,五處之亮度分佈都相當均勻,在}^=1/1〇[與又=3/1〇匕 處因受二維微結構分佈而提升靠近光源處之均勻性亮度, 不會產生亮暗相間的紋路。 本創作第二實施例,如第九圖所示,其中該導光板(3) 之微結構(31)之分佈,於靠近光源(4)處,微結構(31)的分 佈呈現二維的變化,即在x方向〔垂直光源方向〕與γ方向 〔平行光源方向〕上有微結構(31)之數量或形狀的變化, 其中光源方向指將複數光源⑷連結成一條線,此線的方向 為光源方向,該光源(4)係可為發光二極體,於遠離光源 „ (4)處,微結構(31)呈現一維變化,即在χ方向上有微結 構(31)之數量變化。 本創作第二實施例中靠近光源(4)處之微結構(31)之 刀佈與《又计方法如同第一實施例,但遠離光源(4)之微結 (31)f佈不同於第一實施例於遠離光源之微結構分佈,請 參考第十圖,其中遠離光源⑷處之微結構(3ι : 法係將遠離光源⑷處之導光板⑶幻方向上區分成複數 14 M321111 等分,形成網格(I)之長度與導光板(3)寬度同長,每個網 格(1)上有複數微結構(31),微結構(31)採用矩形陣列並呈 規則排列〔亦可呈亂數排列,請參考第十四圖及第十五 圖〕’其中微結構(31)的長度與靠近光源(4)處之微結構(31) 之長度近似,在γ方向上,微結構(31)之間有固定之間距, 因此不需作數量上的變化,僅有在χ方向上做數量上的變 化,即微結構(31)分佈係規則的一維排列,在每個網格(1) 上可獨自增減微結構(31)數量,反應該網格(〗)之亮度變 化,以達到高均勻度亮度之效果。 U結構(31)在網格(I)内的數量變化乃增減其在χ方向 的變化,例如網格(I)内有χ行的微結構(31),其數量為χ 個,若增加其數量時,即增加一行的條狀微結構(31),數 里為(x+1)個,再增加則"(χ+η)個,增加微結構(31)的方 法以此類推,若減少數量時,即減少一行微結構(31 ),數 量為(χ-I)個,再減少則·(χ-η)個,減少微結構(31)的方 法以此類推,故其數量上一維變化之遞增或遞減關係為(χ± η),其中χ為垂直光源方向上之微結構數量,11為-ο之遞增 或遞減之整數。 本創作第二實施例中微結構之形狀,其除了包括第一 實施例所敘述之屋頂狀微結構與圓弧狀微結構外,亦包括 但不限於金字塔狀微結構(31a)〔如第十一圖(a)〕、半圓球 狀Μ結構(31b)〔如第十一圖(b)〕、多邊形圓頂狀微結構 (31c)〔如第十一圖(c)〕、彎曲狀微結構(31d)〔如第十一 圖(d)〕專形狀’其微結構(31)、(gib)可凹入或突出於導 15 M321111 光板(3)底面,微結構(31)、(31b)分佈上的形狀除了單一 —種類的形狀,亦可具有兩種以上的形狀混合,如第十二圖 所示;又其形狀上一維變化之遞增或遞減關係為(χ±η),其 "中Χ為垂直光源方向上之微結構數量,η為2 〇之遞增或遞減 之整數。 本創作第三實施例,如第十三圖所示,其中該導光板 ,(5)之微結構(51)係呈現亂數分佈,靠近光源(6)處,條狀 春之微結構(51)的分佈呈現二維的變化,其分佈在光源(6)之 間較為集中,在光源(6)前較為疏散,如第十四圖所示; 遠離光源(6)處的光線無明顯之亮暗分佈,因此條狀的微結 構(51)呈現一維變化,即在义方向上有條狀的微結構(51)數 里之疏密變化,如第十五圖所示;其中微結構(51)分佈之 形狀仍可包含兩種形狀以上之混合。 • 本創作上述各實施例中之導光板及光源,再配合有反 射片、擴散膜、增亮膜,即可組成一背光模組〔該背光模 _組之組合構造係為習知技術,請參考第十六圖,茲不另贅 -述〕’又該背光模組再配合一液晶面板即構成一完整之LCD —液晶顯示器〔該LCD液晶顯示器之組合構造係為習知技術, 睛參考第十六圖,茲不另贅述〕。 【圖式簡單說明】 第一圖係為本創作第一實施例導光板之微結構分佈示 思圖。 第二圖係為本創作第一實施例以網格區分微結構分佈 之示意圖。 M321111 -第三圖係為本創作第一實施例增加一行或一列的微結 : 構之示意圖。 第四圖係為本創作第一實施例減少一行或一列的微結 _ 構之示意圖。。 第五圖係為本創作第一實施例屋頂狀微結構之長度變 - 化示意圖。 , 第六圖係為本創作第一實施例圓弧狀微結構之長度變 0化示意圖。 第七圖係為本創作第一實施例調整微結構形狀大小之 示意圖。 第八圖係為本創作第一實施例遠離光源處之微結構分 佈示意圖。 ' 苐九圖係為本創作弟一實施例導光板之微結構分佈示 意圖。 第十圖係為本創作弟一實施例遠離光源處之微結構分 _佈示意圖。 第十一圖係為本創作第二實施例為金字塔狀、半圓球 ”狀、多邊形圓頂狀、彎曲狀等不同形狀微結構之示意圖。 第十一圖係為本創作第—實施例具兩種以上微結構形 狀混合之示意圖。 第十二圖係為本創作第三實施例導光板之微結構呈現 亂數分佈之示意圖。 第十四圖係為本創作第三實施例微結構的分佈呈現二 維變化之示意圖。 17 < S ) M321111 第十五圖係為本創作第三實施例微結構的分佈呈現一 維變化之示意圖。 ^十/、圖係為習知Lcj)液晶顯示器構造之分解示意圖。 第十七圖係為習知導光板上微結構排列分佈之示意 附件: 圖係為習知導光板之亮度分佈示意圖。 圖二係為習知導光板之亮度分佈統計圖。 圖三係為本創作第一實施例導光板之亮度分佈示意 圖四係為本創作第一實施例導光板之亮度分佈統計 -【主要元件符號說明】 (1) 導光板 (11) (12) 底面 (13) (14) 微結構 (14a) (14b) 圓弧狀微結構 (15) (2) 光源 (3) (31) 微結構 (31a) (31b) 半圓球狀微結構 (31c) 多邊形圓頂狀微結構 (31d) 彎曲狀微結構 (4) (5) 導光板 (51) (6) 光源 光源 微結構 入光面 側面 屋頂狀微結構 微結構 導光板 金字塔狀微結構 M321111 (A) 導光板 (A1) 入光面 (A2) 底面 (A3) 側面 (A4) 出光面 (A5) 微結構 (B) 光源 (C) 反射片 (D) 擴散膜 (E) 增亮膜 (F) 液晶面板 (G) 網格 (H) 網格 (I) 網格The light guide plate, the backlight module, the LCD, and the liquid crystal display having a microstructure distribution have the above disadvantages in terms of brightness and uniformity. Luben's creation mainly provides a light guide plate with a microstructure distribution, the light guide plate includes a light incident surface, a bottom surface, a side surface and a light exit surface, and has a microstructure on the bottom surface; the light source is disposed on the light guide plate. In the light incident surface, the light source is arranged in a parallel light source direction, and perpendicular to the parallel light source direction is a vertical light source direction; the main reason is that the light guide plate is close to the light source, in the direction of the vertical light source and the direction of the parallel light source, The number and/or shape of the structure exhibits a two-dimensional variation, while away from the source, and the direction of the vertical source, the number and/or shape distribution of the microstructure exhibits a one-dimensional change. The above two-dimensional changes are (χ)χ(γ), (X soil η)χ(γ), (χ土n)x(y soil, (X±n±l)X(y±n), (X soil n±l) X (y±n soil 1) or (X)X(y), (x)x(y, soil η), (x±n)x(y±n), (x± n) x (yl: n ± 1), (x ± n ± i) x (y ± n soil D in increasing or decreasing relationship, where x is the number of microstructures in the direction of the vertical source, y is in the direction of the parallel source The number of microstructures, η is an integer of increasing or decreasing by -0. The increasing or decreasing relationship of the above one-dimensional changes is (χ±η), where X is the number of microstructures in the direction of the vertical source, and η is an increment of 20 or The two-dimensional variation is (x)x(y), (x±n)x(y), (x±n)x(y± M321111 η), (x±n±l)x ( y±n) , (x±n±i)x(y soil n±1) or (χ)χ(7), (x)x(y -±n), (x soil n)x(y±n ), (x±n)x(y±n±l), (x±n±i)x(y±n±1), in increasing or decreasing relationship, where x is the unit length of the microstructure in the direction of the vertical source • Degree, Υ is the unit length of the microstructure in the direction of the parallel light source, and n is an integer of increasing or decreasing g 〇. The above one-dimensional change is increasing or The subtraction relationship is (χ±η), where χ is the unit length of the microstructure in the direction of the vertical light source, and ]1 is the increment or decrement of _ integer of $ 。. The shape of the microstructure described above includes a strip-shaped roof shape, Arc shape, pyramid shape, semi-spherical shape, polygonal dome shape, curved shape. The shape of the microstructure distribution on the light guide plate includes two or more shapes. The direction and the direction of the parallel light source are divided into a plurality of equal parts to form a rectangular grid, and each grid is independently increased or decreased by the number or shape of the microstructure. = When the dimension changes, the light guide plate is arranged in the direction of the vertical light source. A grid of shapes, each grid is increasing or decreasing the number or shape of the microstructures in the direction of the vertical source. The microstructures in the grid are arranged in a regular or numerical arrangement. The combination of the above-mentioned backlight module, diffusion film and brightness enhancement film is a kind of film including a light guide plate, a single point light source, and a reflection Ο with the above-mentioned microstructure distribution. Light guide plate set M 321111 LCD LCD display. The above LCD liquid crystal display includes a light guide plate, a single point light source, a reflection sheet, a diffusion film, a brightness enhancement film, and a liquid crystal panel. The creation has the following effects·· 1 · This creation Near the light source, the number and/or shape distribution of the microstructures exhibits a two-dimensional change. When away from the light source, the number and/or shape distribution of the microstructures exhibits a one-dimensional change, so that the backlight module can achieve high brightness and high brightness. Evenness. 2. This creation system can be installed and used in any LCD liquid crystal display, and greatly enhance the brightness of the LCD liquid crystal display. [Embodiment] First, the first embodiment of the present invention, as shown in the first figure, is mainly provided with a light guide plate (1), which includes a light incident surface (11) and a bottom surface. (12), the side surface (13) and the light-emitting surface (not shown), and the microstructures (14) and (15) are provided on the bottom surface (12). The light source (2) is disposed on the light incident surface (11) of the light guide plate (1). The light guide plate (1) of the present invention is close to the light source (2), and the distribution of the microstructure (14) exhibits a two-dimensional variation, that is, in the X direction (vertical light source direction) and the γ direction (parallel light source direction). The change of the number or shape of the structures (14), (15), wherein the direction of the light source refers to the connection of the plurality of light sources (2) into a line, the direction of the line is called the direction of the light source, that is, the light source (2) is arranged in a parallel In the direction of the light source, perpendicular to the direction of the parallel light source is a vertical light source direction; when away from the light source (2), the microstructure (15) exhibits only one-dimensional change, that is, the number of microstructures (15) changes in the X direction. . M321111 Referring to the second figure, the creation of the microstructure (14) on the light guide plate (1) near the light source (2) _, wherein the plurality of light sources (2) are disposed on the side of the light guide plate (1) The light source (2) can be a light-emitting diode, and the arrangement of the light-emitting surface (11) is arranged next to the light-emitting surface (11), and the light-emitting distribution of the light source (2) is a Lambert ian distribution, that is, at the light source. (2) The light intensity in the positive direction is the strongest, close to the light source (2) - the brightness distribution between the light and dark phases is generated in the light guide plate (1), and the positive side (forward) of the light source (2) is the highest brightness. The number of microstructures (14) here will be _less, or the shape is smaller, the brightness is the darkest between the light sources (2), and the number of microstructures (14) disposed here is large, or the shape is large. The microstructural (14) distribution design method at the near-light source (2) is to divide the light guide plate (1) near the light source (2) into a plurality of equal divisions in the χ direction and the γ direction, respectively, and the system is divided into a checkerboard shape. Rectangular grids (G), each grid ((;): complex micro-structures (14), micro-structures (14) distributed in a rectangular array, can be added on each grid (G) Decreasing the number of micro-structures (14) or the size of the shape, reflecting the change in brightness of the grid (G), due to the composition of the light source g-lude plurality of light-emitting diodes in the first embodiment of the present invention, the light-emitting diodes are arranged in a space, The light distribution of the hair, light and polar body is Lambertian distribution, and the light and dark phase brightness distribution is generated in the light guide plate (1) near the light source, and the microstructure (14) distribution must be changed according to the uneven brightness distribution, so The distribution of structure (14) is two-dimensionally distributed to achieve high uniformity and high brightness. The variation of the number of microstructures (14) in the mesh (g) is increased or decreased by changes in rows and columns, for example In the grid (G), there are micro-structures (14) of limp and γ columns, the number of which is XXy, If the number is increased, as shown in the third figure, the microstructure of n columns is added separately ((4), the number of changes is (8)) M321111 xy or xx(y+l), if the number of microstructures (14) is increased , then add another: the number of one row or another column, that is, (x + l) x (y + l) or (x + l) x (y + l), and then increase the number is (X + l + l) X(y+l) or (x+l)X(y+l + l), (χ + 2)χ (y+1 + l) or (x+l + l)x(y+2),... , (x+n)x(y+n) or (χ+η)χ (y+n), (x+n+l)x(y+n) or (x+n)x(y+n+ l), the method of adding the microstructure (14) - in turn increases the analogy in turn; if the number is reduced, as shown in the fourth figure, that is, the micro-structure (14) of one row or column is reduced individually, and the quantity changes by Lu ( Xl)x(y) or (x)x(y-1). If the number of microstructures is reduced, reduce the number of another row or column, ie (y -1), and decrease the number (X). -1-l)x(y-1) or (x-lXy-i-D, (X-2)x(y-1-1) or (χ-1-l)x(y-2),... , (xn)x(yn) or (X-n) x(yn), (χ-nl)x(y-η) or (χ-n)x(y—η—〇, (χ—η—1 )x(y_η-1;), or D, reduce microstructure The method of (14) reduces the analogy in turn in this order, so the two-dimensional variation in number is (X)X(y), (x±n)x(y), (x±n)x(y±n) , (x±n±l)x(y±n), (x soil φ (y), (x)x(y±n), (x±n)x(y±n), (x±n) x(y±n±1), (χ±η±1) _x(y±n±l) is an increasing or decreasing relationship, where x is the number of microstructures in the direction of the vertical source and y is the direction of the parallel source The number of structures, where n is an integer that is incremented or decremented. The shape of the created microstructure is as shown in the fifth and sixth figures, and the shape thereof includes, but is not limited to, a long strip-shaped roof-like microstructure (14a) or an arc-shaped microstructure (14b), which may be concave. Entering or protruding from the bottom surface of the light guide plate (the microstructure of the light guide plate is not shown), and the fifth view (a) the top view projection surface of the roof-like microstructure (14a) γ plane] is strip-shaped, side < s 11 M321111 • The projection plane [xz projection surface] is a triangle, and the roof-shaped microstructure (14a) is adjusted. The shape and size adjust the shape of the upper projection surface. The length in the γ direction changes, and the width in the X direction remains unchanged. The fifth figure (b) shows the length of the increased roof-like microstructure (14a), and the fifth figure (c) shortens the roof-like microstructure (14a). Length, when the length is equal to the width, the roof-like microstructure (14a) • The shape can be regarded as a pyramid type; please refer to the sixth figure (a), the arc-shaped microstructure (14b) above the projection surface (ie XY plane) 〕 is a rounded strip shape, the side view projection surface [XZ projection surface] is a semi-circular arc shape; adjust the arc shape Microstructure (14b) • The shape and size adjust the shape of the upper projection surface, the change in length in the Y direction, the width in the X direction remains unchanged, and the sixth figure (b) shows the addition of an arc-shaped microstructure. The length of (14b), the sixth figure (c) shortens the length of the arc-shaped microstructure (14b), and when the length is equal to the width, the shape of the arc-shaped microstructure (14b) can be regarded as a semi-spherical shape. As shown in the seventh figure, the shape of the microstructure (14) is adjusted, and the shape of the microstructure (14) in the grid (G) is simultaneously increased or decreased by the micro-structure in the grid (G) (14). The unit length, when increasing the shape size, increases the unit length of all the microstructures (14) in the grid_0 (0), and when the shape size is reduced, shortens all the microstructures in the grid (G) (14) The unit length, so the two-dimensional change in shape is also (x)x(y), (x±n)x(y), (x±n)x(y±n), (X ±n±l )x(y±n) , (x±n±l)x(y±n±l) or (x)x(y), (x)x(y±n), (x±n)x(y An increasing or decreasing relationship of ±n), (x±n)x(y±n±l), (x±n±l)x(y±n±l), where x is the microstructure unit in the direction of the vertical source The length, y is the unit length of the microstructure in the direction of the parallel source, and η is an increment of -0 or an integer of 'decremented'. 12 M321111 As shown in the eighth figure, 'the structure is away from the light source (2) at the light source (15). The light emitted from the light source (2) is transmitted through a section of the light guide plate (1), and is mixed without The obvious distribution of the dark band, the microstructure (15) only needs to change in the direction of the vertical light source (X direction), and the number of strip microstructures (15) closer to the light source (2) is less. The number of microstructures (15) away from the light source (2) is large. The design method of the microstructure (15) away from the light source (2) is to divide the light guide plate (1) away from the Lu light source (2) into a plurality of equal parts in the X direction to form the length and guide of the mesh (H). The light plates (1) have the same width, and each mesh (H) has a plurality of microstructures (15), wherein the length of the strip-shaped microstructures (15) is the same as the width of the light guide plate (!); the microstructure (15) The length of the mesh is the same as the length of the mesh (H), and the number in the γ direction is 1, so only the number change in the X direction, that is, the one-dimensional arrangement of the rule of the micro-junction (15) distribution, The grid (Η) can be increased by itself, reducing the number of microstructures (15), reflecting the brightness change of the grid (Η), due to the distance from the light source (2), the light generated by each of the light-emitting diodes has Mixed with each other, Lu produces a bright and dark brightness distribution that is not obvious, the brightness distribution changes only with the distance of the light source (2), and the microstructure (15) far away from the light source (2) presents a one-dimensional split cloth to achieve high The effect of uniformity brightness. The number of microstructures (15) in the grid (Η) is increased or decreased by changes in the X direction. For example, there are X rows of microstructures in the grid (Η), the number of which is solid, if the number is increased , that is, adding a strip of microstructures (15), the number is (χ+1), and then increasing...(χ+η), increasing the microstructure (15) and so on, if the number is reduced That is, the number of strips of microstructures (15) is reduced, the number is (χ-1), and then decreased by ". (X-η), the M321111 method of reducing the microstructure (15) is deduced by analogy, The incremental or decreasing relationship of the one-dimensional change in number is (x ± n), where X is the number of microstructures in the direction of the vertical source, and η is an integer of 2 递增 increasing or decreasing. Please refer to the attached figure 3, which is the actual brightness distribution diagram of the light guide plate assembled in the backlight module, which shows the brightness distribution of the whole light guide plate; in the figure, x=l/10L, x=3/10L, X The luminance distribution is measured in the Y direction at five positions of two 5/10L, x=7/l〇L, and x=9/10L, where L represents the total length of the light guide plate in the X direction. After scanning the brightness distribution of the five places, the brightness distribution of the five places is quite uniform, as shown in the attached figure IV, at 2^1/1〇[and again=3/1〇匕 due to the two-dimensional micro The structure is distributed to increase the uniform brightness near the light source, and no bright and dark lines are formed. The second embodiment of the present invention, as shown in the ninth figure, wherein the microstructure (31) of the light guide plate (3) is distributed near the light source (4), and the distribution of the microstructure (31) exhibits a two-dimensional variation. That is, there is a change in the number or shape of the microstructures (31) in the x direction (vertical source direction) and the gamma direction [parallel source direction], wherein the direction of the light source refers to the connection of the plurality of light sources (4) into a line whose direction is In the direction of the light source, the light source (4) may be a light-emitting diode. At a distance from the light source „(4), the microstructure (31) exhibits a one-dimensional change, that is, a change in the number of microstructures (31) in the x-direction. In the second embodiment of the present invention, the knives and the method of the microstructure (31) near the light source (4) are different from the first embodiment, but the micro-junction (31) f away from the light source (4) is different from the first embodiment. For an embodiment of the microstructure distribution away from the light source, please refer to the tenth figure, wherein the microstructure at the light source (4) is separated (3ι: the law system is divided into a plurality of 14 M321111 aliquots in the magic direction away from the light guide plate (3) at the light source (4), The length of the forming mesh (I) is the same as the width of the light guide plate (3), and each mesh 1) There are complex micro-structures (31), and the microstructures (31) are arranged in a rectangular array and arranged in a regular order (can also be arranged in random numbers, please refer to the fourteenth and fifteenth figures) 'where the microstructures (31) The length is similar to the length of the microstructure (31) near the light source (4). In the γ direction, there is a fixed distance between the microstructures (31), so there is no need to change the number, only in the χ direction The change in quantity, that is, the one-dimensional arrangement of the rules of the microstructure (31) distribution system, can increase or decrease the number of microstructures (31) on each grid (1), and reflect the brightness of the grid (〗) Change to achieve the effect of high uniformity brightness. The change in the number of U-structures (31) in the mesh (I) is to increase or decrease its change in the x-direction, such as the micro-structure of the chopped (I) 31), the number is χ. If the number is increased, the strip microstructure (31) is increased by one line, the number is (x+1), and the more is added ("(χ+η), increase The method of the microstructure (31) is deduced by analogy. If the number is reduced, that is, one row of microstructures (31) is reduced, and the number is (χ-I), and then decreased. -η), the method of reducing the microstructure (31) is deduced by analogy, so the increasing or decreasing relationship of the one-dimensional variation in the number is (χ± η), where χ is the number of microstructures in the direction of the vertical light source, 11 is An integer that is incremented or decremented by ο. The shape of the microstructure in the second embodiment of the present invention includes, but is not limited to, a pyramid shape in addition to the roof-like microstructure and the arc-shaped microstructure described in the first embodiment. Microstructure (31a) [such as Figure 11 (a)], semi-spherical Μ structure (31b) [such as Figure 11 (b)], polygonal dome-shaped microstructure (31c) [such as Figure 11 (c)], curved microstructure (31d) [as in the eleventh (d)] special shape 'the microstructure (31), (gib) can be concave or protruded from the bottom surface of the guide 15 M321111 light plate (3), The shape of the microstructures (31) and (31b) may have a shape of two or more shapes in addition to a single-type shape, as shown in Fig. 12; and an incremental or decreasing relationship of one-dimensional changes in shape For (χ±η), its middle is the number of microstructures in the direction of the vertical source, and η is the increment or decrement of 2 〇. Integer. The third embodiment of the present invention, as shown in the thirteenth figure, wherein the light guide plate, the microstructure (51) of the (5) is distributed in a random number, close to the light source (6), and the microstructure of the strip spring (51) The distribution shows a two-dimensional variation, the distribution is more concentrated between the light sources (6), and is more evacuated before the light source (6), as shown in Figure 14; the light away from the light source (6) has no obvious light and dark Distribution, so the strip-shaped microstructure (51) exhibits a one-dimensional change, that is, a density change in the strip-shaped microstructure (51) in the sense direction, as shown in Fig. 15; wherein the microstructure (51) The shape of the distribution can still contain a mixture of more than two shapes. The light guide plate and the light source in the above embodiments are combined with a reflection sheet, a diffusion film, and a brightness enhancement film to form a backlight module. The combination structure of the backlight module is a conventional technique. Referring to the sixteenth figure, the backlight module is combined with a liquid crystal panel to form a complete LCD-liquid crystal display. The combined structure of the LCD liquid crystal display is a conventional technique. Sixteen pictures, I will not repeat them. BRIEF DESCRIPTION OF THE DRAWINGS The first figure is a schematic diagram of the microstructure distribution of the light guide plate of the first embodiment of the present invention. The second figure is a schematic diagram of the micro-structure distribution by grid in the first embodiment of the present invention. M321111 - The third figure is a schematic diagram of adding a row or a column of micro-junctions to the first embodiment of the creation. The fourth figure is a schematic diagram of reducing the micro-junction of one row or one column in the first embodiment of the creation. . The fifth figure is a schematic diagram showing the length change of the roof-like microstructure of the first embodiment of the present invention. The sixth figure is a schematic diagram of the length change of the arc-shaped microstructure of the first embodiment of the present invention. The seventh figure is a schematic diagram of adjusting the size of the microstructure according to the first embodiment of the creation. The eighth figure is a schematic view of the microstructure distribution of the first embodiment away from the light source. '苐九图 is the schematic diagram of the microstructure distribution of the light guide plate of an embodiment of the present invention. The tenth figure is a schematic diagram of the microstructure of the embodiment of the present invention which is far away from the light source. The eleventh figure is a schematic view of the second embodiment in which the pyramid is shaped like a pyramid, a semi-spherical shape, a polygonal dome shape, a curved shape, etc. The eleventh figure is the first embodiment of the present invention. A schematic diagram of the above-mentioned micro-structure shape mixing. The twelfth figure is a schematic diagram showing the random number distribution of the microstructure of the light guide plate according to the third embodiment of the present invention. The fourteenth figure is the distribution of the microstructure of the third embodiment of the present creation. Schematic diagram of two-dimensional variation. 17 < S ) M321111 The fifteenth figure is a schematic diagram showing the one-dimensional variation of the distribution of the microstructure of the third embodiment of the creation. ^10, the figure is a conventional Lcj) liquid crystal display structure Fig. 17 is a schematic annex of the arrangement of microstructures on a conventional light guide plate: The figure is a schematic diagram of the brightness distribution of a conventional light guide plate. Fig. 2 is a statistical diagram of the brightness distribution of a conventional light guide plate. The present invention is a schematic diagram of the brightness distribution of the light guide plate according to the first embodiment of the present invention. The fourth embodiment is the brightness distribution statistics of the light guide plate of the first embodiment of the present invention - [Description of main components] (1) Light guide plate (11) (12) Face (13) (14) Microstructure (14a) (14b) Arc-shaped microstructure (15) (2) Light source (3) (31) Microstructure (31a) (31b) Semi-spherical microstructure (31c) Polygon Dome-like microstructure (31d) Curved microstructure (4) (5) Light guide plate (51) (6) Light source light source Microstructure into the light side Side roof-like microstructure Microstructure light guide plate Pyramidal microstructure M321111 (A) Light guide plate (A1) Light-incident surface (A2) Bottom surface (A3) Side surface (A4) Light-emitting surface (A5) Microstructure (B) Light source (C) Reflector (D) Diffusion film (E) Brightness film (F) Liquid crystal Panel (G) Grid (H) Grid (I) Grid

1919

Claims (1)

M321111 九、申請專利範圍: “ 1· 一種具有微結構分佈之導光板,該導光板係包含有 入光面、底面、側面及出光面,並於底面上設有微結構; . 光源,係設置於導光板之入光面,光源係排列在一平 订光源方向上,而垂直於該平行光源方向係一垂直光源方 向; ~ 其特徵係在於:導光板靠近光源處,在垂直光源方向 春及平行光源方向上,微結構之數量及/或形狀分佈係呈現二 維變化,而遠離光源處,且垂直光源方向,微結構之數量 及/或形狀分佈則呈現一維變化。 2·如申請專利範圍第1項所述具有微結構分佈之導光 板,其中二維變化係為(X)X(y)、 (X土n)x(y)、 (x±n)x(y±n)、 .(x±n±1)x(y土η)、 (x±n±l)x(y±n±l)或(x)x(y)、 (x)x(y±n)、 (x±n)x(y±n)、(x±n)x(y±n±l)、(x±n±l)x(y±n±i)之遞增或 遞減關係,其中x為垂直光源方向上之微結構數量、y為平 籲行光源方向上之微結構數量,n為-〇之遞增或遞減之整數。 3·如申請專利範圍第1項所述具有微結構分佈之導光 -板,其中一維變化之遞增或遞減關係為(χ±η),其中χ為垂 直光源方向上之微結構數量,η為2 〇之遞增或遞減之整數。 4·如申請專利範圍第1項所述具有微結構分佈之導光 板,其中二維變化係為(X)X(y)、(X士n)x(y)、(x±n)x(y±n)、 (x土n±l)x(y±n)、(x±n±l)x(y±n±l)或(x)x(y)、(x)x(y±n)、 (x±n)x(y±n)、(x±n)x(y±n±l)、(x±n±l)x(y±n±l)之遞增或 " 遞減關係,其中X為垂直光源方向上之微結構單位長度、y 20 M321111 η為20之遞增或遞 為平行光源方向上之微結構單位長度 減之整數。 5.如申請專·圍第i項所述具有微結構分佈之導光 ^其中—維變化之遞增或遞減關係為U±n),丨中x為垂 直先源方向上之微結構單位長度,之遞增或遞減之 6·如申請專利範圍第i項所述具有微結構分佈之導光 板二中該微結構之形狀係包括長條形之屋頂狀、圓弧狀、 金子塔狀、半圓球狀、多邊形圓頂狀、彎曲狀。 7.如中請專利範圍第1項所述具有微結構分佈之導光 板〃中該導光板上微結構分佈之形狀係包含兩種以上开) 狀之混合。 8·如申請專利範圍第i項所述具有微結構分佈之導光 板二其中於二維變化時,導光板分別在垂直光源方向及平 灯光源方向上區分成複數等分,以形成矩形之網格,每個 網格係獨自增減微結構之數量或形狀。 9·如申請專利範圍第1項所述具有微結構分佈之導光 板^中於維變化時,導光板在垂直光源方向上區分成 複數等分’以形成矩形之網格,每値網格係在垂直光源方 向上增減微結構之數量或形狀大小。 10·如申請專利範圍第1項所述具有微結構分佈之導 光板’其中該網格内之微結構係呈規則排列或亂數排列。 η· 一種以申請專利範圍第1項所述具有微結構分佈 之導光板所組合而成之背光模組。 21 M321111 12·如申請專利範圍帛u項所述背光模組,其係包括 有導光板、單點|g U u ”、光源、反射片、擴散膜及增亮膜。 13#種以申請專利範圍第1項所述具有微結構分佈 之導光板所組合而成之LCD液晶顯示器。 14·如申請專利範圍第13項所述LCD液晶|員示器,其 係包括有導光板、單點光源、反射片、擴散膜、增亮膜及 液晶面板。M321111 IX. Patent application scope: "1. A light guide plate having a microstructure distribution, the light guide plate includes a light incident surface, a bottom surface, a side surface and a light exit surface, and a microstructure is arranged on the bottom surface; In the light incident surface of the light guide plate, the light source is arranged in a direction of a flat light source, and a direction perpendicular to the direction of the parallel light source is a vertical light source direction; ~ the characteristic is that the light guide plate is close to the light source, and the spring and parallel in the direction of the vertical light source In the direction of the light source, the number and/or shape distribution of the microstructures exhibits a two-dimensional change, and away from the light source, and the direction of the vertical light source, the number and/or shape distribution of the microstructures exhibits a one-dimensional change. The light guide plate having a microstructure distribution according to Item 1, wherein the two-dimensional variation is (X)X(y), (X soil n)x(y), (x±n)x(y±n), . (x±n±1)x(y soil η), (x±n±l)x(y±n±l) or (x)x(y), (x)x(y±n), (x ±n)x(y±n), (x±n)x(y±n±l), (x±n±l)x(y±n±i) in increasing or decreasing relationship, where x is a vertical source The number of microstructures in the direction, y is the flat light The number of microstructures in the source direction, where n is an integer of increasing or decreasing -〇. 3. The light guiding plate with microstructure distribution as described in claim 1 of the patent application, wherein the incremental or decreasing relationship of one-dimensional changes is (χ±η), where χ is the number of microstructures in the direction of the vertical light source, and η is an integer of 2 递增 increasing or decreasing. 4· The light guide plate having the microstructure distribution as described in claim 1 of the patent scope, 2 Dimensional variation is (X)X(y), (X±n)x(y), (x±n)x(y±n), (x soil n±l)x(y±n), (x ±n±l)x(y±n±l) or (x)x(y), (x)x(y±n), (x±n)x(y±n), (x±n)x (y±n±l), (x±n±l)x(y±n±l) increment or " decreasing relationship, where X is the unit length of the microstructure in the direction of the vertical source, y 20 M321111 η is 20 The increment or decrement is the unit length of the microstructure in the direction of the parallel light source minus the integer. 5. If the light guide with the microstructure distribution described in item i of the application, the increment or decrement relationship of the dimensional change is U± n), where x is the unit length of the microstructure in the vertical source direction, which is incremented or decremented. The shape of the microstructure in the light guide plate 2 having the microstructure distribution according to Item i includes a strip-shaped roof shape, an arc shape, a gold tower shape, a semi-spherical shape, a polygonal dome shape, and a curved shape. The shape of the microstructure distribution on the light guide plate of the light guide plate having the microstructure distribution according to the first aspect of the patent scope includes a mixture of two or more types. 8 · As described in claim i The light guide plate having the microstructure distribution is divided into two equal parts in the direction of the vertical light source and the direction of the flat light source to form a rectangular grid, and each grid is independently increased or decreased. The number or shape of the structure. 9. If the light guide plate having the microstructure distribution described in item 1 of the patent application scope changes in dimension, the light guide plate is divided into plural aliquots in the direction of the vertical light source to form a rectangular grid, and each grid is Increase or decrease the number or shape of microstructures in the direction of the vertical source. 10. The light guide plate having a microstructure distribution as described in claim 1 wherein the microstructures in the grid are arranged in a regular or random number. η· A backlight module combined with a light guide plate having a microstructure distribution according to claim 1 of the patent application scope. 21 M321111 12· The backlight module according to the patent application scope includes a light guide plate, a single point | g U u ”, a light source, a reflection sheet, a diffusion film and a brightness enhancement film. An LCD liquid crystal display device comprising a light guide plate having a microstructure distribution according to the above item 1. The LCD liquid crystal display device according to claim 13 of the invention, comprising a light guide plate and a single point light source , reflective sheet, diffuser film, brightness enhancement film and liquid crystal panel.
TW96207914U 2007-05-16 2007-05-16 Light guide plate having micro-structure distribution, backlight module, and LCD TWM321111U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW96207914U TWM321111U (en) 2007-05-16 2007-05-16 Light guide plate having micro-structure distribution, backlight module, and LCD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW96207914U TWM321111U (en) 2007-05-16 2007-05-16 Light guide plate having micro-structure distribution, backlight module, and LCD

Publications (1)

Publication Number Publication Date
TWM321111U true TWM321111U (en) 2007-10-21

Family

ID=39228235

Family Applications (1)

Application Number Title Priority Date Filing Date
TW96207914U TWM321111U (en) 2007-05-16 2007-05-16 Light guide plate having micro-structure distribution, backlight module, and LCD

Country Status (1)

Country Link
TW (1) TWM321111U (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2485072A1 (en) 2011-01-26 2012-08-08 Coretronic Corporation Light guide plate and light source module
EP2518544A1 (en) 2011-04-29 2012-10-31 Coretronic Corporation Light guide plate and light source module
US8333497B2 (en) 2008-10-17 2012-12-18 Coretronic Corporation Light guide plate having micro structures arranged in geometric and stripe patterns
US8419263B2 (en) 2010-03-22 2013-04-16 Au Optronics Corporation Light source module provided with a light guide plate having reflective structure thereon
TWI409544B (en) * 2009-11-23 2013-09-21 Global Lighting Technologies Method and Structure of Luminous Homogenization of Backlight Module
TWI427243B (en) * 2011-04-19 2014-02-21 Global Lighting Technologies Lighting module
US8944663B2 (en) 2009-01-22 2015-02-03 Au Optronics Corporation Light guide plate and backlight module having V-cut structure
EP2937626A1 (en) * 2014-04-23 2015-10-28 Samsung Electronics Co., Ltd Backlight device and three-dimensional display apparatus having the same
US9329328B2 (en) 2012-04-30 2016-05-03 Coretronic Corporation Light guide plate and backlight module using the same
TWI553383B (en) * 2011-07-21 2016-10-11 精工愛普生股份有限公司 Liquid crystal display device, electronic apparatus, and illumination device
US9904105B2 (en) 2014-09-11 2018-02-27 Au Optronics Corporation Backlight module with light uniform design

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8333497B2 (en) 2008-10-17 2012-12-18 Coretronic Corporation Light guide plate having micro structures arranged in geometric and stripe patterns
US8944663B2 (en) 2009-01-22 2015-02-03 Au Optronics Corporation Light guide plate and backlight module having V-cut structure
TWI409544B (en) * 2009-11-23 2013-09-21 Global Lighting Technologies Method and Structure of Luminous Homogenization of Backlight Module
US8419263B2 (en) 2010-03-22 2013-04-16 Au Optronics Corporation Light source module provided with a light guide plate having reflective structure thereon
US9223077B2 (en) 2011-01-26 2015-12-29 Coretronic Corporation Light guide plate and light source module
EP2485072A1 (en) 2011-01-26 2012-08-08 Coretronic Corporation Light guide plate and light source module
TWI427243B (en) * 2011-04-19 2014-02-21 Global Lighting Technologies Lighting module
EP2518544A1 (en) 2011-04-29 2012-10-31 Coretronic Corporation Light guide plate and light source module
US8764269B2 (en) 2011-04-29 2014-07-01 Coretronic Corporation Light guide plate and light source module
TWI553383B (en) * 2011-07-21 2016-10-11 精工愛普生股份有限公司 Liquid crystal display device, electronic apparatus, and illumination device
US9645294B2 (en) 2011-07-21 2017-05-09 Seiko Epson Corporation Liquid crystal display device, electronic apparatus, and illumination device
US9739923B2 (en) 2011-07-21 2017-08-22 Seiko Epson Corporation Liquid crystal display device, electronic apparatus, and illumination device
US9329328B2 (en) 2012-04-30 2016-05-03 Coretronic Corporation Light guide plate and backlight module using the same
CN105044917A (en) * 2014-04-23 2015-11-11 三星电子株式会社 Backlight device and three-dimensional display apparatus having the same
EP2937626A1 (en) * 2014-04-23 2015-10-28 Samsung Electronics Co., Ltd Backlight device and three-dimensional display apparatus having the same
US9904105B2 (en) 2014-09-11 2018-02-27 Au Optronics Corporation Backlight module with light uniform design

Similar Documents

Publication Publication Date Title
TWM321111U (en) Light guide plate having micro-structure distribution, backlight module, and LCD
TWI475257B (en) Optical substrates having light collimating and diffusion structures
JP6564019B2 (en) Colored inorganic LED display for display devices with a large number of pixels
US8107036B2 (en) Backlight device, liquid crystal display apparatus, and light deflecting sheet
US8950884B2 (en) Backlight and display
TW201120522A (en) Stack combinational backlight panel used in display and display having the same.
JP4741866B2 (en) Light source device, display device using the same, and terminal device
CN101561521B (en) Lens array sheet, light source and liquid crystal display device
TW200823566A (en) Surface light source device and liquid crystal display device
US20210239896A1 (en) Backlight module, method for manufacturing same, method for controlling same, and display apparatus
TW200928451A (en) Diffuser plate, backlight and display having the same
WO2013033936A1 (en) Led backlight module and liquid crystal display device
TW201013116A (en) Illuminating device and display
JP2002071914A (en) Light diffusing body and display using the same
WO2015109742A1 (en) Backlight module and display device
TW200909930A (en) Backlight module and scattering module for same
TW201122583A (en) Light guide plate and backlight module
CN113253519A (en) Dot-matrix backlight source structure and display device
JP2007041261A (en) Optical element, optical device, personal digital assistant and manufacturing method of microlouver
JP2009048164A (en) Reflecting plate, display adopting it, and control method of reflected light distribution
CN215526295U (en) Dot-matrix backlight source structure and display device
TW201116895A (en) Backlight module and display module
JP5199780B2 (en) Surface light source element, light control member used therefor, and image display device using the same
US20210333636A1 (en) Backlight structure and display panel
CN101666889A (en) Photonic crystal light guide plate with polarization function

Legal Events

Date Code Title Description
MM4K Annulment or lapse of a utility model due to non-payment of fees