TWI845082B - Ventilation control apparatus and method - Google Patents

Ventilation control apparatus and method Download PDF

Info

Publication number
TWI845082B
TWI845082B TW111149537A TW111149537A TWI845082B TW I845082 B TWI845082 B TW I845082B TW 111149537 A TW111149537 A TW 111149537A TW 111149537 A TW111149537 A TW 111149537A TW I845082 B TWI845082 B TW I845082B
Authority
TW
Taiwan
Prior art keywords
ventilation
sensing data
ventilation device
control signal
time
Prior art date
Application number
TW111149537A
Other languages
Chinese (zh)
Other versions
TW202426833A (en
Inventor
蘇文彬
郭凱華
Original Assignee
台達電子工業股份有限公司
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to US18/308,662 priority Critical patent/US20240210058A1/en
Application granted granted Critical
Publication of TWI845082B publication Critical patent/TWI845082B/en
Publication of TW202426833A publication Critical patent/TW202426833A/en

Links

Images

Abstract

A ventilation control apparatus and method are provided. The apparatus comprises a storage, a ventilation apparatus, and a processor. The storage stores a plurality of first historical sensing data corresponding to a plurality of first time intervals and an activation condition. The apparatus calculates a plurality of deviation values corresponding to the first time intervals based on the first historical sensing data. The apparatus determines an adjustment parameter based on the deviation values. The apparatus updates the activation condition based on the adjustment parameter. The apparatus transmits a first control signal corresponding to the adjustment parameter to the ventilation apparatus to instruct the ventilation to operate based on the activation condition.

Description

換氣控制裝置及方法Ventilation control device and method

本發明係關於一種換氣控制裝置及方法。具體而言,本發明係關於一種可動態更新啟動運作條件之換氣控制裝置及方法。The present invention relates to a ventilation control device and method. Specifically, the present invention relates to a ventilation control device and method capable of dynamically updating the activation operation conditions.

在現有技術中,室內空間控制換氣量的方法主要可分為排程(Scheduling)控制及閾值(Threshold)控制。In the prior art, methods for controlling the ventilation volume of indoor spaces can be mainly divided into scheduling control and threshold control.

具體而言,排程控制採取的方法為計算該室內空間的換氣次數及換氣量,於固定時間啟動新風換氣設備以達到目標的換氣量。然而,由於排程控制方法不會動態調整換氣時間及換氣量,當室內空間人數突然變化的時候,可能會發生因為換氣量不足而使得空氣品質數值下降的缺點。Specifically, the method adopted by the scheduling control is to calculate the ventilation frequency and ventilation volume of the indoor space, and start the fresh air ventilation equipment at a fixed time to achieve the target ventilation volume. However, since the scheduling control method does not dynamically adjust the ventilation time and ventilation volume, when the number of people in the indoor space suddenly changes, the air quality value may decrease due to insufficient ventilation volume.

閾值控制方法為在室內空間內安裝各種汙染物的感測器(例如:二氧化碳、懸浮微粒等等的感測器),一旦換氣設備偵測到某一污染物質數值超過定義的閾值,則啟動新風換氣設備。然而,當閾值設定太低,可能發生過度換氣且造成空調設備耗能的缺點。當閾值設定太高,則可能發生換氣不足且汙染物數值超出法規標準的缺點。此外,由於閾值控制方法多數時間不啟動新風換氣設備,而僅在超出閾值時啟動,可能會造成室內空氣品質數值會有較大的震盪(Overshooting)現象。The threshold control method is to install various pollutant sensors (such as carbon dioxide, suspended particulate matter, etc.) in the indoor space. Once the ventilation equipment detects that the value of a certain pollutant exceeds the defined threshold, the fresh air ventilation equipment will be activated. However, when the threshold is set too low, over-ventilation may occur and cause the air conditioning equipment to consume energy. When the threshold is set too high, insufficient ventilation may occur and the pollutant value may exceed the regulatory standard. In addition, since the threshold control method does not activate the fresh air ventilation equipment most of the time, but only activates it when the threshold is exceeded, it may cause a large fluctuation (overshooting) in the indoor air quality value.

有鑑於此,如何提供一種可動態更新啟動運作條件之換氣控制技術,乃業界亟需努力之目標。In view of this, how to provide a ventilation control technology that can dynamically update the startup operating conditions is a goal that the industry urgently needs to work on.

本發明之一目的在於提供一種換氣控制裝置。該換氣控制裝置包含一儲存器、一換氣裝置及一處理器,該處理器電性連接至該儲存器及該換氣裝置。該儲存器用以儲存對應至複數個第一時間區間之複數筆第一歷史感測資料及一啟動運作條件。該換氣裝置對應至該啟動運作條件。該處理器基於該等第一歷史感測資料,計算對應該等第一時間區間之複數個偏差值。該處理器基於該等偏差值,決定一調整參數。基於該調整參數更新該啟動運作條件。該處理器傳送對應該調整參數之一第一控制訊號至該換氣裝置,以指示該換氣裝置基於該啟動運作條件運作。One purpose of the present invention is to provide a ventilation control device. The ventilation control device includes a memory, a ventilation device and a processor, and the processor is electrically connected to the memory and the ventilation device. The memory is used to store a plurality of first historical sensing data corresponding to a plurality of first time intervals and a startup operation condition. The ventilation device corresponds to the startup operation condition. The processor calculates a plurality of deviation values corresponding to the first time intervals based on the first historical sensing data. The processor determines an adjustment parameter based on the deviation values. The startup operation condition is updated based on the adjustment parameter. The processor transmits a first control signal corresponding to the adjustment parameter to the ventilation device to instruct the ventilation device to operate based on the activation operation condition.

本發明之另一目的在於提供一種換氣控制方法,用於包含一換氣裝置之一電子裝置,該換氣控制方法包含下列步驟:基於複數個第一時間區間之複數筆第一歷史感測資料,計算對應該等第一時間區間之複數個偏差值;傳送對應一調整參數之一第一控制訊號至該換氣裝置,其中該調整參數是基於該等偏差值決定;以及指示該換氣裝置基於一啟動運作條件運作,其中該啟動運作條件是基於該調整參數更新。Another object of the present invention is to provide a ventilation control method for an electronic device including a ventilation device, the ventilation control method comprising the following steps: based on a plurality of first historical sensing data of a plurality of first time intervals, calculating a plurality of deviation values corresponding to the first time intervals; transmitting a first control signal corresponding to an adjustment parameter to the ventilation device, wherein the adjustment parameter is determined based on the deviation values; and instructing the ventilation device to operate based on a startup operating condition, wherein the startup operating condition is updated based on the adjustment parameter.

本發明所提供之換氣控制技術(至少包含裝置及方法),藉由分析對應至複數個時間區間的複數筆歷史感測資料,計算複數個偏差值。接著,本發明所提供之換氣控制技術基於該等偏差值決定一調整參數,且傳送對應該調整參數之一第一控制訊號至該換氣裝置,以指示該換氣裝置基於該啟動運作條件運作。此外,本發明所提供之換氣控制技術更可透過計算即時感測資料及標準氣體閾值之比例值,決定該換氣裝置目前開啟之風量。另外,本發明所提供之換氣控制技術更可透過計算歷史感測資料於一時間區間之積分值,調整該換氣裝置之風量。由於本發明所提供之換氣控制技術,可動態更新啟動運作條件並基於多種不同情況決定及調整換氣裝置開啟的風量,解決習知技術的缺點。The ventilation control technology provided by the present invention (including at least a device and a method) calculates a plurality of deviation values by analyzing a plurality of historical sensing data corresponding to a plurality of time intervals. Then, the ventilation control technology provided by the present invention determines an adjustment parameter based on the deviation values, and transmits a first control signal corresponding to the adjustment parameter to the ventilation device to instruct the ventilation device to operate based on the startup operating condition. In addition, the ventilation control technology provided by the present invention can determine the air volume currently turned on by the ventilation device by calculating the ratio of the real-time sensing data and the standard gas threshold. In addition, the ventilation control technology provided by the present invention can adjust the air volume of the ventilation device by calculating the integral value of the historical sensing data in a time interval. Due to the ventilation control technology provided by the present invention, the startup operating conditions can be dynamically updated and the air volume of the ventilation device can be determined and adjusted based on a variety of different situations, thereby solving the shortcomings of the conventional technology.

以下結合圖式闡述本發明之詳細技術及實施方式,俾使本發明所屬技術領域中具有通常知識者能理解所請求保護之發明之技術特徵。The following describes the detailed techniques and implementations of the present invention in conjunction with the drawings so that a person having ordinary knowledge in the technical field to which the present invention belongs can understand the technical features of the invention for which protection is sought.

以下將透過實施方式來解釋本發明所提供之一種換氣控制裝置及方法。然而,該等實施方式並非用以限制本發明需在如該等實施方式所述之任何環境、應用或方式方能實施。因此,關於實施方式之說明僅為闡釋本發明之目的,而非用以限制本發明之範圍。應理解,在以下實施方式及圖式中,與本發明非直接相關之元件已省略而未繪示,且各元件之尺寸以及元件間之尺寸比例僅為例示而已,而非用以限制本發明之範圍。The following will explain a ventilation control device and method provided by the present invention through implementation methods. However, these implementation methods are not intended to limit the present invention to any environment, application or method described in these implementation methods. Therefore, the description of the implementation methods is only for the purpose of explaining the present invention, and is not intended to limit the scope of the present invention. It should be understood that in the following implementation methods and drawings, components that are not directly related to the present invention have been omitted and are not shown, and the size of each component and the size ratio between components are only for example, and are not intended to limit the scope of the present invention.

本發明之第一實施方式為換氣控制裝置1,其架構示意圖係描繪於第1圖。換氣控制裝置1包含一儲存器11、換氣裝置13及處理器15,處理器15電性連接至儲存器11及換氣裝置13。儲存器11可為記憶體、通用串列匯流排(Universal Serial Bus;USB)碟、硬碟、光碟、隨身碟或本發明所屬技術領域中具有通常知識者所知且具有相同功能之任何其他儲存媒體或電路。處理器15可為各種處理單元、中央處理單元(Central Processing Unit;CPU)、微處理器或本發明所屬技術領域中具有通常知識者所知悉之其他計算裝置。The first embodiment of the present invention is a ventilation control device 1, and its schematic diagram is depicted in FIG. 1. The ventilation control device 1 includes a memory 11, a ventilation device 13, and a processor 15, and the processor 15 is electrically connected to the memory 11 and the ventilation device 13. The memory 11 can be a memory, a Universal Serial Bus (USB) disk, a hard disk, an optical disk, a flash drive, or any other storage medium or circuit with the same function known to a person skilled in the art to which the present invention belongs. The processor 15 can be various processing units, a central processing unit (CPU), a microprocessor, or other computing devices known to a person skilled in the art to which the present invention belongs.

須說明者,換氣裝置13可為任何可藉由換氣方式改善空氣品質之換氣裝置,例如:全熱交換系統。於某些實施方式中,換氣裝置13可具有多個不同強度的風量模式,例如:強風量、中風量及小風量。It should be noted that the ventilation device 13 can be any ventilation device that can improve air quality by ventilation, such as a total heat exchange system. In some embodiments, the ventilation device 13 can have a plurality of wind volume modes of different strengths, such as strong wind volume, medium wind volume and small wind volume.

為便於理解,於下述說明時,將以空氣品質指標中的二氧化碳濃度(單位:ppm)為範例進行說明。本領域具有通常知識者應可以於以下內容理解本發明在其他種空氣數值的運作方式,故不贅言。For ease of understanding, the following description will be based on the carbon dioxide concentration (unit: ppm) in the air quality index as an example. A person with ordinary knowledge in the field should be able to understand the operation of the present invention in other air values from the following content, so it is not necessary to elaborate.

於本實施方式中,如第1圖所示,儲存器11儲存對應至複數個第一時間區間之複數筆第一歷史感測資料111及一啟動運作條件113。In this embodiment, as shown in FIG. 1 , the memory 11 stores a plurality of first historical sensing data 111 corresponding to a plurality of first time periods and a startup operation condition 113 .

於某些實施方式中,該等第一歷史感測資料111各者對應指示該等第一時間區間各者之一最高氣體數值。舉例而言,歷史感測資料可包含一周七天中每天(即,以一天為一時間區間)感測器所感測到的二氧化碳濃度最高數值。In some embodiments, each of the first historical sensing data 111 corresponds to a maximum gas value in each of the first time periods. For example, the historical sensing data may include the maximum value of carbon dioxide concentration sensed by the sensor every day (i.e., one day is a time period) in seven days of the week.

於本實施方式中,換氣裝置13對應至啟動運作條件113。須說明者,啟動運作條件113可能為一啟動閾值或是一啟動時間。In this embodiment, the ventilation device 13 corresponds to the start-up operation condition 113. It should be noted that the start-up operation condition 113 may be a start-up threshold or a start-up time.

舉例而言,當啟動運作條件113為啟動閾值時,處理器15可設定當閾值為二氧化碳濃度超過800ppm時,傳送對應之控制訊號啟動換氣裝置13。For example, when the startup operating condition 113 is a startup threshold, the processor 15 can be set to send a corresponding control signal to start the ventilation device 13 when the threshold is a carbon dioxide concentration exceeding 800 ppm.

又舉例而言,當啟動運作條件113為啟動時間時,處理器15可設定啟動時間為每日早上8點(即,開始上班時間),當時間到達啟動時間時,傳送對應之控制訊號啟動換氣裝置13。For another example, when the startup operating condition 113 is the startup time, the processor 15 can set the startup time to 8 o'clock every morning (i.e., the start time of work). When the time reaches the startup time, the corresponding control signal is sent to start the ventilation device 13.

於本實施方式中,處理器15基於該等第一歷史感測資料111,計算對應該等第一時間區間之複數個偏差值。接著,處理器15基於該等偏差值,決定一調整參數。In this embodiment, the processor 15 calculates a plurality of deviation values corresponding to the first time intervals based on the first historical sensing data 111. Then, the processor 15 determines an adjustment parameter based on the deviation values.

於某些實施方式中,該等偏差值指示該等第一歷史感測資料111與一標準氣體閾值之差異(即,差異值)。In some implementations, the deviation values indicate the difference between the first historical sensing data 111 and a standard gas threshold (ie, a difference value).

應理解,在換氣控制裝置1運作時,將以室內空間所量測到之氣體濃度不超過標準氣體閾值為目標(意即,當氣體濃度超過標準氣體閾值時,空氣品質即為不佳)。It should be understood that when the ventilation control device 1 is in operation, the goal is to ensure that the gas concentration measured in the indoor space does not exceed the standard gas threshold (that is, when the gas concentration exceeds the standard gas threshold, the air quality is poor).

為便於理解,請參考第2圖,第2圖例示了對應至一天中的二氧化碳偵測濃度示意圖,其縱軸為二氧化碳濃度數值(單位:ppm),橫軸為時間(單位:小時)。在本範例中,處理器15可設定一標準氣體閾值TH(即,設定目標值,例如:1000ppm)。For ease of understanding, please refer to FIG. 2, which illustrates a schematic diagram of carbon dioxide detection concentration corresponding to a day, wherein the vertical axis is the carbon dioxide concentration value (unit: ppm) and the horizontal axis is time (unit: hour). In this example, the processor 15 can set a standard gas threshold TH (i.e., set a target value, such as 1000ppm).

舉例而言,一室內空間於今日所偵測到之二氧化碳濃度曲線為L1。由第2圖可知,二氧化碳濃度曲線L1在當日最高數值時超過標準氣體閾值TH的偏差值為dTH(即,超過之最多時的數值)。因此,在本範例中,當啟動運作條件113為啟動閾值時,處理器15可決定調整參數(例如:透過偏差值dTH,將換氣裝置13對應之啟動閾值降低,以提早啟動換氣裝置13),以使二氧化碳濃度曲線L1整體向下平移為第2圖中的二氧化碳濃度曲線為L2。據此,二氧化碳濃度曲線為L2的數值於任一時間點均未超過標準氣體閾值TH。For example, the carbon dioxide concentration curve detected today in an indoor space is L1. As shown in FIG. 2, the deviation value of the carbon dioxide concentration curve L1 exceeding the standard gas threshold TH at the highest value of the day is dTH (i.e., the value when it exceeds the maximum value). Therefore, in this example, when the startup operation condition 113 is the startup threshold, the processor 15 can determine the adjustment parameter (for example: through the deviation value dTH, the startup threshold corresponding to the ventilation device 13 is lowered to start the ventilation device 13 earlier), so that the carbon dioxide concentration curve L1 is shifted downward as a whole to the carbon dioxide concentration curve L2 in FIG. 2. Accordingly, the value of the carbon dioxide concentration curve L2 does not exceed the standard gas threshold TH at any time point.

又舉例而言,當啟動運作條件113為啟動時間時,處理器15可決定調整參數(例如:透過偏差值dTH,將換氣裝置13對應之啟動時間提早,以提早啟動換氣裝置13),以使二氧化碳濃度曲線L1整體向下平移為第2圖中的二氧化碳濃度曲線為L2。據此,二氧化碳濃度曲線為L2的數值於任一時間點均未超過標準氣體閾值TH。For another example, when the startup operation condition 113 is the startup time, the processor 15 may determine the adjustment parameter (for example, by using the deviation value dTH, the startup time corresponding to the ventilation device 13 is advanced to start the ventilation device 13 earlier) so that the carbon dioxide concentration curve L1 is shifted downward as a whole to the carbon dioxide concentration curve L2 in FIG. 2. Accordingly, the value of the carbon dioxide concentration curve L2 does not exceed the standard gas threshold TH at any time point.

須說明者,處理器15可透過一對應表來計算偏差值dTH所對應之提前時間值。例如: 該對應表可指示當偏差值dTH為50ppm時,提前30分鐘啟動換氣裝置13。該對應表可指示當偏差值dTH為100ppm時,提前一小時啟動換氣裝置13。It should be noted that the processor 15 can calculate the advance time value corresponding to the deviation value dTH through a mapping table. For example, the mapping table can indicate that when the deviation value dTH is 50ppm, the ventilation device 13 is activated 30 minutes in advance. The mapping table can indicate that when the deviation value dTH is 100ppm, the ventilation device 13 is activated one hour in advance.

接著,處理器15基於該調整參數更新啟動運作條件113。最後,處理器15傳送對應該調整參數之一第一控制訊號至換氣裝置13,以指示換氣裝置13基於啟動運作條件113運作。Next, the processor 15 updates the startup operation condition 113 based on the adjustment parameter. Finally, the processor 15 transmits a first control signal corresponding to the adjustment parameter to the ventilation device 13 to instruct the ventilation device 13 to operate based on the startup operation condition 113.

於某些實施方式中,啟動運作條件113對應至一啟動閾值,且該調整參數對應至一閾值調整值,且處理器15更執行下列運作:傳送對應該閾值調整值之該第一控制訊號至換氣裝置13,以指示換氣裝置13基於該啟動閾值運作。In some implementations, the activation operation condition 113 corresponds to a activation threshold, and the adjustment parameter corresponds to a threshold adjustment value, and the processor 15 further performs the following operations: transmitting the first control signal corresponding to the threshold adjustment value to the ventilation device 13 to instruct the ventilation device 13 to operate based on the activation threshold.

於某些實施方式中,處理器15可分析複數天的調整參數狀況,來更新啟動閾值。以啟動運作條件113為啟動閾值為例,處理器15收集了一周中六天上班日的歷史感測資料,處理器15預設換氣裝置13之啟動閾值為800ppm。處理器15收集了第一天至第六天之調整參數分別為750ppm、750ppm、750ppm、764ppm、750ppm及820ppm。於本範例中,處理器15可將全部數值相加取平均後,將啟動閾值更新為764ppm。In some embodiments, the processor 15 may analyze the adjustment parameter status of multiple days to update the activation threshold. For example, the activation operation condition 113 is the activation threshold. The processor 15 collects historical sensing data for six working days in a week. The processor 15 presets the activation threshold of the ventilation device 13 to be 800ppm. The adjustment parameters collected by the processor 15 from the first day to the sixth day are 750ppm, 750ppm, 750ppm, 764ppm, 750ppm and 820ppm respectively. In this example, the processor 15 can add all the values and take the average, and then update the activation threshold to 764ppm.

於某些實施方式中,處理器15可更將其他非上班日(例如:星期日)以預設之一啟動閾值(例如:800ppm)加入平均計算,以平衡整體權重之計算。In some implementations, the processor 15 may further add other non-working days (e.g., Sunday) into the average calculation with a preset activation threshold (e.g., 800 ppm) to balance the calculation of the overall weight.

於某些實施方式中,啟動運作條件113對應至一啟動時間,且該調整參數對應至一時間調整值,且處理器15更執行下列運作:傳送對應該時間調整值之該第一控制訊號至換氣裝置13,以指示換氣裝置13基於該啟動時間運作。In some embodiments, the startup operation condition 113 corresponds to a startup time, and the adjustment parameter corresponds to a time adjustment value, and the processor 15 further performs the following operations: transmitting the first control signal corresponding to the time adjustment value to the ventilation device 13 to instruct the ventilation device 13 to operate based on the startup time.

於某些實施方式中,處理器15可分析複數天的調整參數狀況,來更新啟動閾值。以啟動運作條件113為啟動時間為例,處理器15可收集一周中六天上班日的歷史感測資料,處理器15預設換氣裝置13之啟動閾值為早上8點。處理器15收集了第一天至第六天之調整參數分別為7點30分、7點30分、7點30分、7點、8點30分及8點。於本範例中,處理器15可將全部數值相加取平均後,將啟動時間更新為7點40分。In some embodiments, the processor 15 may analyze the adjustment parameter status of multiple days to update the start threshold. For example, the start operation condition 113 is the start time. The processor 15 may collect historical sensing data for six working days in a week. The processor 15 presets the start threshold of the ventilation device 13 to 8 o'clock in the morning. The processor 15 collects the adjustment parameters of the first day to the sixth day, which are 7:30, 7:30, 7:30, 7 o'clock, 8:30 and 8 o'clock respectively. In this example, the processor 15 can add all the values and take the average, and then update the start time to 7:40.

須說明者,除了更新啟動運作條件113之外,本發明更提出在換氣裝置13運作時,動態地根據多個即時資料決定及調整換氣裝置13之風量的方式。以下將詳細說明於某些實施方式中關於動態決定及調整換氣裝置13之風量的方式。It should be noted that, in addition to updating the startup operating condition 113, the present invention further proposes a method for dynamically determining and adjusting the air volume of the ventilation device 13 based on a plurality of real-time data when the ventilation device 13 is operating. The following will describe in detail the method for dynamically determining and adjusting the air volume of the ventilation device 13 in certain embodiments.

於某些實施方式中,處理器15可自換氣裝置13接收對應至一第二時間區間之複數筆第二歷史感測資料;以及基於該等第二歷史感測資料,產生一第二控制訊號,其中該第二控制訊號用以決定換氣裝置13之一風量。In some implementations, the processor 15 may receive a plurality of second historical sensing data corresponding to a second time period from the ventilation device 13 ; and generate a second control signal based on the second historical sensing data, wherein the second control signal is used to determine an air volume of the ventilation device 13 .

具體而言,該等第二歷史感測資料包含一即時感測資料(即,目前偵測到的二氧化碳濃度),且處理器15更執行下列運作:計算該即時感測資料及標準氣體閾值TH之一比例值,以產生該第二控制訊號。Specifically, the second historical sensing data include a real-time sensing data (ie, the currently detected carbon dioxide concentration), and the processor 15 further performs the following operation: calculating a ratio of the real-time sensing data and a standard gas threshold TH to generate the second control signal.

舉例而言,處理器15可利用以下的比例積分微分( Proportional Integral Derivative;PID)控制器中的比例(Proportional)單元公式決定換氣裝置13之該風量,舉例如下: For example, the processor 15 may use the proportional unit formula in the following proportional integral derivative (PID) controller to determine the air volume of the ventilation device 13, for example:

於上述公式中, 為控制輸出、 為操作變量、參數 代表一比例係數(例如:差距每100ppm則提高一個風量等級)、參數 為誤差值(即,設定值(SP)減去回授值(PV))。 In the above formula, To control the output, For operation variables and parameters Represents a proportionality factor (for example, the air volume level will increase by one for every 100ppm difference), parameter is the error value (i.e., set value (SP) minus feedback value (PV)).

為便於理解,請參考第3A圖,第3A圖對應至一二氧化碳濃度曲線L3。應理解,處理器15可於任一時間點計算誤差值e,以決定當下換氣裝置13之風量。For easier understanding, please refer to FIG. 3A , which corresponds to a carbon dioxide concentration curve L3 . It should be understood that the processor 15 can calculate the error value e at any time point to determine the current air volume of the ventilation device 13 .

舉例而言,標準氣體閾值TH為1000ppm,若處理器於第一時間點計算到之二氧化碳濃度為800ppm時(即,標準氣體閾值TH減去目前偵測濃度值之誤差值為200ppm),處理器15決定換氣裝置13之風量為最低。若處理器於第二時間點計算到之二氧化碳濃度為900ppm時(即,標準氣體閾值TH減去目前偵測濃度值之誤差值為100ppm),處理器15決定換氣裝置13之風量為中等(即,每100ppm提高一個風量等級)。若處理器於第三時間點計算到之二氧化碳濃度為1000ppm時(即,標準氣體閾值TH減去目前偵測濃度值之誤差值為0ppm),處理器15決定換氣裝置13之風量為最高。For example, the standard gas threshold TH is 1000ppm. If the carbon dioxide concentration calculated by the processor at the first time point is 800ppm (i.e., the error value of the standard gas threshold TH minus the current detection concentration value is 200ppm), the processor 15 determines that the air volume of the ventilation device 13 is the lowest. If the carbon dioxide concentration calculated by the processor at the second time point is 900ppm (i.e., the error value of the standard gas threshold TH minus the current detection concentration value is 100ppm), the processor 15 determines that the air volume of the ventilation device 13 is medium (i.e., the air volume level is increased by one level every 100ppm). If the carbon dioxide concentration calculated by the processor at the third time point is 1000 ppm (i.e., the standard gas threshold TH minus the error value of the current detected concentration value is 0 ppm), the processor 15 determines that the air volume of the ventilation device 13 is the highest.

須說明者,處理器15可依據不同應用時的情況,對應設定實際需要決定風量的頻率,例如:針對空氣數值可能頻繁波動的應用場景,頻率設定較高。針對空氣數值可能較少波動的應用場景,頻率設定較低。具體而言,處理器15可透過設定一檢視/計算頻率(例如:每30秒檢視一次)計算即時感測資料及標準氣體閾值TH之比例值決定目前換氣裝置13應開啟的風量。It should be noted that the processor 15 can set the frequency of actually determining the air volume according to different application situations. For example, for application scenarios where the air value may fluctuate frequently, the frequency is set higher. For application scenarios where the air value may fluctuate less, the frequency is set lower. Specifically, the processor 15 can set a review/calculation frequency (for example, review once every 30 seconds) to calculate the ratio of the real-time sensing data and the standard gas threshold TH to determine the air volume that the ventilation device 13 should currently open.

於某些實施方式中,處理器15可計算複數個時間點(例如:計算30分鐘內的6個時間點(即,每5分鐘一個時間點)的平均氣體濃度,且基於該平均氣體濃度決定換氣裝置13之風量。In some embodiments, the processor 15 may calculate the average gas concentration at a plurality of time points (for example, calculating the average gas concentration at 6 time points within 30 minutes (i.e., one time point every 5 minutes), and determine the air volume of the ventilation device 13 based on the average gas concentration.

於某些實施方式中,由於曲線逼近穩定狀態(即,數值接近標準氣體閾值TH),可透過降低風量來節省空調損耗的資源。於本實施方式中,處理器15自換氣裝置13接收對應至一第二時間區間之複數筆第二歷史感測資料;以及基於該等第二歷史感測資料,產生一第三控制訊號,其中該第三控制訊號用以調整換氣裝置13之該風量。In some implementations, since the curve approaches a stable state (i.e., the value is close to the standard gas threshold TH), air conditioning resources can be saved by reducing the air volume. In this implementation, the processor 15 receives a plurality of second historical sensing data corresponding to a second time period from the ventilation device 13; and based on the second historical sensing data, generates a third control signal, wherein the third control signal is used to adjust the air volume of the ventilation device 13.

具體而言,處理器15計算該等第二歷史感測資料於一第三時間區間之一積分值;以及比對該積分值及標準氣體閾值TH,以產生該第三控制訊號。Specifically, the processor 15 calculates an integral value of the second historical sensing data in a third time period; and compares the integral value with the standard gas threshold TH to generate the third control signal.

舉例而言,處理器15可利用以下的比例積分微分控制器中的積分(Integral)單元公式調整換氣裝置13之該風量,舉例如下: For example, the processor 15 may use the integral unit formula in the following proportional integral derivative controller to adjust the air volume of the ventilation device 13, for example:

於上述公式中, 為控制輸出、 為操作變量、參數 代表一積分係數(例如:差距每500ppm則減去一個風量等級)、參數 為誤差值(即,設定值(SP)減去回授值(PV))、參數 為目前時間、參數 為積分變數(數值從0到目前時間{\displaystyle t} )。 In the above formula, To control the output, For operation variables and parameters Represents an integral coefficient (for example, for every 500ppm difference, one air volume level is reduced), parameter is the error value (i.e., the set value (SP) minus the feedback value (PV)), parameter For the current time, parameters is the integral variable (value from 0 to the current time {\displaystyle t} ).

為便於理解,請參考第3B圖,第3B圖對應至一二氧化碳濃度曲線L3。應理解,處理器15可透過一預設之滑動時間視窗(例如:以每一小時為一時間區間)計算時間區間之積分值,以調整當下換氣裝置13之風量。須說明者,處理器15可依據不同應用時的情況,對應設定滑動時間視窗的範圍。For easier understanding, please refer to FIG. 3B, which corresponds to a carbon dioxide concentration curve L3. It should be understood that the processor 15 can calculate the integral value of the time interval through a preset sliding time window (for example, one hour as a time interval) to adjust the air volume of the current ventilation device 13. It should be noted that the processor 15 can set the range of the sliding time window according to different application situations.

舉例而言,二氧化碳濃度曲線L3與標準氣體閾值TH的積分區域為A1,處理器15可計算於一第一時間點至一第二時間點中的積分值,若一小時內(即,滑動時間視窗)的累積誤差值達500ppm時,則調降一階的風量。For example, the integral area of the carbon dioxide concentration curve L3 and the standard gas threshold TH is A1, and the processor 15 can calculate the integral value from a first time point to a second time point. If the accumulated error within one hour (i.e., the sliding time window) reaches 500ppm, the air volume is reduced by one level.

於某些實施方式中,處理器15可更同時透過該第二控制訊號決定換氣裝置13之一風量,且透過該第三控制訊號調整換氣裝置13之該風量。具體而言,處理器15自換氣裝置13接收對應至一第二時間區間之複數筆第二歷史感測資料;以及基於該等第二歷史感測資料,產生一第二控制訊號及一第三控制訊號,其中該第二控制訊號用以決定換氣裝置13之一風量,且該第三控制訊號用以調整換氣裝置13之該風量。In some embodiments, the processor 15 may determine an air volume of the ventilation device 13 through the second control signal and adjust the air volume of the ventilation device 13 through the third control signal. Specifically, the processor 15 receives a plurality of second historical sensing data corresponding to a second time period from the ventilation device 13; and based on the second historical sensing data, generates a second control signal and a third control signal, wherein the second control signal is used to determine an air volume of the ventilation device 13, and the third control signal is used to adjust the air volume of the ventilation device 13.

舉例而言,處理器15可利用以下的比例積分微分控制器中的比例單元及積分單元公式同時決定及調整換氣裝置13之該風量,舉例如下: For example, the processor 15 can use the proportional unit and integral unit formula in the following proportional integral derivative controller to simultaneously determine and adjust the air volume of the ventilation device 13, for example:

於上述公式中, 為控制輸出、 為操作變量、參數 代表一比例係數(例如:差距每100ppm則提高一個風量等級)、參數 為誤差值(即,設定值(SP)減去回授值(PV))、參數 代表一積分係數(例如:差距每500ppm則減去一個風量等級)、參數 為誤差值(即,設定值(SP)減去回授值(PV))、參數 為目前時間、參數 為積分變數(數值從0到目前時間{\displaystyle t} )。 In the above formula, To control the output, For operation variables and parameters Represents a proportionality factor (for example, the air volume level will increase by one for every 100ppm difference), parameter is the error value (i.e., the set value (SP) minus the feedback value (PV)), parameter Represents an integral coefficient (for example, for every 500ppm difference, one air volume level is reduced), parameter is the error value (i.e., the set value (SP) minus the feedback value (PV)), parameter For the current time, parameters is the integral variable (value from 0 to the current time {\displaystyle t} ).

由上述說明可知,本發明所提供之換氣控制裝置1,藉由分析對應至複數個時間區間的複數筆歷史感測資料,計算複數個偏差值。接著,本發明所提供之換氣控制技術基於該等偏差值決定一調整參數,且傳送對應該調整參數之一第一控制訊號至該換氣裝置,以指示該換氣裝置基於該啟動運作條件運作。此外,本發明所提供之換氣控制技術更可透過計算即時感測資料及標準氣體閾值之比例值,決定該換氣裝置目前開啟之風量。另外,本發明所提供之換氣控制技術更可透過計算歷史感測資料於一時間區間之積分值,調整該換氣裝置之風量。由於本發明所提供之換氣控制技術,可動態更新啟動運作條件並基於多種不同情況決定及調整換氣裝置開啟的風量,解決習知技術的缺點。From the above description, it can be seen that the ventilation control device 1 provided by the present invention calculates a plurality of deviation values by analyzing a plurality of historical sensing data corresponding to a plurality of time intervals. Then, the ventilation control technology provided by the present invention determines an adjustment parameter based on the deviation values, and transmits a first control signal corresponding to the adjustment parameter to the ventilation device to instruct the ventilation device to operate based on the startup operating condition. In addition, the ventilation control technology provided by the present invention can determine the air volume currently turned on by the ventilation device by calculating the ratio of the real-time sensing data and the standard gas threshold. In addition, the ventilation control technology provided by the present invention can adjust the air volume of the ventilation device by calculating the integral value of the historical sensing data in a time interval. Due to the ventilation control technology provided by the present invention, the startup operating conditions can be dynamically updated and the air volume of the ventilation device can be determined and adjusted based on a variety of different situations, thereby solving the shortcomings of the conventional technology.

本發明之第二實施方式為一換氣控制方法,其流程圖係描繪於第4圖。換氣控制方法400適用於包含一換氣裝置之一電子裝置,例如:第一實施方式所述之換氣控制裝置1。換氣控制方法400透過步驟S401至步驟S405更新該換氣裝置所具有之該啟動運作條件。The second embodiment of the present invention is a ventilation control method, and its flow chart is depicted in FIG4. The ventilation control method 400 is applicable to an electronic device including a ventilation device, such as the ventilation control device 1 described in the first embodiment. The ventilation control method 400 updates the activation operation condition of the ventilation device through steps S401 to S405.

於步驟S401,由電子裝置基於複數個第一時間區間之複數筆第一歷史感測資料,計算對應該等第一時間區間之複數個偏差值。接著,於步驟S403,由電子裝置傳送對應一調整參數之一第一控制訊號至該換氣裝置,其中該調整參數是基於該等偏差值決定。In step S401, the electronic device calculates a plurality of deviation values corresponding to a plurality of first time intervals based on a plurality of first historical sensing data in the plurality of first time intervals. Then, in step S403, the electronic device transmits a first control signal corresponding to an adjustment parameter to the ventilation device, wherein the adjustment parameter is determined based on the deviation values.

最後,於步驟S405,由電子裝置指示該換氣裝置基於一啟動運作條件運作,其中該啟動運作條件是基於該調整參數更新。Finally, in step S405, the electronic device instructs the ventilation device to operate based on a startup operating condition, wherein the startup operating condition is updated based on the adjustment parameter.

於某些實施方式中,該等第一歷史感測資料各者對應指示該等第一時間區間各者之一最高氣體數值。In some implementations, each of the first historical sensing data corresponds to a maximum gas value indicative of each of the first time periods.

於某些實施方式中,該等偏差值指示該等第一歷史感測資料與一標準氣體閾值之差異。In some implementations, the deviation values indicate differences between the first historical sensing data and a standard gas threshold.

於某些實施方式中,該換氣裝置具有之該啟動運作條件對應至一啟動閾值,該調整參數對應至一閾值調整值,且換氣控制方法400更包含以下步驟:傳送對應該閾值調整值之該第一控制訊號至該換氣裝置,以指示該換氣裝置基於該啟動閾值運作。In some embodiments, the startup operating condition of the ventilation device corresponds to a startup threshold, the adjustment parameter corresponds to a threshold adjustment value, and the ventilation control method 400 further includes the following steps: transmitting the first control signal corresponding to the threshold adjustment value to the ventilation device to instruct the ventilation device to operate based on the startup threshold.

於某些實施方式中,該換氣裝置具有之該啟動運作條件對應至一啟動時間,且該調整參數對應至一時間調整值,且換氣控制方法400更包含以下步驟:傳送對應該時間調整值之該第一控制訊號至該換氣裝置,以指示該換氣裝置基於該啟動時間運作。In some embodiments, the startup operating condition of the ventilation device corresponds to a startup time, and the adjustment parameter corresponds to a time adjustment value, and the ventilation control method 400 further includes the following steps: transmitting the first control signal corresponding to the time adjustment value to the ventilation device to instruct the ventilation device to operate based on the startup time.

於某些實施方式中,換氣控制方法400更包含以下步驟:自該換氣裝置接收對應至一第二時間區間之複數筆第二歷史感測資料;以及基於該等第二歷史感測資料,產生一第二控制訊號,其中該第二控制訊號用以決定該換氣裝置之一風量。In some embodiments, the ventilation control method 400 further includes the following steps: receiving a plurality of second historical sensing data corresponding to a second time period from the ventilation device; and generating a second control signal based on the second historical sensing data, wherein the second control signal is used to determine an air volume of the ventilation device.

於某些實施方式中,該等第二歷史感測資料包含一即時感測資料,且換氣控制方法400更包含以下步驟:計算該即時感測資料及一標準氣體閾值之一比例值,以產生該第二控制訊號。In some implementations, the second historical sensing data include real-time sensing data, and the ventilation control method 400 further includes the following step: calculating a ratio value between the real-time sensing data and a standard gas threshold to generate the second control signal.

於某些實施方式中,換氣控制方法400更包含以下步驟:自該換氣裝置接收對應至一第二時間區間之複數筆第二歷史感測資料;以及基於該等第二歷史感測資料,產生一第三控制訊號,其中該第三控制訊號用以調整該換氣裝置之該風量。In some embodiments, the ventilation control method 400 further includes the following steps: receiving a plurality of second historical sensing data corresponding to a second time period from the ventilation device; and generating a third control signal based on the second historical sensing data, wherein the third control signal is used to adjust the air volume of the ventilation device.

於某些實施方式中,換氣控制方法400更包含以下步驟:計算該等第二歷史感測資料於一第三時間區間之一積分值;以及比對該積分值及一標準氣體閾值,以產生該第三控制訊號。In some implementations, the ventilation control method 400 further includes the following steps: calculating an integral value of the second historical sensing data in a third time period; and comparing the integral value with a standard gas threshold to generate the third control signal.

於某些實施方式中,換氣控制方法400更包含以下步驟:自該換氣裝置接收對應至一第二時間區間之複數筆第二歷史感測資料;以及基於該等第二歷史感測資料,產生一第二控制訊號及一第三控制訊號,其中該第二控制訊號用以決定該換氣裝置之一風量,且該第三控制訊號用以調整該換氣裝置之該風量。In some embodiments, the ventilation control method 400 further includes the following steps: receiving a plurality of second historical sensing data corresponding to a second time period from the ventilation device; and generating a second control signal and a third control signal based on the second historical sensing data, wherein the second control signal is used to determine an air volume of the ventilation device, and the third control signal is used to adjust the air volume of the ventilation device.

除了上述步驟,第二實施方式亦能執行第一實施方式所描述之換氣控制裝置1之所有運作及步驟,具有同樣之功能,且達到同樣之技術效果。本發明所屬技術領域中具有通常知識者可直接瞭解第二實施方式如何基於上述第一實施方式以執行此等運作及步驟,具有同樣之功能,並達到同樣之技術效果,故不贅述。In addition to the above steps, the second embodiment can also perform all operations and steps of the ventilation control device 1 described in the first embodiment, has the same functions, and achieves the same technical effects. A person with ordinary knowledge in the technical field to which the present invention belongs can directly understand how the second embodiment performs such operations and steps based on the above first embodiment, has the same functions, and achieves the same technical effects, so it is not repeated.

需說明者,於本發明專利說明書及申請專利範圍中,某些用語(包含:時間區間、歷史感測資料、控制訊號、批量標準化運作、閘門遞迴單位運作等等)前被冠以「第一」、「第二」或「第三」,該等「第一」、「第二」、或「第三」僅用來區分不同之用語。例如:第一控制訊號及第二控制訊號中之「第一」及「第二」僅用來表示不同運作時所使用之控制訊號。It should be noted that in the patent specification and the scope of the patent application of this invention, some terms (including: time period, historical sensing data, control signal, batch standardization operation, gate reciprocating unit operation, etc.) are preceded by "first", "second", or "third". Such "first", "second", or "third" are only used to distinguish different terms. For example: "first" and "second" in the first control signal and the second control signal are only used to indicate the control signals used in different operations.

綜上所述,本發明所提供之換氣控制技術(至少包含裝置及方法),藉由分析對應至複數個時間區間的複數筆歷史感測資料,計算複數個偏差值。接著,本發明所提供之換氣控制技術基於該等偏差值決定一調整參數,且傳送對應該調整參數之一第一控制訊號至該換氣裝置,以指示該換氣裝置基於該啟動運作條件運作。此外,本發明所提供之換氣控制技術更可透過計算即時感測資料及標準氣體閾值之比例值,決定該換氣裝置目前開啟之風量。另外,本發明所提供之換氣控制技術更可透過計算歷史感測資料於一時間區間之積分值,調整該換氣裝置之風量。由於本發明所提供之換氣控制技術,可動態更新啟動運作條件並基於多種不同情況決定及調整換氣裝置開啟的風量,解決習知技術的缺點。In summary, the ventilation control technology provided by the present invention (at least including the device and the method) calculates a plurality of deviation values by analyzing a plurality of historical sensing data corresponding to a plurality of time periods. Then, the ventilation control technology provided by the present invention determines an adjustment parameter based on the deviation values, and transmits a first control signal corresponding to the adjustment parameter to the ventilation device to instruct the ventilation device to operate based on the startup operating condition. In addition, the ventilation control technology provided by the present invention can determine the air volume currently turned on by the ventilation device by calculating the ratio of the real-time sensing data and the standard gas threshold. In addition, the ventilation control technology provided by the present invention can adjust the air volume of the ventilation device by calculating the integral value of the historical sensing data in a time period. Due to the ventilation control technology provided by the present invention, the startup operating conditions can be dynamically updated and the air volume of the ventilation device can be determined and adjusted based on a variety of different situations, thereby solving the shortcomings of the conventional technology.

上述實施方式僅用來例舉本發明之部分實施態樣,以及闡釋本發明之技術特徵,而非用來限制本發明之保護範疇及範圍。任何本發明所屬技術領域中具有通常知識者可輕易完成之改變或均等性之安排均屬於本發明所主張之範圍,而本發明之權利保護範圍以申請專利範圍為準。The above implementations are only used to exemplify some implementation modes of the present invention and to explain the technical features of the present invention, and are not used to limit the scope and range of protection of the present invention. Any changes or equivalent arrangements that can be easily completed by a person with ordinary knowledge in the technical field to which the present invention belongs are within the scope advocated by the present invention, and the scope of protection of the present invention is subject to the scope of the patent application.

1:換氣控制裝置 11:儲存器 13:換氣裝置 15:處理器 111:第一歷史感測資料 113:啟動運作條件 TH:標準氣體閾值 dTH:偏差值 L1:二氧化碳濃度曲線 L2:二氧化碳濃度曲線 L3:二氧化碳濃度曲線 e:誤差值 A1:積分區域 400:換氣控制方法 S401、S403、S405:步驟1: Ventilation control device 11: Memory 13: Ventilation device 15: Processor 111: First historical sensing data 113: Start-up operation conditions TH: Standard gas threshold value dTH: Deviation value L1: Carbon dioxide concentration curve L2: Carbon dioxide concentration curve L3: Carbon dioxide concentration curve e: Error value A1: Integration area 400: Ventilation control method S401, S403, S405: Steps

第1圖係描繪第一實施方式之換氣控制裝置之架構示意圖; 第2圖係描繪第一實施方式之二氧化碳偵測濃度示意圖; 第3A圖係描繪某些實施方式之二氧化碳偵測濃度示意圖; 第3B圖係描繪某些實施方式之二氧化碳偵測濃度示意圖;以及 第4圖係描繪第二實施方式之換氣控制方法之部分流程圖。 Figure 1 is a schematic diagram of the structure of the ventilation control device of the first embodiment; Figure 2 is a schematic diagram of the carbon dioxide detection concentration of the first embodiment; Figure 3A is a schematic diagram of the carbon dioxide detection concentration of certain embodiments; Figure 3B is a schematic diagram of the carbon dioxide detection concentration of certain embodiments; and Figure 4 is a partial flow chart of the ventilation control method of the second embodiment.

國內寄存資訊(請依寄存機構、日期、號碼順序註記) 無 國外寄存資訊(請依寄存國家、機構、日期、號碼順序註記) 無 Domestic storage information (please note in the order of storage institution, date, and number) None Foreign storage information (please note in the order of storage country, institution, date, and number) None

400:換氣控制方法 400: Ventilation control method

S401、S403、S405:步驟 S401, S403, S405: Steps

Claims (11)

一種換氣控制裝置,包含:一儲存器,用以儲存對應至複數個第一時間區間之複數筆第一歷史感測資料及一啟動運作條件,其中該啟動運作條件對應至一啟動閾值或一啟動時間;一換氣裝置,其中該換氣裝置對應至該啟動運作條件;以及一處理器,電性連接至該儲存器及該換氣裝置,用以執行下列運作:基於該等第一歷史感測資料,計算對應該等第一時間區間之複數個偏差值;基於該等偏差值,決定一調整參數;基於該調整參數更新該啟動運作條件;以及傳送對應該調整參數之一第一控制訊號至該換氣裝置,以指示該換氣裝置基於該啟動運作條件運作。 A ventilation control device includes: a memory for storing a plurality of first historical sensing data corresponding to a plurality of first time intervals and a start-up operation condition, wherein the start-up operation condition corresponds to a start-up threshold or a start-up time; a ventilation device, wherein the ventilation device corresponds to the start-up operation condition; and a processor electrically connected to the memory and the ventilation device. The device is configured to perform the following operations: based on the first historical sensing data, calculate a plurality of deviation values corresponding to the first time intervals; based on the deviation values, determine an adjustment parameter; based on the adjustment parameter, update the activation operation condition; and transmit a first control signal corresponding to the adjustment parameter to the ventilation device to instruct the ventilation device to operate based on the activation operation condition. 如請求項1所述之換氣控制裝置,其中該等第一歷史感測資料各者對應指示該等第一時間區間各者之一最高氣體數值。 A ventilation control device as described in claim 1, wherein each of the first historical sensing data corresponds to a maximum gas value in each of the first time periods. 如請求項1所述之換氣控制裝置,其中該等偏差值指示該等第一歷史感測資料與一標準氣體閾值之差異。 A ventilation control device as described in claim 1, wherein the deviation values indicate the difference between the first historical sensing data and a standard gas threshold. 如請求項1所述之換氣控制裝置,其中該啟動運作條件對應至該啟動閾值,且該調整參數對應至一閾值調整值,且該處理器更執行下列運作:傳送對應該閾值調整值之該第一控制訊號至該換氣裝置,以指示該換氣裝置基於該啟動閾值運作。 A ventilation control device as described in claim 1, wherein the activation operation condition corresponds to the activation threshold, and the adjustment parameter corresponds to a threshold adjustment value, and the processor further performs the following operation: transmitting the first control signal corresponding to the threshold adjustment value to the ventilation device to instruct the ventilation device to operate based on the activation threshold. 如請求項1所述之換氣控制裝置,其中該啟動運作條件對應至該啟動時間,且該調整參數對應至一時間調整值,且該處理器更執行下列運作:傳送對應該時間調整值之該第一控制訊號至該換氣裝置,以指示該換氣裝置基於該啟動時間運作。 A ventilation control device as described in claim 1, wherein the activation operation condition corresponds to the activation time, and the adjustment parameter corresponds to a time adjustment value, and the processor further performs the following operation: transmitting the first control signal corresponding to the time adjustment value to the ventilation device to instruct the ventilation device to operate based on the activation time. 如請求項1所述之換氣控制裝置,其中該處理器更執行下列運作:自該換氣裝置接收對應至一第二時間區間之複數筆第二歷史感測資料;以及基於該等第二歷史感測資料,產生一第二控制訊號,其中該第二控制訊號用以決定該換氣裝置之一風量。 The ventilation control device as described in claim 1, wherein the processor further performs the following operations: receiving a plurality of second historical sensing data corresponding to a second time period from the ventilation device; and generating a second control signal based on the second historical sensing data, wherein the second control signal is used to determine an air volume of the ventilation device. 如請求項6所述之換氣控制裝置,其中該等第二歷史感測資料包含一即時感測資料,且該處理器更執行下列運作:計算該即時感測資料及一標準氣體閾值之一比例值,以產生該第二控制訊號。 The ventilation control device as described in claim 6, wherein the second historical sensing data includes a real-time sensing data, and the processor further performs the following operation: calculating a ratio value of the real-time sensing data and a standard gas threshold value to generate the second control signal. 如請求項1所述之換氣控制裝置,其中該換氣裝置對應至一風量,其中該處理器更執行下列運作:自該換氣裝置接收對應至一第二時間區間之複數筆第二歷史感測資料;以及基於該等第二歷史感測資料,產生一第三控制訊號,其中該第三控制訊號用以調整該換氣裝置之該風量。 A ventilation control device as described in claim 1, wherein the ventilation device corresponds to an air volume, wherein the processor further performs the following operations: receiving a plurality of second historical sensing data corresponding to a second time period from the ventilation device; and generating a third control signal based on the second historical sensing data, wherein the third control signal is used to adjust the air volume of the ventilation device. 如請求項8所述之換氣控制裝置,其中該處理器更執行下列運作:計算該等第二歷史感測資料於一第三時間區間之一積分值;以及比對該積分值及一標準氣體閾值,以產生該第三控制訊號。 The ventilation control device as described in claim 8, wherein the processor further performs the following operations: calculating an integral value of the second historical sensing data in a third time period; and comparing the integral value with a standard gas threshold to generate the third control signal. 如請求項1所述之換氣控制裝置,其中該處理器更執行下列運作:自該換氣裝置接收對應至一第二時間區間之複數筆第二歷史感測資料;以及基於該等第二歷史感測資料,產生一第二控制訊號及一第三控制訊號,其中該第二控制訊號用以決定該換氣裝置之一風量,且該第三控制訊號用以調整該換氣裝置之該風量。 The ventilation control device as described in claim 1, wherein the processor further performs the following operations: receiving a plurality of second historical sensing data corresponding to a second time period from the ventilation device; and generating a second control signal and a third control signal based on the second historical sensing data, wherein the second control signal is used to determine an air volume of the ventilation device, and the third control signal is used to adjust the air volume of the ventilation device. 一種換氣控制方法,用於包含一換氣裝置之一電子裝置,該換氣控制方法包含下列步驟:基於複數個第一時間區間之複數筆第一歷史感測資料,計算對應該等第一時間區間之複數個偏差值;傳送對應一調整參數之一第一控制訊號至該換氣裝置,其中該調整參數是基於該等偏差值決定;以及指示該換氣裝置基於一啟動運作條件運作,其中該啟動運作條件是基於該調整參數更新,且該啟動運作條件對應至一啟動閾值或一啟動時間。 A ventilation control method is used for an electronic device including a ventilation device, the ventilation control method including the following steps: based on a plurality of first historical sensing data of a plurality of first time intervals, calculating a plurality of deviation values corresponding to the first time intervals; transmitting a first control signal corresponding to an adjustment parameter to the ventilation device, wherein the adjustment parameter is determined based on the deviation values; and instructing the ventilation device to operate based on a startup operation condition, wherein the startup operation condition is updated based on the adjustment parameter, and the startup operation condition corresponds to a startup threshold or a startup time.
TW111149537A 2022-12-22 2022-12-22 Ventilation control apparatus and method TWI845082B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/308,662 US20240210058A1 (en) 2022-12-22 2023-04-27 Ventilation control apparatus and method

Publications (2)

Publication Number Publication Date
TWI845082B true TWI845082B (en) 2024-06-11
TW202426833A TW202426833A (en) 2024-07-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114153252A (en) 2021-11-24 2022-03-08 魏育华 Greenhouse ventilation method and system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114153252A (en) 2021-11-24 2022-03-08 魏育华 Greenhouse ventilation method and system

Similar Documents

Publication Publication Date Title
CN102654130B (en) Method for carrying out temperature control on computer as well as computer
CN109074066B (en) Method for optimizing life cycle of filter and system for monitoring ventilation system
CN113551399B (en) Air conditioner fresh air volume control method and device and air conditioner
US20160209063A1 (en) Environment control method, control apparatus and power management system
CN112050446B (en) Control method of fresh air conditioner
US11466885B2 (en) Air-conditioning control device, air-conditioning system, and air-conditioning control method
CN111306706A (en) Air conditioner linkage control method and system
CN112665235A (en) Air conditioner fresh air volume control method, device and system
TWI845082B (en) Ventilation control apparatus and method
CN110285536A (en) A kind of control method and device of temperature control equipment
CN111550910B (en) Variable-frequency precision air conditioner and dehumidification control method and storage medium thereof
CN112050441B (en) Purification control method of fresh air conditioner
CN111023467B (en) Control method and device of air conditioner and air conditioner
CN112050385B (en) Control method of air conditioner under refrigeration working condition
JP7126569B2 (en) air conditioning control system
CN112050440A (en) Control method of fresh air conditioner
CN111397170A (en) Control method and device of air conditioner, air conditioner and electronic equipment
US20240210058A1 (en) Ventilation control apparatus and method
CN110307569B (en) Control method and control device of range hood and range hood
JP2005337532A (en) Air conditioning control device and its method
CN112050439B (en) Control method of fresh air conditioner
CN112113319A (en) Air conditioner load adjusting system and air conditioner load adjusting method
CN112050387B (en) Control method of air conditioner under refrigeration working condition
CN112050443B (en) Purification control method of fresh air conditioner
CN111397152B (en) Air conditioning equipment and control method and device thereof