TWI840732B - 積體晶片及其形成方法 - Google Patents

積體晶片及其形成方法 Download PDF

Info

Publication number
TWI840732B
TWI840732B TW111100692A TW111100692A TWI840732B TW I840732 B TWI840732 B TW I840732B TW 111100692 A TW111100692 A TW 111100692A TW 111100692 A TW111100692 A TW 111100692A TW I840732 B TWI840732 B TW I840732B
Authority
TW
Taiwan
Prior art keywords
layer
active
active structure
dielectric layer
gate dielectric
Prior art date
Application number
TW111100692A
Other languages
English (en)
Other versions
TW202232670A (zh
Inventor
黃彥傑
陳海清
林仲德
Original Assignee
台灣積體電路製造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/168,361 external-priority patent/US11729990B2/en
Application filed by 台灣積體電路製造股份有限公司 filed Critical 台灣積體電路製造股份有限公司
Publication of TW202232670A publication Critical patent/TW202232670A/zh
Application granted granted Critical
Publication of TWI840732B publication Critical patent/TWI840732B/zh

Links

Images

Abstract

在一些實施例中,本發明實施例有關於積體晶片,積體晶片包含設置於基底上方的閘極電極以及設置於閘極電極上方的閘極介電層。閘極介電層包含鐵電材料。主動結構設置於閘極介電層上方,且主動結構包含半導體材料。源極接點和汲極接點設置於主動結構上方。覆蓋結構設置於主動結構上方及源極接點與汲極接點之間,其中覆蓋結構包含第一金屬材料。

Description

積體晶片及其形成方法
本發明實施例係有關於半導體技術,且特別是有關於積體晶片及其形成方法。
許多現代電子裝置包含非揮發性記憶體。非揮發性記憶體是能夠在斷電情況下儲存數據的電子記憶體。下一代非揮發性記憶體的一個有潛力的候選者是鐵電隨機存取記憶體(ferroelectric random-access memory,FeRAM)。鐵電隨機存取記憶體具有相對簡易的結構,且與互補式金屬氧化物半導體(complementary metal–oxide–semiconductor,CMOS)邏輯及薄膜電晶體製造過程相容。
在一些實施例中,提供積體晶片,積體晶片包含閘極電極,設置於基底上方;閘極介電層,設置於閘極電極上方,閘極介電層包含鐵電材料;主動結構,設置於閘極介電層上方,且主動結構包含半導體材料;源極接點和汲極接點,設置於主動結構上方;以及覆蓋結構,設置於主動結構上方及源極接點與汲極接點之間,其中覆蓋結構包含第一金屬材料。
在一些其他實施例中,提供積體晶片,積體晶片包含閘極電極,設置於基底上方;閘極介電層,設置於閘極電極上方,其中閘極介電層包含鐵電材料;主動結構,設置於閘極介電層上方;源極接點和汲極接點,設置於主動結構上方;以及覆蓋結構,設置於主動結構上方及源極接點與汲極接點之間,其中覆蓋結構包含第一金屬材料,第一金屬材料比主動結構中的金屬具有對氧的更高親和力。
在另外一些實施例中,提供積體晶片的形成方法,此方法包含在基底上方形成閘極電極;在閘極電極上方形成閘極介電層,閘極介電層包含鐵電材料;在閘極介電層上方形成主動結構;在主動結構上方形成第一金屬層;移除第一金屬層的周邊部分,以在主動結構上方形成覆蓋結構;以及在主動結構上方形成源極接點和汲極接點,其中覆蓋結構橫向設置於源極接點與汲極接點之間。
要瞭解的是以下的揭露內容提供許多不同的實施例或範例,以實施提供之主體的不同部件。以下敘述各個構件及其排列方式的特定範例,以求簡化揭露內容的說明。當然,這些僅為範例並非用以限定本發明。例如,以下的揭露內容敘述了將一第一部件形成於一第二部件之上或上方,即表示其包含了所形成的上述第一部件與上述第二部件是直接接觸的實施例,亦包含了尚可將附加的部件形成於上述第一部件與上述第二部件之間,而使上述第一部件與上述第二部件可能未直接接觸的實施例。此外,揭露內容中不同範例可能使用重複的參考符號及/或用字。這些重複符號或用字係為了簡化與清晰的目的,並非用以限定各個實施例及/或所述外觀結構之間的關係。
再者,為了方便描述圖式中一元件或部件與另一(複數)元件或(複數)部件的關係,可使用空間相關用語,例如“在...之下”、“下方”、“下部”、“上方”、“上部”及類似的用語。除了圖式所繪示的方位之外,空間相關用語也涵蓋裝置在使用或操作中的不同方位。所述裝置也可被另外定位(例如,旋轉90度或者位於其他方位),並對應地解讀所使用的空間相關用語的描述。
薄膜電晶體(thin film transistor,TFT)為包含主動結構的場效電晶體(FET),當足夠信號(例如電壓、電流)施加至薄膜電晶體的源極接點、汲極接點和閘極結構時,可“接通”主動結構,使得移動電荷載子通過主動結構。在一些範例中,主動結構包括透明半導體材料,例如銦鎵鋅氧化物(indium gallium zinc oxide,IGZO)、非晶矽或一些其他適用於光學應用的材料。在底部閘極薄膜電晶體中,閘極電極設置於主動結構下方,且源極接點和汲極接點設置於主動結構上方。閘極介電層可將閘極電極與主動結構隔開。在一些範例中,閘極介電層包括鐵電材料,使得薄膜電晶體作為場效電晶體鐵電隨機存取記憶體裝置(FeRAM)。由於當存在電場時鐵電體的晶體結構會發生改變,因此鐵電層可基於極化狀態之間的可逆切換過程儲存數據值。
為了形成場效電晶體鐵電隨機存取記憶體裝置,在閘極電極上方形成鐵電層。接著,在鐵電層上方形成主動結構,且在主動結構上方形成源極接點和汲極接點。在一些實施例中,取決於主動結構的哪些材料直接接觸閘極介電層,在主動結構與閘極介電層之間的界面處可存在缺陷,例如氧空缺(oxygen vacancies)和表面態(即過量電荷),這可降低主動結構中的載子移動率。再者,由於主動結構的最頂表面在周圍環境中暴露於空氣,因此這些缺陷可形成於主動結構的最頂表面。在主動結構的最頂表面的這些缺陷也可包含氧空缺和表面態,這可增加電子散射並降低載子移動率。
本發明各種實施例有關於在主動結構上方及源極接點與汲極接點之間形成覆蓋結構,以減少主動結構的最頂表面處的缺陷,並增加主動結構的載子移動率,進而改善整個場效電晶體鐵電隨機存取記憶體裝置的效能。在一些這樣的實施例中,主動結構的最頂層包括第一金屬氧化物材料,第一金屬氧化物材料具有高鍵結能,這減少了主動結構的最頂表面處的氧空缺。再者,在一些實施例中,覆蓋結構包括一個或多個金屬材料,這些金屬材料具有強的氧化能力,這減少了主動結構的最頂表面處的氧空缺。再者,在一些實施例中,主動結構的最底層可包括第一金屬氧化物材料和第二金屬氧化物材料的混合物,使得第一金屬氧化物材料和第二金屬氧化物材料直接接觸鐵電層,以增加載子移動率,並降低主動結構與鐵電層之間的界面處的表面態。隨著主動結構的缺陷(例如氧空缺、表面態、弱鍵氧)減少,主動結構的載子移動率增加,這增加了場效電晶體鐵電隨機存取記憶體裝置的切換速度和可靠性。
第1圖顯示場效電晶體(FET)鐵電隨機存取記憶體(FeRAM)裝置的一些實施例的剖面示意圖100,場效電晶體鐵電隨機存取記憶體裝置包括設置於主動結構上方的覆蓋結構。
第1圖的剖面示意圖100包含設置於基底102上方的閘極電極106。在一些實施例中,介電層104設置於閘極電極106與基底102之間。在一些實施例中,閘極介電層108設置於閘極電極106上方。在這些實施例中,閘極介電層108包括鐵電材料,鐵電材料被配置用以透過改變晶體結構定向來儲存數據狀態,進而暴露於不同電壓偏壓時的電阻。
在一些實施例中,主動結構110設置於閘極介電層108上方。在一些實施例中,主動結構110包括半導體材料,當對主動結構110施加足夠電壓偏壓時,可“接通”半導體材料,以形成移動電荷載子的通道區。可控制電荷載子的通道區,以從閘極介電層108讀取數據或寫入數據至閘極介電層108。在一些實施例中,主動結構110的最底層110b包括混合層112(混合層112包括第一材料和第二材料的混合物)以及設置於混合層112上方的第一主動層114(第一主動層114包括不同於第一材料和第二材料的第三材料)。在一些實施例中,主動結構110包括交替順序的混合層112和第一主動層114的堆疊物。
在一些實施例中,源極/汲極接點118設置於主動結構110上方。在一些實施例中,源極/汲極接點118設置於互連介電層116中,並延伸通過互連介電層116,以接觸主動結構110的最頂層110t。
在一些實施例中,主動結構110的第一材料、第二材料和第三材料為金屬氧化物。在一些實施例中,第一主動層114的第三材料包括比第一材料和第二材料更結晶的材料。因此,第一主動層114與閘極介電層108間隔開,否則第一主動層114的第三材料與閘極介電層108之間的界面將太粗糙並且在閘極介電層108上具有潛在的黏著和結構問題。在一些實施例中,混合層112的第一材料包括比第二材料更強且更大負數的鍵能。在一些實施例中,鍵能可取決於金屬氧化物埃林漢姆圖(Ellingham diagram),金屬氧化物埃林漢姆圖顯示各種金屬氧化物形成的吉布斯自由能(Gibbs free energy)與溫度之間的關係。
由於第一材料具有較強鍵能,因此在混合層112的第一材料與閘極介電層108之間的界面存在較少缺陷(例如氧空缺)以及較少表面態(即過量電荷)。在一些實施例中,由於第二材料較弱的鍵能以及金屬離子增加,因此混合層112的第二材料具有比混合層112的第一材料更高的移動率。因此,移動電荷載子在混合層112與閘極介電層108之間的界面可具有較高的移動率。基於這些原因,在一些實施例中,混合層112包括第一材料和第二材料的混合物,以減少缺陷,但是也增加主動結構110的最底層110b與閘極介電層108之間的界面處的載子移動率,以增加場效電晶體鐵電隨機存取記憶體裝置的可靠性和切換速度。
在一些實施例中,主動結構110的最頂層110t包括第二主動層120,由於第一材料的高鍵能,因此第二主動層120包括第一材料但是不包括第二材料或第三材料。在一些這樣的實施例中,第一材料的高鍵能減少了例如在主動結構110的最頂表面110s處的氧空缺的缺陷。在一些實施例中,主動結構110的最頂層110t設置於其中一個混合層112正上方。再者,覆蓋結構122設置於主動結構110上方及源極/汲極接點118之間,以減少在主動結構110的最頂表面110s處的的缺陷,例如表面態、氧空缺。在一些實施例中,覆蓋結構122延伸通過互連介電層116,以接觸主動結構110。
在一些實施例中,覆蓋結構122包括第一金屬層124,第一金屬層124包括第一金屬材料。在一些實施例中,第一金屬層124的第一金屬材料包括具有強氧化性的一個或多個金屬。換句話說,第一金屬材料具有對氧的高親和力。在一些實施例中,氧親和力可由金屬氧化物埃林漢姆圖決定,金屬氧化物埃林漢姆圖顯示各種金屬氧化物形成的吉布斯自由能與溫度之間的關係,具有較大負數吉布斯自由能的金屬氧化物表示金屬對氧具有較高的親和力。在一些實施例中,吉布斯自由能可透過x 射線光致發光光譜、x 射線螢光、光致發光或一些其他合適的測量技術來測量。
在一些實施例中,相較於主動結構110的金屬氧化物材料,第一金屬層124具有對氧的更高親和力或在埃林漢姆圖上更大負數的吉布斯自由能。因此,當第一金屬層124形成於主動結構110的最頂層110t正上方時,第一金屬材料可擴散至主動結構110,並與主動結構110的弱鍵氧鍵結,以減少主動結構110的缺陷(例如氧空缺、表面態、弱鍵氧),並增加主動結構110的載子移動率。在一些這樣的實施例中,擴散區128可設置於主動結構110的上方區域中,且在覆蓋結構122的第一金屬層124下方,第一金屬層124包括鍵結氧的第一金屬材料。
因此,在一些實施例中,覆蓋結構122減少了主動結構110的最頂表面110s附近的缺陷(例如氧空缺、表面態、弱鍵氧),以增加主動結構110的載子移動率,進而增加了整個場效電晶體鐵電隨機存取記憶體裝置的切換速度。隨著切換速度增加,由於移動電荷載子可更容易地移動通過主動結構,因此可更快地“開啟”場效電晶體鐵電隨機存取記憶體裝置。因此,可更容易且更可靠地將數據儲存至閘極介電層108或從閘極介電層108讀取數據。
第2圖顯示混合層的微結構的一些實施例的放大剖面示意圖200。在一些實施例中,剖面示意圖200對應至第1圖的方塊A。
如剖面示意圖200所示,在一些實施例中,混合層112包括第一材料區202和第二材料區204。在一些實施例中,第二材料區204埋置於第一材料區202中。在其他實施例中,第一材料區202可埋置於第二材料區204中。然而,在一些實施例中,混合層112包含第一材料和第二材料的混合物,且放大的剖面示意圖200可顯示了包括第一材料定義的第一材料區202以及包括第二材料的第二材料區204。
在一些實施例中,第一材料包括氧化鎵、氧化鉿、氧化鋯、氧化鈦、氧化鋁、氧化鉭、氧化鍶、氧化鋇、氧化鈧、氧化鎂、氧化鑭、氧化釓或一些其他合適的金屬氧化物。在一些實施例中,第二材料包括氧化銦、氧化錫、氧化砷、氧化鋅或類似物。在一些實施例中,第三材料包括氧化鋅。因此,舉例來說,在一些實施例中,第一材料包括氧化鎵,第二材料包括氧化銦,且第三材料包括氧化鋅,使得主動結構包括銦鎵鋅氧化物(IGZO),銦鎵鋅氧化物為半導體材料。在一些其他實施例中,主動結構(第1圖的主動結構110)可包括錫鎵鋅氧化物、銦鉿鋅氧化物或一些其他合適的第一材料、第二材料和第三材料的組合形成的半導體材料。
在一些這樣的實施例中,第一材料區202大致非晶,且第二材料區204大致非晶。由於第一材料區202和第二材料區204為非晶,因此可減少在混合層112與閘極介電層(第1圖的閘極介電層108)之間的界面處的粗糙及電子散射。再者,在一些實施例中,由於第一材料區202和第二材料區204直接接觸閘極介電層(第1圖的閘極介電層108),可減少缺陷,並增加載子移動率,這可增加場效電晶體鐵電隨機存取記憶體裝置的“開啟”電流及切換速度。
第3圖顯示場效電晶體鐵電隨機存取記憶體裝置的一些其他實施例的剖面示意圖300,場效電晶體鐵電隨機存取記憶體裝置包括設置於主動結構上方的覆蓋結構。
在一些實施例中,基底102包括絕緣基底上覆矽,使得介電層104設置於塊狀基底層302與主動基底層304之間。在一些實施例中,主動結構110的最頂層110t位於其中一個第一主動層114正上方。應當理解的是,主動結構110可包括比第3A圖顯示的更多層或更少層。
在一些實施例中,閘極介電層108具有第一厚度t 1在例如約5nm與約20nm之間的範圍中。在一些實施例中,主動結構110可具有第二厚度t 2在例如約5nm與約15nm之間的範圍中。在一些實施例中,每個混合層112、第一主動層114及/或第二主動層120具有第三厚度t 3在例如約0.1 Å與約500Å之間的範圍中。在一些實施例中,混合層112中的第一材料對第二材料的比值在從約0.1至約0.99的範圍中。
在一些實施例中,閘極電極106可包括例如氮化鈦、鋁、鎢、銅或一些其他合適的導電材料。在一些實施例中,閘極介電層108包括鐵電材料,例如鉭酸鍶鉍、鈦酸鋯鉛、氧化鉿鋅、氧化鉿鋯、摻雜氧化鉿或類似物。在一些實施例中,閘極電極106可具有厚度在例如約10nm與約20nm之間的範圍中。在一些實施例中,源極/汲極接點118可包括例如鋁、鎢、銅、鉭、鈦或一些其他合適的導電材料。
再者,在一些實施例中,覆蓋結構122包括鋁、鈣、鈧、釔、鈮、鉭、鉻、鐵、鈦、矽、鉿、鋯、鈦、鍶、鋇、鎂、鑭、釓、前述之組合及/或具有強氧化性(即對氧的高親和力)的一些其他合適金屬或半導體材料。在一些實施例中,覆蓋結構122具有厚度在例如約0.1 Å與約30Å之間的範圍中。在一些實施例中,覆蓋結構122更包括第二金屬層326,第二金屬層326包括與第一金屬層124的第一金屬材料不同的第二金屬材料。舉例來說,在一些實施例中,第一金屬層124可包括鈣,且第二金屬層326可包括鋁。在一些這樣的實施例中,主動結構110的擴散區128可包括氧化鈣。在一些實施例中,第一金屬層124為透過原子層沉積(atomic layer deposition,ALD)形成的單一層。在一些其他實施例中,第一金屬層124包括透過原子層沉積形成的相同材料的多層。在一些實施例中,第二金屬層326為透過原子層沉積形成的單一層。在一些其他實施例中,第二金屬層326包括透過原子層沉積形成的相同材料的多層。然而,在一些實施例中,覆蓋結構122包括一個或多個金屬材料設置為直接接觸主動結構110的最頂表面110s的層及/或合金,以減少主動結構110的缺陷(例如氧空缺、表面態、弱鍵氧),並改善場效電晶體鐵電隨機存取記憶體裝置的效能。
第4圖顯示場效電晶體鐵電隨機存取記憶體裝置的一些實施例的剖面示意圖400,場效電晶體鐵電隨機存取記憶體裝置包括位於主動結構上方的覆蓋結構。
在一些實施例中,主動結構110包括基底102上方的第一材料、第二材料和第三材料的混合物。因此,在一些實施例中,主動結構110包括不具有限定層的下部402。在一些其他實施例中,下部402可包括單一半導體材料,例如矽。在一些實施例中,第二主動層120設置於主動結構110的下部402正上方,且包括第一材料。在一些實施例中,下部402設置於閘極介電層108正上方。在一些其他實施例中,混合層(第1圖的混合層112)可設置於主動結構110的下部402與閘極介電層108之間。
在一些實施例中,主動結構110的擴散區128延伸至主動結構110的最頂層110t下方。在一些其他實施例中,擴散區128延伸至最頂層110t中,但是不延伸至主動結構110的最頂層110t下方(請參照第3圖)。
再者,在一些實施例中,覆蓋結構122的最頂表面比覆蓋結構122的最底表面更窄。在一些這樣的實施例中,在形成互連介電層116之前,覆蓋結構122可透過沉積製程以及之後的圖案化製程形成。
第5圖顯示場效電晶體鐵電隨機存取記憶體裝置的一些其他實施例的剖面示意圖500,場效電晶體鐵電隨機存取記憶體裝置包括位於主動結構上方的覆蓋結構。
在一些實施例中,主動結構110包括在閘極介電層108上方的第一主動層114、第二主動層120和第三主動層502的堆疊物。在一些這樣的實施例中,第一主動層114、第二主動層120和第三主動層502的排列可例如為第一主動層114設置於第二主動層120上方,且第三主動層502設置於第一主動層114上方。應當理解的是,與第5圖顯示的第一主動層114、第二主動層120和第三主動層502不同的排列順序也在本發明實施例的範圍中。
在一些實施例中,第一主動層114可包括第三材料,第二主動層120可包括第一材料,且第三主動層502可包括第二材料。換句話說,在一些實施例中,主動結構110沒有任何層包括金屬氧化物的混合物,反而主動結構110的每一層包括單一金屬氧化物。在一些其他實施例中,主動結構110的最底層110b可包括混合層(第1圖的混合層112),以增加主動結構110與閘極介電層108之間的界面處的載子移動率。
在一些實施例中,主動結構110的最頂層110t包括第二主動層120,第二主動層120包括第一材料。在一些實施例中,主動結構110的最頂層110t設置於第一主動層114的其中一者正上方或第三主動層502的其中一者正上方。
再者,在一些實施例中,覆蓋結構122的最頂表面比覆蓋結構122的最底表面更寬。在一些這樣的實施例中,在形成互連介電層116之後,覆蓋結構122可透過圖案化製程以及之後的沉積製程形成。
第6圖顯示積體晶片的一些實施例的剖面示意圖600,積體晶片包括埋置於互連結構中的場效電晶體鐵電隨機存取記憶體裝置。
在一些實施例中,場效電晶體鐵電隨機存取記憶體裝置設置於互連結構602中,互連結構602設置於基底102上方。在一些這樣的實施例中,場效電晶體鐵電隨機存取記憶體裝置(例如第一場效電晶體鐵電隨機存取記憶體裝置604a和第二場效電晶體鐵電隨機存取記憶體裝置604b)設置於積體晶片的後段(back-end-of-line,BEOL)部分中,其中積體晶片的後段部分設置於積體晶片的前段(front-end-of-line,FEOL)部分上方。在一些實施例中,場效電晶體鐵電隨機存取記憶體裝置(例如第一場效電晶體鐵電隨機存取記憶體裝置604a和第二場效電晶體鐵電隨機存取記憶體裝置604b)電性耦接至積體晶片的前段部分中的裝置。在一些實施例中,積體晶片的前段部分包括裝置設置於基底102中及/或基底102上方的至少一電晶體,例如金屬氧化物場效電晶體(metal-oxide-semiconductor field effect transistor,MOSFET)、鰭式場效電晶體(fin field effect transistor,finFET)、全繞式閘極場效電晶體(gate all around field effect transistor,GAAFET)或一些其他類型的電晶體裝置。
在一些實施例中,互連結構602包括設置於互連介電層116和蝕刻停止層606中的互連接點618和互連線608。在一些實施例中,互連接點618和互連線608可包括例如鋁、鎢、銅、鉭、鈦或一些其他合適的導電材料。在一些實施例中,互連介電層116可包括例如氮化物(例如氮化矽、氮氧化矽)、碳化物(例如碳化矽)、氧化物(例如氧化矽)、硼矽酸鹽玻璃(borosilicate glass,BSG)、磷矽酸鹽玻璃(phosphoric silicate glass,PSG)、硼磷矽酸鹽玻璃(borophosphosilicate glass,BPSG)、低介電常數氧化物(例如碳摻雜氧化物,SiCOH)或類似物。在一些實施例中,蝕刻停止層606可包括例如碳化矽、氮化矽或一些其他合適的介電材料。
如第6圖所示,第一場效電晶體鐵電隨機存取記憶體裝置604a和第二場效電晶體鐵電隨機存取記憶體裝置604b設置於互連結構602中。在一些實施例中,互連接點618設置於主動結構110上方並耦接至主動結構110,使得互連接點618作為場效電晶體鐵電隨機存取記憶體裝置的源極/汲極接點(第5圖的源極/汲極接點118)。在一些實施例中,如第一場效電晶體鐵電隨機存取記憶體裝置604a所示,閘極電極106設置於互連線608的其中一者上方。在其他實施例中,閘極電極106可設置於互連接點618的其中一者上方。在一些實施例中,如第二場效電晶體鐵電隨機存取記憶體裝置604b所示,省略閘極電極106,而閘極介電層108設置於互連結構602的互連線608的其中一者正上方。
在一些實施例中,覆蓋結構122不直接耦接至互連線608或互連接點618的其中一者。在一些其他實施例中,覆蓋結構122可耦接至互連線608或互連接點618,以將覆蓋結構122接地。在一些這樣的其他實施例中,將覆蓋結構122接地可改善閘極介電層108在極化狀態之間的切換能力,以儲存記憶。
在一些實施例中,由於場效電晶體鐵電隨機存取記憶體裝置(例如第一場效電晶體鐵電隨機存取記憶體裝置604a和第二場效電晶體鐵電隨機存取記憶體裝置604b)具有小的垂直尺寸,因此可將場效電晶體鐵電隨機存取記憶體裝置整合至積體晶片的互連結構602中,且可透過互連結構602的互連線608和互連接點618的網路來控制場效電晶體鐵電隨機存取記憶體裝置,以儲存閘極介電層108中的數據。
第7-20圖顯示形成場效電晶體鐵電隨機存取記憶體裝置的方法的一些實施例的各種視圖和剖面示意圖700-2000,場效電晶體鐵電隨機存取記憶體裝置包括設置於主動結構上方的覆蓋結構,以減少主動結構中的缺陷,並增加整個場效電晶體鐵電隨機存取記憶體裝置的切換速度和可靠性。雖然第7-20圖描述關於方法,但應當理解的是,第7-20圖顯示的結構不限於此方法,而是作為獨立於方法的結構而獨立存在。
如第7圖的剖面示意圖700所示,在一些實施例中,閘極電極106形成於基底102上方。在各種實施例中,基底102可包括任何類型的半導體主體(例如矽/互補式金屬氧化物半導體主體、SiGe、絕緣層上覆矽),例如半導體晶圓或在晶圓上的一個或多個晶粒,以及任何其他類型的半導體及/或形成於半導體上的磊晶層及/或與其相關的其他元件。在一些其他實施例中,基底102可包括乘載透明材料,例如光學應用的玻璃。在第7圖的剖面示意圖700中,基底102為包括設置於塊狀基底層302上方並設置於主動基底層304下方的介電層104的絕緣層上覆矽(silicon-on-insulator,SOI)基底。在一些這樣的實施例中,塊狀基底層302和主動基底層304可包括例如矽、鍺或一些其他合適的半導體材料。在一些實施例中,介電層104包括二氧化矽、氮氧化矽或一些其他合適的介電層。
在一些實施例中,閘極電極106透過沉積製程(例如物理氣相沉積(physical vapor deposition,PVD)、化學氣相沉積(chemical vapor deposition,CVD)、原子層沉積(ALD)、直流電濺鍍等)的方式形成於基底102上方。在一些實施例中,閘極電極106包括氮化鈦、鋁、鎢、銅或一些其他合適的導電材料。在一些實施例中,形成閘極電極106具有厚度在例如約10nm與約20nm之間的範圍中。
如第8圖的剖面示意圖800所示,在一些實施例中,閘極介電層108形成於閘極電極106上方。在一些實施例中,閘極介電層108透過在腔體中溫度在例如約200°C與約400°C之間的範圍中的原子層沉積形成。在一些其他實施例中,閘極介電層108透過其他沉積製程(例如物理氣相沉積、化學氣相沉積等)形成。在一些實施例中,閘極介電層108包括鐵電材料,例如鉭酸鍶鉍、鈦酸鋯鉛、氧化鉿鋅、氧化鉿鋯、摻雜氧化鉿或類似物。舉例來說,在一些實施例中,閘極介電層108包括氧化鉿鋯,其中鉿與鋯的原子比例為約1至1。在一些實施例中,閘極介電層108具有第一厚度t 1在例如約5nm與約20nm之間的範圍中。
如第9圖的剖面示意圖900所示,在一些實施例中,將基底102轉移至透過殼體902定義的反應腔體中的晶圓夾盤901上。在一些實施例中,反應腔體為原子層沉積(ALD)腔體、低壓容器及/或類似物。在一些實施例中,分別在第7圖和第8圖中形成閘極電極106及/或閘極介電層108期間,基底102已在反應腔體中。在一些實施例中,第一氣體入口管線908通過殼體902,使得透過容器殼體(例如第一容器殼體910、第二容器殼體918、第三容器殼體932)定義的前驅物容器透過第一氣體入口管線908耦接至反應腔體。在一些實施例中,第二氣體入口管線914通過殼體902,使得氧氣源916可進入反應腔體。在一些實施例中,氣體出口管線919通過殼體902,使得各種氣體可在沉積製程期間離開反應腔體。
在一些實施例中,透過第一容器殼體910定義的第一前驅物容器、透過第二容器殼體918定義的第二前驅物容器以及透過第三容器殼體932定義的第三前驅物容器耦接至第一氣體入口管線908和惰性氣體源912。在其他實施例中,多於或少於三個前驅物容器可耦接至反應腔體。在一些實施例中,可“接通”惰性氣體源912,使得惰性氣體進入一個或多個前驅物容器,以活化每個前驅物容器中的前驅物,使得前驅物氣體通過第一氣體入口管線908進入反應腔體,以在閘極介電層108上形成一層。在一些實施例中,每個前驅物容器包括門結構936,門結構936可透過控制電路來控制開啟或關閉,如箭頭934所示,以分別允許或禁止惰性氣體從惰性氣體源912進入前驅物容器。
在一些實施例中,第一前驅物容器包括第一前驅物基板920,第一前驅物基板920將第一固體前驅物922保留在第一前驅物基板920的凹槽中。在一些實施例中,第二前驅物容器包括第二前驅物基板924,第二前驅物基板924將第二固體前驅物926保留在第二前驅物基板924的凹槽中。在一些實施例中,第三前驅物容器包括第三前驅物基板928,第三前驅物基板928將第三固體前驅物930保留在第三前驅物基板928的凹槽中。在一些實施例中,第一固體前驅物922、第二固體前驅物926和第三固體前驅物930各包括固體前驅物,這些固體前驅物對應將形成於閘極介電層108上的層的特定材料,以在閘極介電層108上方形成主動結構。
舉例來說,在一些實施例中,將形成於閘極介電層108上的主動結構包括第一材料、第二材料和第三材料的組合。在一些實施例中,第一固體前驅物922對應於第一材料,第二固體前驅物926對應於第二材料,且第三固體前驅物930對應於第三材料。在其他實施例中,第一固體前驅物922可對應於固體前驅物的混合物,此固體前驅物的混合物對應於第一材料和第二材料,第二固體前驅物926可對應於第一材料,且第三固體前驅物930可對應於第三材料。在其他實施例中,第一固體前驅物922可對應於固體前驅物的混合物,此固體前驅物的混合物對應於第一材料、第二材料和第三材料,第二固體前驅物926可對應於第一材料,且可省略第三固體前驅物930。在其他實施例中,多於三個前驅物容器可耦接至殼體902。
應當理解的是,可使用各種方法在閘極介電層108上方形成主動結構,且每個方法可使用前驅物容器中固體前驅物的不同組合。第10A-10C圖將對應在閘極介電層108上方形成主動結構的第一方法和第二方法,第11A和11B圖將對應在閘極介電層108上方形成主動結構的第三方法,第12A和12B圖將對應在閘極介電層108上方形成主動結構的第四方法。因此,方法可從第9圖進行至第10A和10B圖;或從第9圖進行至第10A和10C圖,進而省略第10B圖;或從第9圖進行至第11A和11B圖,進而省略第10A-10C圖;或從第9圖進行至第12A和12B圖,進而省略第10A-11B圖。
再者,第10A-12B圖的方法顯示透過原子層沉積(ALD)在閘極介電層108上方形成主動結構。然而,應當理解的是,在其他實施例中,主動結構可透過其他沉積方法形成於閘極介電層108上方,這些沉積方法例如化學氣相沉積、物理氣相沉積或類似方法。
如第10A圖的剖面示意圖1000A所示,在一些實施例中,進行原子層沉積製程,以在閘極介電層108上方形成主動結構110,其中主動結構110包括混合層112和第一主動層114的堆疊物,混合層112包括第一材料和第二材料的混合物,第一主動層114包括第三材料。在一些這樣的實施例中,主動結構110的最底層110b包括混合層112的其中一層。再者,在一些實施例中,主動結構110的最頂層110t包括第二主動層120,第二主動層120包括第一材料,但是不包括第二材料或第三材料。
在一些這樣的實施例中,主動結構110的第一材料、第二材料和第三材料為金屬氧化物。在一些這樣的實施例中,第一固體前驅物922、第二固體前驅物926和第三固體前驅物930可分別包括對應於主動結構110的第一材料、第二材料和第三材料的第一金屬、第二金屬和第三金屬。舉例來說,在一些實施例中,第一材料可包括鎵、鉿、鋯、鈦、鋁、鉭、鍶、鋇、鈧、鎂、鑭、釓或一些其他合適的金屬。在一些實施例中,其中第一材料包括鎵,第一固體前驅物922的第一前驅物可包括例如Ga(C 2H 5) 3、Ga(NMe) 3、Ga(C 5H 7O 2) 3、GaCp*、Ga(CH 3) 3、Ga 2(NMe 2) 6或包括鎵的一些其他合適的固體前驅物。
在一些實施例中,第二材料包括銦、錫、鋅、砷或一些其他合適的金屬。在一些這樣的實施例中,其中第二材料包括銦,第二固體前驅物926可包括例如三甲基銦、三乙基銦、InCp(C 5H 5In)、InCA-1(C 8H 24InNSi 2)、DADI(C 7H 18InN)或包括銦的一些其他合適的固體前驅物。在一些其他實施例中,第三材料包括鋅或一些其他金屬。在一些實施例中,第三固體前驅物930包括例如Zn(CH 3COO) 2、二乙基鋅、二甲基鋅、乙酸鋅、(CH 3)Zn(OCH(CH 3) 2)或一些其他合適的固體前驅物。
第10B圖顯示用以在閘極介電層108上方形成主動結構110的第一方法的一些實施例的時序圖1000B,其中第一固體前驅物922對應第一材料,第二固體前驅物926對應第二材料,且第三固體前驅物930對應第三材料。將結合第10A圖的剖面示意圖1000A描述第10B圖。
在一些實施例中,為了形成主動結構110,先在閘極介電層108上方形成混合層112。在一些這樣的實施例中,混合層112包括第一材料和第二材料的混合物。因此,在一些實施例中,依據第10B圖的備註1002和第10B圖的時序圖1000B,方法的步驟一1004首先包括同時活化第一固體前驅物922和第二固體前驅物926。在一些實施例中,第一固體前驅物922和第二固體前驅物926透過“接通”惰性氣體源912來活化。再者,在一些實施例中,“開啟”第一容器殼體910和第二容器殼體918上的門結構936,而“關閉”第三容器殼體932上的門結構936,使得從惰性氣體源912引入惰性氣體,並活化第一固體前驅物922和第二固體前驅物926,但是不活化第三固體前驅物930。在一些實施例中,惰性氣體源912包括例如氮氣、氬氣、氫氣、前述之組合或一些其他合適的氣體。
再者,在一些實施例中,惰性氣體源912活化第一固體前驅物922和第二固體前驅物926,在方法的步驟二1006中“接通”氧氣源916,以將氧蒸氣引入反應腔體。在一些實施例中,氧氣源916可包括水。在一些這樣的實施例中,氧氣源916的氧蒸氣在反應腔體中與第一固體前驅物922和第二固體前驅物926的前驅物混合物蒸氣反應,以透過原子層沉積在閘極介電層108上形成混合層112。在一些這樣的實施例中,混合層112包括第一材料和第二材料的混合物為金屬氧化物。
在一些實施例中,接著,在步驟三1008中,透過關閉連接第一容器殼體910和第二容器殼體918的門結構936,開啟第三容器殼體932的門結構936,並“接通”惰性氣體源912,以活化第三固體前驅物930。在一些這樣的實施例中,惰性氣體源912的惰性氣體與第三固體前驅物930反應,且前驅物氣體進入反應腔體。接著,在方法的步驟四1010中“接通”氧氣源916,以將氧蒸氣引入反應腔體。在一些這樣的實施例中,氧蒸氣與第三固體前驅物930的前驅物蒸氣反應,以透過原子層沉積在混合層112上方形成第一主動層114。在一些實施例中,透過多次重複步驟一1004、步驟二1006、步驟三1008和步驟四1010,以在閘極介電層108上方形成混合層112和第一主動層114的堆疊物。
在一些實施例中,主動結構110的最頂層110t包括由第一材料組成(但是沒有第二材料和第三材料)的第二主動層120,因此,在一些實施例中,第10B圖的方法進行至步驟五1012,其中關閉第二容器殼體918和第三容器殼體932的門結構936,開啟第一容器殼體910的門結構936,並“接通”惰性氣體源912,以活化第一固體前驅物922。再者,在方法的步驟六1014中,“接通”氧氣源916,以將氧蒸氣引入反應腔體。在一些這樣的實施例中,氧蒸氣與第一固體前驅物922的前驅物蒸氣反應,以透過原子層沉積在混合層112和第一主動層114上方形成第二主動層120。
在一些實施例中,前驅物蒸氣與氧蒸氣之間的反應的副產物可能通過氣體出口管線919排出。在一些實施例中,步驟一1004、步驟二1006、步驟三1008、步驟四1010、步驟五1012和步驟六1014的氣體脈衝可各具有時間段例如在約1毫秒至約20分之間的範圍中。再者,在一些實施例中,除了在步驟一1004中的第一固體前驅物922和第二固體前驅物926的活化,步驟一1004、步驟二1006、步驟三1008、步驟四1010、步驟五1012和步驟六1014的氣體脈衝彼此不重疊。在一些其他實施例中,步驟一1004、步驟二1006、步驟三1008、步驟四1010、步驟五1012和步驟六1014可彼此部分重疊。舉例來說,在一些其他實施例中,在將步驟一1004使用的惰性氣體源912完全“阻斷”之前,可開始步驟二1006。
由於混合層112的第一材料具有較強的鍵能,因此在混合層112的第一材料與閘極介電層108之間的界面處存在較少缺陷(例如氧空缺),進而有較少的表面態(即過量電荷)。在一些實施例中,混合層112的第二材料具有比混合層112的第一材料更大的移動率,因為第二材料中較弱的鍵能以及金屬離子的增加。因此,移動電荷載子在混合層112與閘極介電層108之間的界面處可具有較高移動率。因此,主動結構110的最底層110b包括混合層112,混合層112包含第一材料和第二材料的混合物,以減少缺陷,但是也增加主動結構110的最底層110b與閘極介電層108之間的界面處的電荷移動率。
再者,第二主動層120包括第一材料,第一材料具有比第二材料和第三材料更大的鍵能。透過形成第二主動層120作為主動結構110的最頂層110t,減少了主動結構110的最頂表面處的缺陷(例如表面態、氧空缺)。
第10C圖顯示用以在閘極介電層108上方形成主動結構110的第二方法的一些實施例的時序圖1000C,其中第一固體前驅物922對應第一材料和第二材料的前驅物混合物,第二固體前驅物926對應第一材料,且第三固體前驅物930對應第三材料。將結合第10A圖的剖面示意圖1000A描述第10C圖。
在一些其他實施例中,第一固體前驅物922對應前驅物混合物,前驅物混合物對應混合層112的第一材料和第二材料。在一些實施例中,對應第一材料的第一前驅物與對應第二材料的第二前驅物的比值在例如約0.01與約0.99之間的範圍中。因此,在一些實施例中,方法的步驟一1004包括透過開啟第一容器殼體910的門結構936,關閉第二容器殼體918和第三容器殼體932的門結構936,並“接通”惰性氣體源912,以活化固體前驅物混合物。接著,惰性氣體源912的惰性氣體與固體前驅物混合物反應,使得前驅物混合物蒸氣進入反應腔體。在一些實施例中,第10C圖的方法進行至步驟二1006,其中“接通”氧氣源916,使得氧蒸氣在反應腔體中與前驅物混合物蒸氣反應,以透過原子層沉積在閘極介電層108上形成混合層112。
在一些實施例中,步驟三1008、步驟四1010、步驟五1012和步驟六1014包括與第10B圖描述的方法相同或相似的步驟。
如第11A圖的剖面示意圖1100A所示,在一些其他實施例中,形成於閘極介電層108上方的主動結構110包括第一主動層114、第二主動層120和第三主動層502的堆疊物,第一主動層114包括第三材料,第二主動層120包括第一材料,且第三主動層502包括第二材料。在一些這樣的實施例中,主動結構110的最底層110b可包括第一主動層114、第二主動層120和第三主動層502的其中一者。在一些實施例中,主動結構110的最頂層110t包括第二主動層120的其中一層,第二主動層120包括第一材料。
第11B圖顯示第11A圖的剖面示意圖1100A所示之用以在閘極介電層108上方形成主動結構110的第三方法的一些實施例的時序圖1100B,其中第一前驅物容器中的第一固體前驅物922可對應第一材料,第二前驅物容器中的第二固體前驅物926可對應第二材料,且第三固體前驅物930可對應第三材料。將結合第11A圖的剖面示意圖1100A描述第11B圖。
如時序圖1100B所示,在一些實施例中,方法的步驟一1104包含“接通”惰性氣體源912,以活化與第二主動層120的其中一層的第一材料相關的第一固體前驅物922。在一些實施例中,方法的步驟二1106包括接通氧氣源916,使得氧蒸氣與步驟一1104的第一前驅物蒸氣反應,以透過原子層沉積在閘極介電層108上方形成第二主動層120的其中一層。在一些實施例中,方法進行至步驟三1108,其中接通惰性氣體源912,以活化與第三主動層502的其中一層相關的第二固體前驅物926。在一些實施例中,方法的步驟四1110包括接通氧氣源916,使得氧蒸氣與步驟三1108的第二前驅物蒸氣反應,以透過原子層沉積在第二主動層120的其中一層上方形成第三主動層502的其中一層。
在一些實施例中,方法進行至步驟五1112,其中“接通”惰性氣體源912,以活化與第一主動層114的其中一層的第三材料相關的第三固體前驅物930。在一些實施例中,方法的步驟六1114包括接通氧氣源916,使得氧蒸氣與步驟五1112的第三前驅物蒸氣反應,以透過原子層沉積在第三主動層502的其中一層上方形成第一主動層114的其中一層。在一些實施例中,重複步驟一1104、步驟二1106、步驟三1108、步驟四1110、步驟五1112和步驟六1114,以在閘極介電層108上方形成第一主動層114、第二主動層120和第三主動層502的堆疊物。接著,在一些實施例中,第11B圖的方法包括步驟七1116和步驟八1118,以形成包括第二主動層120的主動結構110的最頂層110t。因此,在一些實施例中,步驟七1116和步驟八1118包括相同或相似於步驟一1104和步驟1106用以形成第二主動層120的步驟。
如第12A圖的剖面示意圖1200A所示,在一些實施例中,形成於閘極介電層108上方的主動結構110包括下部402,下部402包含在閘極介電層108上方的第一材料、第二材料和第三材料的混合物。因此,在一些實施例中,主動結構110包括不具有限定層的下部402。再者,在一些實施例中,包括第一材料的第二主動層120形成於下部402上方,使得主動結構110包括設置於下部402上方的第二主動層120。
第12B圖顯示第12A圖的剖面示意圖1200A所示之用以在閘極介電層108上方形成主動結構110的第四方法的一些實施例的時序圖1200B,其中第一前驅物容器中的第一固體前驅物922可對應第一材料,第二前驅物容器中的第二固體前驅物926可對應第二材料,且第三固體前驅物930可對應第三材料。將結合第12A圖的剖面示意圖1200A描述第12B圖。
如第12B圖的時序圖1200B所示,在一些實施例中,方法的步驟一1204包含透過“接通”惰性氣體源912,以同時活化第一固體前驅物922、第二固體前驅物926和第三固體前驅物930。接著,在方法的步驟二1206中,“接通”氧氣源916,使得氧蒸氣與步驟一1204的前驅物混合物蒸氣反應,以透過原子層沉積形成主動結構110的下部402。在一些實施例中,多次重複步驟一1204和步驟二1206,以增加下部402的厚度。在一些實施例中,在形成主動結構的下部402之後,方法進行至步驟三1208,其中接通惰性氣體源912,以活化第一固體前驅物922,但是不活化第二固體前驅物926或第三固體前驅物930。再者,在一些實施例中,方法進行至步驟1210,其中“接通”氧氣源916,使得氧蒸氣與步驟三1208的第二混合物蒸氣反應,以在主動結構110的下部402上方形成第二主動層120。
因此,第10A圖到第12B圖顯示可用以在閘極介電層108上方形成主動結構110的各種方法。應當理解的是,其他相關方法及/或第10A-12B圖的方法的組合也在本發明實施例的範圍中。
在一些實施例中,方法進行至在主動結構上方形成覆蓋結構。第13-16圖顯示在主動結構110上方形成覆蓋結構的第一方法,而第17-20圖顯示在主動結構110上方形成覆蓋結構的第二方法。因此,在一些實施例中,在閘極介電層108上方形成主動結構110之後,方法可進行至第13圖或第17圖(進而省略第13-16圖的步驟)。
如第13圖的剖面示意圖1300所示,在一些實施例中,在主動結構110上方形成第一連續金屬層1302。在一些實施例中,第一連續金屬層1302包括比主動結構110中的金屬對氧具有較高的親和力的第一金屬材料。因此,在一些實施例中,第一金屬材料不同於主動結構110中的金屬。在一些實施例中,第一連續金屬層1302可包括例如鋁、鈣、鈧、釔、鈮、鉭、鉻、鐵、鈦、矽、鉿、鋯、鈦、鍶、鋇、鎂、鑭、釓、前述之組合及/或具有強氧化性(即對氧的高親和力)的一些其他合適金屬或半導體材料。在一些實施例中,第一連續金屬層1302透過使用原子層沉積(ALD)製程形成,且可在用於形成主動結構110的相同原子層沉積反應腔體中形成。舉例來說,在一些實施例中,第一連續金屬層1302可透過“接通”惰性氣體源(例如第9圖的惰性氣體源912),以活化與第一金屬材料相關的前驅物的原子層沉積製程形成。在其他實施例中,第一連續金屬層1302可透過使用不同於原子層沉積的沉積製程形成,例如物理氣相沉積、化學氣相沉積、濺鍍或一些其他合適的製程。
在一些實施例中,當使用原子層沉積製程來形成第一連續金屬層1302時,如果第一連續金屬層1302包括鋁,使用的前驅物可包括例如Al(CH­ 3) 3或包括鋁的一些其他前驅物。在一些實施例中,當使用原子層沉積製程來形成第一連續金屬層1302時,如果第一連續金屬層1302包括鈣,使用的前驅物可包括例如Ca(OCC(CH 3) 3CHCOC(CH 3) 3)) 2、磷酸鈣(2, 2, 6, 6-四甲基-3, 5-庚二酸)或包括鈣的一些其他前驅物。
在一些實施例中,接著,在第一連續金屬層1302上方形成第二連續金屬層1304。在一些實施例中,第二連續金屬層1304可包括與第一連續金屬層1302相同或相似的材料。在其他實施例中,省略第二連續金屬層1304。在一些實施例中,第二連續金屬層1304透過使用相同於第一連續金屬層1302的沉積製程形成,例如原子層沉積、物理氣相沉積、化學氣相沉積、濺鍍或類似方法。在一些實施例中,第二連續金屬層1304可透過“接通”惰性氣體源(例如第9圖的惰性氣體源912),以活化與第二金屬材料相關的前驅物的原子層沉積製程形成。在一些實施例中,第一連續金屬層1302和第二連續金屬層1304的厚度可在例如約0.1 Å至約30 Å之間的範圍中。
如第14圖的剖面示意圖1400所示,在一些實施例中,遮罩結構1402形成於第一連續金屬層1302和第二連續金屬層1304上方。在一些實施例中,遮罩結構1402透過使用光微影和移除(例如蝕刻)製程形成。在一些實施例中,遮罩結構1402包括光阻材料或硬遮罩材料。
如第15圖的剖面示意圖1500所示,在一些實施例中,依據遮罩結構1402進行移除製程,以移除第一連續金屬層和第二連續金屬層(第14圖的第一連續金屬層1302和第二連續金屬層1304)的周邊部分,以在主動結構110上方形成覆蓋結構122,覆蓋結構122包括第一金屬層124及設置於第一金屬層124上方的第二金屬層326。在一些實施例中,第15圖的移除製程包括濕蝕刻製程或乾蝕刻製程。在一些實施例中,由於第15圖的移除製程的殘餘效應(residual effect),因此第二金屬層326的上表面比第一金屬層124的下表面更窄。
如第16圖的剖面示意圖1600所示,在一些實施例中,進行熱退火製程。在一些實施例中,熱退火製程在腔體中的溫度在例如約400°C與約700°C之間的範圍中進行。在一些實施例中,在熱退火製程之後,在主動結構110的最頂層110t中形成擴散區128。在一些實施例中,擴散區128包括由覆蓋結構122的第一金屬材料和氧製成的金屬氧化物。在一些這樣的實施例中,在熱退火製程期間,第一金屬材料可擴散至主動層中,並與主動結構110中的弱鍵氧鍵結,因為第一金屬材料具有比主動結構110中的金屬對氧的更高親和力。因此,覆蓋結構122幫助減少主動結構110中的缺陷(例如氧空缺、表面態、弱鍵氧),以改善場效電晶體鐵電隨機存取記憶體裝置的效能。
在一些實施例中,在熱退火製程之後,在主動結構110上方的覆蓋結構122的任一側上形成源極/汲極接點118。在一些實施例中,透過各種步驟,這些步驟包括沉積製程(例如物理氣相沉積、化學氣相沉積、原子層沉積、濺鍍等)、移除製程(例如濕蝕刻、乾蝕刻、化學機械研磨(chemical mechanical planarization,CMP)等)及/或圖案化製程(例如光微影/蝕刻),源極/汲極接點118形成於主動結構110上方的互連介電層116中。在一些其他實施例中,先形成源極/汲極接點118,接著在源極/汲極接點118之間及主動結構110上方形成互連介電層116。
在一些實施例中,互連介電層116包括例如氮化物(例如氮化矽、氮氧化矽)、碳化物(例如碳化矽)、氧化物(例如氧化矽)、硼矽酸鹽玻璃(BSG)、磷矽酸鹽玻璃(PSG)、硼磷矽酸鹽玻璃(BPSG)、低介電常數氧化物(例如碳摻雜氧化物,SiCOH)或類似物。在一些實施例中,源極/汲極接點118包括例如鋁、鎢、銅、鉭、鈦或一些其他合適的導電材料。
再者,在一些實施例中,電壓端耦接至閘極電極106和源極/汲極接點118。在一些實施例中,將覆蓋結構122接地。在其他實施例中,覆蓋結構122不接地或耦接至任何電壓端。然而,在一些實施例中,第16圖形成的整個結構為薄膜電晶體(TFT),薄膜電晶體(TFT)也是場效電晶體(FET)鐵電隨機存取記憶體(FeRAM)裝置。在一些這樣的實施例中,當足夠信號(例如電流、電壓)施加至源極/汲極接點118和閘極電極106時,通道區可形成於主動結構110中,以從閘極介電層108讀取記憶體或寫入記憶體至閘極介電層108。在一些實施例中,設置於閘極介電層108正上方的設置於主動結構110和混合層112正上方的覆蓋結構122幫助減少主動結構110(進而通道區)中的缺陷(例如表面態、氧空缺、弱鍵氧),並進而增加整個場效電晶體鐵電隨機存取記憶體裝置的切換速度和可靠性。
第17-20圖顯示在主動結構110上方形成覆蓋結構122的一些替代步驟的剖面示意圖1700-2000。
如第17圖的剖面示意圖1700所示,在一些實施例中,先在主動結構110上方形成互連介電層116。
如第18圖的剖面示意圖1800所示,在一些實施例中,將互連介電層116圖案化,以在互連介電層116中形成開口1802,以暴露主動結構110。在一些實施例中,互連介電層116中的開口1802透過各種步驟形成,這些步驟包括沉積製程(例如物理氣相沉積、化學氣相沉積、原子層沉積、濺鍍、旋塗等)、圖案化製程(例如光微影/蝕刻)以及移除製程(例如濕蝕刻、乾蝕刻)。
如第19圖的剖面示意圖1900所示,在一些實施例中,在互連介電層116的開口1802中形成第一金屬層124。在一些實施例中,第一金屬層124部分填充開口1802,而在一些其他實施例中,第一金屬層124完全填充開口1802。在一些實施例中,第一金屬層124透過沉積製程(例如物理氣相沉積、化學氣相沉積、原子層沉積、濺鍍等)以及之後的移除製程(例如蝕刻、化學機械研磨)形成。
如第20圖的剖面示意圖2000所示,在一些實施例中,在開口(第19圖的開口1802)中的第一金屬層124上方形成第二金屬層326,以在主動結構110上方形成覆蓋結構122。在一些實施例中,進行熱退火製程,以形成主動結構110的擴散區128。接著,在一些實施例中,在互連介電層116中形成源極/汲極接點118。
在一些其他實施例中,在第一金屬層124上方形成第二金屬層326之前,將互連介電層116圖案化,以形成用於源極/汲極接點118的開口。在一些實施例中,接著在用於源極/汲極接點118的開口中以及互連介電層116的開口(第19圖的開口1802)中形成第二金屬材料,以形成源極/汲極接點118和第二金屬層326。在這些實施例中,源極/汲極接點118和第二金屬層326可包括第二金屬材料。再者,在一些這樣的實施例中,在沉積第二金屬材料之前或之後,可進行用以形成擴散區128的熱退火製程。
在一些實施例中,由於覆蓋結構122形成於互連介電層116的開口(第19圖的開口1802)中,因此覆蓋結構122可具有比最底表面更寬的最頂表面。再者,在一些實施例中,因為覆蓋結構122形成於開口(第19圖的開口1802)中,相較於其他實施例,移除製程可對主動結構110的最頂層110t造成較少的損壞,其中在形成互連介電層116之前形成第一金屬層124,如第13-16圖所示。
然而,在一些實施例中,覆蓋結構122幫助減少主動結構110中的缺陷(例如表面態、氧空缺、弱鍵氧),並增加整個場效電晶體鐵電隨機存取記憶體裝置的切換速度和可靠性。
第21圖顯示形成場效電晶體鐵電隨機存取記憶體裝置的方法2100的一些實施例的流程圖,方法2100包括在主動結構上方設置覆蓋結構,以減少主動結構中的缺陷,並增加整個場效電晶體鐵電隨機存取記憶體裝置的切換速度和可靠性。
雖然以下將方法2100描述為一連串的動作或事件,但是應當理解的是,顯示的這些動作或事件的順序不應被解釋為限制性意義。舉例來說,一些動作可以不同順序發生及/或同時與不在本文顯示及/或描述的其他事件或動作同時發生。此外,並不需要所有顯示的動作來進行本文描述的一個或多個方面或實施例。再者,本文描述的一個或多個動作可在一個或多個單獨的動作及/或階段中進行。
在動作2102,在基底上方形成閘極電極。第7圖顯示對應動作2102的一些實施例的剖面示意圖700。
在動作2104,在閘極電極上方形成包括鐵電材料的閘極介電層。第8圖顯示對應動作2104的一些實施例的剖面示意圖800。
在動作2106,在閘極介電層上方形成主動結構。第10A圖顯示對應動作2106的一些實施例的剖面示意圖1000A。
在動作2108,在主動結構上方形成第一金屬層。第13圖顯示對應動作2108的一些實施例的剖面示意圖1300。
在動作2110,移除第一金屬層的周邊部分,以在主動結構上方形成覆蓋結構。第15圖顯示對應動作2110的一些實施例的剖面示意圖1500。
在動作2112,在主動結構上方形成源極接點和汲極接點,其中覆蓋結構橫向設置於源極接點與汲極接點之間。第16圖顯示對應動作2112的一些實施例的剖面示意圖1600。
因此,本發明實施例為有關於方法,此方法在鐵電層上方形成主動結構,以及在主動結構上方形成覆蓋結構,以減少主動結構中的缺陷,並最佳化主動結構的電荷移動率,以增加整個場效電晶體鐵電隨機存取記憶體裝置的切換速度和可靠性。
因此,在一些實施例中,本發明實施例有關於積體晶片,積體晶片包括:閘極電極,設置於基底上方;閘極介電層,設置於閘極電極上方,閘極介電層包括鐵電材料;主動結構,設置於閘極介電層上方,且主動結構包括半導體材料;源極接點和汲極接點,設置於主動結構上方;以及覆蓋結構,設置於主動結構上方及源極接點與汲極接點之間,其中覆蓋結構包括第一金屬材料。
在一些其他實施例中,其中主動結構包括交替堆疊的複數個混合層和複數個第一主動層的堆疊物,其中複數個混合層包括第一材料和第二材料的混合物,其中複數個第一主動層包括不同於第一材料和第二材料的第三材料,其中主動結構的最底層為複數個混合層的其中一層,且其中主動結構的最頂層設置於交替堆疊的複數個混合層和複數個第一主動層的堆疊物上方,且主動結構的最頂層包括第一材料。
在一些其他實施例中,其中主動結構包括複數個第一主動層、複數個第二主動層和複數個第三主動層的堆疊物,複數個第一主動層包括第一金屬氧化物材料,複數個第二主動層包括第二金屬氧化物材料,且複數個第三主動層包括第三金屬氧化物材料。
在一些其他實施例中,其中覆蓋結構包括第一層及設置於第一層上方的第二層,第一層包括第一金屬材料,第二層包括第二金屬材料。
在一些其他實施例中,其中覆蓋結構接地。
在一些其他實施例中,其中第一金屬材料比主動結構的材料具有對氧的更高親和力。
在一些其他實施例中,其中主動結構包括下部,下部包括第一材料、第二材料和第三材料的混合物,且其中主動結構包括設置於下部上方的上部,上部包括第一材料。
在一些其他實施例中,其中覆蓋結構直接接觸主動結構的擴散區,其中擴散區包括第一金屬材料和第一材料。
在其他實施例中,本發明實施例有關於積體晶片,積體晶片包括:閘極電極,設置於基底上方;閘極介電層,設置於閘極電極上方,其中閘極介電層包括鐵電材料;主動結構,設置於閘極介電層上方;源極接點和汲極接點,設置於主動結構上方;以及覆蓋結構,設置於主動結構上方及源極接點與汲極接點之間,其中覆蓋結構包括第一金屬材料,第一金屬材料比主動結構中的金屬具有對氧的更高親和力。
在一些其他實施例中,其中主動結構包括第一材料、不同於第一材料的第二材料及不同於第一材料和第二材料的第三材料,其中第一材料和第二材料直接接觸閘極介電層,其中第三材料透過第一材料和第二材料與閘極介電層間隔開,且其中覆蓋結構直接接觸第一材料,但是不接觸第二材料或第三材料。
在一些其他實施例中,其中覆蓋結構包括第一層和設置於第一層上方的第二層,第一層包括第一金屬材料,第二層包括第二金屬材料,其中第一層直接接觸主動結構的擴散區,且其中擴散區包括第一金屬材料和氧。
在一些其他實施例中,其中覆蓋結構包括第一金屬材料和第二金屬材料的混合物。
在一些其他實施例中,上述積體晶片更包括:互連導通孔,設置於閘極電極下方,並耦接至閘極電極;第一互連線,設置於源極接點上方,並耦接至源極接點;第二互連線,設置於汲極接點上方,並耦接至汲極接點;以及互連介電結構,圍繞互連導通孔、第一互連線、第二互連線、源極接點、汲極接點和覆蓋結構。
在一些其他實施例中,其中覆蓋結構接地。
在一些其他實施例中,其中主動結構的最頂層包括氧化鎵,且主動結構的最底層包括氧化鎵和氧化銦的混合物。
在其他實施例中,本發明實施例有關於方法,此方法包括:在基底上方形成閘極電極;在閘極電極上方形成閘極介電層,閘極介電層包括鐵電材料;在閘極介電層上方形成主動結構;在主動結構上方形成第一金屬層;移除第一金屬層的周邊部分,以在主動結構上方形成覆蓋結構;以及在主動結構上方形成源極接點和汲極接點,其中覆蓋結構橫向設置於源極接點與汲極接點之間。
在一些其他實施例中,其中形成主動結構的步驟包括:透過同時活化兩前驅物,以在閘極介電層上方形成混合層,使得混合層包括第一材料和第二材料的混合物;在混合層上方形成第一主動層,第一主動層包括不同於第一材料和第二材料的第三材料;以及重複形成混合層和第一主動層的步驟,以在閘極介電層上方形成彼此交替堆疊的複數個混合層和複數個第一主動層的堆疊物;以及在複數個混合層和複數個第一主動層的堆疊物上方形成最頂部主動層,最頂部主動層包括第一材料。
在一些其他實施例中,上述方法更包括:在第一金屬層上方形成第二金屬層;以及移除第二金屬層的周邊部分,其中覆蓋結構包括第一金屬層和第二金屬層。
在一些其他實施例中,其中第一金屬層透過使用固體前驅物和原子層沉積製程形成。
在一些其他實施例中,上述方法更包括:在形成第一金屬層之後及形成源極接點和汲極接點之前,進行熱退火製程。
前述內文概述了許多實施例的特徵,使本技術領域中具有通常知識者可以從各個方面更加了解本發明實施例。本技術領域中具有通常知識者應可理解,且可輕易地以本發明實施例為基礎來設計或修飾其他製程及結構,並以此達到相同的目的及/或達到與在此介紹的實施例等相同之優點。本技術領域中具有通常知識者也應了解這些相等的結構並未背離本發明的發明精神與範圍。在不背離本發明的發明精神與範圍之前提下,可對本發明實施例進行各種改變、置換或修改。
100,200,300,400,500,600,700,800,900,1000A,1100A,1200A,1300,1400,1500,1600,1700,1800,1900,2000:剖面示意圖 102:基底 104:介電層 106:閘極電極 108:閘極介電層 110:主動結構 110b:最底層 110t:最頂層 110s:最頂表面 112:混合層 114:第一主動層 116:互連介電層 118:源極/汲極接點 120:第二主動層 122:覆蓋結構 124:第一金屬層 128:擴散區 202:第一材料區 204:第二材料區 302:塊狀基底層 304:主動基底層 326:第二金屬層 402:下部 502:第三主動層 602:互連結構 604a:第一場效電晶體鐵電隨機存取記憶體裝置 604b:第二場效電晶體鐵電隨機存取記憶體裝置 606:蝕刻停止層 608:互連線 618:互連接點 901:晶圓夾盤 902:殼體 908:第一氣體入口管線 910:第一容器殼體 912:惰性氣體源 914:第二氣體入口管線 916:氧氣源 918:第二容器殼體 919:氣體出口管線 920:第一前驅物基板 922:第一固體前驅物 924:第二前驅物基板 926:第二固體前驅物 928:第三前驅物基板 930:第三固體前驅物 932:第三容器殼體 934:箭頭 936:門結構 1000B,1000C,1100B,1200B:時序圖 1002:備註 1004:步驟一 1006:步驟二 1008:步驟三 1010:步驟四 1012:步驟五 1014:步驟六 1302:第一連續金屬層 1304:第二連續金屬層 1402:遮罩結構 1802:開口 2100:方法 2102,2104,2106,2108,2110,2112:動作 A:方塊 t 1:第一厚度 t 2:第二厚度 t 3:第三厚度
根據以下的詳細說明並配合所附圖式可以更加理解本發明實施例。應注意的是,根據本產業的標準慣例,圖示中的各種部件(feature)並未必按照比例繪製。事實上,可能任意的放大或縮小各種部件的尺寸,以做清楚的說明。 第1圖顯示場效電晶體(field effect transistor,FET)鐵電隨機存取記憶體(ferroelectric random access memory,FeRAM)裝置的一些實施例的剖面示意圖,場效電晶體鐵電隨機存取記憶體裝置包括設置於主動結構上方的覆蓋結構,其中主動結構的最底層包括混合層(cocktail layer)。 第2圖顯示混合層的微結構的一些實施例的放大剖面示意圖。 第3圖顯示場效電晶體鐵電隨機存取記憶體裝置的一些其他實施例的剖面示意圖,場效電晶體鐵電隨機存取記憶體裝置包括設置於主動結構上方的覆蓋結構,其中主動結構的最底層包括混合層。 第4和5圖顯示場效電晶體鐵電隨機存取記憶體裝置的一些實施例的剖面示意圖,場效電晶體鐵電隨機存取記憶體裝置包括設置於主動結構上方的覆蓋結構。 第6圖顯示積體晶片的一些實施例的剖面示意圖,積體晶片包括場效電晶體鐵電隨機存取記憶體裝置,場效電晶體鐵電隨機存取記憶體裝置具有設置於主動結構上方的覆蓋結構,且場效電晶體鐵電隨機存取記憶體裝置埋置於互連結構中。 第7-9、10A-10C、11A-11B、12A-12B、13-20圖顯示在場效電晶體鐵電隨機存取記憶體裝置的主動結構上方形成覆蓋結構的方法的一些實施例的各種視圖和簡圖。 第21圖顯示對應至第6-9、10A-10C、11A-11B、12A-12B、13-20圖的方法,在場效電晶體鐵電隨機存取記憶體裝置的主動結構上方形成覆蓋結構的方法的一些實施例的流程圖。
100:剖面示意圖
102:基底
104:介電層
106:閘極電極
108:閘極介電層
110:主動結構
110b:最底層
110t:最頂層
110s:最頂表面
112:混合層
114:第一主動層
116:互連介電層
118:源極/汲極接點
120:第二主動層
122:覆蓋結構
124:第一金屬層
128:擴散區
A:方塊

Claims (9)

  1. 一種積體晶片,包括:一閘極電極,設置於一基底上方;一閘極介電層,設置於該閘極電極上方,該閘極介電層包括一鐵電材料;一主動結構,設置於該閘極介電層上方,且該主動結構包括一半導體材料;一源極接點和一汲極接點,設置於該主動結構上方;以及一覆蓋結構,設置於該主動結構上方及該源極接點與該汲極接點之間,其中該覆蓋結構包括一第一金屬材料並直接接觸該主動結構的一擴散區,其中該擴散區包括該第一金屬材料和該主動結構的一第一材料。
  2. 如請求項1之積體晶片,其中該主動結構包括交替堆疊的複數個混合層和複數個第一主動層的一堆疊物,其中該複數個混合層包括該第一材料和一第二材料的一混合物,其中該複數個第一主動層包括不同於該第一材料和該第二材料的一第三材料,其中該主動結構的一最底層為該複數個混合層的其中一層,且其中該主動結構的一最頂層設置於交替堆疊的該複數個混合層和該複數個第一主動層的該堆疊物上方,且該主動結構的該最頂層包括該第一材料。
  3. 如請求項1之積體晶片,其中該主動結構包括複數個第一主動層、複數個第二主動層和複數個第三主動層的一堆疊物,該複數個第一主動層包括一第一金屬氧化物材料,該複數個第二主動層包括一第二金屬氧化物材料,且該複數個第三主動層包括一第三金屬氧化物材料。
  4. 如請求項1至3中任一項之積體晶片,其中該覆蓋結構包括一第一層及設置於該第一層上方的一第二層,該第一層包括該第一金屬材料,該第二層包括一第二金屬材料。
  5. 如請求項1至3中任一項之積體晶片,其中該主動結構包括一下部,該下部包括該第一材料、一第二材料和一第三材料的一混合物,且其中該主動結構包括設置於該下部上方的一上部,該上部包括該第一材料。
  6. 一種積體晶片,包括:一閘極電極,設置於一基底上方;一閘極介電層,設置於該閘極電極上方,其中該閘極介電層包括一鐵電材料;一主動結構,設置於該閘極介電層上方;一源極接點和一汲極接點,設置於該主動結構上方;以及一覆蓋結構,設置於該主動結構上方及該源極接點與該汲極接點之間,其中該覆蓋結構包括一第一金屬材料,該第一金屬材料比該主動結構中的金屬具有對氧的更高親和力。
  7. 如請求項6之積體晶片,其中該主動結構包括一第一材料、不同於該第一材料的一第二材料及不同於該第一材料和該第二材料的一第三材料,其中該第一材料和該第二材料直接接觸該閘極介電層,其中該第三材料透過該第一材料和該第二材料與該閘極介電層間隔開,且其中該覆蓋結構直接接觸該第一材料,但是不接觸該第二材料或該第三材料。
  8. 一種積體晶片的形成方法,包括:在一基底上方形成一閘極電極;在該閘極電極上方形成一閘極介電層,該閘極介電層包括一鐵電材料;在該閘極介電層上方形成一主動結構;在該主動結構上方形成一第一金屬層;移除該第一金屬層的一周邊部分,以在該主動結構上方形成一覆蓋結構;以 及在該主動結構上方形成一源極接點和一汲極接點,其中該覆蓋結構橫向設置於該源極接點與該汲極接點之間。
  9. 如請求項8之積體晶片的形成方法,其中形成該主動結構的步驟包括:透過同時活化兩前驅物,以在該閘極介電層上方形成一混合層,使得該混合層包括一第一材料和一第二材料的一混合物;在該混合層上方形成一第一主動層,該第一主動層包括不同於該第一材料和該第二材料的一第三材料;以及重複形成該混合層和該第一主動層的步驟,以在該閘極介電層上方形成彼此交替堆疊的複數個混合層和複數個第一主動層的一堆疊物;以及在該複數個混合層和該複數個第一主動層的該堆疊物上方形成一最頂部主動層,該最頂部主動層包括該第一材料。
TW111100692A 2021-02-05 2022-01-07 積體晶片及其形成方法 TWI840732B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/168,361 US11729990B2 (en) 2021-02-05 2021-02-05 Capping layer over FET FeRAM to increase charge mobility
US17/168,361 2021-02-05

Publications (2)

Publication Number Publication Date
TW202232670A TW202232670A (zh) 2022-08-16
TWI840732B true TWI840732B (zh) 2024-05-01

Family

ID=

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200098926A1 (en) 2018-09-26 2020-03-26 Intel Corporation Transistors with ferroelectric gates

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200098926A1 (en) 2018-09-26 2020-03-26 Intel Corporation Transistors with ferroelectric gates

Similar Documents

Publication Publication Date Title
US11367623B2 (en) Structure and method to expose memory cells with different sizes
US11637126B2 (en) Memory device and method of forming the same
TW202010102A (zh) 積體晶片、記憶體結構及其形成方法
US10176866B1 (en) Recap layer scheme to enhance RRAM performance
US11515332B2 (en) Ferroelectric memory device and method of forming the same
CN111785722A (zh) 制造f-ram的方法
US20230327024A1 (en) Oxide Semiconductor Transistor Structure in 3-D Device and Methods for Forming the Same
US11695073B2 (en) Memory array gate structures
TW202040754A (zh) 形成積體晶片的方法
TWI840732B (zh) 積體晶片及其形成方法
US20220359570A1 (en) Ferroelectric memory device and method of forming the same
US20220416085A1 (en) Memory Array Gate Structures
TW202301654A (zh) 積體晶片、記憶體裝置及其形成方法
TW202232670A (zh) 積體晶片及其形成方法
US11818896B2 (en) Cocktail layer over gate dielectric layer of FET FeRAM
US20240072169A1 (en) Transistor, integrated circuit, and manufacturing method of transistor
US20230422513A1 (en) Ferroelectric device and methods of forming the same
US11917831B2 (en) Annealed seed layer to improve ferroelectric properties of memory layer
US20230247841A1 (en) Double gate metal-ferroelectric-metal-insulator-semiconductor field-effect transistor (mfmis-fet) structure
TW202347767A (zh) 積體晶片及其形成方法
TW202320237A (zh) 積體晶片
TW202347744A (zh) 鐵電記憶體裝置、半導體結構及其形成方法
TW202412285A (zh) 記憶體裝置及其形成方法
JP2024018952A (ja) ブロッキング層を有する強誘電体メモリ装置
TW202320235A (zh) 積體電路的形成方法