TWI836961B - Solar energy optimization device, solar energy generation system and power conversion system using the same - Google Patents

Solar energy optimization device, solar energy generation system and power conversion system using the same Download PDF

Info

Publication number
TWI836961B
TWI836961B TW112113464A TW112113464A TWI836961B TW I836961 B TWI836961 B TW I836961B TW 112113464 A TW112113464 A TW 112113464A TW 112113464 A TW112113464 A TW 112113464A TW I836961 B TWI836961 B TW I836961B
Authority
TW
Taiwan
Prior art keywords
conversion
circuit
output voltage
solar panel
control
Prior art date
Application number
TW112113464A
Other languages
Chinese (zh)
Other versions
TW202405602A (en
Inventor
范奕超
Original Assignee
光寶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光寶科技股份有限公司 filed Critical 光寶科技股份有限公司
Priority to US18/201,781 priority Critical patent/US20240030867A1/en
Publication of TW202405602A publication Critical patent/TW202405602A/en
Application granted granted Critical
Publication of TWI836961B publication Critical patent/TWI836961B/en

Links

Images

Landscapes

  • Control Of Electrical Variables (AREA)

Abstract

A solar energy optimization device, a solar energy generation system and power conversion system using the same are provided. The solar energy optimization device includes a plurality of conversion circuits and a plurality of control circuits. Each of the conversion circuits is individually connected in series with a solar module. The conversion circuits and the solar modules are connected in series to a maximum power point tracking (MPPT) circuit. The MPPT circuit determines a photovoltaic current according to the solar modules. Each of the conversion circuits is used for converting a photovoltaic voltage of each of the solar module into an output voltage. Each of the control circuits is used to adjust a conversion parameter of each of the conversion circuits to increase each of the output voltages, so that under the same photovoltaic current, an output power of each of the solar modules is optimized.

Description

太陽能功率優化裝置及應用其之太陽能發電系統 與電源轉換系統 Solar power optimization device and solar power generation system using the same and power conversion systems

本揭露是有關於一種功率優化裝置及應用其之發電系統與轉換系統,且特別是有關於一種太陽能功率優化裝置及應用其之太陽能發電系統與電源轉換系統。 The present disclosure relates to a power optimization device and a power generation system and a power conversion system using the same, and in particular to a solar power optimization device and a solar power generation system and a power conversion system using the same.

太陽能板能夠將太陽能轉為電能,是一種乾淨且環保的發電方式。為了減少環境的污染,太陽能發電技術已廣泛應用於各式建築、船舶或車輛上。 Solar panels can convert solar energy into electricity and are a clean and environmentally friendly way of generating electricity. In order to reduce environmental pollution, solar power generation technology has been widely used in various buildings, ships or vehicles.

由於太陽能板會隨著環境、光照等因素的影響,隨時都在改變其電流-電壓特性曲線。為了較佳的工作效率,通常會利用最大功率點追蹤(Maximum power point tracking,MPPT)技術,來取得最大功率點。 Because solar panels are constantly changing their current-voltage characteristic curves due to the influence of the environment, light, and other factors, in order to achieve better working efficiency, the maximum power point tracking (MPPT) technology is usually used to obtain the maximum power point.

本揭露係有關於一種太陽能功率優化裝置及應用其之太陽能發電系統與電源轉換系統,其利用控制電路對轉換電路之轉換參數進行調變,來拉升輸出電壓,使得各個太陽能板模組的輸出功率皆被個別優化,有效地高太陽能發電系統的工作效率。 The present disclosure relates to a solar power optimization device and a solar power generation system and power conversion system using the same, which uses a control circuit to modulate the conversion parameters of the conversion circuit to increase the output voltage, so that the output of each solar panel module The power is individually optimized to effectively increase the efficiency of the solar power generation system.

根據本揭露之一方面,提出一種太陽能功率優化裝置。太陽能功率優化裝置包括數個轉換電路及數個控制電路。各個轉換電路個別串接於一太陽能板模組。這些轉換電路與這些太陽能板模組串接於一最大功率點追蹤電路(Maximum power point tracking circuit,MPPT circuit)。最大功率點追蹤電路依據這些太陽能板模組決定一光伏電流。各個轉換電路用以將各個太陽能板模組之一光伏電壓轉換為一輸出電壓。各個控制電路用以調整各個轉換電路之一轉換參數,以拉升各個輸出電壓,使得相同之光伏電流之下,各個太陽能板模組的一輸出功率被優化。 According to one aspect of the present disclosure, a solar power optimization device is provided. The solar power optimization device includes several conversion circuits and several control circuits. Each conversion circuit is individually connected in series to a solar panel module. These conversion circuits and these solar panel modules are connected in series to a maximum power point tracking circuit (MPPT circuit). The maximum power point tracking circuit determines a photovoltaic current based on these solar panel modules. Each conversion circuit is used to convert a photovoltaic voltage of each solar panel module into an output voltage. Each control circuit is used to adjust a conversion parameter of each conversion circuit to increase each output voltage, so that the output power of each solar panel module is optimized under the same photovoltaic current.

根據本揭露之另一方面,提出一種太陽能發電系統。太陽能發電系統包括數個太陽能板模組、數個轉換電路、一最大功率點追蹤電路(Maximum power point tracking circuit,MPPT circuit)及數個控制電路。這些轉換電路交錯地串接於這些太陽能板模組。這些轉換電路與這些太陽能板模組串接於最大功率點追蹤電路。最大功率點追蹤電路依據這些太陽能板模組決定一光伏電流。各個轉換電路用以將各個太陽能板模組之一光伏電壓轉換為一輸出電壓。各個控制電路用以調整各個轉換電路之 一轉換參數,以拉升各個輸出電壓,使得相同之光伏電流之下,各個太陽能板模組的一輸出功率被優化。 According to another aspect of the present disclosure, a solar power generation system is provided. The solar power generation system includes several solar panel modules, several conversion circuits, a maximum power point tracking circuit (MPPT circuit) and several control circuits. These conversion circuits are interconnected in series with these solar panel modules. These conversion circuits and these solar panel modules are connected in series to the maximum power point tracking circuit. The maximum power point tracking circuit determines a photovoltaic current based on these solar panel modules. Each conversion circuit is used to convert a photovoltaic voltage of each solar panel module into an output voltage. Each control circuit is used to adjust the relationship between each conversion circuit A conversion parameter is used to increase each output voltage so that the output power of each solar panel module is optimized under the same photovoltaic current.

根據本揭露之再一方面,提出一種電源轉換系統。電源轉換系統包括一第一轉換裝置、一第二轉換裝置及一最大功率點追蹤電路。第一轉換裝置具有一第一輸入端、一第一轉換電路、一第一輸出端及一第一控制單元。第一輸入端電性連接一第一電源。第一轉換電路電性連接第一輸入端、第一輸出端及第一控制單元。第二轉換裝置具有一第二輸入端、一第二轉換電路、一第二輸出端及一第二控制單元。第二輸入端電性連接一第二電源。第二轉換電路電性連接第二輸入端、第二輸出端及第二控制單元。最大功率點追蹤電路與第一輸出端及第二輸出端串聯連接。第一控制單元輸出一第一控制信號調整第一轉換電路的一第一輸出電壓,且第二控制單元輸出一第二控制信號調整第二轉換電路的一第二輸出電壓。 According to another aspect of the present disclosure, a power conversion system is proposed. The power conversion system includes a first conversion device, a second conversion device and a maximum power point tracking circuit. The first conversion device has a first input terminal, a first conversion circuit, a first output terminal and a first control unit. The first input terminal is electrically connected to a first power source. The first conversion circuit is electrically connected to the first input terminal, the first output terminal and the first control unit. The second conversion device has a second input terminal, a second conversion circuit, a second output terminal and a second control unit. The second input terminal is electrically connected to a second power source. The second conversion circuit is electrically connected to the second input terminal, the second output terminal and the second control unit. The maximum power point tracking circuit is connected in series with the first output terminal and the second output terminal. The first control unit outputs a first control signal to adjust a first output voltage of the first conversion circuit, and the second control unit outputs a second control signal to adjust a second output voltage of the second conversion circuit.

為了對本揭露之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下: In order to better understand the above and other aspects of this disclosure, the following is a specific example, and the attached drawings are used to explain in detail as follows:

100,300,900:太陽能發電系統 100,300,900:Solar power generation system

110i,310i:太陽能板模組 110i, 310i: Solar panel module

120,220:太陽能功率優化裝置 120,220: Solar power optimization device

121i:轉換電路 121i: conversion circuit

122i,222i:控制電路 122i, 222i: control circuit

130,430,930:最大功率點追蹤電路 130,430,930: Maximum power point tracking circuit

400:電源轉換系統 400: Power conversion system

410:第一轉換裝置 410: First conversion device

411:第一轉換電路 411: First conversion circuit

412:第一控制單元 412: First control unit

420:第二轉換裝置 420: Second conversion device

421:第二轉換電路 421: Second conversion circuit

422:第二控制單元 422: Second control unit

911:第一電源 911: First Power Source

912:第二電源 912: Second power supply

C1:電容 C1: Capacitor

D1:二極體 D1: Diode

E11:第一輸入端 E11: first input terminal

E12:第一輸出端 E12: First output terminal

E21:第二輸入端 E21: Second input terminal

E22:第二輸出端 E22: Second output terminal

I9:光伏電流 I9: Photovoltaic current

L1:電感 L1: Inductor

Pi:最大功率點 Pi: Maximum power point

M11,M21:第一控制模式 M11, M21: first control mode

M12,M22:第二控制模式 M12, M22: Second control mode

PMi:轉換參數 PMi: Conversion parameters

S1:第一控制信號 S1: first control signal

S2:第二控制信號 S2: Second control signal

SLi,SLij:太陽能板 SLi, SLij: Solar panels

SW1:第一開關元件 SW1: first switching element

SW2:第二開關元件 SW2: Second switch element

V1:第一輸出電壓 V1: first output voltage

V1i,V3i:光伏電壓 V1i, V3i: Photovoltaic voltage

V1i’,V3i’:輸出電壓 V1i’, V3i’: output voltage

V2:第二輸出電壓 V2: second output voltage

第1圖繪示根據一實施例之太陽能發電系統的示意圖。 Figure 1 is a schematic diagram of a solar power generation system according to an embodiment.

第2圖繪示根據一實施例之太陽能發電系統。 FIG. 2 shows a solar power generation system according to an embodiment.

第3圖繪示根據一實施例之太陽能功率優化裝置與太陽能板 模組的電路圖。 Figure 3 illustrates a solar power optimization device and a solar panel according to an embodiment Circuit diagram of the module.

第4圖示例說明控制電路調整轉換參數之方式。 Figure 4 shows an example of how the control circuit adjusts the conversion parameters.

第5圖繪示根據另一實施例之太陽能功率優化裝置與太陽能板模組的電路圖。 Figure 5 illustrates a circuit diagram of a solar power optimization device and a solar panel module according to another embodiment.

第6圖示例說明控制電路調整轉換參數之另一種方式。 Figure 6 illustrates another way for the control circuit to adjust the conversion parameters.

第7圖繪示根據另一實施例之太陽能發電系統。 Figure 7 illustrates a solar power generation system according to another embodiment.

第8圖繪示根據一實施例之電源轉換系統。 FIG. 8 shows a power conversion system according to an embodiment.

請參照第1圖,其繪示根據一實施例之太陽能發電系統900的示意圖。太陽能發電系統900包括數個太陽能板SLi及最大功率點追蹤電路(Maximum power point tracking circuit,MPPT circuit)930。太陽能板SLi係以串聯之方式連接。最大功率點追蹤電路930會對所有太陽能板SLi進行最大功率點追蹤,以取得整體最大功率點,並決定光伏電流I9。 Please refer to FIG. 1, which shows a schematic diagram of a solar power generation system 900 according to an embodiment. The solar power generation system 900 includes a plurality of solar panels SLi and a maximum power point tracking circuit (MPPT circuit) 930. The solar panels SLi are connected in series. The maximum power point tracking circuit 930 performs maximum power point tracking on all solar panels SLi to obtain the overall maximum power point and determine the photovoltaic current I9.

由於環境差異和老化情況的不同,各個太陽能板SLi對應於光伏電流I9的功率點並非是每一太陽能板SLi的最大功率點Pi。這將使得部分的太陽能板SLi無法取得最佳的工作效率。 Due to differences in environment and aging, the power point of each solar panel SLi corresponding to the photovoltaic current I9 is not the maximum power point Pi of each solar panel SLi. This will make some solar panels SLi unable to achieve the best working efficiency.

請參照第2圖,其繪示根據一實施例之太陽能發電系統100。太陽能發電系統100包括數個太陽能板模組110i、一太陽能功率優化裝置120及一最大功率點追蹤電路130。太陽能板模組110i係以串聯之方式連接。各個太陽能板模組110i例如是包括一 太陽能板或多個太陽能板。在第2圖之實施例中,各個太陽能板模組110i僅包括一個太陽能板SLi。最大功率點追蹤電路130依據這些串聯的太陽能板模組110i決定整體最大功率點及光伏電流I9。 Please refer to FIG. 2, which shows a solar power generation system 100 according to an embodiment. The solar power generation system 100 includes a plurality of solar panel modules 110i, a solar power optimization device 120, and a maximum power point tracking circuit 130. The solar panel modules 110i are connected in series. Each solar panel module 110i, for example, includes a solar panel or multiple solar panels. In the embodiment of FIG. 2, each solar panel module 110i includes only one solar panel SLi. The maximum power point tracking circuit 130 determines the overall maximum power point and photovoltaic current I9 based on these series-connected solar panel modules 110i.

在本實施例中,由於太陽能板模組110i係以串聯之方式連接,故流經各個太陽能板模組110i之電流皆為光伏電流I9。 In this embodiment, since the solar panel modules 110i are connected in series, the current flowing through each solar panel module 110i is the photovoltaic current I9.

太陽能功率優化裝置120包括數個轉換電路121i及數個控制電路122i。各個轉換電路121i個別串接於太陽能板模組110i,轉換電路121i與太陽能板模組110i交替地串接至最大功率點追蹤電路130。 The solar power optimization device 120 includes a plurality of conversion circuits 121i and a plurality of control circuits 122i. Each conversion circuit 121i is individually connected in series to the solar panel module 110i, and the conversion circuit 121i and the solar panel module 110i are alternately connected in series to the maximum power point tracking circuit 130.

各個轉換電路121i用以將各個太陽能板模組110i之光伏電壓V1i轉換為一輸出電壓V1i’。轉換電路121i例如是一降壓轉換電路(Buck converter circuit)、一升壓轉換電路(Boost converter circuit)、一降壓-升壓轉換電路(buck-boost converter circuit/FLYBACK converter circuit)。轉換電路121i具有快速關斷功能(rapid shunt down),可於系統需求時,斷開太陽能板模組110i之連接。 Each conversion circuit 121i is used to convert the photovoltaic voltage V1i of each solar panel module 110i into an output voltage V1i'. The conversion circuit 121i is, for example, a buck converter circuit, a boost converter circuit, or a buck-boost converter circuit/FLYBACK converter circuit. The conversion circuit 121i has a rapid shunt down function, which can disconnect the solar panel module 110i when the system requires it.

各個控制電路122i連接於各個轉換電路121i。各個控制電路122i用以調整各個轉換電路121i之一轉換參數PMi。轉換參數PMi例如是一工作週期或一工作頻率。轉換電路121i之轉換參數PMi被調整時,轉換電路121i輸出之輸出電壓V1i’也會被調變。因此,在相同之光伏電流I9之下,可以利用轉換參數PMi 的調整來拉升各個輸出電壓V1i’,使得各個太陽能板模組110i的輸出功率皆被優化。 Each control circuit 122i is connected to each conversion circuit 121i. Each control circuit 122i is used to adjust a conversion parameter PMi of each conversion circuit 121i. The conversion parameter PMi is, for example, a duty cycle or a duty frequency. When the conversion parameter PMi of the conversion circuit 121i is adjusted, the output voltage V1i' output by the conversion circuit 121i will also be modulated. Therefore, under the same photovoltaic current I9, the adjustment of the conversion parameter PMi can be used to increase each output voltage V1i', so that the output power of each solar panel module 110i is optimized.

請參照第3圖,其繪示根據一實施例之太陽能功率優化裝置120與太陽能板模組110i的電路圖。太陽能功率優化裝置120之轉換電路121i例如是包括一第一開關元件SW1、一第二開關元件SW2、一電感L1、一電容C1及一二極體D1。控制電路122i連接於電感L1之輸出端,以回授輸出電壓V1i’至控制電路122i,並由控制電路122i偵測輸出電壓V1i’的變化。控制電路122i更連接於第一開關元件SW1及第二開關元件SW2,以依據輸出電壓V1i’的變化對第一開關元件SW1及第二開關元件SW2進行控制,進而調整轉換參數PMi。 Please refer to FIG. 3 , which illustrates a circuit diagram of the solar power optimization device 120 and the solar panel module 110i according to an embodiment. The conversion circuit 121i of the solar power optimization device 120 includes, for example, a first switching element SW1, a second switching element SW2, an inductor L1, a capacitor C1 and a diode D1. The control circuit 122i is connected to the output end of the inductor L1 to feed back the output voltage V1i' to the control circuit 122i, and the control circuit 122i detects changes in the output voltage V1i'. The control circuit 122i is further connected to the first switching element SW1 and the second switching element SW2 to control the first switching element SW1 and the second switching element SW2 according to changes in the output voltage V1i', thereby adjusting the conversion parameter PMi.

請參照第4圖,其示例說明控制電路122i調整轉換參數PMi之方式。在第一控制模式M11中,控制電路122i以一第一方向調整轉換參數PMi。第一方向例如是增加轉換參數PMi之數值。在第二控制模式M12中,控制電路122i以一第二方向調整轉換參數PMi。第二方向例如是降低轉換參數PMi之數值。 Please refer to Figure 4, which illustrates an example of how the control circuit 122i adjusts the conversion parameter PMi. In the first control mode M11, the control circuit 122i adjusts the conversion parameter PMi in a first direction. The first direction is, for example, to increase the value of the conversion parameter PMi. In the second control mode M12, the control circuit 122i adjusts the conversion parameter PMi in a second direction. The second direction is, for example, to reduce the value of the conversion parameter PMi.

在第一控制模式M11執行後,若輸出電壓V1i’被拉升,則繼續執行第一控制模式M11(控制電路122i以相同之第一方向繼續調整轉換參數PMi),以使輸出電壓V1i’能夠繼續拉升。在第一控制模式M11執行後,若輸出電壓V1i’被拉低,則變更至第二控制模式M12(控制電路122i以相反之第二方向調整轉換參數PMi),以使輸出電壓V1i’能夠拉升。 After the first control mode M11 is executed, if the output voltage V1i' is pulled up, the first control mode M11 is continued to be executed (the control circuit 122i continues to adjust the conversion parameter PMi in the same first direction) so that the output voltage V1i' can continue to be pulled up. After the first control mode M11 is executed, if the output voltage V1i' is pulled down, it is changed to the second control mode M12 (the control circuit 122i adjusts the conversion parameter PMi in the opposite second direction) so that the output voltage V1i' can be pulled up.

在第二控制模式M12執行後,若輸出電壓V1i’被拉升,則繼續執行第二控制模式(控制電路122i以相同之第二方向繼續調整轉換參數PMi),以使輸出電壓V1i’能夠繼續拉升。在第二控制模式M12執行後,若輸出電壓V1i’被拉低,則變更至第一控制模式M11(控制電路122i以相反之第一方向調整轉換參數PMi),以使輸出電壓V1i’能夠拉升。 After the second control mode M12 is executed, if the output voltage V1i' is pulled up, the second control mode is continued to be executed (the control circuit 122i continues to adjust the conversion parameter PMi in the same second direction) so that the output voltage V1i' can continue to be pulled up. After the second control mode M12 is executed, if the output voltage V1i' is pulled down, it is changed to the first control mode M11 (the control circuit 122i adjusts the conversion parameter PMi in the opposite first direction) so that the output voltage V1i' can be pulled up.

優化後之各個太陽能板模組110i之各個輸出電壓V1i’不完全相同。各個輸出電壓V1i’被拉升後,各個太陽能板模組110i的輸出功率也被提升,使得整體輸出功率能夠明顯優化。 Each output voltage V1i' of each solar panel module 110i after optimization is not exactly the same. After each output voltage V1i' is increased, the output power of each solar panel module 110i is also increased, so that the overall output power can be significantly optimized.

在另一實施例中,控制電路122i也可以對光伏電壓V1i進行偵測,並據以進行轉換參數PMi的調整。請參照第5圖,其繪示根據另一實施例之太陽能功率優化裝置220與太陽能板模組110i的電路圖。太陽能功率優化裝置220之控制電路222i連接於太陽能板模組110i之輸出端,以回授光伏電壓V1i至控制電路122i,並由控制電路122i偵測光伏電壓V1i的變化。控制電路222i更連接於第一開關元件SW1及第二開關元件SW2,以依據光伏電壓V1i的變化對第一開關元件SW1及第二開關元件SW2進行控制,進而調整轉換參數PMi。 In another embodiment, the control circuit 122i can also detect the photovoltaic voltage V1i and adjust the conversion parameter PMi accordingly. Please refer to FIG. 5 , which illustrates a circuit diagram of the solar power optimization device 220 and the solar panel module 110i according to another embodiment. The control circuit 222i of the solar power optimization device 220 is connected to the output end of the solar panel module 110i to feed back the photovoltaic voltage V1i to the control circuit 122i, and the control circuit 122i detects changes in the photovoltaic voltage V1i. The control circuit 222i is further connected to the first switching element SW1 and the second switching element SW2 to control the first switching element SW1 and the second switching element SW2 according to changes in the photovoltaic voltage V1i, thereby adjusting the conversion parameter PMi.

請參照第6圖,其示例說明控制電路222i調整轉換參數PMi之另一種方式。在第一控制模式M21中,控制電路222i以第一方向調整轉換參數PMi。第一方向例如是增加轉換參數PMi之數值。在第二 控制模式M22中,控制電路222i以第二方向調整轉換參數PMi。第二方向例如是降低轉換參數PMi之數值。 Please refer to FIG. 6 , which illustrates another way for the control circuit 222i to adjust the conversion parameter PMi. In the first control mode M21, the control circuit 222i adjusts the conversion parameter PMi in the first direction. The first direction is, for example, to increase the value of the conversion parameter PMi. in second In the control mode M22, the control circuit 222i adjusts the conversion parameter PMi in the second direction. The second direction is, for example, to reduce the value of the conversion parameter PMi.

在第一控制模式M21執行後,若光伏電壓V1i被拉升,則繼續執行第一控制模式M11(控制電路222i以相同之第一方向繼續調整轉換參數PMi),以使光伏電壓V1i能夠繼續拉升,進而拉升輸出電壓V1i’。在第一控制模式M21執行後,若光伏電壓V1i被拉低,則變更至第二控制模式M22(控制電路222i以相反之第二方向調整轉換參數PMi),以使光伏電壓V1i能夠拉升,進而拉升輸出電壓V1i’。 After the first control mode M21 is executed, if the photovoltaic voltage V1i is pulled up, the first control mode M11 is continued (the control circuit 222i continues to adjust the conversion parameter PMi in the same first direction), so that the photovoltaic voltage V1i can continue to be pulled up. rise, thereby pulling up the output voltage V1i'. After the first control mode M21 is executed, if the photovoltaic voltage V1i is pulled down, it is changed to the second control mode M22 (the control circuit 222i adjusts the conversion parameter PMi in the opposite second direction) so that the photovoltaic voltage V1i can be pulled up. Then the output voltage V1i' is raised.

在第二控制模式M22執行後,若光伏電壓V1i被拉升,則繼續執行第二控制模式M22(控制電路222i以相同之第二方向繼續調整轉換參數PMi),以使光伏電壓V1i能夠繼續拉升,進而拉升輸出電壓V1i’。在第二控制模式M22執行後,若光伏電壓V1i被拉低,則變更至第一控制模式M21(控制電路222i以相反之第一方向調整轉換參數PMi),以使光伏電壓V1i能夠拉升,進而拉升輸出電壓V1i’。 After the second control mode M22 is executed, if the photovoltaic voltage V1i is pulled up, the second control mode M22 is continued (the control circuit 222i continues to adjust the conversion parameter PMi in the same second direction), so that the photovoltaic voltage V1i can continue to be pulled up. rise, thereby pulling up the output voltage V1i'. After the second control mode M22 is executed, if the photovoltaic voltage V1i is pulled down, it is changed to the first control mode M21 (the control circuit 222i adjusts the conversion parameter PMi in the opposite first direction), so that the photovoltaic voltage V1i can be pulled up. Then the output voltage V1i' is raised.

優化後之各個太陽能板模組110i之各個輸出電壓V1i’不完全相同。各個輸出電壓V1i’被拉升後,各個太陽能板模組110i的輸出功率也被提升,使得整體輸出功率能夠明顯優化。 After optimization, the output voltages V1i' of each solar panel module 110i are not exactly the same. After each output voltage V1i' is raised, the output power of each solar panel module 110i is also increased, so that the overall output power can be significantly optimized.

此外,請參照第7圖,其繪示根據另一實施例之太陽能發電系統300。在第7圖之實施例中,各個太陽能板模組310i包括多個太陽能板SLij。這些太陽能板SLij係以並聯之方式組成太陽能板模組310i。各個轉換電路121i用以將各個太陽能板模組310i之光伏電壓V3i轉換為輸出電壓V3i’。各個控制電路122i可 以調整各個轉換電路121i之轉換參數PMi,以調變轉換電路121i輸出之輸出電壓V3i’。因此,在相同之光伏電流I9之下,可以利用轉換參數PMi的調整來拉升各個輸出電壓V3i’,使得各個太陽能板模組310i的輸出功率皆被優化。在本實施例中,可以並聯的多個太陽能板SLij作為優化的目標,而不是以單個太陽能板SLij作為優化目標。 In addition, please refer to FIG. 7, which shows a solar power generation system 300 according to another embodiment. In the embodiment of FIG. 7, each solar panel module 310i includes a plurality of solar panels SLij. These solar panels SLij are connected in parallel to form the solar panel module 310i. Each conversion circuit 121i is used to convert the photovoltaic voltage V3i of each solar panel module 310i into an output voltage V3i'. Each control circuit 122i can adjust the conversion parameter PMi of each conversion circuit 121i to modulate the output voltage V3i' output by the conversion circuit 121i. Therefore, under the same photovoltaic current I9, the conversion parameter PMi can be adjusted to increase each output voltage V3i', so that the output power of each solar panel module 310i is optimized. In this embodiment, multiple solar panels SLij connected in parallel can be used as the optimization target, rather than a single solar panel SLij as the optimization target.

根據上述各種實施例,其利用控制電路122i、222i對轉換電路121i之轉換參數PMi進行調變,來拉升輸出電壓V1i’,使得各個太陽能板模組110i、310i的輸出功率皆被個別優化,有效地提高太陽能發電系統100、300的工作效率。 According to the above various embodiments, the control circuits 122i and 222i are used to modulate the conversion parameter PMi of the conversion circuit 121i to increase the output voltage V1i', so that the output power of each solar panel module 110i and 310i is individually optimized. Effectively improve the working efficiency of the solar power generation system 100, 300.

再者,請參照第8圖,其繪示根據一實施例之電源轉換系統400。本揭露之技術亦可實現於電源轉換系統400。如第8圖所示,電源轉換系統400包括一第一轉換裝置410、一第二轉換裝置420及一最大功率點追蹤電路430。第一轉換裝置410具有一第一輸入端E11、一第一轉換電路411、一第一輸出端E12及一第一控制單元412。第一轉換電路411例如是上述之轉換電路121i。第一控制單元412例如是上述之控制電路122i、222i。第一控制單元412例如是上述之控制電路122i。第一輸入端E11電性連接一第一電源911。第一電源911例如是上述之太陽能板模組110i、310i。第一轉換電路411電性連接第一輸入端E11、第一輸出端E12及第一控制單元412。 Furthermore, please refer to FIG. 8 , which illustrates a power conversion system 400 according to an embodiment. The technology of the present disclosure can also be implemented in the power conversion system 400. As shown in FIG. 8 , the power conversion system 400 includes a first conversion device 410 , a second conversion device 420 and a maximum power point tracking circuit 430 . The first conversion device 410 has a first input terminal E11, a first conversion circuit 411, a first output terminal E12 and a first control unit 412. The first conversion circuit 411 is, for example, the above-mentioned conversion circuit 121i. The first control unit 412 is, for example, the above-mentioned control circuits 122i and 222i. The first control unit 412 is, for example, the above-mentioned control circuit 122i. The first input terminal E11 is electrically connected to a first power supply 911. The first power supply 911 is, for example, the above-mentioned solar panel modules 110i and 310i. The first conversion circuit 411 is electrically connected to the first input terminal E11, the first output terminal E12 and the first control unit 412.

第二轉換裝置420具有一第二輸入端E21、一第二轉換電路421、一第二輸出端E22及一第二控制單元422。第二轉換電路421例如是上述之轉換電路121i。第二控制單元422例如是上述之控制電路122i、222i。第二輸入端E21電性連接一第二電源912。第二電源912例如是上述之太陽能板模組110i、310i。第二轉換電路421電性連接第二輸入端E21、第二輸出端E22及第二控制單元422。 The second conversion device 420 has a second input terminal E21, a second conversion circuit 421, a second output terminal E22 and a second control unit 422. The second conversion circuit 421 is, for example, the above-mentioned conversion circuit 121i. The second control unit 422 is, for example, the above-mentioned control circuits 122i and 222i. The second input terminal E21 is electrically connected to a second power supply 912 . The second power supply 912 is, for example, the above-mentioned solar panel modules 110i and 310i. The second conversion circuit 421 is electrically connected to the second input terminal E21, the second output terminal E22 and the second control unit 422.

最大功率點追蹤電路430例如是上述之最大功率點追蹤電路130。最大功率點追蹤電路430與第一輸出端E12及第二輸出端E22串聯連接。 The maximum power point tracking circuit 430 is, for example, the above-mentioned maximum power point tracking circuit 130. The maximum power point tracking circuit 430 is connected in series with the first output terminal E12 and the second output terminal E22.

第一控制單元412輸出一第一控制信號S1,以調整第一轉換電路411的一第一輸出電壓V1。第一控制信號S1例如是一脈波寬度調變信號。第一控制單元412係調整第一控制信號S1而改變第一輸出電壓V1的電壓值。舉例來說,第一控制單元412可以調整第一控制信號S1之工作週期或頻率。第一控制信號S1之工作週期或頻率之調整幅度例如是1%或一預設值。在一實施例中,第一控制信號S1之工作週期或頻率之調整幅度可以動態調整,而非固定值。 The first control unit 412 outputs a first control signal S1 to adjust a first output voltage V1 of the first conversion circuit 411. The first control signal S1 is, for example, a pulse width modulation signal. The first control unit 412 adjusts the first control signal S1 to change the voltage value of the first output voltage V1. For example, the first control unit 412 can adjust the duty cycle or frequency of the first control signal S1. The adjustment amplitude of the duty cycle or frequency of the first control signal S1 is, for example, 1% or a preset value. In one embodiment, the adjustment range of the duty cycle or frequency of the first control signal S1 can be dynamically adjusted instead of being a fixed value.

第一控制單元412可以量測第一輸出電壓V1的變化。當第一輸出電壓V1的電壓值較前次量測的電壓值減少時,則第一控制單元412可以反向調整第一控制信號S1之工作週期或頻率。 The first control unit 412 can measure changes in the first output voltage V1. When the voltage value of the first output voltage V1 decreases compared with the previously measured voltage value, the first control unit 412 can reversely adjust the duty cycle or frequency of the first control signal S1.

舉例來說,當第一輸出電壓V1的電壓值依據第一控制信號S1的工作週期或頻率的增加而相對應增加時,第一控制單元411持續增加第一控制信號S1的工作週期或頻率。當第一輸出電壓V1的電壓值依據第一控制信號S1的工作週期或頻率的增加而相對應減少時,第一控制單元411減少第一控制信號S1的工作週期或頻率。 For example, when the voltage value of the first output voltage V1 increases correspondingly according to the increase of the duty cycle or frequency of the first control signal S1, the first control unit 411 continues to increase the duty cycle or frequency of the first control signal S1. When the voltage value of the first output voltage V1 decreases correspondingly according to the increase of the duty cycle or frequency of the first control signal S1, the first control unit 411 decreases the duty cycle or frequency of the first control signal S1.

第二控制單元422輸出一第二控制信號S2,以調整第二轉換電路421的一第二輸出電壓V2。第二控制信號S2例如是一脈波寬度調變信號。第二控制單元422係調整第二控制信號S2而改變第二輸出電壓V2的電壓值。舉例來說,第二控制單元422可以調整第二控制信號S2之工作週期或頻率。第二控制信號S2之工作週期或頻率之調整幅度例如是1%或一預設值。在一實施例中,第二控制信號S2之工作週期或頻率之調整幅度可以動態調整,而非固定值。 The second control unit 422 outputs a second control signal S2 to adjust a second output voltage V2 of the second conversion circuit 421. The second control signal S2 is, for example, a pulse width modulation signal. The second control unit 422 adjusts the second control signal S2 to change the voltage value of the second output voltage V2. For example, the second control unit 422 can adjust the duty cycle or frequency of the second control signal S2. The adjustment amplitude of the duty cycle or frequency of the second control signal S2 is, for example, 1% or a preset value. In one embodiment, the adjustment amplitude of the duty cycle or frequency of the second control signal S2 can be dynamically adjusted rather than a fixed value.

第二控制單元422可以量測第二輸出電壓V2的變化。當第二輸出電壓V2的電壓值較前次量測的電壓值減少時,則第二控制單元422可以反向調整第二控制信號S2之工作週期或頻率。 The second control unit 422 can measure changes in the second output voltage V2. When the voltage value of the second output voltage V2 decreases compared with the previously measured voltage value, the second control unit 422 can reversely adjust the duty cycle or frequency of the second control signal S2.

舉例來說,當第二輸出電壓V2的電壓值依據第二控制信號S2的工作週期或頻率的增加而相對應增加時,第二控制單元422持續增加第二控制信號S2的工作週期或頻率。當第二輸出電壓V2的電壓值依據第二控制信號S2的工作週期或頻率的增加 而相對應減少時,第二控制單元422減少第二控制信號S2的工作週期或頻率。 For example, when the voltage value of the second output voltage V2 increases correspondingly according to the increase in the duty cycle or frequency of the second control signal S2, the second control unit 422 continues to increase the duty cycle or frequency of the second control signal S2. When the voltage value of the second output voltage V2 increases according to the duty cycle or frequency of the second control signal S2 When correspondingly decreasing, the second control unit 422 decreases the duty cycle or frequency of the second control signal S2.

在一實施例中,上述之第一輸出電壓V1的電壓值與上述之第二輸出電壓V2的電壓值可以不相等。 In one embodiment, the voltage value of the first output voltage V1 and the voltage value of the second output voltage V2 may not be equal to each other.

根據上述實施例,其利用第一控制單元412、第二控制單元422調整第一控制信號S1、第二控制信號S2,來拉升第一輸出電壓V1、第二輸出電壓V2,使得第一電源911、第二電源912的輸出功率可以被個別優化,有效地提高電源轉換系統400的工作效率。換句話說,基於最大功率點追蹤電路430決定一光伏電流的條件下,藉由調整第一控制信號S1和第二控制信號S2,以使第一輸出電壓V1及第二輸出電壓V2分別成為局部最大值,從而使得第一輸出電壓V1及第二輸出電壓V2的電壓和最大化,以提高功率。 According to the above embodiment, the first control unit 412 and the second control unit 422 are used to adjust the first control signal S1 and the second control signal S2 to increase the first output voltage V1 and the second output voltage V2, so that the output power of the first power source 911 and the second power source 912 can be optimized individually, effectively improving the working efficiency of the power conversion system 400. In other words, under the condition that the maximum power point tracking circuit 430 determines a photovoltaic current, the first control signal S1 and the second control signal S2 are adjusted to make the first output voltage V1 and the second output voltage V2 respectively become local maximum values, thereby maximizing the voltage sum of the first output voltage V1 and the second output voltage V2 to increase power.

綜上所述,雖然本揭露已以實施例揭露如上,然其並非用以限定本揭露。本揭露所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作各種之更動與潤飾。因此,本揭露之保護範圍當視後附之申請專利範圍所界定者為準。 In summary, although the present disclosure has been disclosed in the above embodiments, they are not used to limit the present disclosure. Those with ordinary knowledge in the technical field to which this disclosure belongs can make various modifications and modifications without departing from the spirit and scope of this disclosure. Therefore, the protection scope of the present disclosure shall be subject to the scope of the appended patent application.

100:太陽能發電系統 100:Solar power generation system

110i:太陽能板模組 110i:Solar panel module

120:太陽能功率優化裝置 120:Solar power optimization device

121i:轉換電路 121i:Conversion circuit

122i:控制電路 122i: Control circuit

130:最大功率點追蹤電路 130: Maximum power point tracking circuit

I9:光伏電流 I9: Photovoltaic current

PMi:轉換參數 PMi: conversion parameters

SLi:太陽能板 SLi: solar panel

V1i:光伏電壓 V1i: photovoltaic voltage

V1i’:輸出電壓 V1i’: output voltage

Claims (16)

一種太陽能功率優化裝置,包括:複數個轉換電路,各該轉換電路個別串接於一太陽能板模組,該些轉換電路與該些太陽能板模組串接於一最大功率點追蹤電路(Maximum power point tracking circuit,MPPT circuit),該最大功率點追蹤電路依據該些太陽能板模組決定一光伏電流,各該轉換電路用以將各該太陽能板模組之一光伏電壓轉換為一輸出電壓;以及複數個控制電路,各該控制電路用以調整各該轉換電路之一轉換參數,以拉升各該輸出電壓,使得相同之該光伏電流之下,各該太陽能板模組的一輸出功率被優化,其中,各該控制電路以一第一方向調整各該轉換參數;若各該光伏電壓或各該輸出電壓被拉升,則各該控制電路以相同之該第一方向繼續調整各該轉換參數;若各該光伏電壓或各該輸出電壓被拉低,則各該控制電路以相反之一第二方向繼續調整各該轉換參數。 A solar power optimization device includes: a plurality of conversion circuits, each conversion circuit is individually connected in series to a solar panel module, and the conversion circuits and the solar panel modules are connected in series to a maximum power point tracking circuit (Maximum power point tracking circuit). point tracking circuit (MPPT circuit), the maximum power point tracking circuit determines a photovoltaic current based on the solar panel modules, and each conversion circuit is used to convert a photovoltaic voltage of each solar panel module into an output voltage; and A plurality of control circuits, each control circuit is used to adjust a conversion parameter of each conversion circuit to increase the output voltage, so that under the same photovoltaic current, an output power of each solar panel module is optimized , wherein each control circuit adjusts each conversion parameter in a first direction; if each photovoltaic voltage or each output voltage is pulled up, each control circuit continues to adjust each conversion parameter in the same first direction. ; If the photovoltaic voltage or the output voltage is pulled down, the control circuit continues to adjust the conversion parameters in a second opposite direction. 如請求項1所述之太陽能功率優化裝置,其中在相同之該光伏電流之下,優化後之各該太陽能板模組之各該輸出電壓不完全相同。 A solar power optimization device as described in claim 1, wherein under the same photovoltaic current, the output voltages of the optimized solar panel modules are not completely the same. 如請求項1所述之太陽能功率優化裝置,其中該些太陽能板模組之其中之一包括並聯之複數個太陽能板。 A solar power optimization device as described in claim 1, wherein one of the solar panel modules includes a plurality of solar panels connected in parallel. 如請求項1所述之太陽能功率優化裝置,其中該些太陽能板模組之其中之一僅包括一個太陽能板。 The solar power optimization device of claim 1, wherein one of the solar panel modules only includes one solar panel. 如請求項1所述之太陽能功率優化裝置,其中各該轉換參數係為一工作週期或一工作頻率。 A solar power optimization device as described in claim 1, wherein each conversion parameter is a duty cycle or a duty frequency. 如請求項1所述之太陽能功率優化裝置,其中各該控制電路連接於各該轉換電路之一輸出端,以回授各該輸出電壓至各該控制電路。 The solar power optimization device of claim 1, wherein each control circuit is connected to an output end of each conversion circuit to feed back the output voltage to each control circuit. 如請求項1所述之太陽能功率優化裝置,其中各該控制電路連接於各該太陽能板模組之一輸出端,以回授各該光伏電壓至各該控制電路。 The solar power optimization device of claim 1, wherein each control circuit is connected to an output end of each solar panel module to feed back each photovoltaic voltage to each control circuit. 如請求項1所述之太陽能功率優化裝置,其中各該轉換電路具有一第一開關元件及一第二開關元件,各該控制電路連接於各該第一開關元件及各該第二開關元件,以控制各該轉換電路。 A solar power optimization device as described in claim 1, wherein each of the conversion circuits has a first switching element and a second switching element, and each of the control circuits is connected to each of the first switching element and each of the second switching elements to control each of the conversion circuits. 一種太陽能發電系統,包括:數個太陽能板模組;複數個轉換電路,該些轉換電路交錯地串接於該些太陽能板模組; 一最大功率點追蹤電路(Maximum power point tracking circuit,MPPT circuit),該些轉換電路與該些太陽能板模組串接於該最大功率點追蹤電路,該最大功率點追蹤電路依據該些太陽能板模組決定一光伏電流,各該轉換電路用以將各該太陽能板模組之一光伏電壓轉換為一輸出電壓;以及複數個控制電路,各該控制電路用以調整各該轉換電路之一轉換參數,以拉升各該輸出電壓,使得相同之該光伏電流之下,各該太陽能板模組的一輸出功率被優化。 A solar power generation system, including: a plurality of solar panel modules; a plurality of conversion circuits, the conversion circuits being alternately connected in series to the solar panel modules; A maximum power point tracking circuit (MPPT circuit). The conversion circuits and the solar panel modules are connected in series to the maximum power point tracking circuit. The maximum power point tracking circuit is based on the solar panel modules. The group determines a photovoltaic current, each conversion circuit is used to convert a photovoltaic voltage of each solar panel module into an output voltage; and a plurality of control circuits are used to adjust a conversion parameter of each conversion circuit. , to increase the output voltage, so that the output power of each solar panel module is optimized under the same photovoltaic current. 一種電源轉換系統,包括:一第一轉換裝置,具有一第一輸入端、一第一轉換電路、一第一輸出端及一第一控制單元,該第一輸入端電性連接一第一電源,該第一轉換電路電性連接該第一輸入端、該第一輸出端及該第一控制單元;一第二轉換裝置,具有一第二輸入端、一第二轉換電路、一第二輸出端及一第二控制單元,該第二輸入端電性連接一第二電源,該第二轉換電路電性連接該第二輸入端、該第二輸出端及該第二控制單元;以及一最大功率點追蹤電路,與該第一輸出端及該第二輸出端串聯連接,其中該第一控制單元輸出一第一控制信號調整該第一轉換電路的一第一輸出電壓,且該第二控制單元輸出一第二控制信號調整該第二轉換電路的一第二輸出電壓。 A power conversion system includes: a first conversion device having a first input terminal, a first conversion circuit, a first output terminal and a first control unit, wherein the first input terminal is electrically connected to a first power source, and the first conversion circuit is electrically connected to the first input terminal, the first output terminal and the first control unit; a second conversion device having a second input terminal, a second conversion circuit, a second output terminal and a second control unit, wherein the second input terminal A second power source is electrically connected, the second conversion circuit is electrically connected to the second input terminal, the second output terminal and the second control unit; and a maximum power point tracking circuit is connected in series with the first output terminal and the second output terminal, wherein the first control unit outputs a first control signal to adjust a first output voltage of the first conversion circuit, and the second control unit outputs a second control signal to adjust a second output voltage of the second conversion circuit. 如請求項10所述之電源轉換系統,其中該第一輸出電壓的電壓值不等於該第二輸出電壓的電壓值。 A power conversion system as described in claim 10, wherein the voltage value of the first output voltage is not equal to the voltage value of the second output voltage. 如請求項10所述之電源轉換系統,其中該第一控制信號及該第二控制信號是脈波寬度調變信號。 A power conversion system as described in claim 10, wherein the first control signal and the second control signal are pulse width modulation signals. 如請求項10所述之電源轉換系統,其中該第一控制單元調整該第一控制信號而改變該第一輸出電壓的電壓值,且該第二控制單元調整該第二控制信號而改變該第二輸出電壓的電壓值。 The power conversion system of claim 10, wherein the first control unit adjusts the first control signal to change the voltage value of the first output voltage, and the second control unit adjusts the second control signal to change the voltage value of the first output voltage. 2. The voltage value of the output voltage. 如請求項13所述之電源轉換系統,其中該第一控制單元是改變該第一控制信號的工作週期或頻率,且該第二控制單元是改變該第二控制信號的工作週期或頻率。 A power conversion system as described in claim 13, wherein the first control unit changes the duty cycle or frequency of the first control signal, and the second control unit changes the duty cycle or frequency of the second control signal. 如請求項14所述之電源轉換系統,其中當該第一輸出電壓的電壓值依據該第一控制信號的工作週期或頻率的增加而相對應增加時,該第一控制單元持續增加該第一控制信號的工作週期或頻率;當該第一輸出電壓的電壓值依據該第一控制信號的工作週期或頻率的增加而相對應減少時,該第一控制單元減少該第一控制信號的工作週期或頻率。 The power conversion system of claim 14, wherein when the voltage value of the first output voltage increases correspondingly according to the increase in the duty cycle or frequency of the first control signal, the first control unit continues to increase the first The duty cycle or frequency of the control signal; when the voltage value of the first output voltage decreases correspondingly according to the increase in the duty cycle or frequency of the first control signal, the first control unit reduces the duty cycle of the first control signal or frequency. 如請求項14所述之電源轉換系統,其中當該第二輸出電壓的電壓值依據該第二控制信號的工作週期或頻率的 增加而相對應增加時,該第二控制單元持續增加該第二控制信號的工作週期或頻率;當該第二輸出電壓的電壓值依據該第二控制信號的工作週期或頻率的增加而相對應減少時,該第二控制單元減少該第二控制信號的工作週期或頻率。 A power conversion system as described in claim 14, wherein when the voltage value of the second output voltage increases correspondingly according to the increase of the duty cycle or frequency of the second control signal, the second control unit continuously increases the duty cycle or frequency of the second control signal; when the voltage value of the second output voltage decreases correspondingly according to the increase of the duty cycle or frequency of the second control signal, the second control unit decreases the duty cycle or frequency of the second control signal.
TW112113464A 2022-07-19 2023-04-11 Solar energy optimization device, solar energy generation system and power conversion system using the same TWI836961B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/201,781 US20240030867A1 (en) 2022-07-19 2023-05-25 Solar energy optimization device, solar energy generation system and power conversion system using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202263390316P 2022-07-19 2022-07-19
US63/390,316 2022-07-19

Publications (2)

Publication Number Publication Date
TW202405602A TW202405602A (en) 2024-02-01
TWI836961B true TWI836961B (en) 2024-03-21

Family

ID=90822917

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112113464A TWI836961B (en) 2022-07-19 2023-04-11 Solar energy optimization device, solar energy generation system and power conversion system using the same

Country Status (1)

Country Link
TW (1) TWI836961B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201220014A (en) * 2010-11-03 2012-05-16 Univ Nat Cheng Kung for avoiding output overload and reducing switching loss of DC/DC voltage converter with a low cost analog circuit
CN103312021A (en) * 2012-03-14 2013-09-18 株式会社电装 Solar power conditioner
TW201406003A (en) * 2012-07-25 2014-02-01 K & M Corp Charging device
US20160241078A1 (en) * 2013-10-22 2016-08-18 Toyota Jidosha Kabushiki Kaisha Solar power generation device and control method of solar power generation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201220014A (en) * 2010-11-03 2012-05-16 Univ Nat Cheng Kung for avoiding output overload and reducing switching loss of DC/DC voltage converter with a low cost analog circuit
CN103312021A (en) * 2012-03-14 2013-09-18 株式会社电装 Solar power conditioner
TW201406003A (en) * 2012-07-25 2014-02-01 K & M Corp Charging device
US20160241078A1 (en) * 2013-10-22 2016-08-18 Toyota Jidosha Kabushiki Kaisha Solar power generation device and control method of solar power generation device

Also Published As

Publication number Publication date
TW202405602A (en) 2024-02-01

Similar Documents

Publication Publication Date Title
US20120042588A1 (en) Integrated photovoltaic module
US8335090B2 (en) Low cost high efficiency high power solar power conversion system circuit and solar power supply system
KR20040014328A (en) Power converter and electric power generator
JP2011522505A (en) System and method for an array of multiple intelligent inverters
AU2012332081A1 (en) System and method for power conversion for renewable energy sources
TWI412200B (en) Solar power converter with multiple outputs and conversion circuit thereof
CN104184396A (en) Photovoltaic power supply system and control method thereof
CN115051572B (en) IIOS converter with series resonance type LC power self-balancing unit and method
TWI836961B (en) Solar energy optimization device, solar energy generation system and power conversion system using the same
US20240030867A1 (en) Solar energy optimization device, solar energy generation system and power conversion system using the same
CN115360758A (en) Micro inverter and control method thereof
EP2421134A1 (en) Current-fed quadratic buck converter
JP2024513787A (en) Power conversion device with multi-level structure
CN109905025B (en) High-gain DC-DC switch converter
CN110336325B (en) Control method and device based on novel single-phase photovoltaic grid-connected topology
KR102514251B1 (en) Power generation units and systems that track peak power
KR101779055B1 (en) String power converter system for Condensing type solar cell module
Zhu et al. Interleaved Paralleled Two-switch Buck-boost Converter for Photovoltaic Application
TWI667872B (en) Device for improving the efficiency in electricity generation
CN109921638A (en) A kind of biswitch high step-up ratio DC converter
TW201433076A (en) Solar inverter and voltage transformation method thereof
WO2024145954A1 (en) Photovoltaic inverter and power control method
Das et al. PV Fed high efficiency, high voltage gain DC-DC converter for micro-inverter applications
Testa et al. A solar AC module with active filter capabilities
Kiran et al. Photovoltaic system for electric vehicle using interleaved boost converter