TWI833464B - Thermal resistance measurement results consistency device for cooling modules - Google Patents

Thermal resistance measurement results consistency device for cooling modules Download PDF

Info

Publication number
TWI833464B
TWI833464B TW111145071A TW111145071A TWI833464B TW I833464 B TWI833464 B TW I833464B TW 111145071 A TW111145071 A TW 111145071A TW 111145071 A TW111145071 A TW 111145071A TW I833464 B TWI833464 B TW I833464B
Authority
TW
Taiwan
Prior art keywords
thermal resistance
heat dissipation
control unit
dissipation module
wind tunnel
Prior art date
Application number
TW111145071A
Other languages
Chinese (zh)
Other versions
TW202422056A (en
Inventor
馮建忠
Original Assignee
長聖儀器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 長聖儀器股份有限公司 filed Critical 長聖儀器股份有限公司
Priority to TW111145071A priority Critical patent/TWI833464B/en
Application granted granted Critical
Publication of TWI833464B publication Critical patent/TWI833464B/en
Publication of TW202422056A publication Critical patent/TW202422056A/en

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

一種散熱模組之熱阻量測結果一致化裝置,包含有:一控制單元,儲存有可被執行的一熱阻量測邏輯;一風洞,具有一殼體、一風洞風機以及一流量量測單元,該風洞內的氣體流量係為固定;一加熱器,用以貼接一待測散熱模組,且其發熱功率係為固定;一加熱感測器,感測該加熱器塊的溫度;以及一環境感測器,感測環境溫度、相對溼度及大氣壓力;其中,該熱阻量測邏輯包含下述內容: ,以及 ,以及 ,依上述公式計算出轉換後熱阻;其中,該控制單元係執行該熱阻量測邏輯來取得該待測散熱模組的轉換後熱阻。 A device for harmonizing thermal resistance measurement results of a heat dissipation module, including: a control unit storing a thermal resistance measurement logic that can be executed; a wind tunnel having a shell, a wind tunnel fan and a flow measurement unit, the gas flow rate in the wind tunnel is fixed; a heater is used to connect a heat dissipation module to be tested, and its heating power is fixed; a heating sensor senses the temperature of the heater block; and an environmental sensor that senses ambient temperature, relative humidity and atmospheric pressure; wherein, the thermal resistance measurement logic includes the following: ,as well as , ,as well as , the converted thermal resistance is calculated according to the above formula; wherein, the control unit executes the thermal resistance measurement logic to obtain the converted thermal resistance of the heat dissipation module to be measured.

Description

散熱模組之熱阻量測結果一致化裝置Thermal resistance measurement results consistency device for heat dissipation modules

本發明係與散熱模組的熱阻量測技術有關,特別是指一種散熱模組之熱阻量測結果一致化裝置。 The present invention relates to thermal resistance measurement technology for heat dissipation modules, and in particular, to a device for harmonizing thermal resistance measurement results of heat dissipation modules.

我國發明第I315399號專利,揭露了一種發光二極體接面溫度及熱阻之量測系統與方法,此案主要是針對發光二極體的熱阻進行量測,而欲克服先前技術中在量測過程忽略發光二極體的光輸出功率,進而導致的量測誤差較大的問題。 my country's invention patent No. I315399 discloses a system and method for measuring the junction temperature and thermal resistance of light-emitting diodes. This case is mainly aimed at measuring the thermal resistance of light-emitting diodes. In order to overcome the problems in the previous technology, The measurement process ignores the light output power of the light-emitting diode, which leads to the problem of large measurement errors.

目前已知的散熱模組,例如鰭片散熱板或是鰭片結合熱管的散熱模組,對其熱阻的量測技術而言,目前已知的方式是直接對散熱模組進行量測,並沒有考慮到量測地點的不同所導致的誤差,因此,即使是對相同的散熱模組進行量測,也會因為地點不同或海拔高度不同而導致量測結果不同,這種狀況有可能導致散熱模組的採購過程中,生產者與購買者之間因為地點不同而對於同一個散熱模組的熱阻有不同的認定,進而可能造成購買者認為貨物不合格,而產生交易糾紛。 For currently known heat dissipation modules, such as fin heat dissipation plates or heat dissipation modules with fins combined with heat pipes, the currently known method for measuring thermal resistance is to directly measure the heat dissipation module. The error caused by different measurement locations is not taken into account. Therefore, even if the same heat dissipation module is measured, the measurement results will be different due to different locations or different altitudes. This situation may cause During the procurement process of cooling modules, the manufacturer and the buyer have different identifications of the thermal resistance of the same cooling module due to different locations, which may cause the buyer to think that the goods are substandard, resulting in transaction disputes.

目前,並沒有一個有效的散熱模組的熱阻量測技術,可以解決對同一個散熱模組在不同地點量測結果不同的問題。 Currently, there is no effective thermal resistance measurement technology for heat dissipation modules that can solve the problem of different measurement results for the same heat dissipation module in different locations.

由於在先前技術中,並沒有一個有效的散熱模組的熱阻量測技術,可以解決對同一個散熱模組在不同地點量測結果不同的問題,因此,這個問題即為本發明所欲克服之重點。 Since in the prior art, there is no effective thermal resistance measurement technology for heat dissipation modules that can solve the problem of different measurement results for the same heat dissipation module at different locations, this problem is what the present invention aims to overcome. The key point.

本發明之主要目的即在於提出一種散熱模組之熱阻量測結果一致化裝置,其在任意的使用環境中對待測散熱模組所量測到的熱阻,均能轉換為一轉換後熱阻,而該轉換後熱阻與該待測散熱模組的標準空氣狀態熱阻之數值相接近,其差異小於1%,進而達到無論在何地量測,其轉換後熱阻均幾乎相同的效果。 The main purpose of the present invention is to propose a device for harmonizing the thermal resistance measurement results of a heat dissipation module, which can convert the thermal resistance measured by the heat dissipation module to be tested into a converted thermal resistance in any usage environment. resistance, and the converted thermal resistance is close to the value of the standard air state thermal resistance of the heat dissipation module to be measured, and the difference is less than 1%, thus achieving the point where the converted thermal resistance is almost the same no matter where it is measured. Effect.

為了達成上述目的,本發明提出一種散熱模組之熱阻量測結果一致化裝置,包含有:一控制單元,儲存有可被執行的一熱阻量測邏輯;一風洞,具有一殼體、一風洞風機以及一流量量測單元,該風洞風機係電性連接於該控制單元,受該控制單元之控制來驅動該風洞內的空氣,該流量量測單元電性連接於該控制單元,用以感測該風洞內的氣體流量,該風洞風機係受該控制單元之控制而驅動空氣,並保持該風洞內部的氣體流量固定;一加熱器,設於該風洞之殼體,該加熱器具有一加熱塊,該加熱塊用以貼接一待測散熱模組,且使該待測散熱模組位於該風洞的氣流會吹過的位置,該加熱器電性連接於該控制單元,受該控制單元的控制來對該待測散熱模組加熱,其中該待測散熱模組的標準空氣狀態強制對流係數係為已知,該加熱器在加熱時其發熱功率係為固定;一加熱感測器,設於該加熱塊且電性連接於該控制單元,該加熱感測器係感測該加熱塊的溫度,並由該控制單元讀取其感測結果;以及一環境感測器,電性連接於該控制單元,用以感測該風洞外部的環境溫度、相對溼度及大氣壓力,並由該控制單元讀取其 感測結果;其中,該熱阻量測邏輯包含下述內容:熱阻與強制對流係數的關係:

Figure 111145071-A0305-02-0005-1
,以及強制對流係數公式:
Figure 111145071-A0305-02-0005-5
,△T=T C -T A ,以及熱阻與 功率的公式:
Figure 111145071-A0305-02-0005-4
,依上述公式計算出轉換後熱阻RCVT;其中,R為熱阻,h為強制對流係數,hSTP為標準空氣狀態強制對流係數,W為該加熱器所供熱量之功率,A為該待測散熱模組之散熱面積,TC為該加熱感測器所測得之溫度,TA為該環境感測器所測得之溫度,RCVT為轉換後熱阻;其中,該控制單元係執行該熱阻量測邏輯來取得該待測散熱模組的轉換後熱阻。 In order to achieve the above object, the present invention proposes a thermal resistance measurement result consistency device for a heat dissipation module, which includes: a control unit storing a thermal resistance measurement logic that can be executed; a wind tunnel having a shell, A wind tunnel fan and a flow measurement unit. The wind tunnel fan is electrically connected to the control unit and is controlled by the control unit to drive the air in the wind tunnel. The flow measurement unit is electrically connected to the control unit. To sense the gas flow in the wind tunnel, the wind tunnel fan is controlled by the control unit to drive air and keep the gas flow inside the wind tunnel constant; a heater is installed on the shell of the wind tunnel, and the heater has a The heating block is used to attach a heat dissipation module to be tested, and to position the heat dissipation module to be tested at a position where the airflow of the wind tunnel will blow through. The heater is electrically connected to the control unit and is controlled by the The unit is controlled to heat the heat dissipation module to be tested, where the standard air state forced convection coefficient of the heat dissipation module to be tested is known, and the heating power of the heater is fixed when heating; a heating sensor , provided on the heating block and electrically connected to the control unit, the heating sensor senses the temperature of the heating block, and the sensing result is read by the control unit; and an environment sensor, electrically Connected to the control unit, it is used to sense the ambient temperature, relative humidity and atmospheric pressure outside the wind tunnel, and the control unit reads the sensing results; wherein, the thermal resistance measurement logic includes the following content: Thermal resistance Relationship with forced convection coefficient:
Figure 111145071-A0305-02-0005-1
, and the forced convection coefficient formula:
Figure 111145071-A0305-02-0005-5
, △ T = T C - T A , and the formula of thermal resistance and power:
Figure 111145071-A0305-02-0005-4
, calculate the converted thermal resistance R CVT according to the above formula; where R is the thermal resistance, h is the forced convection coefficient, h STP is the standard air state forced convection coefficient, W is the power of heat supplied by the heater, and A is The heat dissipation area of the heat dissipation module to be tested, T C is the temperature measured by the heating sensor, T A is the temperature measured by the environment sensor, R CVT is the thermal resistance after conversion; where, the control unit The thermal resistance measurement logic is executed to obtain the converted thermal resistance of the heat dissipation module under test.

藉此,本發明可以達到無論在何地進行量測,所得的轉換後熱阻幾乎都相同,差異不超過1%的效果,進而解決了習知技術所遭遇的問題。 In this way, the present invention can achieve the effect that no matter where the measurement is performed, the converted thermal resistance obtained is almost the same, with a difference of no more than 1%, thus solving the problems encountered in the conventional technology.

10:散熱模組之熱阻量測結果一致化裝置 10: Consistent device for thermal resistance measurement results of cooling modules

11:控制單元 11:Control unit

12:熱阻量測邏輯 12: Thermal resistance measurement logic

21:風洞 21:Wind Tunnel

22:殼體 22: Shell

24:風洞風機 24:Wind tunnel fan

26:流量量測單元 26:Flow measurement unit

31:加熱器 31:Heater

32:加熱塊 32:Heating block

41:加熱感測器 41:Heating sensor

51:環境感測器 51:Environment sensor

91:待測散熱模組 91: Cooling module to be tested

R1,R2:熱阻 R1, R2: thermal resistance

RCVT:轉換後熱阻 R CVT : Thermal resistance after conversion

RSTP:標準空氣狀態熱阻 R STP : Standard air state thermal resistance

圖1係本發明一較佳實施例之方塊示意圖。 Figure 1 is a block diagram of a preferred embodiment of the present invention.

圖2係本發明一較佳實施例之部分元件立體圖。 Figure 2 is a perspective view of some components of a preferred embodiment of the present invention.

圖3係本發明一較佳實施例之量測結果示意圖。 Figure 3 is a schematic diagram of measurement results according to a preferred embodiment of the present invention.

為了詳細說明本發明之技術特點所在,茲舉以下之較佳實施例並配合圖式說明如後,其中:如圖1至圖2所示,本發明一較佳實施例提出一種散熱模組之熱阻量測結果一致化裝置10,主要由一控制單元11、一風洞21、一加熱器31、一加熱感測器41以及一環境感測器51所組成,其中: 該控制單元11,儲存有可被執行的一熱阻量測邏輯12,於本實施例中,該控制單元11可以是電腦、微電腦、單晶片或其他已知的控制系統,於本實施例中係以一電腦為例。 In order to explain in detail the technical characteristics of the present invention, the following preferred embodiments are cited and explained with the drawings. Among them: as shown in Figures 1 to 2, a preferred embodiment of the present invention provides a heat dissipation module. The thermal resistance measurement result consistency device 10 is mainly composed of a control unit 11, a wind tunnel 21, a heater 31, a heating sensor 41 and an environment sensor 51, wherein: The control unit 11 stores a thermal resistance measurement logic 12 that can be executed. In this embodiment, the control unit 11 can be a computer, a microcomputer, a single chip, or other known control systems. In this embodiment, Take a computer as an example.

該風洞21,具有一殼體22、一風洞風機24以及一流量量測單元26,該風洞風機24係電性連接於該控制單元11,受該控制單元11的控制來驅動該風洞21內的空氣。該流量量測單元26電性連接於該控制單元11,用以感測該風洞21內的氣體流量,該風洞風機24係受該控制單元11之控制而驅動空氣,並保持該風洞21內部的氣體流量固定,維持固定氣體流量有助於將量測過程的氣體流量變因消除。 The wind tunnel 21 has a housing 22, a wind tunnel fan 24 and a flow measurement unit 26. The wind tunnel fan 24 is electrically connected to the control unit 11 and is controlled by the control unit 11 to drive the flow in the wind tunnel 21. air. The flow measurement unit 26 is electrically connected to the control unit 11 for sensing the gas flow in the wind tunnel 21. The wind tunnel fan 24 is controlled by the control unit 11 to drive air and maintain the air flow inside the wind tunnel 21. The gas flow rate is fixed, and maintaining a fixed gas flow rate helps to eliminate gas flow variables in the measurement process.

該加熱器31,設於該風洞21之殼體22,該加熱器31具有一加熱塊32,該加熱塊32用以貼接一待測散熱模組91,且使該待測散熱模組91位於該風洞21的氣流會吹過的位置,該加熱器31電性連接於該控制單元11,受該控制單元11的控制來對該待測散熱模組91加熱,其中該待測散熱模組91的標準空氣狀態強制對流係數hSTP係為已知。該加熱器31在加熱時係設定為其發熱功率固定,維持固定發熱功率有助於將量測過程的加熱功率的變因消除。前述的該標準空氣狀態強制對流係數hSTP乃是出廠之廠商預先在環境溫度為攝氏20度,相對溼度為50%,且大氣壓力為一大氣壓(1atm)的條件下對該待測散熱模組91進行量測所取得。於本實施例中,該待測散熱模組91係以一多鰭片散熱板為例。 The heater 31 is installed in the casing 22 of the wind tunnel 21. The heater 31 has a heating block 32. The heating block 32 is used to attach a heat dissipation module 91 to be tested, and to cause the heat dissipation module 91 to be tested. Located at a position where the airflow of the wind tunnel 21 will blow through, the heater 31 is electrically connected to the control unit 11 and is controlled by the control unit 11 to heat the heat dissipation module 91 to be tested, wherein the heat dissipation module to be tested is The standard air state forced convection coefficient h STP of 91 is known. The heater 31 is set to have a fixed heating power during heating. Maintaining a fixed heating power helps to eliminate the variable factors of the heating power in the measurement process. The aforementioned standard air state forced convection coefficient h STP is pre-set by the manufacturer to the heat dissipation module to be tested under the conditions of an ambient temperature of 20 degrees Celsius, a relative humidity of 50%, and an atmospheric pressure of one atmosphere (1atm). 91 obtained by measurement. In this embodiment, the heat dissipation module 91 to be tested is a multi-fin heat dissipation plate as an example.

該加熱感測器41,設於該加熱塊32且電性連接於該控制單元11,該加熱感測器41係感測該加熱塊32的溫度,並由該控制單元11讀取其感測結果。 The heating sensor 41 is provided on the heating block 32 and is electrically connected to the control unit 11 . The heating sensor 41 senses the temperature of the heating block 32 , and the control unit 11 reads its sensing. result.

該環境感測器51,電性連接於該控制單元11,用以感測該風洞21外部的環境溫度、相對溼度及大氣壓力,並由該控制單元11讀取其感測結果。於本實施例中,該環境感測器51係用來感測室溫,因此不位於該風洞21內,而是位於該風洞21外的機器平台上。 The environment sensor 51 is electrically connected to the control unit 11 for sensing the ambient temperature, relative humidity and atmospheric pressure outside the wind tunnel 21 , and the control unit 11 reads the sensing results. In this embodiment, the environment sensor 51 is used to sense room temperature, so it is not located in the wind tunnel 21 but is located on the machine platform outside the wind tunnel 21 .

其中,該熱阻量測邏輯12包含下述內容:熱阻與強制對流係數的關係:

Figure 111145071-A0305-02-0007-7
;強制對流係數公 式:
Figure 111145071-A0305-02-0007-6
,△T=T C -T A ;以及熱阻與功率的公式:
Figure 111145071-A0305-02-0007-8
,並依前述公式計算出轉換後熱阻RCVT。 Among them, the thermal resistance measurement logic 12 includes the following content: the relationship between thermal resistance and forced convection coefficient:
Figure 111145071-A0305-02-0007-7
;Forced convection coefficient formula:
Figure 111145071-A0305-02-0007-6
, △ T = T C - T A ; and the formula of thermal resistance and power:
Figure 111145071-A0305-02-0007-8
, and calculate the converted thermal resistance R CVT according to the aforementioned formula.

其中,R為熱阻,h為強制對流係數,hSTP為標準空氣狀態強制對流係數,W為該加熱器31所供熱量之功率,A為該待測散熱模組91之散熱面積,若待測散熱模組91具有鰭片,則為鰭片之面積,TC為該加熱感測器41所測得之溫度,TA為該環境感測器51所測得之溫度,RCVT為轉換後熱阻。 Among them, R is the thermal resistance, h is the forced convection coefficient, h STP is the forced convection coefficient of the standard air state, W is the heat power provided by the heater 31, and A is the heat dissipation area of the heat dissipation module 91 to be tested. If the heat dissipation module 91 has fins, then it is the area of the fins, T C is the temperature measured by the heating sensor 41 , T A is the temperature measured by the environment sensor 51 , R CVT is the conversion Post thermal resistance.

其中,該控制單元11係執行該熱阻量測邏輯12來取得該待測散熱模組91的轉換後熱阻RCVTThe control unit 11 executes the thermal resistance measurement logic 12 to obtain the converted thermal resistance R CVT of the heat dissipation module 91 to be tested.

以上說明了本實施例的架構,接下來說明本實施例的操作狀態。 The architecture of this embodiment has been described above. Next, the operating status of this embodiment will be described.

如圖2所示,在進行量測前,先將一待測散熱模組91設置於該加熱器31的該加熱塊32上,此時,該待測散熱模組91的設置位置剛好也可以讓該風洞21的氣流流過時可以經過該待測散熱模組91,藉以達到將熱能帶走的散熱效果。接著啟動該風洞風機24來驅動該風洞21的氣流,以及啟動該加熱器31對該待測散熱模組91進行加熱。 As shown in FIG. 2 , before measurement, a heat dissipation module 91 to be measured is first placed on the heating block 32 of the heater 31 . At this time, the heat dissipation module 91 to be measured can be set at just the right position. The airflow in the wind tunnel 21 can pass through the heat dissipation module 91 to be tested, thereby achieving a heat dissipation effect of taking away heat energy. Then, the wind tunnel fan 24 is started to drive the airflow of the wind tunnel 21, and the heater 31 is started to heat the heat dissipation module 91 to be tested.

如圖1至圖3所示,在開始量測時,係藉由該控制單元11執行該熱阻量測邏輯12,進而讀取該加熱感測器41所測得之溫度TC以及該環境感測器51所測得之溫度TA,再依據該加熱器31所供熱量之功率W以及該待測散熱模組91之散熱面積A,配合公式

Figure 111145071-A0305-02-0008-9
,△T=T C -T A 可以得到該待測散熱模組91的強制對流係數h。 As shown in Figures 1 to 3, when starting measurement, the control unit 11 executes the thermal resistance measurement logic 12, and then reads the temperature T C measured by the heating sensor 41 and the environment. The temperature T A measured by the sensor 51 is determined by the formula based on the heat power W provided by the heater 31 and the heat dissipation area A of the heat dissipation module 91 to be tested.
Figure 111145071-A0305-02-0008-9
, △ T = T C - T A can obtain the forced convection coefficient h of the heat dissipation module 91 to be tested.

接著再依據公式

Figure 111145071-A0305-02-0008-10
來計算出該待測散熱模組91的熱阻R,這時的該熱阻R即為目前的所在地所測得的。由圖3中所示為例,在拉薩依前述方式所測得的熱阻R1和在芝加哥依前述方式所測得的熱阻R2是不同的數值。 Then according to the formula
Figure 111145071-A0305-02-0008-10
To calculate the thermal resistance R of the heat dissipation module 91 to be measured, the thermal resistance R at this time is measured at the current location. Taking the example shown in Figure 3 as an example, the thermal resistance R1 measured in Lhasa according to the aforementioned method and the thermal resistance R2 measured in Chicago according to the aforementioned method are different values.

之後,再依據公式

Figure 111145071-A0305-02-0008-11
來獲得轉換後熱阻RCVT,由圖3可知,由兩個熱阻R1,R2所轉換的轉換後熱阻RCVT在數值上是相同而重疊的。 After that, according to the formula
Figure 111145071-A0305-02-0008-11
To obtain the converted thermal resistance R CVT , it can be seen from Figure 3 that the converted thermal resistance R CVT converted by the two thermal resistances R1 and R2 is numerically the same and overlapping.

基於目前已知的公式W=hAT=h STP AT STP =W STP ,而由於加熱功率固定,因此基於

Figure 111145071-A0305-02-0008-12
可以推算出hAR=h STP AR STP ,因此hR=h STP R STP ,進而可知前述的轉換後熱阻RCVT幾乎等於該待測散熱模組91的標準空氣狀態熱阻RSTP。由圖3所顯示的結果可知,實際所得的轉換後熱阻RCVT數值幾乎與標準空氣狀態熱阻RSTP重疊,其誤差不會超過1%。 Based on the currently known formula W = hAT = h STP AT STP = W STP , and since the heating power is fixed, it is based on
Figure 111145071-A0305-02-0008-12
It can be deduced that hAR = h STP AR STP , so hR = h STP R STP , and it can be seen that the aforementioned converted thermal resistance R CVT is almost equal to the standard air state thermal resistance R STP of the heat dissipation module 91 to be tested. It can be seen from the results shown in Figure 3 that the actual converted thermal resistance R CVT value almost overlaps with the standard air state thermal resistance R STP , and the error does not exceed 1%.

由上可知,本發明無論在何地量測待測散熱模組91,即使在不同所在地所量測到的熱阻值有所不同,但配合這個待測散熱模組91的強制對流係數h以及標準空氣狀態強制對流係數hSTP,就可以獲得這個待測散熱模組91的轉換後熱阻RCVT而幾乎等於標準空氣狀態熱阻RSTP,而達到無論在何地進行量測,所得的轉換後熱阻RCVT幾乎都相同,差異不超過1%的效果,進而解決了習知技術所遭遇的問題。 It can be seen from the above that no matter where the heat dissipation module 91 to be measured is measured in the present invention, even if the measured thermal resistance values are different in different locations, the forced convection coefficient h of the heat dissipation module 91 to be measured and The standard air state forced convection coefficient h STP can be used to obtain the converted thermal resistance R CVT of the heat dissipation module 91 to be measured, which is almost equal to the standard air state thermal resistance R STP , thus achieving the conversion obtained no matter where the measurement is performed. The rear thermal resistance R CVT is almost the same, and the difference does not exceed 1%, thus solving the problems encountered in the conventional technology.

10:散熱模組之熱阻量測結果一致化裝置 10: Consistent device for thermal resistance measurement results of cooling modules

11:控制單元 11:Control unit

12:熱阻量測邏輯 12: Thermal resistance measurement logic

24:風洞風機 24:Wind tunnel fan

26:流量量測單元 26:Flow measurement unit

31:加熱器 31:Heater

41:加熱感測器 41:Heating sensor

51:環境感測器 51:Environment sensor

Claims (4)

一種散熱模組之熱阻量測結果一致化裝置,包含有: 一控制單元,儲存有可被執行的一熱阻量測邏輯; 一風洞,具有一殼體、一風洞風機以及一流量量測單元,該風洞風機係電性連接於該控制單元,受該控制單元之控制來驅動該風洞內的空氣,該流量量測單元電性連接於該控制單元,用以感測該風洞內的氣體流量,該風洞風機係受該控制單元之控制而驅動空氣,並保持該風洞內部的氣體流量固定; 一加熱器,設於該風洞之殼體,該加熱器具有一加熱塊,該加熱塊用以貼接一待測散熱模組,且使該待測散熱模組位於該風洞的氣流會吹過的位置,該加熱器電性連接於該控制單元,受該控制單元的控制來對該待測散熱模組加熱,其中該待測散熱模組的標準空氣狀態強制對流係數係為已知,該加熱器在加熱時其發熱功率係為固定; 一加熱感測器,設於該加熱塊且電性連接於該控制單元,該加熱感測器係感測該加熱塊的溫度,並由該控制單元讀取其感測結果;以及 一環境感測器,電性連接於該控制單元,用以感測該風洞外部的環境溫度、相對溼度及大氣壓力,並由該控制單元讀取其感測結果; 其中,該熱阻量測邏輯包含下述內容: 熱阻與強制對流係數的關係: ,以及 強制對流係數公式: ,以及 熱阻與功率的公式: , 依上述公式計算出轉換後熱阻R CVT; 其中,R為熱阻,h為強制對流係數,h STP為標準空氣狀態強制對流係數,W為該加熱器所供熱量之功率,A為該待測散熱模組之散熱面積,T C為該加熱感測器所測得之溫度,T A為該環境感測器所測得之溫度,R CVT為轉換後熱阻; 其中,該控制單元係執行該熱阻量測邏輯來取得該待測散熱模組的轉換後熱阻。 A device for harmonizing thermal resistance measurement results of a heat dissipation module, including: a control unit that stores a thermal resistance measurement logic that can be executed; a wind tunnel that has a shell, a wind tunnel fan and a flow measurement The wind tunnel fan is electrically connected to the control unit and is controlled by the control unit to drive the air in the wind tunnel. The flow measurement unit is electrically connected to the control unit for sensing the gas in the wind tunnel. The wind tunnel fan is controlled by the control unit to drive air and maintain a constant gas flow inside the wind tunnel; a heater is provided on the shell of the wind tunnel, and the heater has a heating block, which is used to A heat dissipation module to be tested is attached, and the heat dissipation module to be tested is located at a position where the airflow of the wind tunnel will blow through. The heater is electrically connected to the control unit and is controlled by the control unit to heat the heat dissipation module to be tested. The heat dissipation module is heated, in which the standard air state forced convection coefficient of the heat dissipation module to be measured is known, and the heating power of the heater is fixed when heating; a heating sensor, located on the heating block and electrically The heating sensor is electrically connected to the control unit, the heating sensor senses the temperature of the heating block, and the sensing result is read by the control unit; and an environment sensor is electrically connected to the control unit for The ambient temperature, relative humidity and atmospheric pressure outside the wind tunnel are sensed, and the sensing results are read by the control unit; wherein, the thermal resistance measurement logic includes the following content: The relationship between thermal resistance and forced convection coefficient: , and the forced convection coefficient formula: , , and the formula of thermal resistance and power: , calculate the converted thermal resistance R CVT according to the above formula; where R is the thermal resistance, h is the forced convection coefficient, h STP is the standard air state forced convection coefficient, W is the power of heat supplied by the heater, and A is The heat dissipation area of the heat dissipation module to be tested, T C is the temperature measured by the heating sensor, T A is the temperature measured by the environment sensor, R CVT is the thermal resistance after conversion; where, the control unit The thermal resistance measurement logic is executed to obtain the converted thermal resistance of the heat dissipation module under test. 依據請求項1所述之散熱模組之熱阻量測結果一致化裝置,其中:該標準空氣狀態強制對流係數係在環境溫度為攝氏20度,相對溼度為50%,且大氣壓力為一大氣壓(1 atm)的條件下對該待測散熱模組進行量測所取得。The thermal resistance measurement result consistency device of the heat dissipation module according to claim 1, wherein: the standard air state forced convection coefficient is when the ambient temperature is 20 degrees Celsius, the relative humidity is 50%, and the atmospheric pressure is one atmosphere. Obtained by measuring the heat dissipation module under test under the conditions of (1 atm). 依據請求項1所述之散熱模組之熱阻量測結果一致化裝置,其中:該控制單元係為一電腦。The thermal resistance measurement result consistency device of the heat dissipation module according to claim 1, wherein: the control unit is a computer. 依據請求項1所述之散熱模組之熱阻量測結果一致化裝置,其中:該環境感測器係不位於該風洞內。The thermal resistance measurement result consistency device of the heat dissipation module according to claim 1, wherein: the environment sensor is not located in the wind tunnel.
TW111145071A 2022-11-24 2022-11-24 Thermal resistance measurement results consistency device for cooling modules TWI833464B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111145071A TWI833464B (en) 2022-11-24 2022-11-24 Thermal resistance measurement results consistency device for cooling modules

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111145071A TWI833464B (en) 2022-11-24 2022-11-24 Thermal resistance measurement results consistency device for cooling modules

Publications (2)

Publication Number Publication Date
TWI833464B true TWI833464B (en) 2024-02-21
TW202422056A TW202422056A (en) 2024-06-01

Family

ID=90824959

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111145071A TWI833464B (en) 2022-11-24 2022-11-24 Thermal resistance measurement results consistency device for cooling modules

Country Status (1)

Country Link
TW (1) TWI833464B (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM250220U (en) * 2003-08-26 2004-11-11 Power Cooler Entpr Co Ltd Improvement of heat dissipation structure
TWI315399B (en) * 2006-11-01 2009-10-01 Univ Nat Cheng Kung
TWI393879B (en) * 2007-01-15 2013-04-21 Hon Hai Prec Ind Co Ltd Apparatus for measuring value of thermal resistance of heat dissipation device
TWI490484B (en) * 2012-10-31 2015-07-01 Hon Hai Prec Ind Co Ltd Contacting thermal resistance measurement method for one dimension material
CN104978254A (en) * 2014-04-03 2015-10-14 联想(北京)有限公司 Heat dissipation detection method, heat dissipation detection system and electronic device
TWI686589B (en) * 2018-12-06 2020-03-01 長聖儀器股份有限公司 High resolution flow damping device
TW202022367A (en) * 2018-12-06 2020-06-16 長聖儀器股份有限公司 Thermal performance test method and device
CN112885798A (en) * 2020-12-25 2021-06-01 佛山市液冷时代科技有限公司 Integrated phase change heat transfer element liquid cooling heat radiation module for server
TWI760248B (en) * 2021-06-11 2022-04-01 長聖儀器股份有限公司 Transient thermal diffusivity measurement method of heat dissipation module
TW202316108A (en) * 2021-10-13 2023-04-16 長聖儀器股份有限公司 Thermal interface material testing device capable of testing the thermal interface material in a vertical placing state

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWM250220U (en) * 2003-08-26 2004-11-11 Power Cooler Entpr Co Ltd Improvement of heat dissipation structure
TWI315399B (en) * 2006-11-01 2009-10-01 Univ Nat Cheng Kung
TWI393879B (en) * 2007-01-15 2013-04-21 Hon Hai Prec Ind Co Ltd Apparatus for measuring value of thermal resistance of heat dissipation device
TWI490484B (en) * 2012-10-31 2015-07-01 Hon Hai Prec Ind Co Ltd Contacting thermal resistance measurement method for one dimension material
CN104978254A (en) * 2014-04-03 2015-10-14 联想(北京)有限公司 Heat dissipation detection method, heat dissipation detection system and electronic device
TWI686589B (en) * 2018-12-06 2020-03-01 長聖儀器股份有限公司 High resolution flow damping device
TW202022367A (en) * 2018-12-06 2020-06-16 長聖儀器股份有限公司 Thermal performance test method and device
CN112885798A (en) * 2020-12-25 2021-06-01 佛山市液冷时代科技有限公司 Integrated phase change heat transfer element liquid cooling heat radiation module for server
TWI760248B (en) * 2021-06-11 2022-04-01 長聖儀器股份有限公司 Transient thermal diffusivity measurement method of heat dissipation module
TW202316108A (en) * 2021-10-13 2023-04-16 長聖儀器股份有限公司 Thermal interface material testing device capable of testing the thermal interface material in a vertical placing state

Similar Documents

Publication Publication Date Title
US6157897A (en) Apparatus for monitoring ventilation of integrated circuits in electronic apparatus
US7394271B2 (en) Temperature sensing and prediction in IC sockets
JP5079815B2 (en) Method for estimating exhaust gas temperature at output of EGR circuit of combustion engine
JP2011095264A (en) Total air temperature probe and method for reducing de-icing/anti-icing heater error
CN111579096A (en) Infrared temperature measurement sensor module, temperature measurement method and temperature measurement equipment
EP1866656A2 (en) Temperature sensing and prediction in ic sockets
CN109375457A (en) Camera module with automatic heating function
US9219850B2 (en) Monitoring camera
TWI833464B (en) Thermal resistance measurement results consistency device for cooling modules
US4730255A (en) Engine control apparatus
CN111933974B (en) Method for testing dew point temperature of humidifying reaction gas of fuel cell
CN209149041U (en) Camera module with automatic heating function
SE534904C2 (en) Temperature measurement system and method for a temperature measurement system comprising at least one thermocouple
JP6413410B2 (en) Humidity sensor calibration system
US7184924B1 (en) Method, apparatus and computer program product for implementing thermal integrity screening
JP4952015B2 (en) Temperature monitoring method for electronic equipment unit
CN112345794B (en) Fan airflow direction detection device and method
JPH04340757A (en) Temperature detecting system for electronic device
TW202422056A (en) Thermal resistance measurement result unification device for heat dissipation modules
WO2024031839A1 (en) Thermal management chip and system for master unit having built-in interface and management method
JPH0529428A (en) Inspecting apparatus for semiconductor element
JP6478045B2 (en) Ambient temperature control method for catalytic converter
CN114265443B (en) Chip test temperature control device capable of reducing cost and having universality
JP5990860B2 (en) Thermal resistance measuring device and temperature sensor calibration device
CN113483918B (en) Method and system for testing response speed of NTC (negative temperature coefficient) automobile temperature sensor to temperature