TWI831982B - Light-sensing apparatus and imaging system - Google Patents

Light-sensing apparatus and imaging system Download PDF

Info

Publication number
TWI831982B
TWI831982B TW109120500A TW109120500A TWI831982B TW I831982 B TWI831982 B TW I831982B TW 109120500 A TW109120500 A TW 109120500A TW 109120500 A TW109120500 A TW 109120500A TW I831982 B TWI831982 B TW I831982B
Authority
TW
Taiwan
Prior art keywords
region
detection device
light detection
layer
regions
Prior art date
Application number
TW109120500A
Other languages
Chinese (zh)
Other versions
TW202101752A (en
Inventor
鄭斯璘
陳建宇
陳書履
那允中
楊閔傑
漢鼎 劉
梁哲夫
江榮進
盧彥丞
林彥儒
Original Assignee
美商光程研創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商光程研創股份有限公司 filed Critical 美商光程研創股份有限公司
Publication of TW202101752A publication Critical patent/TW202101752A/en
Application granted granted Critical
Publication of TWI831982B publication Critical patent/TWI831982B/en

Links

Landscapes

  • Light Receiving Elements (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

A photo-detecting apparatus is provided. The photo-detecting apparatus includes: a substrate made by a first material or a first material-composite; an absorption layer made by a second material or a second material-composite, the absorption layer being supported by the substrate and the absorption layer including: a first surface; a second surface arranged between the first surface and the substrate; and a channel region having a dopant profile with a peak dopant concentration equal to or more than 1x1015 cm-3; wherein a distance between the first surface and a location of the channel region having the peak dopant concentration is less than a distance between the second surface and the location of the channel region having the peak dopant concentration, and wherein the distance between the first surface and the location of the channel region having the peak dopant concentration is not less than 30 nm.

Description

光偵測裝置及影像系統 Light detection device and imaging system

本發明是關於一種光偵測裝置及影像系統,特別是有關於一種以鍺做為吸光材料的光偵測裝置及影像系統。 The present invention relates to a light detection device and an imaging system, and in particular to a light detection device and an imaging system using germanium as a light-absorbing material.

光偵測裝置可用於偵測一光信號並將光信號轉換成一電子信號,使該電子信號可由另一電路做進一步的處理。光偵測裝置可被應用於消費性電子產品、影像感測器、數據通信、飛行時間(TOF)測距、飛行時間(TOF)影像感測、醫療設備和許多其他合適的應用。然而,當一光偵測裝置,無論以單個或配置為一陣列,使用於這些應用中時,漏電流、暗電流、電或光的串擾(Cross-talk)以及功耗皆有可能降低其整體的性能。 The light detection device can be used to detect an optical signal and convert the optical signal into an electronic signal so that the electronic signal can be further processed by another circuit. Light detection devices can be used in consumer electronics, image sensors, data communications, time-of-flight (TOF) ranging, time-of-flight (TOF) image sensing, medical equipment, and many other suitable applications. However, when a light detection device, whether individually or configured as an array, is used in these applications, leakage current, dark current, electrical or optical cross-talk, and power consumption may all reduce its overall performance.

依據本發明之一實施例,提供一種光偵測裝置。該光偵測裝置包含一半導體基底;一第一鍺基(Germanium-based)光吸收材料,該第一鍺基光吸收材料被該半導體基底支撐,並配置為吸收具有一第一波長(大於800nm)的一第一光信號;一第一金屬線,電連接到該第一鍺基光吸收材料的一第一區域;以及一第二金屬線,電連接到該第一鍺基光吸收材料的一第二區域;其中,該第一區域為未摻雜或被摻雜一第一型摻質;該第二區域被摻雜一第二型摻質;以及該第一金屬線用以控制一第一型光生載子之數量,以被該第二區域所收集。 According to an embodiment of the present invention, a light detection device is provided. The light detection device includes a semiconductor substrate; a first germanium-based light absorbing material, the first germanium-based light absorbing material is supported by the semiconductor substrate and is configured to absorb light having a first wavelength (greater than 800 nm ) a first optical signal; a first metal line electrically connected to a first region of the first germanium-based light absorbing material; and a second metal line electrically connected to a first region of the first germanium-based light absorbing material a second region; wherein, the first region is undoped or doped with a first-type dopant; the second region is doped with a second-type dopant; and the first metal line is used to control a The number of first-type photogenerated carriers is collected by the second region.

依據本發明之一實施例,提供一種光偵測方法。該光偵測方法包含發送一光信號,該光信號被一第一調變信號調變,其中該第一調變信號於多個時間訊框(Time frame)中具有一個或多個預定相位;通過一光偵測裝置接收一反射的光信號;通過一個或多個解調信號解調該反射光信號,其中一個或多個解調信號於多個時間訊框中具有一個或多個預定相位;以及在電容上輸出至少一個電壓信號。 According to an embodiment of the present invention, a light detection method is provided. The light detection method includes sending an optical signal that is modulated by a first modulation signal, wherein the first modulation signal has one or more predetermined phases in a plurality of time frames; A reflected light signal is received through a light detection device; the reflected light signal is demodulated through one or more demodulation signals, wherein the one or more demodulation signals have one or more predetermined phases in multiple time frames. ; and output at least one voltage signal on the capacitor.

在本文公開的實施例的其他優點和益處中,提供了一種能夠有效地吸收至少,但不侷限於近紅外(NIR)光或短波紅外(SWIR)光的光偵測裝置。在一些實施例中,光偵測裝置提供高解調對比度、低漏電流、低暗電流、低功耗、低電/光串擾和/或用於晶片尺寸小型化的架構。在一些實施例中,光偵測裝置能夠處理具有多個波長的入射光信號,包含不同的調變機制及/或分時(Time division)功能。此外,光偵測裝置可以被使用於飛行時間(ToF)的應用上,相較於可見波長(例如,NIR和SWIR範圍),其可在更長的波長下操作。元件/材料實施者可以設計/製造具有100%鍺或是具有一預定百分比(例如,大於80%Ge)鍺的合金(例如,GeSi)做為光吸收的吸收材料,上述100%鍺或是合金可為本質(Intrinsic)或是雜質(Extrinsic)。 Among other advantages and benefits of the embodiments disclosed herein, a light detection device is provided that is capable of efficiently absorbing at least, but not limited to, near infrared (NIR) light or short wave infrared (SWIR) light. In some embodiments, the light detection device provides high demodulation contrast, low leakage current, low dark current, low power consumption, low electrical/optical crosstalk, and/or architecture for die size miniaturization. In some embodiments, the light detection device is capable of processing incident light signals with multiple wavelengths, including different modulation mechanisms and/or time division functions. Additionally, light detection devices can be used in time-of-flight (ToF) applications, which can operate at longer wavelengths compared to visible wavelengths (eg, NIR and SWIR ranges). Component/material implementers can design/manufacture 100% germanium or an alloy (e.g., GeSi) with a predetermined percentage (e.g., greater than 80% Ge) of germanium as the light-absorbing absorbing material. The above 100% germanium or alloy It can be intrinsic (Intrinsic) or impurity (Extrinsic).

根據本公開的實施例,提供了一種光偵測裝置。該光偵測裝置包括:一吸收層,包括一第一表面;一鈍化層,在該吸收層的該第一表面上,其中該鈍化層包括兩個第一區域和將該兩個第一區域分開的一第二區域,其中各該第一區域包括一特性,該第二區域包括與該第一個區域的特性不同的一特性。 According to an embodiment of the present disclosure, a light detection device is provided. The light detection device includes: an absorption layer including a first surface; a passivation layer on the first surface of the absorption layer, wherein the passivation layer includes two first regions and the two first regions A separate second region, wherein each of the first regions includes a characteristic, and the second region includes a characteristic that is different from the characteristics of the first region.

在一些實施例中,該特性包括材料或電阻。 In some embodiments, the property includes material or resistance.

根據本公開的實施例,提供了一種光偵測裝置。該光偵測裝置包括:一吸收層,包括一第一表面;兩個第二摻雜區,在該吸收層中;一鈍化 層,在該吸收層的該第一表面上,其中該鈍化層包括兩個中間區域,各自分別在該第二摻雜區上方,其中各該中間區域包括一峰值摻質濃度低於各該兩個第二摻雜區的一峰值摻質濃度。 According to an embodiment of the present disclosure, a light detection device is provided. The light detection device includes: an absorption layer including a first surface; two second doped regions in the absorption layer; a passivation layer layer on the first surface of the absorber layer, wherein the passivation layer includes two intermediate regions, one each above the second doped region, and each of the intermediate regions includes a peak dopant concentration lower than each of the two doped regions. a peak dopant concentration of the second doped region.

根據本公開的實施例,提供了一種光偵測裝置。該光偵測裝置包括一吸收層;兩個開關,各包括在該吸收層上的一控制接觸層;在該吸收層中的兩個嵌入反摻雜區,各至少部分地位於相應的開關之下。 According to an embodiment of the present disclosure, a light detection device is provided. The light detection device includes an absorber layer; two switches, each including a control contact layer on the absorber layer; two embedded anti-doped regions in the absorber layer, each located at least partially between the corresponding switch Down.

根據本公開的實施例,提供了一種光偵測裝置。該光偵測裝置包括一吸收層;兩個開關,各包括一控制接觸層和一讀出接觸層,控制接觸層和讀出接觸層皆位於吸收層上方,其中兩個控制接觸層之間的距離小於該吸收層的寬度,且兩個讀出接觸層之間的距離大於該吸收層的寬度。 According to an embodiment of the present disclosure, a light detection device is provided. The light detection device includes an absorption layer; two switches, each including a control contact layer and a readout contact layer. The control contact layer and the readout contact layer are both located above the absorption layer, and the gap between the two control contact layers is The distance is less than the width of the absorber layer, and the distance between the two readout contact layers is greater than the width of the absorber layer.

根據本公開的實施例,提供了一種光偵測裝置。該光偵測裝置包括:一基底和被該基底支撐的一吸收層;兩個開關,電性耦接到該吸收層,各該開關包括一第一摻雜區和一第二摻雜區,其中該第一摻雜區在該基底中,該第二摻雜區覆蓋該基底和該吸收層之間的界面的一部分。 According to an embodiment of the present disclosure, a light detection device is provided. The light detection device includes: a substrate and an absorption layer supported by the substrate; two switches electrically coupled to the absorption layer, each switch including a first doping region and a second doping region, Wherein the first doped region is in the substrate, and the second doped region covers a portion of the interface between the substrate and the absorption layer.

根據本公開的實施例,提供了一種光偵測裝置。該光偵測裝置包括:一吸收層;一吸收區域,在該吸收層中;兩個開關,各設置在該吸收區的同一側並電性耦接到該吸收層;一引導區域,在該兩個開關之間。 According to an embodiment of the present disclosure, a light detection device is provided. The light detection device includes: an absorption layer; an absorption region in the absorption layer; two switches, each disposed on the same side of the absorption region and electrically coupled to the absorption layer; a guide region in the absorption layer between two switches.

在一些實施例中,各個開關包括設置在該吸收區域的同一側的一控制接觸層。該引導區域在該吸收層的兩個控制接觸層正下方的部分之間。 In some embodiments, each switch includes a control contact layer disposed on the same side of the absorbing region. The guide area is between the portion of the absorber layer directly beneath the two control contact layers.

根據本公開的實施例,提供了一種光偵測裝置。該光偵測裝置包括:由一第一材料或一第一材料複合物製成的一基底;由一第二材料或一第二材料複合物製成的一吸收層,該吸收層由該基底支撐,且該吸收層包括:一第一表面;一第二表面,佈置在該第一表面和該基底之間;以及具有一摻質分佈的一通道區,該摻質分佈具有等於或大於1x1015cm-3的峰值摻質濃度,其中該 第一表面與具有該摻質峰值濃度的該通道區的位置之間的距離小於該第二表面與具有與該峰值摻質濃度的該通道區的位置之間的距離。又其中該第一表面與該具有該峰值摻質濃度的該通道區的位置之間的距離不小於30nm。 According to an embodiment of the present disclosure, a light detection device is provided. The light detection device includes: a substrate made of a first material or a first material composite; an absorption layer made of a second material or a second material composite, the absorption layer being made of the substrate support, and the absorption layer includes: a first surface; a second surface disposed between the first surface and the substrate; and a channel region having a dopant distribution, the dopant distribution having a dopant distribution equal to or greater than 1x10 a peak dopant concentration of 15 cm -3 , wherein the distance between the first surface and the location of the channel region having the peak dopant concentration is less than the distance between the second surface and the location of the channel region having the peak dopant concentration The distance between locations. Furthermore, the distance between the first surface and the position of the channel region having the peak dopant concentration is not less than 30 nm.

根據本公開的實施例,提供了一種光偵測裝置。該光偵測裝置包括:由第一材料或第一材料複合物製成的一基底;由第二材料或第二材料複合物製成的一吸收層,該吸收層由該基底支撐,且該吸收層包括:一第一表面;一第二表面,佈置在該第一表面和該基底之間;以及具有一摻質分佈的一通道區,該摻質分佈具有等於或大於1x1015cm-3的峰值摻質濃度,其中該第一表面與具有該峰值摻質濃度的該通道區的位置之間的距離不小於30nm,且該第二表面與具有該峰值摻質濃度的該通道區的位置之間的距離不小於30nm。 According to an embodiment of the present disclosure, a light detection device is provided. The light detection device includes: a substrate made of a first material or a first material composite; an absorption layer made of a second material or a second material composite, the absorption layer being supported by the substrate, and the The absorption layer includes: a first surface; a second surface disposed between the first surface and the substrate; and a channel region having a dopant distribution, the dopant distribution having an area equal to or greater than 1x10 15 cm -3 a peak dopant concentration, wherein the distance between the first surface and the position of the channel region with the peak dopant concentration is not less than 30 nm, and the second surface and the position of the channel region with the peak dopant concentration The distance between them is not less than 30nm.

在一些實施例中,吸收層還包括佈置在該通道區和該第一表面之間的一阻礙區(hinder region)。 In some embodiments, the absorbing layer further includes a hinder region disposed between the channel region and the first surface.

根據本公開的實施例,提供了一種光偵測裝置。該光偵測裝置包括:一吸收層,其包括具有第一能隙的一材料;一載子控制層,在該吸收層上,其中,該載子控制層包括一材料,其具有大於該第一能隙的第二能隙,且其厚度不小於100nm;以及一讀出接觸層,在該載子控制層的一第一表面上。 According to an embodiment of the present disclosure, a light detection device is provided. The light detection device includes: an absorption layer including a material with a first energy gap; and a carrier control layer on the absorption layer, wherein the carrier control layer includes a material having an energy gap greater than the first energy gap. a second energy gap of an energy gap, and its thickness is not less than 100 nm; and a readout contact layer on a first surface of the carrier control layer.

根據本公開的實施例,提供了一種光偵測裝置。該光偵測裝置包括:一吸收層,其包括具有第一能隙的一材料,其中,該吸收層能夠吸收光子並產生光生載子;一載子控制層,在該吸收層上,其中該載子控制層包括一材料,其具有大於該第一能隙的第二能隙,且該載子控制層能夠至少收集該光生載子;以及一讀出接觸層,在該載子控制層的一第一表面上。 According to an embodiment of the present disclosure, a light detection device is provided. The light detection device includes: an absorption layer including a material with a first energy gap, wherein the absorption layer can absorb photons and generate photogenerated carriers; a carrier control layer on the absorption layer, wherein the The carrier control layer includes a material having a second energy gap greater than the first energy gap, and the carrier control layer can at least collect the photogenerated carriers; and a readout contact layer, on the carrier control layer A first on the surface.

在一些實施例中,光偵測裝置還包括一阻障區(barrier region),覆蓋該吸收層和該載子控制層之間的界面的一部分。 In some embodiments, the light detection device further includes a barrier region covering a portion of the interface between the absorbing layer and the carrier control layer.

在一些實施例中,該阻障區位在該吸收層與該載子控制層之間的該 界面的的摻質濃度不小於1×1015cm-3In some embodiments, the dopant concentration of the barrier region at the interface between the absorption layer and the carrier control layer is no less than 1×10 15 cm -3 .

根據本公開的實施例,提供了一種光偵測裝置。該光偵測裝置包括:一吸收層;一第一開關,電性耦接至該吸收層;一第二開關,電性耦接至該吸收層;一第一調整接觸層,其被配置用來塑形該第一開關附近的電場;以及一第二調整接觸層,其被配置用來塑形該第二開關附近的電場。 According to an embodiment of the present disclosure, a light detection device is provided. The light detection device includes: an absorption layer; a first switch electrically coupled to the absorption layer; a second switch electrically coupled to the absorption layer; a first adjustment contact layer configured to to shape the electric field near the first switch; and a second adjustment contact layer configured to shape the electric field near the second switch.

根據本公開的實施例,提供了一種光偵測裝置。該光偵測裝置包括:一吸收層,其包括具有第一能隙的一材料;一載子收集層,在該吸收層上,其中該載子控制層包括材料,其具有大於該第一能隙的一第二能隙;在該載子控制層中的兩個第二摻雜區,其中各該第二摻雜區具有一深度,且各該第二摻雜區的深度大於該載子收集層的厚度。 According to an embodiment of the present disclosure, a light detection device is provided. The light detection device includes: an absorption layer including a material with a first energy gap; and a carrier collection layer on the absorption layer, wherein the carrier control layer includes a material having an energy gap greater than the first energy gap. a second energy gap of the gap; two second doped regions in the carrier control layer, wherein each second doped region has a depth, and the depth of each second doped region is greater than the carrier The thickness of the collection layer.

根據本公開的實施例,提供了一種光偵測裝置。該光偵測裝置包括:一吸收層;一初步收集器(preliminary collector),在該吸收層中;以及兩個開關,電性耦接到該吸收層並設置在該初步收集器的兩個相對側。 According to an embodiment of the present disclosure, a light detection device is provided. The light detection device includes: an absorption layer; a preliminary collector in the absorption layer; and two switches electrically coupled to the absorption layer and disposed on two opposite sides of the preliminary collector. side.

在一些實施例中,各該開關包括具有第一導電類型的一第一摻雜區,其中該初步收集器的導電類型與該兩個第一摻雜區的第一導電類型相同。 In some embodiments, each switch includes a first doped region having a first conductivity type, wherein the conductivity type of the preliminary collector is the same as the first conductivity type of the two first doped regions.

在一些實施例中,各該開關還包括一第二摻雜區。該初步收集器與各該兩個第二摻雜區中的至少一部分重疊。 In some embodiments, each switch further includes a second doped region. The preliminary collector overlaps at least a portion of each of the two second doped regions.

在一些實施例中,該吸收層還包括連接至該初步收集器的一阻礙區。 In some embodiments, the absorbent layer further includes a barrier zone connected to the preliminary collector.

在一些實施例中,該阻礙區的導電類型不同於該初步收集器的導電類型。 In some embodiments, the conductivity type of the barrier region is different from the conductivity type of the preliminary collector.

在一些實施例中,該光偵測裝置還包括與該第一摻雜區的至少一部分重疊的兩個反摻雜區。 In some embodiments, the light detection device further includes two counter-doped regions overlapping at least a portion of the first doped region.

根據本公開的實施例,提供了一種光偵測裝置。該光偵測裝置包括:一吸收層;兩個開關,電性耦接到該吸收層,其中各該兩個開關中包括一 第一摻雜區;以及一第一緩衝區和一第二緩衝區,在該兩個第一摻雜區之間。 According to an embodiment of the present disclosure, a light detection device is provided. The light detection device includes: an absorption layer; two switches electrically coupled to the absorption layer, wherein each of the two switches includes a a first doped region; and a first buffer region and a second buffer region between the two first doped regions.

根據本公開的實施例,提供了一種影像系統。該影像系統包括一或多個相機;以及一光偵測裝置。在一些實施例中,光偵測裝置包括一像素陣列,用於飛行時間資訊,該像素陣列的各像素包括由第一材料或第一材料複合物製成的一基底;由第二材料或第二材料複合物製成的一吸收層,該吸收層由該基底支撐,且該吸收層包括:一第一表面;一第二表面,佈置在該第一表面和該基底之間;以及一通道區,具有一摻質分佈,該摻質分佈具有等於或大於1x1015cm-3的峰值摻質濃度,其中該第一表面與具有該摻質峰值濃度的該通道區的位置之間的距離小於該第二表面與具有該峰值摻質濃度的該通道區的位置之間的距離,又其中該第一表面與具有該峰值摻質濃度的該通道區的位置之間的距離不小於30nm。 According to embodiments of the present disclosure, an imaging system is provided. The imaging system includes one or more cameras; and a light detection device. In some embodiments, the light detection device includes a pixel array for time-of-flight information. Each pixel of the pixel array includes a substrate made of a first material or a first material composite; a second material or a first material composite. An absorbent layer made of a two-material composite, the absorbent layer is supported by the base, and the absorbent layer includes: a first surface; a second surface arranged between the first surface and the base; and a channel a region having a dopant distribution having a peak dopant concentration equal to or greater than 1x10 15 cm -3 , wherein the distance between the first surface and the location of the channel region having the peak dopant concentration is less than The distance between the second surface and the position of the channel region having the peak dopant concentration, and wherein the distance between the first surface and the position of the channel region having the peak dopant concentration is not less than 30 nm.

100a、100b、100c、100d、100e:光偵測裝置 100a, 100b, 100c, 100d, 100e: light detection device

100g、100h、100i、100j:光偵測裝置 100g, 100h, 100i, 100j: light detection device

101a、101b:摻雜區 101a, 101b: doping area

101a’、101b’:第一摻雜區 101a’, 101b’: first doped region

102:鍺基光吸收材料 102:Germanium-based light absorbing material

102’:吸收層 102’:Absorption layer

102s、102ss:表面 102s, 102ss: surface

102s’:第一表面 102s’: first surface

103a、103b:摻雜區 103a, 103b: doping area

103a’、103b’:第二摻雜區 103a’, 103b’: second doped region

104:半導體基底 104:Semiconductor substrate

104’:基底 104’: Base

104s:第一表面 104s: first surface

105a、105b:未摻雜區 105a, 105b: undoped area

106a、106b:控制金屬線 106a, 106b: Control metal wire

106a’、106b’:控制接觸層 106a’, 106b’: control contact layer

108a、108b:讀出金屬線 108a, 108b: read metal lines

108a’、108b’:讀出接觸層 108a’, 108b’: read contact layer

110a、110b:電容 110a, 110b: capacitor

133a:第一介電層 133a: first dielectric layer

133b:第二介電層 133b: Second dielectric layer

200a、200b、200c、200d、200e、200f、200g、200h:光偵測裝置 200a, 200b, 200c, 200d, 200e, 200f, 200g, 200h: light detection device

201a、201b:N型區域 201a, 201b: N-type area

202:鍺基光吸收材料 202:Germanium-based light absorbing materials

202s、202ss:表面 202s, 202ss: surface

202v:鍺穿孔 202v: germanium perforated

203a、203b:P型區域 203a, 203b: P-type area

204v:矽穿孔 204v: Silicon perforation

206a、206b:控制金屬線 206a, 206b: Control metal wire

207、207a、207b:N型區域 207, 207a, 207b: N-type area

208a、208b:讀出金屬線 208a, 208b: Read metal lines

300a:光偵測裝置 300a: Light detection device

301a、301b:N型區域 301a, 301b: N-type area

302:鍺基光吸收材料 302: Germanium-based light absorbing material

304:基底 304: Base

302s、302ss:表面 302s, 302ss: Surface

303a、303b:P型區域 303a, 303b: P-type area

306a、306b:控制金屬線 306a, 306b: Control metal wire

307:N型區域 307:N-type area

308a、308b:讀出金屬線 308a, 308b: Read metal lines

309a、309b:空乏區 309a, 309b: depletion area

312:介電層 312: Dielectric layer

314:矽穿孔 314: Silicon through hole

400a、400b、400c、400d、400e、400f、400g、400h:光偵測裝置 400a, 400b, 400c, 400d, 400e, 400f, 400g, 400h: light detection device

401a、401b:N型區域 401a, 401b: N-type area

401a’、401b’:第一摻雜區 401a’, 401b’: first doping region

402:鍺基光吸收材料 402: Germanium-based light absorbing material

402’:吸收層 402’:Absorption layer

402s:表面 402s: Surface

402s’:第一表面 402s’: first surface

403a、403b:P型區域 403a, 403b: P-type area

403a’、403b’:第二摻雜區 403a’, 403b’: second doped region

404、404’:基底 404, 404’: Base

404s:第一表面 404s: first surface

406a、406b:控制金屬線 406a, 406b: Control metal wire

406a’、406b’:控制接觸層 406a’, 406b’: control contact layer

408a、408b:讀出金屬線 408a, 408b: Read metal lines

408a’、408b’:讀出接觸層 408a’, 408b’: read contact layer

409:導電層 409: Conductive layer

411a、411b:N井 411a, 411b: N well

411a’、411b’:反摻雜區 411a’, 411b’: anti-doping area

451a、451b:P井 451a, 451b: P well

419:阻擋層 419:Barrier layer

500a、500b、500c、500d、500e、500f、500g、500h:光偵測裝置 500a, 500b, 500c, 500d, 500e, 500f, 500g, 500h: light detection device

501a、501b:N型區域 501a, 501b: N-type area

501a’、501b’:第一摻雜區 501a’, 501b’: first doped region

502:鍺基光吸收材料 502: Germanium-based light absorbing material

502’:吸收層 502’: Absorption layer

502s:表面 502s: Surface

502s’:第一表面 502s’: first surface

503a、503b:P型區域 503a, 503b: P-type area

503a’,503b’:第二摻雜區 503a’, 503b’: second doped region

504、504’基底 504, 504’ base

506a、506b:控制金屬線 506a, 506b: Control metal wire

506a’、506b’:控制接觸層 506a’, 506b’: control contact layer

508a、508b:讀出金屬線 508a, 508b: read metal wire

508a’、508b’:讀出接觸層 508a’, 508b’: read contact layer

513a、513b、515a、515b:金屬矽化物 513a, 513b, 515a, 515b: metal silicide

513a’、513b’:第一矽化物區 513a’, 513b’: first silicide region

515a’、515b’:第二矽化物區 515a’, 515b’: second silicide region

514:鈍化層 514: Passivation layer

514a1、514a2、514a3、514a4:第一區域 514a1, 514a2, 514a3, 514a4: first area

514b:第二區域 514b:Second area

514c:第三區域 514c:The third area

514e:第四區域 514e:The fourth area

514d1、514d2:中間區域 514d1, 514d2: middle area

519:阻擋層 519: Barrier layer

600a、600b、600c、600d、600e、600f、600g、600h、600i、600j、600k、600l、600m、600n、600o、600p、600q、600r、600s、600t、600u、600v:光偵測裝置 600a, 600b, 600c, 600d, 600e, 600f, 600g, 600h, 600i, 600j, 600k, 600l, 600m, 600n, 600o, 600p, 600q, 600r, 600s, 600t, 600u, 600v: light detection device

601a、601b:N型區域 601a, 601b: N-type area

601a’、601b’:第一摻雜區 601a’, 601b’: first doped region

602:鍺基光吸收材料 602: Germanium-based light absorbing material

602’:吸收層 602’: Absorption layer

602s、602ss:表面 602s, 602ss: surface

602s’:第一表面 602s’: first surface

602ss’:第二表面 602ss’: Second surface

603a、603b:P型區域 603a, 603b: P-type area

603a’、603b’:第二摻雜區 603a’, 603b’: second doped region

604、604’:基底 604, 604’: Base

604s:第一表面 604s: first surface

604ss:第二表面 604ss: Second surface

604v:矽穿孔 604v: Silicon perforation

605a、605b:未摻雜區 605a, 605b: undoped area

606a、606b:控制金屬線 606a, 606b: Control metal wire

606a’、606b’:控制接觸層 606a’, 606b’: Control contact layer

608a、608b:讀出金屬線 608a, 608b: Read metal lines

608a’、608b’:讀出接觸層 608a’, 608b’: read contact layer

610’:導電層 610’: conductive layer

617:N型區域 617:N type area

617’:第三摻雜區 617’: The third doping region

618:第四摻雜區 618: The fourth doped region

619:P型區域 619:P type area

619’:阻擋層 619’: Barrier layer

624:隔離區 624:Quarantine area

633a:第一介電層 633a: first dielectric layer

633b:第二介電層 633b: Second dielectric layer

640:阻礙區 640: Obstacle area

651a、651b:反摻雜區 651a, 651b: Anti-doping area

652a、652b:嵌入反摻雜區 652a, 652b: embedded anti-doped region

653a、653b:淺反摻雜區 653a, 653b: Shallow anti-doped area

700a、700b、700c:光偵測裝置 700a, 700b, 700c: light detection device

701a、701b:N型區域 701a, 701b: N-type area

702:鍺基光吸收材料 702: Germanium-based light absorbing material

702s:表面 702s: surface

703a、703b:P型區域 703a, 703b: P-type area

706a、706b:控制金屬線 706a, 706b: Control metal wire

708a、708b:讀出金屬線 708a, 708b: Read metal lines

721、716a、716b、718a、718b:金屬 721, 716a, 716b, 718a, 718b: metal

721d、716ad、716bd、718ad、718bd:空乏區 721d, 716ad, 716bd, 718ad, 718bd: depletion area

721e、716ae、716be、718ae、718be:極化介電質 721e, 716ae, 716be, 718ae, 718be: polarized dielectric

723a、723b:金屬 723a, 723b: metal

725a、725b:極化介電質 725a, 725b: polarized dielectric

800a、800b:光偵測裝置 800a, 800b: Light detection device

801a、801b:N型區域 801a, 801b: N-type area

801a、801b、803a、803b:摻雜區 801a, 801b, 803a, 803b: doping area

802:鍺基光吸收材料 802: Germanium-based light absorbing material

802s:表面 802s: Surface

803a、803b:P型區域 803a, 803b: P-type area

806a、806b:控制金屬線 806a, 806b: Control metal wire

808a、808b:讀出金屬線 808a, 808b: read metal lines

829、831a、831b、833a、833b:離子處理區 829, 831a, 831b, 833a, 833b: Ion treatment area

900a、900b、900c、900d、900e:光偵測裝置 900a, 900b, 900c, 900d, 900e: light detection device

901a、901b:N型區域 901a, 901b: N-type area

902:鍺基光吸收材料 902: Germanium-based light absorbing material

902s:表面 902s: Surface

903a、903b:P型區域 903a, 903b: P-type area

904:半導體基底 904:Semiconductor substrate

906a、906b:控制金屬線 906a, 906b: Control metal wire

908a、908b:讀出金屬線 908a, 908b: Read metal lines

924:隔離區 924:Quarantine Zone

924a:隔離區 924a:Quarantine Zone

924b:溝渠隔離區域 924b: Ditch isolation area

1000a、1000b、1000c:光偵測裝置 1000a, 1000b, 1000c: light detection device

1001a、1001b:N型區域 1001a, 1001b: N-type area

1002:鍺基光吸收材料 1002: Germanium-based light absorbing material

1002s:表面 1002s: Surface

1003a、1003b:P型區域 1003a, 1003b: P-type area

1004:半導體基底 1004:Semiconductor substrate

1005a、1005b:未摻雜區 1005a, 1005b: undoped area

1006a、1006b:控制金屬線 1006a, 1006b: Control metal wire

1008a、1008b:讀出金屬線 1008a, 1008b: Read metal lines

1010a、1010b:電容 1010a, 1010b: capacitor

1011a、1011b:N井 1011a, 1011b: N well

1013a、1013b、1015a、1015b:金屬矽化物 1013a, 1013b, 1015a, 1015b: metal silicide

1014:鈍化層 1014: Passivation layer

1019:井形P型區域 1019: Well-shaped P-shaped area

1021:金屬 1021:Metal

1024:隔離區 1024:Quarantine Zone

1100a、1100b、1100c、1100d、1100e:光偵測裝置 1100a, 1100b, 1100c, 1100d, 1100e: light detection device

1101a、1101b:N型區域 1101a, 1101b: N-type area

1102:鍺基光吸收材料 1102: Germanium-based light absorbing material

1103a、1103b:P型區域 1103a, 1103b: P-type area

1106a、1106b:控制金屬線 1106a, 1106b: Control metal wire

1108a、1108b:讀出金屬線 1108a, 1108b: read metal wire

1200a、1200b:光偵測裝置 1200a, 1200b: Light detection device

12021、12022、12023、12024:像素 12021, 12022, 12023, 12024: pixels

1300a、1300c:光偵測裝置 1300a, 1300c: Light detection device

1310:目標物件 1310:Target object

1302:像素陣列 1302: Pixel array

1302a:第一像素陣列 1302a: first pixel array

1302b:第二像素陣列 1302b: Second pixel array

1304:雷射二極體驅動器(LDD) 1304: Laser Diode Driver (LDD)

1306:雷射二極體(LD) 1306: Laser Diode (LD)

1308:時脈驅動電路 1308: Clock drive circuit

13081、13082:時脈驅動器 13081, 13082: Clock driver

1500a、1500b、1500c、1500d、1500e、1500f、1500g、1500i、1500k:光偵測裝置 1500a, 1500b, 1500c, 1500d, 1500e, 1500f, 1500g, 1500i, 1500k: light detection device

1501a、1501b:第一摻雜區 1501a, 1501b: first doped region

1502:吸收層 1502:Absorption layer

1502s:第一表面 1502s: first surface

1503a、1503b:第二摻雜區 1503a, 1503b: second doped region

1504:基底 1504:Base

1506a、1506b:控制接觸層 1506a, 1506b: Control contact layer

1508a、1508b:讀出接觸層 1508a, 1508b: Read contact layer

1517:引導區域 1517:Boot area

1518:排出區域 1518: Drainage area

1519:阻擋層 1519:Barrier layer

1521:導電層 1521: Conductive layer

1524:隔離區 1524:Quarantine Zone

1541:導電層 1541: Conductive layer

1551a、1551b:反摻雜區 1551a, 1551b: Anti-doping area

1600a、1600b、1600c、1600d、1600e、1600f、1600g、1600h、1600i、1600j、1600k、1600l、1600m:光偵測裝置 1600a, 1600b, 1600c, 1600d, 1600e, 1600f, 1600g, 1600h, 1600i, 1600j, 1600k, 1600l, 1600m: light detection device

1601a、1601b:第一摻雜區 1601a, 1601b: first doped region

1602:吸收層 1602:Absorption layer

1602s:第一表面 1602s: first surface

1602ss:第二表面 1602ss: Second surface

1603a、1603b:第二摻雜區 1603a, 1603b: second doped region

1604:基底 1604:Base

1605a、1605b:未摻雜區 1605a, 1605b: undoped area

1606a、1606b:控制接觸層 1606a, 1606b: Control contact layer

1608a、1608b:讀出接觸層 1608a, 1608b: Read contact layer

1609:導電層 1609: Conductive layer

1610a、1610b:電容 1610a, 1610b: capacitor

1619:阻擋層 1619:Barrier layer

1630:通道區 1630: Passage area

1633a:第一介電層 1633a: first dielectric layer

1633b:第二介電層 1633b: Second dielectric layer

1640:阻礙區 1640:obstruction area

1651a、1651b:反摻雜區 1651a, 1651b: Anti-doping area

1661:第一緩衝區 1661: First buffer

1662:第二緩衝區 1662: Second buffer

1700a、1700b、1700c、1700d、1700e、1700f、1700g、1700h、1700i:光偵測裝 置 1700a, 1700b, 1700c, 1700d, 1700e, 1700f, 1700g, 1700h, 1700i: light detection device set

1701a、1701b:第一摻雜區 1701a, 1701b: first doped region

1702:吸收層 1702:Absorption layer

1703a、1703b:第二摻雜區 1703a, 1703b: second doped region

1704:基底 1704:Base

1704s:第一表面 1704s: First surface

1706a、1706b:控制接觸層 1706a, 1706b: Control contact layer

1708a、1708b:讀出接觸層 1708a, 1708b: Read contact layer

1710:導電層 1710: Conductive layer

1731:埋入區 1731: Buried area

1731a:第一埋入區 1731a: First buried area

1731b:第二埋入區 1731b: Second buried area

1733a:第一介電層 1733a: First dielectric layer

1733b:第二介電層 1733b: Second dielectric layer

1751a、1751b:反摻雜區 1751a, 1751b: Anti-doping area

1761:第一緩衝區 1761: First buffer

1762:第二緩衝區 1762: Second buffer

1741:排斥區 1741:Exclusion zone

1800a、1800b、1800c、1800d、1800e、1800f、1800g、1800h、1800i、1800j、1800k、1800l、1800m、1800n、1800o、1800p、1800q、1800r、1800s、1800t、1800u:光偵測裝置 1800a, 1800b, 1800c, 1800d, 1800e, 1800f, 1800g, 1800h, 1800i, 1800j, 1800k, 1800l, 1800m, 1800n, 1800o, 1800p, 1800q, 1800r, 1800s, 1800t, 180 0u: light detection device

1801a、1801b:第一摻雜區 1801a, 1801b: first doped region

1802:吸收層 1802:Absorption layer

1802s:第一表面 1802s: first surface

1803a、1803b:第二摻雜區 1803a, 1803b: second doped region

1804:基底 1804:Base

1806:控制接觸層 1806:Control contact layer

1806a、1806b:控制接觸層 1806a, 1806b: Control contact layer

1808:讀出接觸層 1808: Read out the contact layer

1808a、1808b:讀出接觸層 1808a, 1808b: Read contact layer

1809:導電層 1809: Conductive layer

1810:載子控制層 1810: Carrier control layer

1811:第一導電層 1811: First conductive layer

1812a、1812b:調整接觸層 1812a, 1812b: Adjust the contact layer

1817:第三摻雜區 1817: The third doped region

1819:阻擋層 1819:Barrier layer

1820a、1820b:阻障區 1820a, 1820b: Barrier area

1830:通道區 1830: Passage area

1831:淺通道區 1831:Shallow channel area

1832:第五介電層 1832:Fifth dielectric layer

1833a:第一介電層 1833a: First dielectric layer

1833b:第二介電層 1833b: Second dielectric layer

1834a:第三介電層 1834a: Third dielectric layer

1834b:第四介電層 1834b: Fourth dielectric layer

1840:阻礙區 1840:obstruction zone

1851a、1851b:反摻雜區 1851a, 1851b: Anti-doped area

1861:第一緩衝區 1861: First buffer

1862:第二緩衝區 1862: Second buffer

1900a、1900b、1900c、1900d:光偵測裝置 1900a, 1900b, 1900c, 1900d: light detection device

1901a、1901b:第一摻雜區 1901a, 1901b: first doped region

1902:吸收層 1902:Absorption layer

1903a、1903b:第二摻雜區 1903a, 1903b: Second doping region

1904:基底 1904:Base

1906a、1906b:控制接觸層 1906a, 1906b: Control contact layer

1908a、1908b:讀出接觸層 1908a, 1908b: Reading out the contact layer

1909:導電層 1909: Conductive layer

1917:第三摻雜區 1917: The third doped region

1919:阻擋層 1919:Barrier layer

1933a:第一介電層 1933a: First dielectric layer

1933b:第二介電層 1933b: Second dielectric layer

1940:阻礙區 1940:Hinder Zone

1951a、1951b:反摻雜區 1951a, 1951b: Anti-doped area

1961:第一緩衝區 1961: First buffer

1962:第二緩衝區 1962: Second buffer zone

2000a、2000b、2000c、2000d、2000e、2000f、2000g、2000h、2000i、2000j、2000k、2000l、2000m:光偵測裝置 2000a, 2000b, 2000c, 2000d, 2000e, 2000f, 2000g, 2000h, 2000i, 2000j, 2000k, 2000l, 2000m: light detection device

2001a、2001b:第一摻雜區 2001a, 2001b: first doped region

2002:吸收層 2002:Absorbent layer

2002s:第一表面 2002s: First Surface

2003a、2003b:第二摻雜區 2003a, 2003b: Second doped region

2004:基底 2004:Base

2006a、2006b:控制接觸層 2006a, 2006b: Controlling the contact layer

2008a、2008b:讀出接觸層 2008a, 2008b: Reading out the contact layer

2009:導電層 2009: Conductive layer

2017:第三摻雜區 2017: The third doping region

2019:阻擋層 2019: Barrier

2030:通道區 2030: Passage area

2033a:第一介電層 2033a: First dielectric layer

2033b:第二介電層 2033b: Second dielectric layer

2040:阻礙區 2040:Hinder Zone

2050:載子收集層 2050: Carrier collection layer

2050s:第一表面 2050s: First surface

2051a、2051b:反摻雜區 2051a, 2051b: Anti-doping region

2061:第一緩衝區 2061: First buffer

2062:第二緩衝區 2062: Second buffer

AR:吸收區域 AR: absorption area

cs1、cs2:控制信號 cs1, cs2: control signal

ca2、ca3:偏壓電壓 ca2, ca3: bias voltage

IL:光信號 IL: light signal

WD:光學窗口 WD: optical window

v1、v2:電壓 v1, v2: voltage

vb1、vb2、vb3:偏壓(基體偏壓) vb1, vb2, vb3: bias (base bias)

D1:垂直方向 D1: vertical direction

w1、w2、w3:寬度 w 1 , w 2 , w 3 : width

W5:第一寬度 W 5 : first width

W6:第二寬度 W 6 : Second width

W7:第一寬度 W 7 : first width

W8:第二寬度 W 8 : Second width

d3、d4、w4:距離 d 3 , d 4 , w 4 : distance

d1、d2、d5、d6、d7:深度 d 1 , d 2 , d 5 , d 6 , d 7 : depth

ILD:層間介電層 ILD: interlayer dielectric layer

CLK1、CLK2、CLK3:時脈信號 CLK1, CLK2, CLK3: clock signal

圖1A-1J 繪示本發明光偵測裝置之實施例的剖視圖。 1A-1J illustrate cross-sectional views of embodiments of the light detection device of the present invention.

圖2A-2H 繪示本發明具有基底空乏模式的光偵測裝置實施例的剖視圖。 2A-2H illustrate cross-sectional views of an embodiment of a light detection device with a substrate depletion mode according to the present invention.

圖3A-3B 繪示具有基底空乏模式的光偵測裝置實施例的剖視圖。 3A-3B illustrate cross-sectional views of embodiments of light detection devices with substrate depletion mode.

圖4A-4H 繪示具有基底空乏模式的光偵測裝置實施例的剖視圖。 4A-4H illustrate cross-sectional views of embodiments of light detection devices with substrate depletion mode.

圖5A-5H繪示依據一些實施例之具有鈍化層的光偵測裝置的剖視圖。 5A-5H illustrate cross-sectional views of a light detection device with a passivation layer according to some embodiments.

圖6A-6C 繪示依據一些實施例之可增進電荷轉移速度的光偵測裝置的剖視圖。 6A-6C illustrate cross-sectional views of a light detection device that can enhance charge transfer speed according to some embodiments.

圖6D-6V繪示根據一些實施例的光偵測裝置的剖視圖。 6D-6V illustrate cross-sectional views of light detection devices according to some embodiments.

圖7A-7B 繪示依據一些實施例之具有表面空乏模式的光偵測裝置的剖視圖。 7A-7B illustrate cross-sectional views of a light detection device with a surface depletion mode according to some embodiments.

圖7C-7D 繪示依據一些實施例之具有表面空乏模式的光偵測裝置的平面圖。 Figures 7C-7D illustrate plan views of light detection devices with surface depletion modes in accordance with some embodiments.

圖8A繪示依據一些實施例之具有表面離子佈植的光偵測裝置的剖視圖。 Figure 8A illustrates a cross-sectional view of a light detection device with surface ion implantation according to some embodiments.

圖8B繪示依據一些實施例之具有表面離子佈植的光偵測裝置的平面圖。 Figure 8B illustrates a plan view of a light detection device with surface ion implantation in accordance with some embodiments.

圖9A繪示依據一些實施例之具有像素間隔離的光偵測裝置的剖視圖。 Figure 9A illustrates a cross-sectional view of a light detection device with inter-pixel isolation according to some embodiments.

圖9B繪示依據一些實施例之具有像素間隔離的光偵測裝置的平面圖。 Figure 9B illustrates a plan view of a light detection device with inter-pixel isolation in accordance with some embodiments.

圖9C-9E繪示依據一些實施例之具有像素間隔離的光偵測裝置的剖視圖。 9C-9E illustrate cross-sectional views of light detection devices with inter-pixel isolation in accordance with some embodiments.

圖10A-10D繪示依據一些實施例的光偵測裝置的剖視圖。 10A-10D illustrate cross-sectional views of light detection devices according to some embodiments.

圖11A-11E繪示依據一些實施例之具有小型化晶片尺寸的光偵測裝置的平面圖。 11A-11E illustrate plan views of light detection devices with miniaturized chip dimensions in accordance with some embodiments.

圖12A-12B繪示依據一些實施例之光偵測裝置陣列架構的平面圖。 12A-12B illustrate plan views of light detection device array architectures in accordance with some embodiments.

圖13A-13E繪示依據一些實施例之使用相位變化調變機制的光偵測裝置的方塊圖及時序圖。 13A-13E illustrate block diagrams and timing diagrams of light detection devices using phase change modulation mechanisms according to some embodiments.

圖14顯示依據一些實施例之使用具有相位改變調變機制的光偵測裝置操作方法。 FIG. 14 illustrates an operation method of a light detection device using a phase change modulation mechanism according to some embodiments.

圖15A-15B繪示根據一些實施例的光偵測裝置的俯視圖。 15A-15B illustrate top views of light detection devices according to some embodiments.

圖15C-15D繪示根據一些實施例的光偵測裝置的剖視圖。 Figures 15C-15D illustrate cross-sectional views of light detection devices according to some embodiments.

圖15E繪示根據一些實施例的光偵測裝置的俯視圖。 Figure 15E illustrates a top view of a light detection device according to some embodiments.

圖15F繪示根據一些實施例的光偵測裝置的剖視圖。 Figure 15F illustrates a cross-sectional view of a light detection device according to some embodiments.

圖15G繪示根據一些實施例的光偵測裝置的俯視圖。 Figure 15G illustrates a top view of a light detection device according to some embodiments.

圖15H繪示根據一些實施例的光偵測裝置的剖視圖。 Figure 15H illustrates a cross-sectional view of a light detection device according to some embodiments.

圖15I繪示根據一些實施例的光偵測裝置的俯視圖。 Figure 15I illustrates a top view of a light detection device according to some embodiments.

圖15J繪示根據一些實施例的光偵測裝置的剖視圖。 Figure 15J illustrates a cross-sectional view of a light detection device according to some embodiments.

圖15K繪示根據一些實施例的光偵測裝置的俯視圖。 Figure 15K illustrates a top view of a light detection device according to some embodiments.

圖15L繪示根據一些實施例的光偵測裝置的剖視圖。 Figure 15L illustrates a cross-sectional view of a light detection device according to some embodiments.

圖16A-16M繪示根據一些實施例的光偵測裝置的剖視圖。 Figures 16A-16M illustrate cross-sectional views of light detection devices according to some embodiments.

圖17A-17I繪示根據一些實施例的光偵測裝置的剖視圖。 17A-17I illustrate cross-sectional views of light detection devices according to some embodiments.

圖18A-18U繪示根據一些實施例的光偵測裝置的剖視圖。 18A-18U illustrate cross-sectional views of light detection devices according to some embodiments.

圖19A-19D繪示根據一些實施例的光偵測裝置的剖視圖。 19A-19D illustrate cross-sectional views of light detection devices according to some embodiments.

圖20A-20M繪示根據一些實施例的光偵測裝置的剖視圖。 Figures 20A-20M illustrate cross-sectional views of light detection devices according to some embodiments.

如本文所用,諸如“第一”、“第二”、“第三”、第四”和“第五”等用語描述了各種元件、組件、區域、層和/或部分,這些元件、組件、區域、層和/或部分不應受這些用語的限制。這些用語僅可用於將一個元件、組件、區域、層或部分與另一個區分。除非上下文明確指出,否則本文中使用的諸如“第一”、“第二”、“第三”、“第四”和“第五”等用語並不暗示順序或次序。用語“光子偵測(photo-detecting)”、“光子感測(photo-sensing)”、“光偵測(light-detecting)”、“光感測(light-sensing)”和任何其他類似用語可以互換使用。 As used herein, terms such as “first,” “second,” “third,” “fourth” and “fifth” describe various elements, components, regions, layers and/or sections. Regions, layers and/or sections should not be limited by these terms. These terms may only be used to distinguish one element, component, region, layer or section from another. Unless the context clearly dictates otherwise, terms such as "first" are used herein unless the context clearly dictates otherwise. The terms "second", "third", "fourth" and "fifth" do not imply a sequence or sequence. The terms "photo-detecting", "photo-sensing" )", "light-detecting", "light-sensing" and any other similar terms may be used interchangeably.

空間描述諸如“上方”、“頂部”和“底部”之類除非另有說明,係相對於圖中所示方向來指示。應當理解,本文所使用的空間描述僅是出於說明的目的,並且本文所描述的結構的實際實現可以以任何取向或方式在空間上進行佈置,只要本公開的實施例的優點不被此佈置所偏離。 Spatial descriptors such as "above," "top," and "bottom" refer relative to the direction shown in the figures, unless otherwise stated. It should be understood that the spatial descriptions used herein are for illustrative purposes only and that actual implementations of the structures described herein may be spatially arranged in any orientation or manner so long as the advantages of the embodiments of the present disclosure are not impaired by such an arrangement. deviated from.

圖1A繪示依據一實施例的光偵測裝置剖視圖。光偵測裝置100a包含由半導體基底104支撐的鍺基光吸收材料102。在一種實施方式中,半導體基底104可由矽(Silicon)、矽-鍺(Silicon-germanium)、鍺(Germanim)或III-V族化合物所製成。鍺基光吸收材料102是指本質的鍺(100%鍺)或包含鍺元素的合金(例如矽-鍺合金),其鍺濃度的範圍為1%至99%。在一些實施方案中,可使 用覆蓋式磊晶(Blanket epitaxy)、選擇性磊晶(Selective epitaxy)或其他適用技術來生長鍺基光吸收材料102。依據一實施例,鍺基光吸收材料102嵌入在圖1A中的半導體基底104中,在另一實施例,鍺基光吸收材料102可以部分地嵌入或可以設立在半導體基底104之上。 FIG. 1A shows a cross-sectional view of a light detection device according to an embodiment. The light detection device 100a includes a germanium-based light absorbing material 102 supported by a semiconductor substrate 104. In one embodiment, the semiconductor substrate 104 may be made of silicon, silicon-germanium, germanium or III-V compounds. The germanium-based light absorbing material 102 refers to essential germanium (100% germanium) or an alloy containing germanium element (such as silicon-germanium alloy), and its germanium concentration ranges from 1% to 99%. In some embodiments, the The germanium-based light absorbing material 102 is grown using blanket epitaxy, selective epitaxy or other suitable techniques. According to one embodiment, the germanium-based light absorbing material 102 is embedded in the semiconductor substrate 104 in FIG. 1A . In another embodiment, the germanium-based light absorbing material 102 may be partially embedded or may be established on the semiconductor substrate 104 .

光偵測裝置100a包含控制金屬線106a和讀出金屬線108a。控制金屬線106a和讀出金屬線108a電性耦接到鍺基光吸收材料102的表面102s。在此實施例中,控制金屬線106a電性耦接到表面102s的未摻雜區105a,其中未摻雜區105a不具有摻質。讀出金屬線108a電性耦接到表面102s的摻雜區101a,其中摻雜區101a具有摻質。 The light detection device 100a includes a control metal line 106a and a readout metal line 108a. The control metal line 106a and the readout metal line 108a are electrically coupled to the surface 102s of the germanium-based light absorbing material 102. In this embodiment, the control metal line 106a is electrically coupled to the undoped region 105a of the surface 102s, where the undoped region 105a does not have dopants. The readout metal line 108a is electrically coupled to the doped region 101a of the surface 102s, where the doped region 101a has a dopant.

需注意者,鍺基的光吸收材料102可為本質的(Intrinsic)或雜質的(Extrinsic)(例如,輕微的P型或輕微的N型)。由於鍺材料的缺陷特性,即使在製作過程中沒有導入摻雜,鍺基光吸收材料102仍可能有輕微的P型特性。因此,未摻雜區105a也可能是輕微P型。依據要收集的光生載子(即電洞或電子)的類型,摻雜區101a有可能摻雜有P型摻質或N型摻質。在一些實施例中,摻雜區101a可透過熱擴散(Thermal-diffusion)、離子佈植(Ion-implantation)或任何其他摻雜製程進行摻雜。 It should be noted that the germanium-based light absorbing material 102 may be intrinsic or extrinsic (for example, slightly P-type or slightly N-type). Due to the defective characteristics of the germanium material, the germanium-based light absorbing material 102 may still have slight P-type characteristics even if no doping is introduced during the manufacturing process. Therefore, the undoped region 105a may also be slightly P-type. Depending on the type of photogenerated carriers (ie, holes or electrons) to be collected, the doped region 101a may be doped with P-type dopants or N-type dopants. In some embodiments, the doped region 101a can be doped through thermal-diffusion, ion-implantation or any other doping process.

控制金屬線106a由控制信號cs1所控制,用於控制被吸收的光子所產生的電子或電洞的移動方向。假設摻雜區101a為N型並且控制信號cs1為邏輯1,從控制金屬線106a到鍺基光吸收材料102方向的電場將被產生,因此,電子將朝控制金屬線106a移動且由摻雜區101a所收集。相反的,如果摻雜區101a是P型,則為電洞被摻雜區101a所收集。假設控制信號cs1為邏輯0且摻雜區101a是N型,則產生相反方向的電場。電子不會往控制金屬線106a的方向移動,且不會被摻雜區101a所收集。相反的,如果摻雜區101a是P型,則電洞不會收集。 The control metal line 106a is controlled by the control signal cs1 and is used to control the moving direction of electrons or holes generated by absorbed photons. Assuming that the doped region 101a is N-type and the control signal cs1 is logic 1, an electric field in the direction from the control metal line 106a to the germanium-based light absorbing material 102 will be generated. Therefore, electrons will move toward the control metal line 106a and pass through the doped region. Collected by 101a. On the contrary, if the doped region 101a is P-type, the holes will be collected by the doped region 101a. Assuming that the control signal cs1 is logic 0 and the doped region 101a is N-type, an electric field in the opposite direction is generated. The electrons will not move toward the control metal line 106a and will not be collected by the doped region 101a. On the contrary, if the doped region 101a is P-type, holes will not be collected.

透過使用圖1A所示的結構,由一目標物體(圖1A中未繪示)反射並 通過光學窗口WD進入的光信號IL可以被鍺基光吸收材料102吸收,並且根據控制信號cs1的操作,產生電子-電洞對,以決定電子或電洞(取決於摻雜區101a是N型和P型)是否朝向電容110a移動並存儲在電容110a中。吸收區域AR是接收通過光學窗口WD進入的光信號IL的一虛擬區域。由於光偵測裝置100a與目標物體(圖1A中未繪示)之間存在一距離,光信號IL與發射器(圖1A中未繪示)所發射出的發射光之間具有一相位延遲。通過調變信號調變的一發射光且經由一解調信號(該解調信號通過控制金屬線106a)以解調出電子-電洞對時,存儲在電容110a中的電子或電洞將根據該距離而變化。因此,光偵測裝置100a可以依據電容110a上的電壓v1獲得距離資訊。 By using the structure shown in Figure 1A, a target object (not shown in Figure 1A) is reflected and The light signal IL entering through the optical window WD can be absorbed by the germanium-based light absorbing material 102, and according to the operation of the control signal cs1, electron-hole pairs are generated to determine electrons or holes (depending on whether the doped region 101a is N-type and P type) moves toward the capacitor 110a and is stored in the capacitor 110a. The absorption area AR is a virtual area that receives the optical signal IL entering through the optical window WD. Since there is a distance between the light detection device 100a and the target object (not shown in FIG. 1A ), there is a phase delay between the light signal IL and the emitted light emitted by the emitter (not shown in FIG. 1A ). When an emitted light is modulated by a modulation signal and demodulated via a demodulation signal (the demodulation signal passes through the control metal line 106a) to demodulate electron-hole pairs, the electrons or holes stored in the capacitor 110a will be according to The distance varies. Therefore, the light detection device 100a can obtain distance information based on the voltage v1 on the capacitor 110a.

圖1A的實施例為一單抽頭(One-tap)結構,因為它們僅使用一條控制金屬線106a和一條讀出金屬線108a來獲得距離資訊。本申請所公開的實施例亦可使用兩條或更多條的控制金屬線或讀出金屬線,以及各種不同的實施方式,以獲得距離資訊,這些實施例將在下文中詳細描述。 The embodiment of FIG. 1A is a one-tap structure because they only use one control metal line 106a and one readout metal line 108a to obtain distance information. The embodiments disclosed in this application can also use two or more control metal lines or readout metal lines, and various different implementations to obtain distance information. These embodiments will be described in detail below.

圖1B繪示依據一實施例的光偵測裝置剖視圖。與圖1A的實施例相比,圖1B中的光偵測裝置100b使用兩條控制金屬線106a,106b以控制被鍺基光吸收材料102所吸收的光子,其產生的電子或電洞的移動。這種結構稱為雙抽頭(Two-tap)結構。光偵測裝置100b包含控制金屬線106a,106b和讀出金屬線108a,108b。控制金屬線106a,106b和讀出金屬線108a,108b電性耦接到鍺基光吸收材料102的表面102s。在本實施例中,控制金屬線106a,106b分別電性耦接到表面102s上的未摻雜區105a,105b,其中未摻雜區105a,105b是沒有摻質的區域。讀出金屬線108a,108b分別電性耦接到表面102s上的摻雜區101a,101b,其中摻雜區101a,101b是含有摻質的區域。摻雜區101a,101b可以摻雜P型摻質或N型摻質。 FIG. 1B illustrates a cross-sectional view of a light detection device according to an embodiment. Compared with the embodiment of FIG. 1A , the light detection device 100b in FIG. 1B uses two control metal wires 106a and 106b to control the movement of photons absorbed by the germanium-based light-absorbing material 102 and the electrons or holes generated by them. . This structure is called a two-tap structure. The light detection device 100b includes control metal lines 106a, 106b and readout metal lines 108a, 108b. The control metal lines 106a, 106b and the readout metal lines 108a, 108b are electrically coupled to the surface 102s of the germanium-based light absorbing material 102. In this embodiment, the control metal lines 106a and 106b are respectively electrically coupled to the undoped regions 105a and 105b on the surface 102s, where the undoped regions 105a and 105b are regions without doping. The readout metal lines 108a and 108b are respectively electrically coupled to the doped regions 101a and 101b on the surface 102s, where the doped regions 101a and 101b are regions containing dopants. The doped regions 101a and 101b may be doped with P-type dopants or N-type dopants.

控制金屬線106a,106b分別由控制信號cs1,cs2所控制,其用於控制 被吸收的光子所產生的電子或電洞的移動方向。在一些實施方案中,控制信號cs1和cs2是差動信號。在一些實施方案中,控制信號cs1和cs2中其中之一者可以是一固定的電壓信號(例如,0.5V)且另一控制信號是時變的電壓信號(例如,在0V和1V之間操作的弦波信號、時脈信號或脈衝信號)。 The control metal lines 106a, 106b are respectively controlled by the control signals cs1, cs2, which are used to control The direction of movement of electrons or holes created by absorbed photons. In some embodiments, control signals cs1 and cs2 are differential signals. In some embodiments, one of the control signals cs1 and cs2 may be a fixed voltage signal (eg, 0.5V) and the other control signal is a time-varying voltage signal (eg, operating between 0V and 1V sine wave signal, clock signal or pulse signal).

假設摻雜區101a,101b為N型,且控制信號cs1,cs2為彼此具有180度相位差的時脈信號。當控制信號cs1為邏輯1且控制信號cs2為邏輯0時,光偵測裝置100b產生從控制金屬線106a到鍺基光吸收材料102的一電場,電子將朝向控制金屬線106a方向移動,接著,被摻雜區101a收集。類似的,當控制信號cs1處於邏輯0並且控制信號cs2處於邏輯1時,光偵測裝置100b產生從控制金屬線106b到鍺基光吸收材料102的一電場,電子將朝控制金屬線106b方向移動,然後由摻雜區101b收集。相反的,如果摻雜區101a和101b為P型,則摻雜區101a和101b改為收集電洞。 Assume that the doping regions 101a and 101b are N-type, and the control signals cs1 and cs2 are clock signals with a phase difference of 180 degrees from each other. When the control signal cs1 is logic 1 and the control signal cs2 is logic 0, the light detection device 100b generates an electric field from the control metal line 106a to the germanium-based light absorbing material 102, and the electrons will move toward the control metal line 106a. Then, collected by doped region 101a. Similarly, when the control signal cs1 is at logic 0 and the control signal cs2 is at logic 1, the light detection device 100b generates an electric field from the control metal line 106b to the germanium-based light absorbing material 102, and the electrons will move toward the control metal line 106b. , and then collected by the doped region 101b. On the contrary, if the doped regions 101a and 101b are P-type, the doped regions 101a and 101b collect holes instead.

依據本實施例的雙抽頭結構,從一目標物體(圖1B中未繪示)反射的光信號IL可被鍺基光吸收材料102吸收,並且產生電子-電洞對,使得該電子或電洞(取決於摻雜區101a是N型和P型)可依據控制信號cs1和控制信號cs2的操作往電容110a或電容110b移動,並存儲在電容110a或電容110b中。由於光偵測裝置100b與目標物體(圖1B中未繪示)之間存在一距離,光信號IL與發射器(圖1B中未繪示)所發射的發射光之間具有一相位延遲。當一發射光經由一調變信號調變以及一解調信號通過控制金屬線106a和金屬線106b,解調出電子-電洞對時,儲存在電容110a和電容110b中的電子或電洞將根據該距離而變化。因此,光偵測裝置100b可根據電容110a上的電壓v1和電容110b上的電壓v2獲得該距離資訊。根據一實施例,光偵測裝置100b可以基於電壓v1和電壓v2作為輸入的變數以計算出距離資訊。例如,在一脈衝飛行時間(Pulse time-of-flight)的應用中,可以將相關於電壓v1和電壓v2的一電壓比例作為輸入變數。在另一實施例中,在連續波 飛行時間(Continues-wave time-of-flight)的應用中,可以將相關於電壓v1和電壓v2的一同相(In-phase)和正交(Quadrature)電壓作為輸入變數。 According to the double-tap structure of this embodiment, the light signal IL reflected from a target object (not shown in FIG. 1B ) can be absorbed by the germanium-based light absorbing material 102 and generate electron-hole pairs, so that the electrons or holes (Depending on whether the doped region 101a is N-type or P-type) It can move to the capacitor 110a or the capacitor 110b according to the operation of the control signal cs1 and the control signal cs2, and be stored in the capacitor 110a or the capacitor 110b. Since there is a distance between the light detection device 100b and the target object (not shown in FIG. 1B ), there is a phase delay between the light signal IL and the emitted light emitted by the emitter (not shown in FIG. 1B ). When an emitted light is modulated by a modulation signal and a demodulation signal passes through the control metal line 106a and the metal line 106b to demodulate electron-hole pairs, the electrons or holes stored in the capacitor 110a and the capacitor 110b will Varies based on that distance. Therefore, the light detection device 100b can obtain the distance information based on the voltage v1 on the capacitor 110a and the voltage v2 on the capacitor 110b. According to an embodiment, the light detection device 100b can calculate the distance information based on the voltage v1 and the voltage v2 as input variables. For example, in a pulse time-of-flight application, a voltage ratio related to voltage v1 and voltage v2 can be used as an input variable. In another embodiment, in continuous wave In the application of Continues-wave time-of-flight, the in-phase (In-phase) and quadrature (Quadrature) voltages related to voltage v1 and voltage v2 can be used as input variables.

圖1A中的控制金屬線106a,以及圖1B中的控制金屬線106a,106b電性耦接到鍺基光吸收材料102的未摻雜區。在其他實施例中,部份結構及控制金屬線106a,106b可電性耦接到摻雜區。 The control metal line 106a in FIG. 1A and the control metal lines 106a and 106b in FIG. 1B are electrically coupled to the undoped region of the germanium-based light absorbing material 102. In other embodiments, portions of the structure and control metal lines 106a, 106b may be electrically coupled to the doped regions.

圖1C繪示依據一實施例的光偵測裝置剖視圖。類似於圖1A,光偵測裝置100c包含控制金屬線106a和讀出金屬線108a。控制金屬線106a和讀出金屬線108a皆電性耦接到鍺基光吸收材料102的表面102s。在本實施例中,控制金屬線106a電性耦接到表面102s上的摻雜區103a,其中摻雜區103a是具有摻質的區域。讀出金屬線108a電性耦接到表面102s上的摻雜區101a,其中摻雜區101a也是具有摻質的區域。在本實施例中,摻雜區101a和摻雜區103a摻雜有不同類型的摻質。例如,當摻雜區101a摻雜有N型摻質時,則摻雜區103a則摻雜有P型摻質,反之亦然。 FIG. 1C shows a cross-sectional view of a light detection device according to an embodiment. Similar to Figure 1A, the light detection device 100c includes a control metal line 106a and a readout metal line 108a. Both the control metal line 106a and the readout metal line 108a are electrically coupled to the surface 102s of the germanium-based light absorbing material 102. In this embodiment, the control metal line 106a is electrically coupled to the doped region 103a on the surface 102s, where the doped region 103a is a region with dopants. The readout metal line 108a is electrically coupled to the doped region 101a on the surface 102s, where the doped region 101a is also a region with dopants. In this embodiment, the doping region 101a and the doping region 103a are doped with different types of dopants. For example, when the doping region 101a is doped with an N-type dopant, the doping region 103a is doped with a P-type dopant, and vice versa.

光偵測裝置100c的操作原理類似於圖1A的實施例。控制金屬線106a,根據控制信號cs1,控制被吸收的光子所產生的電子或電洞的移動方向,以使電子或電洞被摻雜區101a收集。光偵測裝置100c可藉由控制該控制信號cs1並讀取電容110a上的電壓v1,以獲得光偵測裝置100c和目標物體(圖1C中未繪示)之間的距離資訊。 The operating principle of the light detection device 100c is similar to the embodiment of FIG. 1A. The control metal line 106a controls the moving direction of the electrons or holes generated by the absorbed photons according to the control signal cs1, so that the electrons or holes are collected by the doped region 101a. The light detection device 100c can obtain the distance information between the light detection device 100c and the target object (not shown in FIG. 1C) by controlling the control signal cs1 and reading the voltage v1 on the capacitor 110a.

圖1D繪示依據一實施例的光偵測裝置剖視圖。光偵測裝置100b包含控制金屬線106a,106b和讀出金屬線108a,108b。控制金屬線106a,106b和讀出金屬線108a,108b電性耦接到鍺基光吸收材料102的表面102s。在本實施例中,控制金屬線106a,106b分別電性耦接到表面102s上的摻雜區103a,103b,其中摻雜區103a,103b是具有摻質的區域。讀出金屬線108a,108b分別電性耦接到表面102s上的摻雜區101a,101b,其中摻雜區101a,101b也是具有摻質的區域。摻雜 區101a,101b,103a,103b可以摻雜P型摻質或N型摻質。在本實施例中,摻雜區101a,101b摻雜有相同類型的摻質,摻雜區103a,103b摻雜有相同類型的摻質。然而,摻雜區101a,101b的摻雜類型不同於摻雜區103a,103b的摻雜類型。例如,當摻雜區101a,101b被摻雜為N型,則摻雜區103a,103b將被摻雜為P型,反之亦然。 FIG. 1D is a cross-sectional view of a light detection device according to an embodiment. The light detection device 100b includes control metal lines 106a, 106b and readout metal lines 108a, 108b. The control metal lines 106a, 106b and the readout metal lines 108a, 108b are electrically coupled to the surface 102s of the germanium-based light absorbing material 102. In this embodiment, the control metal lines 106a and 106b are respectively electrically coupled to the doped regions 103a and 103b on the surface 102s, where the doped regions 103a and 103b are regions with dopants. The readout metal lines 108a and 108b are respectively electrically coupled to the doped regions 101a and 101b on the surface 102s, where the doped regions 101a and 101b are also regions with doping. Doping Regions 101a, 101b, 103a, 103b may be doped with P-type dopants or N-type dopants. In this embodiment, the doping regions 101a and 101b are doped with the same type of dopants, and the doping regions 103a and 103b are doped with the same type of dopants. However, the doping type of the doping regions 101a, 101b is different from the doping type of the doping regions 103a, 103b. For example, when the doping regions 101a and 101b are doped as N-type, then the doping regions 103a and 103b will be doped as P-type, and vice versa.

光偵測裝置100d的操作原理類似於圖1B的實施例。控制金屬線106a,106b,根據控制信號cs1,cs2,用以控制被吸收的光子所產生的電子或電洞的移動方向,以使電子或電洞存儲在電容110a或電容110b中。光偵測裝置100d可藉由控制該控制信號cs1,cs2並讀取電容110a,110b上的電壓v1,v2,以獲得光偵測裝置100d和目標物體(圖1D中未繪示)之間的距離資訊。 The operating principle of the light detection device 100d is similar to the embodiment of FIG. 1B. The control metal lines 106a and 106b are used to control the moving direction of electrons or holes generated by absorbed photons according to the control signals cs1 and cs2, so that the electrons or holes are stored in the capacitor 110a or the capacitor 110b. The light detection device 100d can obtain the voltage between the light detection device 100d and the target object (not shown in Figure 1D) by controlling the control signals cs1, cs2 and reading the voltages v1, v2 on the capacitors 110a, 110b. distance information.

圖1E繪示依據一實施例的光偵測裝置剖視圖。光偵測裝置100e的操作原理類似於圖1D,其中光偵測裝置100e能夠藉由產生控制信號cs1,cs2和讀取電容110a,110b上的電壓v1,v2以獲得光偵測裝置100e與目標物體(圖1E中未繪示)之間的距離資訊。與圖1D的不同之處在於光偵測裝置100e的讀出金屬線108a,108b和摻雜區101a,101b設置在與表面102s相對的表面102ss處。由於控制金屬線106a,106b和讀出金屬線108a,108b沿垂直方向排列,因此相應地減小光偵測裝置100e的水平面積。 FIG. 1E illustrates a cross-sectional view of a light detection device according to an embodiment. The operating principle of the light detection device 100e is similar to that of Figure 1D, in which the light detection device 100e can obtain the contact between the light detection device 100e and the target by generating control signals cs1, cs2 and reading the voltages v1, v2 on the capacitors 110a, 110b. Distance information between objects (not shown in Figure 1E). The difference from FIG. 1D is that the readout metal lines 108a, 108b and the doping regions 101a, 101b of the light detection device 100e are disposed at the surface 102ss opposite to the surface 102s. Since the control metal lines 106a, 106b and the readout metal lines 108a, 108b are arranged in the vertical direction, the horizontal area of the light detection device 100e is accordingly reduced.

圖1F繪示依據一實施例的光偵測裝置剖視圖。與圖1E相比,圖1F中的實施例也將摻雜區101a,101b設置在與表面102s相對的表面102ss處,但讀出金屬線108a,108b朝向表面102s延伸,並非往半導體基底104方向延伸,而這樣的安排可以簡化製造過程。 FIG. 1F illustrates a cross-sectional view of a light detection device according to an embodiment. Compared with Figure 1E, the embodiment in Figure 1F also disposes the doping regions 101a, 101b at the surface 102ss opposite to the surface 102s, but the readout metal lines 108a, 108b extend towards the surface 102s, not towards the semiconductor substrate 104. extension, and such an arrangement can simplify the manufacturing process.

在一些實施方式中,如圖1A至圖1F所示的實施例以及下文中的實施例,控制金屬線106a,106b和表面102s可以形成一具有蕭特基位障(Schotty barrier)的金屬-半導體接面(Metal-Semicondcutor junction,MS junction)、或是 藉由一氧化物(Oxide)或一高K介電(high-K)材料作為絕緣體設置於金屬-半導體接面的中間以形成一金屬-絕緣體-半導體電容(Metal-Insulator-Semicondcutor capacitor,MIS capacitor)。 In some embodiments, such as the embodiments shown in FIGS. 1A to 1F and the embodiments described below, the control metal lines 106a, 106b and the surface 102s may form a metal-semiconductor with a Schottky barrier. junction (Metal-Semicondcutor junction, MS junction), or A metal-insulator-semicondcutor capacitor (MIS capacitor) is formed by using an oxide (Oxide) or a high-K dielectric (high-K) material as an insulator disposed in the middle of the metal-semiconductor junction. ).

圖1A至圖1F所示的實施例以及下文的實施例,鍺基光吸收材料102,從其剖視圖觀之,可被製作成矩形。然而,在一些其他的實施方案中,鍺基光吸收材料102,從其剖視圖觀之,可被製作成倒梯形或其他圖案。 In the embodiments shown in FIGS. 1A to 1F and in the embodiments below, the germanium-based light absorbing material 102 can be made into a rectangular shape when viewed from its cross-sectional view. However, in some other embodiments, the germanium-based light absorbing material 102 may be made into an inverted trapezoid or other pattern when viewed in cross-section.

本申請所公開的光偵測裝置可被使用在飛行時間(ToF)的應用上,相較於可見光波長的範圍,其可以操作在比可見波長更長的範圍(例如,NIR或SWIR範圍)。波長可以超過800nm,例如:850nm,940nm,1050nm,1064nm,1310nm,1350nm或1550nm。另一方面,元件/材料實施者可以設計/製造具有一100%鍺或具有一預定百分比(例如,大於80%Ge)的合金(例如,GeSi),可為本質的或摻雜的態樣,以作為光吸收材料來吸收上述波長的光。 The light detection device disclosed in the present application can be used in time-of-flight (ToF) applications, and can operate in a longer range than the visible wavelength range (eg, NIR or SWIR range) compared to the visible wavelength range. The wavelength can exceed 800nm, for example: 850nm, 940nm, 1050nm, 1064nm, 1310nm, 1350nm or 1550nm. On the other hand, component/material implementers may design/manufacture with a 100% germanium or an alloy (e.g., GeSi) with a predetermined percentage (e.g., greater than 80% Ge), either in intrinsic or doped form, As a light absorbing material, it absorbs light of the above wavelengths.

雖然在實施例中所繪示的光偵測裝置係從後側吸收光信號IL,但是在一些實施方式中,光偵測裝置可以被設計由前側吸收光信號IL,例如,藉由在兩條控制金屬線106a,106b之間製作一光學窗口WD。 Although the light detection device is illustrated in the embodiment to absorb the light signal IL from the rear side, in some embodiments, the light detection device may be designed to absorb the light signal IL from the front side, for example, by An optical window WD is made between the control metal lines 106a and 106b.

圖1A至圖1F中所繪示的實施例為單一個光偵測器,其可被視為一個單元且應用於像素陣列的每個像素中。以下的說明是基於圖1A至圖1F中公開的單抽頭或雙抽頭結構的選擇性實施例。在以下說明中,係選擇圖1A至圖1F中的一個或兩個實施例作為代表實施例。本領域技術人員可以改變,修改或組合本申請公開的結構,例如:使用單抽頭結構替代雙抽頭結構。 The embodiment illustrated in FIGS. 1A to 1F is a single photodetector, which can be regarded as a unit and applied to each pixel of the pixel array. The following description is based on selective embodiments of the single-tap or double-tap structures disclosed in FIGS. 1A to 1F. In the following description, one or two embodiments in FIGS. 1A to 1F are selected as representative embodiments. Those skilled in the art can change, modify or combine the structures disclosed in this application, for example, using a single-tap structure instead of a double-tap structure.

圖1G繪示根據一些實施例的光偵測裝置的剖視圖。光偵測裝置100g包括基底104’。光偵測裝置還包括一像素(圖未標),其具有被基底104’支撐的一吸收層102’。像素包括在吸收層102’中的吸收區域AR,並且由光學窗口WD定義。吸收區域AR是接收通過光學窗口WD入射的光信號IL的虛擬區域。像素包括 電性耦接到吸收層102’的第一開關(圖未標)和第二開關(圖未標)。第一開關包括控制接觸層106a’和讀出接觸層108a’。第二開關包括控制接觸層106b’和讀出接觸層108b’。在一些實施例中,讀出接觸層108a’,108b’形成在基底104’的第一表面104s上。在一些實施例中,吸收區域AR的寬度w3小於讀出接觸層108a’,108b’之間的距離d4。在一些實施例中,讀出接觸層108a’,108b’設置在吸收區域AR的兩個相對側。在一些實施例中,控制接觸層106a’,106b’之間的距離d3小於吸收層102’的寬度w3。在一些實施例中,吸收層102’的第一表面102s’基本上是齊平於基底104’的第一表面104s。 Figure 1G illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 100g includes a substrate 104'. The light detection device also includes a pixel (not labeled) having an absorbing layer 102' supported by the substrate 104'. The pixel includes an absorption area AR in the absorption layer 102' and is defined by an optical window WD. The absorption area AR is a virtual area that receives the optical signal IL incident through the optical window WD. The pixel includes a first switch (not labeled) and a second switch (not labeled) electrically coupled to the absorbing layer 102'. The first switch includes a control contact layer 106a' and a sense contact layer 108a'. The second switch includes a control contact layer 106b' and a sense contact layer 108b'. In some embodiments, readout contact layers 108a', 108b' are formed on first surface 104s of substrate 104'. In some embodiments, the width w 3 of the absorption region AR is less than the distance d 4 between the readout contact layers 108a', 108b'. In some embodiments, readout contact layers 108a', 108b' are disposed on two opposite sides of the absorption area AR. In some embodiments, the distance d 3 between the control contact layers 106a', 106b' is less than the width w 3 of the absorber layer 102'. In some embodiments, the first surface 102s' of the absorbent layer 102' is substantially flush with the first surface 104s of the substrate 104'.

光偵測裝置100g包括一像素陣列,其具有多個重複像素。在一些實施例中,像素陣列可以是一維或二維陣列的像素。 The light detection device 100g includes a pixel array having a plurality of repeating pixels. In some embodiments, the pixel array may be a one-dimensional or two-dimensional array of pixels.

在一些實施例中,控制接觸層106a’,106b’形成在基底104’的第一表面104s和吸收層102’的第一表面102s’兩者上。換句話說,一部分的控制接觸層106a’,106b’形成在基底104’的第一表面104s上,而另一部分的控制接觸層106a’,106b’形成在吸收層102’的第一表面102s’上。在一些實施例中,控制接觸層106a’,106b’沿垂直方向D1覆蓋基底104’與吸收層102’之間的部分界面。垂直方向D1基本垂直於吸收層102’的第一表面102s’。 In some embodiments, control contact layers 106a', 106b' are formed on both the first surface 104s of the substrate 104' and the first surface 102s' of the absorbent layer 102'. In other words, a portion of the control contact layers 106a', 106b' is formed on the first surface 104s of the substrate 104', and another portion of the control contact layers 106a', 106b' is formed on the first surface 102s' of the absorbing layer 102'. superior. In some embodiments, the control contact layers 106a', 106b' cover a portion of the interface between the substrate 104' and the absorbing layer 102' along the vertical direction D1. The vertical direction D1 is substantially perpendicular to the first surface 102s' of the absorbing layer 102'.

在一些實施例中,未摻雜區105a,105b位於控制接觸層106a’,106b’的正下方,即,吸收層102’和基底104’位於控制接觸層106a’,106b’的正下方的部分可以是本質的或包括摻質,每個部分的摻質分佈都具有低於大約1×1015cm-3的峰值摻質濃度。術語“本質”是指在控制接觸層106a’,106b’的正下方的吸收層102’和基底104’的部分未故意添加摻質。在一些實施例中,取決於各種因素,包括吸收層102’的材料、控制接觸層106a’,106b’的材料、基底104’的材料以及吸收層102’和基底104’的雜質或缺陷程度,吸收層102’和基底104’上的控制接觸層106a’,106b’可導致形成蕭特基接觸(Schottky contact)、歐姆接觸(Obmic contact) 或具有在兩者之間的中間特性的一組合。 In some embodiments, undoped regions 105a, 105b are located directly beneath control contact layers 106a', 106b', ie, the portions of absorber layer 102' and substrate 104' located directly beneath control contact layers 106a', 106b' Dopants may be intrinsic or included, with each portion having a dopant profile having a peak dopant concentration below approximately 1×10 15 cm −3 . The term "essentially" means that the portions of the absorber layer 102' and substrate 104' directly beneath the control contact layers 106a', 106b' are not intentionally doped. In some embodiments, depending on various factors, including the material of the absorber layer 102', the material of the control contact layers 106a', 106b', the material of the substrate 104', and the level of impurities or defects in the absorber layer 102' and the substrate 104', The control contact layers 106a', 106b' on the absorber layer 102' and the substrate 104' may result in the formation of a Schottky contact, an Obmic contact, or a combination with intermediate properties between the two.

像素還包括兩個控制信號cs1,cs2,其控制控制接觸層106a’,106b’,以控制由吸收層102’中的吸收的光子產生的電子或電洞的移動方向。例如,當使用電壓時,如果控制信號cs1相對於控制信號cs2偏置,則在控制接觸層106a’,106b’正下方的兩個部分之間產生一電場,並且取決於電場的方向,自由電荷會朝著讀出接觸層108b’,108a’正下方的兩個部分之一漂移。 The pixel also includes two control signals cs1, cs2, which control the contact layers 106a', 106b' to control the movement direction of electrons or holes generated by absorbed photons in the absorption layer 102'. For example, when using voltage, if control signal cs1 is biased relative to control signal cs2, an electric field is created between the two parts directly beneath the control contact layers 106a', 106b', and depending on the direction of the electric field, free charge will drift toward one of the two portions directly beneath the readout contact layers 108b', 108a'.

在一些實施例中,像素包括兩個電容110a,110b。讀出接觸層108a’電性耦接到電容110a,讀出接觸層108b’電性耦接到電容110b。電容110a,110b用於存儲基於兩個控制信號cs1,cs2的控制在吸收層102’中產生的載子。例如,由於光偵測裝置100g與目標物體(圖未示)之間存在一距離,因此光信號IL相對於由發射器(圖未示)發送的發射光具有一相位延遲。當發射光被調變信號調變並且電子-電洞對被一解調信號通過控制接觸層106a’和106b’解調時,存儲在電容110a,110b中的電子或電洞將根據距離而變化。因此,光偵測裝置100g可以基於電容110a上的電壓v1和電容110b上的電壓v2獲得距離資訊。 In some embodiments, a pixel includes two capacitors 110a, 110b. The readout contact layer 108a' is electrically coupled to the capacitor 110a, and the readout contact layer 108b' is electrically coupled to the capacitor 110b. The capacitors 110a, 110b are used to store carriers generated in the absorption layer 102' based on the control of the two control signals cs1, cs2. For example, since there is a distance between the light detection device 100g and the target object (not shown), the optical signal IL has a phase delay relative to the emitted light sent by the transmitter (not shown). When the emitted light is modulated by the modulation signal and the electron-hole pairs are demodulated by a demodulation signal through the control contact layers 106a' and 106b', the electrons or holes stored in the capacitors 110a, 110b will change according to the distance. . Therefore, the light detection device 100g can obtain distance information based on the voltage v1 on the capacitor 110a and the voltage v2 on the capacitor 110b.

在一些實施例中,像素還包括第一讀出電路(圖未示)和第二讀出電路(圖未示),第二讀出電路和第二讀出電路分別電性耦接到第一開關和第二開關,以處理收集的電荷。第一讀出電路可以包括電容110a。第二讀出電路可以包括電容110b。第一讀出電路電性耦接到讀出接觸層108a’。第二讀出電路電性耦接到讀出接觸層108b’。 In some embodiments, the pixel further includes a first readout circuit (not shown) and a second readout circuit (not shown). The second readout circuit and the second readout circuit are respectively electrically coupled to the first readout circuit. switch and a second switch to process the collected charge. The first readout circuit may include capacitor 110a. The second readout circuit may include capacitor 110b. The first readout circuit is electrically coupled to the readout contact layer 108a'. The second readout circuit is electrically coupled to the readout contact layer 108b'.

在一些實施例中,第一開關包括在讀出接觸層108a’下的一第一摻雜區101a’,第二開關包括在讀出接觸層108b’下的一第一摻雜區101b’。 In some embodiments, the first switch includes a first doped region 101a' under the readout contact layer 108a' and the second switch includes a first doped region 101b' under the readout contact layer 108b'.

在一些實施例中,第一摻雜區101a’,101b’是第一導電類型。在一些實施例中,第一摻雜區101a’,101b’包括一第一摻質和一摻質分佈。第一摻雜區101a’,101b’的峰值摻質濃度取決於讀出接觸層108a’,108b’的材料和基底104’的 材料,例如在5×1018cm-3至5×1020cm-3之間。第一摻雜區101a’,101b’用於收集從吸收層102’產生的載子,其分別基於控制信號cs1,cs2的控制,由第一讀出電路(圖未示)和第二讀出電路(圖未示)處理。 In some embodiments, the first doped regions 101a', 101b' are of the first conductivity type. In some embodiments, the first doped regions 101a', 101b' include a first dopant and a dopant distribution. The peak dopant concentration of the first doped regions 101a', 101b' depends on the material of the readout contact layer 108a', 108b' and the material of the substrate 104', for example, between 5×10 18 cm −3 and 5×10 20 cm -3 . The first doped regions 101a', 101b' are used to collect carriers generated from the absorption layer 102', which are respectively controlled by the first readout circuit (not shown) and the second readout based on the control signals cs1, cs2. Circuit (not shown) processing.

圖1H繪示根據一些實施例的光偵測裝置的剖視圖。圖1H中的光偵測裝置100h類似於圖1G中的光偵測裝置100g,其中差異描述於下。在一些實施例中,第一開關還包括在控制接觸層106a’下的第二摻雜區103a’。第二開關還包括在控制接觸層106b’下的第二摻雜區103b’。第二摻雜區103a’,103b’形成在吸收層102’和基底104’兩者中。在一些實施例中,各個第二摻雜區103a’,103b’覆蓋基底104’與吸收層102’之間的界面的一部分。所述界面基本垂直於第一表面102s’。在一些實施例中,第二摻雜區103a’,103b’具有不同於第一摻雜區101a’,101b’的第一導電類型的第二導電類型。在一些實施例中,第二摻雜區103a’,103b’包括一第二摻質和一摻質分佈。第二摻雜區103a’,103b’的峰值摻質濃度取決於控制接觸層106b’,106a’的材料、吸收層102’的材料以及基底104’的材料,例如在1×1017cm-3至5×1020cm-3之間。在一些實施例中,在基底104’和吸收層102’之間並被第二摻雜區103a’,103b’覆蓋的的界面處的濃度在1×1017cm-3至5×1020cm-3之間。第二摻雜區103a’,103b’與控制接觸層106b’,106a’形成蕭特基接觸、歐姆接觸或其組合。第二摻雜區103a’,103b’用於基於控制信號cs1,cs2的控制來解調從吸收層102’產生的載子。藉由形成覆蓋基底104’和吸收層102’之間的界面的第二摻雜區103a’,103b’,光偵測裝置100h可以同時具有令人滿意的暗電流和解調對比度。在一些實施例中,控制接觸層106b’,106a’可以完全形成在吸收層102’之上,或者可以完全形成在基底104’之上。 Figure 1H illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 100h in FIG. 1H is similar to the light detection device 100g in FIG. 1G, with the differences described below. In some embodiments, the first switch also includes a second doped region 103a' under the control contact layer 106a'. The second switch also includes a second doped region 103b' under the control contact layer 106b'. Second doped regions 103a', 103b' are formed in both the absorber layer 102' and the substrate 104'. In some embodiments, each second doped region 103a', 103b' covers a portion of the interface between the substrate 104' and the absorber layer 102'. The interface is substantially perpendicular to the first surface 102s'. In some embodiments, the second doped regions 103a', 103b' have a second conductivity type that is different from the first conductivity type of the first doped regions 101a', 101b'. In some embodiments, the second doped regions 103a', 103b' include a second dopant and a dopant distribution. The peak dopant concentration of the second doped region 103a', 103b' depends on the material of the control contact layer 106b', 106a', the material of the absorption layer 102' and the material of the substrate 104', for example, at 1×10 17 cm -3 to 5×10 20 cm -3 . In some embodiments, the concentration at the interface between the substrate 104' and the absorption layer 102' and covered by the second doped regions 103a', 103b' is between 1×10 17 cm −3 and 5×10 20 cm -3 . The second doped regions 103a', 103b' and the control contact layers 106b', 106a' form a Schottky contact, an ohmic contact or a combination thereof. The second doped regions 103a', 103b' are used to demodulate carriers generated from the absorption layer 102' based on control of the control signals cs1, cs2. By forming the second doped regions 103a', 103b' covering the interface between the substrate 104' and the absorption layer 102', the light detection device 100h can have satisfactory dark current and demodulation contrast at the same time. In some embodiments, the control contact layers 106b', 106a' may be formed entirely over the absorber layer 102', or may be formed entirely over the substrate 104'.

圖1I繪示根據一些實施例的光偵測裝置的剖視圖。圖1I中的光偵測裝置100i類似於圖1G中的光偵測裝置100g,其中差異描述於下。在一些實施例中,第一開關還包括在吸收層102’和控制接觸層106a’之間的第一介電層133a。第二 開關可以另包括在吸收層102’和控制接觸層106b’之間的第二介電層133b。第一介電層133a防止從控制接觸層106a’到吸收層102’和基底104’的直接電流傳導,但允許在吸收層102’內建立一電場,以回應施加於控制接觸層106a’的一電壓。第二介電層133b防止從控制接觸層106b’到吸收層102’和基底104’的直接電流傳導,但允許在吸收層102’內建立一電場,以回應施加於控制接觸層106b’的一電壓。在吸收層102'中建立的電場可以吸引或排斥電荷載子。 FIG. 1I illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 100i in FIG. 1I is similar to the light detection device 100g in FIG. 1G, with the differences described below. In some embodiments, the first switch further includes a first dielectric layer 133a between the absorber layer 102' and the control contact layer 106a'. second The switch may additionally include a second dielectric layer 133b between the absorber layer 102' and the control contact layer 106b'. First dielectric layer 133a prevents direct current conduction from control contact layer 106a' to absorber layer 102' and substrate 104', but allows an electric field to be established within absorber layer 102' in response to an electric field applied to control contact layer 106a'. voltage. Second dielectric layer 133b prevents direct current conduction from control contact layer 106b' to absorber layer 102' and substrate 104', but allows an electric field to be established within absorber layer 102' in response to an electric field applied to control contact layer 106b'. voltage. The electric field established in the absorber layer 102' can attract or repel charge carriers.

圖1J繪示根據一些實施例的光偵測裝置的剖視圖。圖1J中的光偵測裝置100j類似於圖1I中的光偵測裝置100i,其中差異描述於下。在一些實施例中,第一開關還包括在第一介電層133a下的第二摻雜區103a’。第二開關還包括在第二介電層133b下的第二摻雜區103b’。第二摻雜區103a’,103b’與圖1H中描述的第二摻雜區103a’,103b’相似。在一些實施例中,控制接觸層106b’,106a’、第一介電層133a和第二介電層133b可以完全形成在吸收層102’上,或者完全形成在基底104’上。 Figure 1J illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 100j in FIG. 1J is similar to the light detection device 100i in FIG. 1I, with the differences described below. In some embodiments, the first switch further includes a second doped region 103a' under the first dielectric layer 133a. The second switch also includes a second doped region 103b' under the second dielectric layer 133b. The second doped regions 103a', 103b' are similar to the second doped regions 103a', 103b' described in Figure 1H. In some embodiments, the control contact layers 106b', 106a', the first dielectric layer 133a and the second dielectric layer 133b may be formed entirely on the absorber layer 102', or entirely on the substrate 104'.

圖2A繪示了具有基體空乏模式(Body depletion mode)的光偵測裝置剖視圖的一實施例。光偵測裝置200a包含控制金屬線206a,206b和讀出金屬線208a,208b。控制金屬線206a,206b和讀出金屬線208a,208b電性耦接到鍺基光吸收材料202的表面202s。控制金屬線206a,206b分別電性耦接到表面202s上的P型區域203a,203b。讀出金屬線208a,208b分別電性耦接到表面202s上的N型區域201a,201b。在一些實施例中,從表面202s延伸的P型區域203a,203b的深度d1比N型區域201a,201b的深度d2深,且鍺基光吸收材料202為一輕摻雜N型。使用一較深的P型區域203a,203b,可使得P型區域203a,203b和N型鍺基光吸收材料202之間產生一較大的空乏區。因此,當兩個不同的電壓施加到控制金屬線206a,206b時,促使電子往N型區域201a,201b移動,而提高了量子效率(Quantum efficiency)和解調對比度(Demodulation contrast)。另一方面,P型區域203a,203b 的寬度w1,N型區域201a,201b的寬度w2,P型區域203a,203b的摻雜濃度及/或N型區域201a,201b的摻雜濃度也是調整空乏區面積的參數。 FIG. 2A illustrates an embodiment of a cross-sectional view of a light detection device in a body depletion mode. The light detection device 200a includes control metal lines 206a, 206b and readout metal lines 208a, 208b. The control metal lines 206a, 206b and the readout metal lines 208a, 208b are electrically coupled to the surface 202s of the germanium-based light absorbing material 202. The control metal lines 206a, 206b are respectively electrically coupled to the P-type regions 203a, 203b on the surface 202s. Sense metal lines 208a, 208b are electrically coupled to N-type regions 201a, 201b, respectively, on surface 202s. In some embodiments, the depth d1 of the P-type regions 203a, 203b extending from the surface 202s is deeper than the depth d2 of the N-type regions 201a, 201b, and the germanium-based light absorbing material 202 is a lightly doped N-type. Using a deeper P-type region 203a, 203b can create a larger depletion region between the P-type region 203a, 203b and the N-type germanium-based light absorbing material 202. Therefore, when two different voltages are applied to the control metal lines 206a and 206b, electrons are prompted to move toward the N-type regions 201a and 201b, thereby improving quantum efficiency and demodulation contrast. On the other hand, the width w 1 of the P-type regions 203a and 203b, the width w 2 of the N-type regions 201a and 201b, the doping concentrations of the P-type regions 203a and 203b and/or the doping concentrations of the N-type regions 201a and 201b are also Adjust the parameters of the depletion zone area.

在一些實施例中,為了使N型鍺基光吸收材料202的主體完全空乏,可針對N型區域201a,201b,及/或P型區域203a,203b進行設計,亦即就深度、寬度或是摻雜濃度設計。再者,對鍺基光吸收材料202之厚度也需進行相應設計。 In some embodiments, in order to completely deplete the main body of the N-type germanium-based light absorbing material 202, the N-type regions 201a, 201b, and/or the P-type regions 203a, 203b can be designed, that is, in terms of depth, width, or Doping concentration design. Furthermore, the thickness of the germanium-based light absorbing material 202 also needs to be designed accordingly.

圖2B顯示依據一些實施例之具有基體空乏模式的光偵測裝置的剖視圖。此光偵測裝置200b可經設計具有較淺的P型區域203a,203b。換言之,從表面202s延伸的P型區域203a,203b的深度d1比N型區域201a,201b的深度d2淺。使用較淺的P型區域203a,203b可降低P型區域203a及P型區域203b之間的漏電流。 Figure 2B shows a cross-sectional view of a light detection device with a substrate depletion mode according to some embodiments. The light detection device 200b can be designed with shallower P-type regions 203a, 203b. In other words, the depth d1 of the P-type regions 203a, 203b extending from the surface 202s is shallower than the depth d2 of the N-type regions 201a, 201b. Using shallower P-type regions 203a, 203b can reduce leakage current between P-type region 203a and P-type region 203b.

圖2C顯示依據一些實施例之具有基體空乏模式的光偵測裝置的剖視圖。此光偵測裝置200c類似光偵測裝置200a、200b。光偵測裝置200b對半導體基底204施加一偏壓vb1。此偏壓vb1經過施加後可建立在N型鍺基光吸收材料202及P型區域203a,203b之間接面的反向偏壓。使得P型區域203a,203b之下的空乏區可以增大或是甚至完全空乏。由於在P型區域203a,203b之下建立較大的空乏區,當兩個不同的電壓施加到控制金屬線206a,206b時,促使電子往N型區域201a,201b移動,而提高了量子效率和解調對比度。 2C shows a cross-sectional view of a light detection device with a substrate depletion mode according to some embodiments. The light detection device 200c is similar to the light detection devices 200a and 200b. The light detection device 200b applies a bias voltage vb1 to the semiconductor substrate 204. After the bias voltage vb1 is applied, a reverse bias voltage can be established at the interface between the N-type germanium-based light absorbing material 202 and the P-type regions 203a and 203b. This allows the depletion area under the P-type regions 203a, 203b to be enlarged or even completely depleted. Since a larger depletion region is established under the P-type regions 203a, 203b, when two different voltages are applied to the control metal lines 206a, 206b, electrons are prompted to move to the N-type regions 201a, 201b, thereby improving the quantum efficiency and solution. Adjust contrast.

圖2D顯示依據一些實施例之具有基體空乏模式的光偵測裝置200d的剖視圖。類似於光偵測裝置200a、200b的結構,本實施例在鍺基光吸收材料202上施加一偏壓vb2,以控制在鍺基光吸收材料202內部的空乏區。更明確而言,此偏壓vb2是施加到P型區域203a,203b及N型鍺基光吸收材料202的反向偏壓,使得圍繞P型區域203a,203b的空乏區可以增大或是甚至完全空乏。 Figure 2D shows a cross-sectional view of a photodetection device 200d with a substrate depletion mode according to some embodiments. Similar to the structures of the light detection devices 200a and 200b, in this embodiment, a bias voltage vb2 is applied to the germanium-based light absorbing material 202 to control the depletion region inside the germanium-based light absorbing material 202. More specifically, the bias voltage vb2 is a reverse bias voltage applied to the P-type regions 203a, 203b and the N-type germanium-based light absorbing material 202, so that the depletion region surrounding the P-type regions 203a, 203b can be increased or even Completely empty.

為了在N型鍺基光吸收材料202內部製造更大的空乏區,本發明揭露圖2E所示之實施例。光偵測裝置200e包含在表面202ss上的N型區域207a,207b。此表面202ss相對於表面202s。利用此N型區域207a,207b可產生PN接面,其中在 P型區域203a及N型區域207a之間產生一空乏區,而在P型區域203b及N型區域207b之間產生一空乏區。當兩種不同電壓施加在控制金屬線206a,206b上時,在吸收區可產生電場。藉由控制此控制信號cs1,cs2,可控制此空乏區/電場,進而控制電子移動方向為移向N型區域201a或是N型區域201b。 In order to create a larger depletion region inside the N-type germanium-based light absorbing material 202, the present invention discloses the embodiment shown in FIG. 2E. Light detection device 200e includes N-type regions 207a, 207b on surface 202ss. This surface 202ss is relative to surface 202s. The N-type regions 207a and 207b can be used to generate a PN junction, where A depletion region is generated between the P-type region 203a and the N-type region 207a, and a depletion region is generated between the P-type region 203b and the N-type region 207b. When two different voltages are applied to the control metal lines 206a, 206b, an electric field can be generated in the absorption region. By controlling the control signals cs1 and cs2, the depletion region/electric field can be controlled, thereby controlling the electron movement direction to move to the N-type region 201a or the N-type region 201b.

圖2F顯示依據一些實施例之具有基體空乏模式的光偵測裝置的剖視圖。此光偵測裝置200f包含形成在P型區域203a,203b之下的較寬N型區域207。同樣的,此N型區域207可增進環繞P型區域203a,203b的空乏區產生,進而提高量子效率和解調對比度。須知此N型區域207的寬度可經設計變化,且圖2F所示之N型區域207寬度僅為參考。 2F shows a cross-sectional view of a light detection device with a substrate depletion mode according to some embodiments. The light detection device 200f includes a wider N-type region 207 formed under the P-type regions 203a, 203b. Similarly, the N-type region 207 can promote the generation of depletion regions surrounding the P-type regions 203a and 203b, thereby improving quantum efficiency and demodulation contrast. It should be noted that the width of the N-type region 207 can be varied by design, and the width of the N-type region 207 shown in FIG. 2F is for reference only.

圖2G及圖2H顯示可選擇的實施例,說明對於N型區域207的偏壓方式。圖2G利用矽穿孔(Through-silicon-via(TSV))204v以對N型區域207施加偏壓;圖2H利用由表面202s延伸的鍺穿孔(Through-germanium-via)202v以對N型區域207施加偏壓。 Figures 2G and 2H show alternative embodiments illustrating biasing methods for the N-type region 207. Figure 2G utilizes silicon through-holes (Through-silicon-via (TSV)) 204v to bias the N-type region 207; Figure 2H utilizes germanium through-holes (Through-germanium-via) 202v extending from the surface 202s to bias the N-type region 207 Apply bias voltage.

圖2A-2H顯示使用及圖2H顯示使用基體空乏模式的各種實施例,包含設計P型區域203a,203b的深度、在半導體基底204或是鍺基光吸收材料202上施加偏壓vb1,vb2、在鍺基光吸收材料202內添加N型區域207、207a、207b等方式。上述方式在P型區域203a,203b之下或是周遭建立空乏區以控制由吸收光子產生的電子移動方向,亦即移向N型區域201a或是N型區域201b。 Figures 2A-2H show various embodiments using and Figure 2H shows using the matrix depletion mode, including designing the depth of the P-type regions 203a, 203b, applying bias voltages vb1, vb2 on the semiconductor substrate 204 or the germanium-based light absorbing material 202, N-type regions 207, 207a, 207b are added in the germanium-based light absorbing material 202. The above method establishes a depletion region under or around the P-type regions 203a, 203b to control the moving direction of electrons generated by absorbing photons, that is, moving to the N-type region 201a or the N-type region 201b.

圖3A-3B顯示依據一些實施例之具有閘控基體空乏模式的光偵測裝置的剖視圖,這些實施例係依據對於圖2A-2H更加變化的實施例,且在圖3A-3B揭露介電質閘控基體空乏模式(Dielectric-gated body depletion modes)。光偵測裝置300a包含控制金屬線306a,306b和讀出金屬線308a,308b。控制金屬線306a,306b和讀出金屬線308a,308b電性耦接到鍺基光吸收材料302之表面302s。控制金屬線306a,306b分別電性耦接到表面302s上的P型區域303a,303b。讀出金屬 線308a,308b分別電性耦接到表面302s上的N型區域301a,301b。此鍺基光吸收材料302為輕摻雜N型。光偵測裝置300a更包含在表面302ss上的一N型區域307、在鍺基光吸收材料302及半導體基底304之間的一介電層312、及一矽穿孔314。依據一些實施例,此介電層312係設置於一金屬(矽穿孔314)及半導體(鍺基光吸收材料302)之間,以形成類似MOS之結構。由於介電層312形成於N型區域307及矽穿孔314之間,可降低或是防止流入N型區域307的電子經由矽穿孔314洩漏。 3A-3B show cross-sectional views of a photodetection device with a gated substrate depletion mode according to some embodiments. These embodiments are based on further modifications of the embodiments of FIGS. 2A-2H and disclose the dielectric material in FIGS. 3A-3B. Dielectric-gated body depletion modes. The light detection device 300a includes control metal lines 306a, 306b and readout metal lines 308a, 308b. The control metal lines 306a, 306b and the readout metal lines 308a, 308b are electrically coupled to the surface 302s of the germanium-based light absorbing material 302. The control metal lines 306a, 306b are respectively electrically coupled to the P-type regions 303a, 303b on the surface 302s. read metal Lines 308a, 308b are electrically coupled to N-type regions 301a, 301b, respectively, on surface 302s. The germanium-based light absorbing material 302 is lightly doped N-type. The light detection device 300a further includes an N-type region 307 on the surface 302ss, a dielectric layer 312 between the germanium-based light absorbing material 302 and the semiconductor substrate 304, and a silicon via 314. According to some embodiments, the dielectric layer 312 is disposed between a metal (silicon via 314) and a semiconductor (germanium-based light absorbing material 302) to form a MOS-like structure. Since the dielectric layer 312 is formed between the N-type region 307 and the silicon through-hole 314, electrons flowing into the N-type region 307 can be reduced or prevented from leaking through the silicon through-hole 314.

在一些選擇實施例中,介電層312可以不必為跨過整個基底304的連續層,而可經由圖案化而形成在N型區域307下的不同區域。此介電層312可為薄層或是具有預定厚度,可包含多種(多層)材料、合金或是化合物。例如二氧化矽、氮化矽,高K介電材料或其組合。 In some alternative embodiments, dielectric layer 312 may not necessarily be a continuous layer across the entire substrate 304 but may be formed via patterning into different regions under N-type region 307 . The dielectric layer 312 may be a thin layer or have a predetermined thickness, and may include multiple (multi-layer) materials, alloys or compounds. For example, silicon dioxide, silicon nitride, high-K dielectric materials or combinations thereof.

圖3B顯示依據一些實施例之具有閘控基體空乏模式的光偵測裝置的剖視圖。此實施例不具有在表面302ss上的N型區域307,但是經由基體偏壓vb2,vb3以產生空乏區309a,309b。基體偏壓vb2及基體偏壓vb3可以連同或是各自施加以控制空乏區309a,309b的尺寸。各自施加的基體偏壓vb2及基體偏壓vb3可有相同或是不同電壓。 Figure 3B shows a cross-sectional view of a light detection device with gated substrate depletion mode according to some embodiments. This embodiment does not have N-type region 307 on surface 302ss, but is biased via the substrate vb2, vb3 to create depletion regions 309a, 309b. The body bias vb2 and the body bias vb3 can be applied together or separately to control the size of the depletion regions 309a, 309b. The respectively applied body bias voltage vb2 and body bias vb3 may have the same or different voltages.

在圖3A或是圖3B中,這些實施例都在鍺基光吸收材料302及基底304之間***一介電層312,且依據控制信號cs1,cs2及基體偏壓vb2,vb3以在P型區域303a,303b之下產生空乏區(圖3B之309a,309b);藉此在鍺基光吸收材料302中控制電子移動方向。由於***此介電層312,可降低或是防止流入N型區域307(圖3A)的電子經由矽穿孔314洩漏;或是降低或是防止流入空乏區309a,309b(圖3B)的電子經由矽穿孔314洩漏。 In FIG. 3A or FIG. 3B, these embodiments insert a dielectric layer 312 between the germanium-based light absorbing material 302 and the substrate 304, and based on the control signals cs1, cs2 and the body bias vb2, vb3, in the P-type A depletion region (309a, 309b in FIG. 3B) is generated under the regions 303a and 303b; thereby controlling the electron movement direction in the germanium-based light absorbing material 302. Due to the insertion of the dielectric layer 312, the electrons flowing into the N-type region 307 (FIG. 3A) can be reduced or prevented from leaking through the silicon through hole 314; or the electrons flowing into the depletion regions 309a, 309b (FIG. 3B) can be reduced or prevented from leaking through the silicon. Perforation 314 leaks.

圖4A顯示依據一些實施例之具有低漏電流及低暗電流的光偵測裝置的剖視圖。此光偵測裝置400a包含控制金屬線406a,406b和讀出金屬線408a,408b。控制金屬線406a,406b和讀出金屬線408a,408b電性耦接到鍺基光吸收材 料402之表面402s。控制金屬線406a,406b分別電性耦接到表面402s上的P型區域403a,403b。讀出金屬線408a,408b分別電性耦接到表面402s上的N型區域401a,401b。圖4A顯示的光偵測裝置與前述實施例有類似的操作。圖4A的實施例更添加完全圍繞P型區域403a,403b的N井411a,411b。這樣的設置可達成降低P型區域403a,403b之間的漏電流的效果。在另一選擇實施例中,如圖4B所示,N井411a,411b可以部份圍繞P型區域403a,403b。同樣的,這樣的設置也可達成降低P型區域403a,403b之間的漏電流的效果。 FIG. 4A shows a cross-sectional view of a light detection device with low leakage current and low dark current according to some embodiments. The light detection device 400a includes control metal lines 406a, 406b and readout metal lines 408a, 408b. Control metal lines 406a, 406b and readout metal lines 408a, 408b are electrically coupled to the germanium-based light absorbing material The surface of material 402 is 402s. The control metal lines 406a, 406b are respectively electrically coupled to the P-type regions 403a, 403b on the surface 402s. Sense metal lines 408a, 408b are electrically coupled to N-type regions 401a, 401b, respectively, on surface 402s. The light detection device shown in FIG. 4A has similar operation to the previous embodiment. The embodiment of Figure 4A further adds N-wells 411a, 411b that completely surround the P-type regions 403a, 403b. Such an arrangement can achieve the effect of reducing the leakage current between the P-type regions 403a and 403b. In another alternative embodiment, as shown in Figure 4B, N-wells 411a, 411b may partially surround P-type regions 403a, 403b. Similarly, such an arrangement can also achieve the effect of reducing the leakage current between the P-type regions 403a and 403b.

除了圖4A,4B所示之實施例外,也可以添加P井。圖4C所示實施例添加完全圍繞N型區域401a,401b的P井451a,451b。這樣的設置可達成降低N型區域401a,401b的暗電流的效果。在另一選擇實施例中,如圖4D所示,P井451a,451b可以部份圍繞N型區域401a,401b。同樣的,這樣的設置也可達成降低N型區域401a,401b的暗電流的效果。 In addition to the embodiment shown in Figures 4A and 4B, P wells can also be added. The embodiment shown in Figure 4C adds P-wells 451a, 451b that completely surround the N-type regions 401a, 401b. Such an arrangement can achieve the effect of reducing dark current in the N-type regions 401a and 401b. In another alternative embodiment, as shown in Figure 4D, P-wells 451a, 451b may partially surround N-type regions 401a, 401b. Similarly, such an arrangement can also achieve the effect of reducing dark current in the N-type regions 401a and 401b.

圖4A-4D之實施例分別應用N井及P井以分別降低漏電流及暗電流。依據設計需求,本領域技術人員可以變更或是修正N井411a,411b及/或P井451a,451b的圖案。例如,N井411a可以非對稱方式完全圍繞P型區域403a(例如,N井411a的左邊寬度係大於N井411a的右邊寬度)。同樣的,N井411b以非對稱方式完全圍繞P型區域403b(例如,N井411b右邊寬度係大於N井411b的左邊寬度)。P井451a,451b也可採用類似的修正。 The embodiments of FIGS. 4A-4D respectively use N-wells and P-wells to reduce leakage current and dark current respectively. According to design requirements, those skilled in the art can change or modify the patterns of N wells 411a, 411b and/or P wells 451a, 451b. For example, N-well 411a may completely surround P-type region 403a in an asymmetric manner (eg, the width of the left side of N-well 411a is greater than the width of the right side of N-well 411a). Similarly, the N well 411b completely surrounds the P-type region 403b in an asymmetric manner (for example, the width of the right side of the N well 411b is greater than the width of the left side of the N well 411b). Similar corrections may be applied to P wells 451a, 451b.

圖4E繪示根據一些實施例的光偵測裝置的剖視圖。光偵測裝置400e包括一基底404’。光偵測裝置400e還包括一像素(圖未標),該像素包括由基底404’支撐的吸收層402’。像素包括電性耦接到吸收層402’的第一開關(圖未標)和第二開關(圖未標)。第一開關包括控制接觸層406a’和讀出接觸層408a’。第二開關包括控制接觸層406b’和讀出接觸層408b’。控制接觸層406a’,406b’和讀出接觸層408a’,408b’沿著垂直方向D1在吸收層402’的第一表面402s’上。第一開 關包括在讀出接觸層408a’下的一第一摻雜區401a’。第二開關包括在讀出接觸層408b’下的一第一摻雜區401b’。光偵測裝置400e包括多個重複像素。光偵測裝置400e包括具有多個重複像素的像素陣列。在一些實施例中,像素陣列可以是一維或二維陣列的像素。 Figure 4E illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 400e includes a substrate 404'. The light detection device 400e also includes a pixel (not labeled) including an absorbing layer 402' supported by the substrate 404'. The pixel includes a first switch (not labeled) and a second switch (not labeled) electrically coupled to the absorption layer 402'. The first switch includes a control contact layer 406a' and a sense contact layer 408a'. The second switch includes a control contact layer 406b' and a sense contact layer 408b'. The control contact layers 406a', 406b' and the readout contact layers 408a', 408b' are along the vertical direction D1 on the first surface 402s' of the absorbing layer 402'. First opening The gate includes a first doped region 401a' under the readout contact layer 408a'. The second switch includes a first doped region 401b' under the sense contact layer 408b'. The light detection device 400e includes a plurality of repeating pixels. The light detection device 400e includes a pixel array having a plurality of repeating pixels. In some embodiments, the pixel array may be a one-dimensional or two-dimensional array of pixels.

在一些實施例中,像素還包括第一讀出電路(圖未示)和第二讀出電路(圖未示),第一讀出電路和第二讀出電路分別電性耦接到第一開關和第二開關,以處理收集的電荷。第一讀出電路電性耦接到讀出接觸層408a’。第二讀出電路電性耦接到讀出接觸層408b’。 In some embodiments, the pixel further includes a first readout circuit (not shown) and a second readout circuit (not shown). The first readout circuit and the second readout circuit are respectively electrically coupled to the first readout circuit. switch and a second switch to process the collected charge. The first readout circuit is electrically coupled to the readout contact layer 408a'. The second readout circuit is electrically coupled to the readout contact layer 408b'.

在一些實施例中,第一摻雜區401a’,401b’是第一導電類型。在一些實施例中,第一摻雜區401a’,401b’包括一第一摻質和一摻質分佈。第一摻雜區401a’,401b’的峰值摻質濃度取決於讀出接觸層408a’,408b’的材料和吸收層402’的材料,例如在5×1018cm-3至5×1020cm-3之間。第一摻雜區401a',401b'用於收集從吸收層402’產生的載子,其分別基於兩個控制信號cs1,cs2的控制而分別由第一讀出電路(圖未示)和第二讀出電路(圖未示)處理。 In some embodiments, the first doped regions 401a', 401b' are of the first conductivity type. In some embodiments, the first doped regions 401a', 401b' include a first dopant and a dopant distribution. The peak dopant concentration of the first doped regions 401a', 401b' depends on the material of the readout contact layer 408a', 408b' and the material of the absorption layer 402', for example, between 5×10 18 cm −3 and 5×10 20 between cm -3 . The first doped regions 401a', 401b' are used to collect carriers generated from the absorption layer 402', which are respectively controlled by the first readout circuit (not shown) and the third readout circuit based on the control of two control signals cs1, cs2. The second readout circuit (not shown) processes.

在一些實施例中,第一開關還包括在控制接觸層406a’下的一第二摻雜區403a’。第二開關還包括在控制接觸層406b’下的一第二摻雜區403b’。第二摻雜區403a’,403b’也形成在吸收層402’中。在一些實施例中,第二摻雜區403a’,403b’具有與第一摻雜區401b’,401a’的第一導電類型不同的第二導電類型。在一些實施例中,第二摻雜區403a’,403b’包括一第二摻質和一摻質分佈。第二摻雜區403a’,403b’的峰值摻質濃度取決於控制接觸層406b’,406a’的材料和吸收層402’的材料,例如在1×1017cm-3至5×1020cm-3之間。第二摻雜區403a’,403b’與控制接觸層406b’,406a’形成蕭特基接觸、歐姆接觸或其組合。第二摻雜區403a’,403b’用於基於控制信號cs1,cs2的控制來調變從吸收層402’產生的載子。 In some embodiments, the first switch further includes a second doped region 403a' under the control contact layer 406a'. The second switch also includes a second doped region 403b' under the control contact layer 406b'. Second doped regions 403a', 403b' are also formed in the absorber layer 402'. In some embodiments, the second doped regions 403a', 403b' have a second conductivity type that is different from the first conductivity type of the first doped regions 401b', 401a'. In some embodiments, the second doped regions 403a', 403b' include a second dopant and a dopant distribution. The peak dopant concentration of the second doped regions 403a', 403b' depends on the material of the control contact layer 406b', 406a' and the material of the absorption layer 402', for example, between 1×10 17 cm −3 and 5×10 20 cm -3 . The second doped regions 403a', 403b' and the control contact layers 406b', 406a' form a Schottky contact, an ohmic contact or a combination thereof. The second doped regions 403a', 403b' are used to modulate carriers generated from the absorption layer 402' based on control of the control signals cs1, cs2.

在一些實施例中,像素還包括兩個反摻雜區411a’,411b’。反摻雜區 411a’與第二摻雜區403a’的至少一部分重疊。反摻雜區411b’與第二摻雜區403b’的至少一部分重疊。在一些實施例中,反摻雜區411a’,411b’形成在吸收層402’中。各個反摻雜區411a’,411b’具有與第二摻雜區403a’,403b’的第二導電類型不同的導電類型。在一些實施例中,光偵測裝置400e被配置為處理所收集的電洞以用於進一步的應用。在這樣的實施例中,第一摻雜區401b’,401a’是p型,第二摻雜區403a’,403b’是n型,並且反摻雜區411b’,411a’是p型。在一些實施例中,反摻雜區411b'與第二摻雜區403b'的較接近第一摻雜區401b’的至少一部分重疊。在一些實施例中,反摻雜區411b’的至少一部分在第一摻雜區401b’與第二摻雜區403b’之間。在一些實施例中,反摻雜區411a’與第二摻雜區403a’的較接近第一摻雜區401a’的至少一部分重疊。在一些實施例中,反摻雜區411a’的至少一部分在第一摻雜區401a’和第二摻雜區403a’之間。 In some embodiments, the pixel also includes two counter-doped regions 411a', 411b'. anti-doped region 411a' overlaps at least a portion of the second doped region 403a'. The counter-doped region 411b' overlaps at least a portion of the second doped region 403b'. In some embodiments, counter-doped regions 411a', 411b' are formed in the absorber layer 402'. Each counter-doped region 411a', 411b' has a different conductivity type than the second conductivity type of the second doped region 403a', 403b'. In some embodiments, the light detection device 400e is configured to process the collected holes for further applications. In such an embodiment, the first doped regions 401b', 401a' are p-type, the second doped regions 403a', 403b' are n-type, and the counter-doped regions 411b', 411a' are p-type. In some embodiments, the counter-doped region 411b' overlaps at least a portion of the second doped region 403b' that is closer to the first doped region 401b'. In some embodiments, at least a portion of the counter-doped region 411b' is between the first doped region 401b' and the second doped region 403b'. In some embodiments, the counter-doped region 411a' overlaps at least a portion of the second doped region 403a' that is closer to the first doped region 401a'. In some embodiments, at least a portion of the counter-doped region 411a' is between the first doped region 401a' and the second doped region 403a'.

在一些實施例中,反摻雜區411a’,411b’作為暗電流減少區域,用於降低光偵測裝置400e的暗電流。與沒有反摻雜區411a’,411b’的光偵測裝置相比,具有與第二摻雜區403a’,403b’的至少一部分重疊的反摻雜區411a’,411b’的光偵測裝置400e有較薄的空乏區,因此光偵測裝置400e具有較低的暗電流。 In some embodiments, the counter-doped regions 411a' and 411b' serve as dark current reduction regions for reducing the dark current of the light detection device 400e. Compared to a light detection device without counter-doped regions 411a', 411b', a light detection device having counter-doped regions 411a', 411b' overlapping at least a portion of the second doped regions 403a', 403b' 400e has a thinner depletion region, so the light detection device 400e has a lower dark current.

在一些實施例中,各個反摻雜區411a’,411b'包括摻質,並且各個反摻雜區411a’,411b’包括具有一峰值摻質濃度的摻質分佈。該峰值摻質濃度不小於1×1016cm-3。在一些實施例中,反摻雜區411a’,411b’的峰值摻質濃度低於第二摻雜區403b’,403a’的峰值摻質濃度。在一些實施例中,各個反摻雜區411a’,411b’的峰值摻質濃度在1x1016cm-3和1x1018cm-3之間。 In some embodiments, each counter-doped region 411a', 411b' includes a dopant, and each counter-doped region 411a', 411b' includes a dopant profile having a peak dopant concentration. The peak dopant concentration is not less than 1×10 16 cm -3 . In some embodiments, the peak dopant concentration of the counter-doped regions 411a', 411b' is lower than the peak dopant concentration of the second doped regions 403b', 403a'. In some embodiments, the peak dopant concentration of each counter-doped region 411a', 411b' is between 1x10 16 cm -3 and 1x10 18 cm -3 .

圖4F繪示根據一些實施例的光偵測裝置的剖視圖。圖4F中的光偵測裝置400f類似於圖4E中的光偵測裝置,其中差異描述於下。在一些實施例中,光偵測裝置400f還包括圍繞至少一部分的吸收層402’的阻擋層419,其中,阻擋層419的導電類型不同於各個第一摻雜區401b’,401a’的第一導電類型。阻擋層419 可以阻擋吸收層402’中的光生電荷到達基底404’,這增加了光偵測裝置400f的光生載子的收集效率。阻擋層419還可以阻擋基底404’中的光生電荷到達吸收層402’,這增加了光偵測裝置400f的光生載子的速度。阻擋層419可以包括與吸收層402’的材料相同的材料、與基底404’的材料相同的材料、吸收層402’的材料和基底404’的材料的組合的一材料,或者不同於吸收層402’的材料和基底404’的材料。在一些實施例中,阻擋層419的形狀可以是但不限於環形。在一些實施例中,阻擋層419包括摻質,並且具有峰值摻質濃度範圍為1015cm-3至1020cm-3的摻質分佈。阻擋層419可以減少兩個相鄰像素之間的串擾(cross talk)。 Figure 4F illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 400f in Figure 4F is similar to the light detection device in Figure 4E, with the differences described below. In some embodiments, the light detection device 400f further includes a blocking layer 419 surrounding at least a portion of the absorbing layer 402', wherein the conductive type of the blocking layer 419 is different from the first conductivity type of the respective first doped regions 401b', 401a'. Conductive type. The blocking layer 419 can block the photogenerated charges in the absorbing layer 402' from reaching the substrate 404', which increases the collection efficiency of the photogenerated carriers of the photodetection device 400f. The blocking layer 419 can also block the photogenerated charges in the substrate 404' from reaching the absorbing layer 402', which increases the speed of the photogenerated carriers of the photodetection device 400f. Barrier layer 419 may comprise the same material as the material of absorber layer 402', the same material as the material of substrate 404', a combination of the material of absorber layer 402' and the material of substrate 404', or a material different from absorber layer 402 'material and substrate 404' material. In some embodiments, the shape of barrier layer 419 may be, but is not limited to, annular. In some embodiments, barrier layer 419 includes dopants and has a dopant distribution with a peak dopant concentration ranging from 10 15 cm −3 to 10 20 cm −3 . The blocking layer 419 can reduce cross talk between two adjacent pixels.

在一些實施例中,阻擋層419延伸以到達基底404’的第一表面404s。在一些實施例中,光偵測裝置400f可以進一步包括電連接到阻擋層419的導電層409。可以通過導電層409以偏壓電壓ca2將阻擋層419偏壓,以釋放未被第一摻雜區401a’,401b’收集的載子。 In some embodiments, barrier layer 419 extends to first surface 404s of substrate 404'. In some embodiments, the light detection device 400f may further include a conductive layer 409 electrically connected to the blocking layer 419. The barrier layer 419 can be biased with a bias voltage ca2 through the conductive layer 409 to release carriers that are not collected by the first doped regions 401a', 401b'.

在一些實施例中,光偵測裝置400f被配置為處理所收集的電洞以用於進一步的應用。在這樣的實施例中,第一摻雜區401b’,401a’是p型,第二摻雜區403a’,403b’是n型,反摻雜區411b’,411a是p型,阻擋層419是n型。 In some embodiments, the light detection device 400f is configured to process the collected holes for further applications. In such an embodiment, the first doped regions 401b', 401a' are p-type, the second doped regions 403a', 403b' are n-type, the counter-doped regions 411b', 411a are p-type, and the barrier layer 419 It is n type.

圖4G繪示根據一些實施例的光偵測裝置的剖視圖。圖4G中的光偵測裝置400g類似於圖4E中的光偵測裝置400e,其中差異描述於下。第一摻雜區401b’,401a’形成於基底404’中。讀出接觸層408a’,408b’形成在基底404’的第一表面404s上。控制接觸層406a’,406b’之間的距離d3小於吸收層402’的寬度w3。在一些實施例中,讀出接觸層408a’,408b’之間的距離d4大於吸收層402’的寬度w3。在一些實施例中,由於基底404'的暗電流低於吸收層402’的暗電流,因此通過在基底404’中設置第一摻雜區401b’,401a'可以進一步減小光偵測裝置400g的暗電流。 Figure 4G illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 400g in FIG. 4G is similar to the light detection device 400e in FIG. 4E, with the differences described below. First doped regions 401b', 401a' are formed in the substrate 404'. Readout contact layers 408a', 408b' are formed on the first surface 404s of the substrate 404'. The distance d 3 between the control contact layers 406a', 406b' is smaller than the width w 3 of the absorbing layer 402'. In some embodiments, the distance d4 between the readout contact layers 408a', 408b' is greater than the width w3 of the absorber layer 402'. In some embodiments, since the dark current of the substrate 404' is lower than the dark current of the absorption layer 402', the light detection device 400g can be further reduced by arranging the first doped regions 401b', 401a' in the substrate 404'. of dark current.

圖4H繪示根據一些實施例的光偵測裝置的剖視圖。圖4H中的光偵測 裝置400h類似於圖4G中的光偵測裝置400g,其中差異描述於下。第二摻雜區403b’,403a’形成在基底404’中。控制接觸層406a’,406b’形成在基底404’的第一表面404s上。在一些實施例中,反摻雜區411a’,411b'形成在基底404'中。控制接觸層406a’,406b’之間的距離d3大於吸收層402’的寬度w3。在一些實施例中,由於基底404’的暗電流低於吸收層402’的暗電流,因此通過在基底404’中設置第一摻雜區401b’,401a’、第二摻雜區403b’,403a’和反摻雜區411a’,411b’,可以進一步降低光偵測裝置400h的暗電流。 Figure 4H illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 400h in FIG. 4H is similar to the light detection device 400g in FIG. 4G, with the differences described below. Second doped regions 403b', 403a' are formed in the substrate 404'. Control contact layers 406a', 406b' are formed on the first surface 404s of the substrate 404'. In some embodiments, counter-doped regions 411a', 411b' are formed in substrate 404'. The distance d 3 between the control contact layers 406a', 406b' is greater than the width w 3 of the absorbing layer 402'. In some embodiments, since the dark current of the substrate 404' is lower than the dark current of the absorption layer 402', by arranging the first doped regions 401b', 401a' and the second doped region 403b' in the substrate 404', 403a' and the counter-doped regions 411a', 411b' can further reduce the dark current of the light detection device 400h.

圖5A顯示依據一些實施例之具有鈍化層(Passivation layer)的光偵測裝置的剖視圖。此光偵測裝置500a包含控制金屬線506a,506b和讀出金屬線508a,508b。控制金屬線506a,506b和讀出金屬線508a,508b電性耦接到由基底504支撐的鍺基光吸收材料502之表面502s。控制金屬線506a,506b分別電性耦接到表面502s上的P型區域503a,503b。讀出金屬線508a,508b分別電性耦接到表面502s上的N型區域501a,501b。圖5A顯示的光偵測裝置與前述實施例有類似的操作。圖5A的實施例更添加在表面502s上之一鈍化層514(例如非晶矽(a-Si)、鍺氧化物、氧化鋁、二氧化矽)、在讀出金屬線508a及N型區域501a的連接之間添加一金屬矽化物(例如二矽化鎳、二矽化鈷)513a、在控制金屬線506a及P型區域503a的連接之間添加一金屬矽化物515a、在控制金屬線506b及P型區域503b的連接之間添加一金屬矽化物515b。 FIG. 5A shows a cross-sectional view of a light detection device with a passivation layer according to some embodiments. The light detection device 500a includes control metal lines 506a, 506b and readout metal lines 508a, 508b. Control metal lines 506a, 506b and readout metal lines 508a, 508b are electrically coupled to surface 502s of germanium-based light absorbing material 502 supported by substrate 504. The control metal lines 506a, 506b are respectively electrically coupled to the P-type regions 503a, 503b on the surface 502s. Sense metal lines 508a, 508b are electrically coupled to N-type regions 501a, 501b, respectively, on surface 502s. The light detection device shown in FIG. 5A operates similarly to the previous embodiment. The embodiment of Figure 5A further adds a passivation layer 514 (such as amorphous silicon (a-Si), germanium oxide, aluminum oxide, silicon dioxide) on the surface 502s, on the readout metal line 508a and the N-type region 501a Add a metal silicide (such as nickel disilicide, cobalt disilicide) 513a between the connections, add a metal silicide 515a between the control metal line 506a and the P-type region 503a, add a metal silicide 515a between the control metal line 506b and the P-type region 503a. A metal silicide 515b is added between the connections of area 503b.

依據此實施例,在鍺基光吸收材料502上形成鈍化層514可終結表面502s上的懸鍵(Dangling bond)及降低暗電流。另一方面,加入金屬矽化物(例如二矽化鎳、二化矽鈷)可降低金屬及半導體之間的接觸電阻及接面電阻,這可以降低電壓降及降低相應的能耗。 According to this embodiment, forming the passivation layer 514 on the germanium-based light absorbing material 502 can terminate dangling bonds on the surface 502s and reduce dark current. On the other hand, adding metal silicides (such as nickel disilicide, cobalt silicide) can reduce the contact resistance and junction resistance between metals and semiconductors, which can reduce voltage drops and corresponding energy consumption.

在一些實施例中,鈍化層514是本質的。術語“本質”是指鈍化層514未故意添加摻質。在一些實施例中,用於製造光偵測裝置500a的方法包括形成 N型區域501a,501b;形成P型區域503a,503b;在鍺基吸光材料502的表面502s上形成鈍化層514;以及在鈍化層514中形成矽化物515a、515b、513a、513b;其中,在鍺基光吸收材料502的表面502s上形成鈍化層514的步驟是在形成N型區域501a,501b以及形成P型區域503a,503b的步驟之後進行。 In some embodiments, passivation layer 514 is essential. The term "essentially" means that passivation layer 514 has no intentionally added dopants. In some embodiments, methods for fabricating light detection device 500a include forming N-type regions 501a, 501b; forming P-type regions 503a, 503b; forming a passivation layer 514 on the surface 502s of the germanium-based light-absorbing material 502; and forming silicides 515a, 515b, 513a, 513b in the passivation layer 514; wherein, in The step of forming the passivation layer 514 on the surface 502s of the germanium-based light absorbing material 502 is performed after the steps of forming the N-type regions 501a, 501b and forming the P-type regions 503a, 503b.

圖5B繪示根據一些實施例的光偵測裝置的剖視圖。光偵測裝置500b包括基底504’。光偵測裝置還包括像素(圖未示),像素包括由基底504’支撐的吸收層502’。像素在吸收層502’中包括一吸收區域AR。吸收區域AR是接收入射光信號的虛擬區域。像素包括電性耦接到吸收層502’的第一開關(圖未標)和第二開關(圖未標)。第一開關包括控制接觸層506a’和讀出接觸層508a’。第二開關包括控制接觸層506b’和讀出接觸層508b’。在一些實施例中,讀出接觸層508a’,508b’以及控制接觸層506a’,506b’係在吸收層502’的第一表面502s’上。在一些實施例中,吸收區域AR的寬度小於讀出接觸層508a’,508b’之間的距離。在一些實施例中,讀出接觸層508a’,508b’設置在吸收區域AR的兩個相對側。在一些實施例中,吸收區域AR的寬度小於控制接觸層506a’,506b’之間的距離。在一些實施例中,控制接觸層506a’,506b’設置在吸收區域AR的兩個相對側。在一些實施例中,光偵測裝置500b包括多個重複的像素。光偵測裝置500b包括具有多個重複像素的像素陣列。在一些實施例中,像素陣列可以是一維或二維陣列的像素。 Figure 5B illustrates a cross-sectional view of a light detection device according to some embodiments. Light detection device 500b includes a substrate 504'. The light detection device also includes a pixel (not shown), which includes an absorbing layer 502' supported by a substrate 504'. The pixel includes an absorption area AR in the absorption layer 502'. The absorption area AR is a virtual area that receives the incident light signal. The pixel includes a first switch (not labeled) and a second switch (not labeled) electrically coupled to the absorption layer 502'. The first switch includes a control contact layer 506a' and a sense contact layer 508a'. The second switch includes a control contact layer 506b' and a sense contact layer 508b'. In some embodiments, the sense contact layers 508a', 508b' and the control contact layers 506a', 506b' are tied to the first surface 502s' of the absorber layer 502'. In some embodiments, the width of the absorption region AR is less than the distance between the readout contact layers 508a', 508b'. In some embodiments, readout contact layers 508a', 508b' are disposed on opposite sides of the absorbing area AR. In some embodiments, the width of the absorption area AR is less than the distance between the control contact layers 506a', 506b'. In some embodiments, control contact layers 506a', 506b' are disposed on two opposite sides of the absorption area AR. In some embodiments, the light detection device 500b includes a plurality of repeated pixels. The light detection device 500b includes a pixel array having a plurality of repeating pixels. In some embodiments, the pixel array may be a one-dimensional or two-dimensional array of pixels.

所述像素還包括兩個控制信號cs1,cs2,其控制控制接觸層506a’,506b’,以控制由吸收層502’中的吸收的光子產生的電子或電洞的移動方向。例如,當使用電壓時,如果控制信號cs1相對於控制信號cs2偏置,則會在控制接觸層506a’,506b’正下方的兩個部分之間產生電場,並且根據電場的方向,自由電荷會向讀出接觸層508b’,508a’正下方的兩個部分的其中之一漂移。 The pixel also includes two control signals cs1, cs2, which control the contact layers 506a', 506b' to control the movement direction of electrons or holes generated by absorbed photons in the absorption layer 502'. For example, when using voltages, if control signal cs1 is biased relative to control signal cs2, an electric field is created between the two parts directly beneath the control contact layers 506a', 506b', and depending on the direction of the electric field, the free charges will Drift to one of the two portions directly beneath the readout contact layers 508b', 508a'.

在一些實施例中,像素包括兩個電容(圖未示)。讀出接觸層508a’ 電性耦接到一個電容,而讀出接觸層508b’電性耦接到另一個電容。基於兩個控制信號cs1,cs2的控制,電容用於存儲在吸收層502’中產生的載子。例如,由於光偵測裝置500b與目標物體(圖未示)之間存在距離,因此光信號相對於由發射器(圖未示)發送的發射光具有相位延遲。當發射光被調變信號調變,並且電子-電洞對被解調信號通過控制接觸層506a’,506b’解調時,存儲在電容中的電子或電洞將根據距離而變化。因此,光偵測裝置500b可以基於一個電容上的電壓v1和另一個電容上的電壓v2獲得距離資訊。 In some embodiments, the pixel includes two capacitors (not shown). Readout contact layer 508a’ is electrically coupled to one capacitor, and the readout contact layer 508b' is electrically coupled to the other capacitor. Based on the control of two control signals cs1, cs2, the capacitor is used to store carriers generated in the absorption layer 502'. For example, since there is a distance between the light detection device 500b and the target object (not shown), the optical signal has a phase delay relative to the emitted light sent by the transmitter (not shown). When the emitted light is modulated by the modulation signal and the electron-hole pairs are demodulated by the demodulation signal through the control contact layers 506a', 506b', the electrons or holes stored in the capacitor will vary depending on the distance. Therefore, the light detection device 500b can obtain distance information based on the voltage v1 on one capacitor and the voltage v2 on the other capacitor.

在一些實施例中,像素還包括第一讀出電路(圖未示)和第二讀出電路(圖未示),第一讀出電路和第二讀出電路分別電性耦接到第一開關和第二開關,以處理收集的電荷。第一讀出電路可以包括前述電容之一。第二讀出電路可以包括另一個電容。第一讀出電路電性耦接到讀出接觸層508a’。第二讀出電路電性耦接到讀出接觸層508b’。 In some embodiments, the pixel further includes a first readout circuit (not shown) and a second readout circuit (not shown). The first readout circuit and the second readout circuit are respectively electrically coupled to the first readout circuit. switch and a second switch to process the collected charge. The first readout circuit may include one of the aforementioned capacitors. The second readout circuit may include another capacitor. The first readout circuit is electrically coupled to the readout contact layer 508a'. The second readout circuit is electrically coupled to the readout contact layer 508b'.

在一些實施例中,第一開關包括在讀出接觸層508a’下的第一摻雜區501a’。第二開關包括在讀出接觸層508b’之下的第一摻雜區501b’。在一些實施例中,第一摻雜區501a’,501b’是第一導電類型。在一些實施例中,各個第一摻雜區501a’,501b’包括一第一摻質和一摻質分佈。第一摻雜區501a’,501b’的峰值摻質濃度取決於讀出接觸層508a’,508b’的材料和吸收層502’的材料,例如在5×1018cm-3至5 x 1020cm-3之間。第一摻雜區501a’,501b’用於收集從吸收層502’產生的載子,這些載子分別基於兩個控制信號cs1,cs2的控制而分別由第一讀出電路(圖未示)和第二讀出電路(圖未示)處理。 In some embodiments, the first switch includes a first doped region 501a' under the sense contact layer 508a'. The second switch includes a first doped region 501b' under the sense contact layer 508b'. In some embodiments, the first doped regions 501a', 501b' are of the first conductivity type. In some embodiments, each first doped region 501a', 501b' includes a first dopant and a dopant distribution. The peak dopant concentration of the first doped regions 501a', 501b' depends on the material of the readout contact layer 508a', 508b' and the material of the absorption layer 502', for example, between 5×10 18 cm -3 and 5×10 20 between cm -3 . The first doping regions 501a', 501b' are used to collect carriers generated from the absorption layer 502'. These carriers are respectively controlled by the first readout circuit (not shown) based on the control of two control signals cs1, cs2. and processed by the second readout circuit (not shown).

在一些實施例中,第一開關還包括在控制接觸層506a’下的第二摻雜區503a’。第二開關還包括在控制接觸層506b’之下的第二摻雜區503b’。第二摻雜區503a’,503b’形成在吸收層502’中。在一些實施例中,第二摻雜區503a’,503b’分別具有與第一摻雜區501b’,501a’的第一導電類型不同的第二導電類 型。在一些實施例中,各個第二摻雜區503a’,503b’包括一第二摻質和一摻質分佈。第二摻雜區503a’,503b’的峰值摻質濃度取決於控制接觸層506b’,506a’的材料和吸收層502'的材料,例如在1×1017cm-3至5×1020cm-3之間。第二摻雜區503a’,503b’與控制接觸層506b’,506a’形成蕭特基接觸、歐姆接觸或其組合。基於控制信號cs1,cs2的控制,第二摻雜區503a’,503b’用於解調從吸收層502’產生並流過來的載子。 In some embodiments, the first switch also includes a second doped region 503a' under the control contact layer 506a'. The second switch also includes a second doped region 503b' under the control contact layer 506b'. Second doped regions 503a', 503b' are formed in the absorber layer 502'. In some embodiments, the second doped regions 503a', 503b' respectively have a second conductivity type that is different from the first conductivity type of the first doped regions 501b', 501a'. In some embodiments, each second doped region 503a', 503b' includes a second dopant and a dopant distribution. The peak dopant concentration of the second doped region 503a', 503b' depends on the material of the control contact layer 506b', 506a' and the material of the absorption layer 502', for example, between 1×10 17 cm −3 and 5×10 20 cm -3 . The second doped regions 503a', 503b' and the control contact layers 506b', 506a' form a Schottky contact, an ohmic contact or a combination thereof. Based on the control of the control signals cs1 and cs2, the second doped regions 503a' and 503b' are used to demodulate the carriers generated and flowing from the absorption layer 502'.

在一些實施例中,像素進一步在吸收層502’的第一表面502s’上包括一鈍化層514。在一些實施例中,鈍化層514進一步覆蓋基底504’的第一表面504s的一部分。在一些實施例中,吸收層502’從基底504’的第一表面504s突出,並且鈍化層514進一步覆蓋從基底504’暴露的吸收層502’的側壁。鈍化層514可以包括非晶矽、多晶矽、磊晶矽、氧化鋁(例如AlxOy),氧化矽(例如SixOy)、Ge氧化物(例如GexOy)、鍺矽(例如GeSi)、氮化矽族(例如,SixNy)、高k材料(例如,HfOx、ZnOx、LaOx、LaSiOx)或其任意組合。鈍化層514的存在可以具有各種效果。例如,鈍化層514可以用作吸收層502’的表面鈍化層,這可以減少由於在吸收層502’的暴露表面上發生的缺陷而產生的暗電流或漏電流。在一些實施例中,鈍化層514的厚度不大於100nm。在一些實施例中,第一摻雜區501a’,501b’的一部分可以分別形成在位於吸收層502'與讀出接觸層508a’,508b’之間的鈍化層514的部分中。也就是說,第一摻雜區501a’,501b’的第一摻質可以分別在吸收層502’與讀出接觸層508a’,508b’之間的鈍化層514的部分中。在一些實施例中,第二摻雜區503a’,503b’的一部分可以分別形成在位於吸收層502’與控制接觸層506a’,506b’之間的鈍化層514的部分中。也就是說,第二摻雜區503a’,503b’的第二摻質可以分別在在吸收層502'與控制接觸層506a’,506b’之間的鈍化層514的部分中。 In some embodiments, the pixel further includes a passivation layer 514 on the first surface 502s' of the absorbing layer 502'. In some embodiments, passivation layer 514 further covers a portion of first surface 504s of substrate 504'. In some embodiments, the absorber layer 502' protrudes from the first surface 504s of the substrate 504', and the passivation layer 514 further covers the sidewalls of the absorber layer 502' exposed from the substrate 504'. The passivation layer 514 may include amorphous silicon, polycrystalline silicon, epitaxial silicon, aluminum oxide (eg, Al x O y ), silicon oxide (eg, Six O y ), Ge oxide (eg, Ge x O y ), germanium silicon (eg, GeSi), the silicon nitride family (eg, Six N y ), high-k materials (eg, HfO x , ZnO x , LaO x , LaSiO x ), or any combination thereof. The presence of passivation layer 514 can have various effects. For example, passivation layer 514 may serve as a surface passivation layer for absorber layer 502', which may reduce dark current or leakage current due to defects occurring on the exposed surface of absorber layer 502'. In some embodiments, the thickness of passivation layer 514 is no greater than 100 nm. In some embodiments, a portion of the first doped regions 501a', 501b' may be formed in a portion of the passivation layer 514 between the absorber layer 502' and the readout contact layer 508a', 508b', respectively. That is, the first dopant of the first doped regions 501a', 501b' may be in the portion of the passivation layer 514 between the absorber layer 502' and the readout contact layer 508a', 508b', respectively. In some embodiments, a portion of the second doped regions 503a', 503b' may be formed in a portion of the passivation layer 514 between the absorber layer 502' and the control contact layer 506a', 506b', respectively. That is, the second dopant of the second doped regions 503a', 503b' may be in the portion of the passivation layer 514 between the absorber layer 502' and the control contact layer 506a', 506b', respectively.

在一些實施例中,像素進一步包括第一矽化物區513a’,513b’在第 一摻雜區501a’,501b’與讀出接觸層508a’,508b’之間。在一些實施例中,像素進一步包括第二矽化物區515a’,515b’在第二摻雜區503a’,503b’與控制接觸層506a’,506b’之間。第一矽化物區513a’,513b’和第二矽化物區515a’,515b’包括MxSiy,其中M是金屬,x和y分別是金屬和矽原子數目。在一些實施例中,M包括但不限於鎳(Ni)、鈷(Co)、鈦(Ti)、鎢(W)、鉻(Cr)、鉭(Ta)、鉑(Pt)或其組合。第一矽化物區513a’,513b’可以降低讀出接觸層508a’,508b’與吸收層502’之間的接觸或接面電阻。第二矽化物區515a’,515b’可以降低控制接觸層506a’,506b’與吸收層502’之間的接觸或接面電阻。結果是,可以降低光偵測裝置500b的電壓降和功耗。 In some embodiments, the pixel further includes first silicide regions 513a', 513b' at between a doped region 501a', 501b' and the readout contact layer 508a', 508b'. In some embodiments, the pixel further includes second silicide regions 515a', 515b' between the second doped regions 503a', 503b' and the control contact layers 506a', 506b'. The first silicide regions 513a', 513b' and the second silicide regions 515a', 515b' include MxSiy, where M is a metal and x and y are the number of metal and silicon atoms respectively. In some embodiments, M includes, but is not limited to, nickel (Ni), cobalt (Co), titanium (Ti), tungsten (W), chromium (Cr), tantalum (Ta), platinum (Pt), or combinations thereof. The first silicide regions 513a', 513b' can reduce the contact or junction resistance between the readout contact layers 508a', 508b' and the absorber layer 502'. The second silicide regions 515a', 515b' can reduce the contact or junction resistance between the control contact layer 506a', 506b' and the absorber layer 502'. As a result, the voltage drop and power consumption of the light detection device 500b can be reduced.

在一些實施例中,一種用於製造光偵測裝置500b的方法包括以下步驟:在吸收層502’的第一表面502s’上形成鈍化層514;在吸收層502’和鈍化層514中形成第一摻雜區501a’,501b’;在吸收層502’和鈍化層514中形成第二摻雜區503a’,503b’;在鈍化層514中形成第一矽化物區513a’,513b’和第二矽化物區515a’,515b’。在一些實施例中,在吸收層502’的第一表面502s’上方形成鈍化層514的步驟係在形成第一摻雜區501a’,501b’的步驟以及形成第二摻雜區503a’,503b’的步驟之前進行。 In some embodiments, a method for manufacturing the light detection device 500b includes the following steps: forming a passivation layer 514 on the first surface 502s' of the absorption layer 502'; forming a second passivation layer 514 in the absorption layer 502' and the passivation layer 514. A doping region 501a', 501b'; a second doping region 503a', 503b' is formed in the absorption layer 502' and the passivation layer 514; a first silicide region 513a', 513b' and a third silicide region are formed in the passivation layer 514. Disilicide regions 515a', 515b'. In some embodiments, the step of forming the passivation layer 514 over the first surface 502s' of the absorber layer 502' occurs during the steps of forming the first doped regions 501a', 501b' and forming the second doped regions 503a', 503b. ' steps before proceeding.

圖5C繪示根據一些實施例的光偵測裝置的剖視圖。圖5C中的光偵測裝置500c類似於圖5B中的光偵測裝置,其中差異描述於下。在一些實施例中,鈍化層514包括具有不同特性的至少兩個區域。例如,如圖5C所示,鈍化層514包括彼此分離的四個第一區域514a1、514a2、514a3、514a4。第一區域514a1在第一摻雜區501b’和讀出接觸層508b’之間。在一些實施例中,第一區域514a1在第一摻雜區501b’和第一矽化物區513b’之間。第一區域514a2在第二摻雜區503b’和控制接觸層506b’之間。在一些實施例中,第一區域514a2在第二摻雜區503b’和第二矽化物區515b’之間。第一區域514a3在第一摻雜區501a’和讀出 接觸層508a’之間。在一些實施例中,第一區域514a3在第一摻雜區501a’和第一矽化物區513a’之間。第一區域514a4在第二摻雜區503a’和控制接觸層506a’之間。在一些實施例中,第一區域514a4在第二摻雜區503a’和第二矽化物區515a’之間。鈍化層514還包括在兩個第一區域514a2、514a4之間並且將其隔開的第二區域514b。 Figure 5C illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 500c in Figure 5C is similar to the light detection device in Figure 5B, with the differences described below. In some embodiments, passivation layer 514 includes at least two regions with different properties. For example, as shown in FIG. 5C , the passivation layer 514 includes four first regions 514a1 , 514a2 , 514a3 , and 514a4 that are separated from each other. The first region 514a1 is between the first doped region 501b' and the readout contact layer 508b'. In some embodiments, the first region 514a1 is between the first doped region 501b' and the first silicide region 513b'. The first region 514a2 is between the second doped region 503b' and the control contact layer 506b'. In some embodiments, the first region 514a2 is between the second doped region 503b' and the second silicide region 515b'. The first region 514a3 is in the first doping region 501a' and the readout between contact layers 508a’. In some embodiments, the first region 514a3 is between the first doped region 501a' and the first silicide region 513a'. The first region 514a4 is between the second doped region 503a' and the control contact layer 506a'. In some embodiments, the first region 514a4 is between the second doped region 503a' and the second silicide region 515a'. The passivation layer 514 also includes a second region 514b between and separating the two first regions 514a2, 514a4.

各個第一區域514a1、514a2、514a3、514a4包括一特性。第二區域514b包括與第一區域514a1、514a2、514a3、514a4的特性不同的特性。在一些實施例中,所述特性包括材料或電阻。例如,第二區域514b具有比第一區域514a1、514a2、514a3、514a4的電阻高的電阻。在一些實施例中,第二區域514b包括一絕緣材料。例如,絕緣材料包括絕緣氧化物材料或絕緣氮化物材料。絕緣氧化物材料包括但不限於氧化鋁(例如AlxOy)、氧化矽(例如SixOy)、氧化鍺(例如GexOy)、氧化鉿(HfOx)、氧化鋅(ZnOx)、氧化鑭(LaOx)、氧化矽鑭(LaSiOx)或其任何組合。絕緣氮化物材料包括但不限於氮化矽族(例如,SixNy)、氮化鍺族(例如,GexNy)。在一些實施例中,第一區域514a1、514a2、514a3、514a4包括一半導體材料包括但不限於非晶矽、多晶矽、磊晶矽、鍺矽(例如,GeSi)或其任何組合。第二區域514b可以阻擋第二摻雜區503a’,503b’之間透過鈍化層514的電傳導,並且阻擋第二摻雜區503a’,503b’之間沿著鈍化層514與吸收層502’之間的界面的電傳導。結果是,可以降低第二摻雜區503a’,503b’之間的漏電流。在一些實施例中,從光偵測裝置500c的剖視圖來看,鈍化層514還包括兩個第三區域514c。第三區域514c覆蓋吸收層502’的第一表面502s’的外圍部分。在一些實施例中,各個第三區域514c中包括與第一區域514a1、514a2、514a3、514a4的特性不同的特性。例如,第三區域514c具有比第一區域514a1、514a2、514a3、514a4更高的電阻。在一些實施例中,第三區域514c包括一絕緣材料。在一些實施例中,第三區域 514c和第二區域514b可以是圍繞第一區域514a1、514a2、514a3、514a4的連續區域。在一些實施例中,第三區域514c是獨立區域,並且也與第二區域514b分離。在一些實施例中,第三區域514c的材料和第二區域514b的材料可以相同。第三區域514c可以進一步阻擋第一摻雜區501a’,501b’之間透過鈍化層514的外圍部分的電傳導,並且還阻擋第一摻雜區501a’,501b’之間沿著鈍化層514和吸收層502’之間的外圍部分的界面的電傳導。在一些實施例中,從光偵測裝置500c的剖視圖來看,鈍化層514還包括兩個第四區域514e。第四區域514e在第一區域514a1、514a2、514a3、514a4中的兩個之間。在一些實施例中,各個第四區域514e包括與第一區域514a1、514a2、514a3、514a4的特性不同的特性。例如,第四區域514e具有比第一區域514a1、514a2、514a3、514a4的電阻高的電阻。在一些實施例中,第四區域514e包括一絕緣材料。在一些實施例中,第四區域514e、第三區域514c和第二區域514b可以是圍繞第一區域514a1、514a2、514a3、514a4的連續區域。在一些實施例中,第四區域514e是獨立區域,並且也與第二區域514b和第三區域514c分離。在一些實施例中,第四區域514e的材料、第三區域514c的材料和第二區域514b的材料可以相同。第四區域514e可以進一步阻擋在第一摻雜區501a’,501b’之間透過第一區域514a1、514a2、514a3、514a4之間的鈍化層514的部分的電傳導。結果是,漏電流被進一步降低。在一些實施例中,第一區域514a1、514a2、514a3、514a4是導電區域。第二區域514b,第三區域514c和第四區域514e是絕緣區域。 Each first area 514a1, 514a2, 514a3, 514a4 includes a characteristic. The second region 514b includes different characteristics from the characteristics of the first regions 514a1, 514a2, 514a3, 514a4. In some embodiments, the property includes material or resistance. For example, the second region 514b has a higher resistance than the first regions 514a1, 514a2, 514a3, and 514a4. In some embodiments, second region 514b includes an insulating material. For example, the insulating material includes an insulating oxide material or an insulating nitride material. Insulating oxide materials include , but are not limited to , aluminum oxide (such as Al ), lanthanum oxide (LaO x ), lanthanum silicon oxide (LaSiO x ), or any combination thereof. Insulating nitride materials include, but are not limited to, silicon nitride family (eg, Six N y ), germanium nitride family (eg, Ge x N y ). In some embodiments, the first regions 514a1, 514a2, 514a3, 514a4 include a semiconductor material including but not limited to amorphous silicon, polycrystalline silicon, epitaxial silicon, germanium silicon (eg, GeSi), or any combination thereof. The second region 514b can block the electrical conduction between the second doped regions 503a' and 503b' through the passivation layer 514, and block the space between the second doped regions 503a' and 503b' along the passivation layer 514 and the absorption layer 502'. electrical conduction at the interface between. As a result, the leakage current between the second doped regions 503a', 503b' can be reduced. In some embodiments, from the cross-sectional view of the light detection device 500c, the passivation layer 514 further includes two third regions 514c. The third region 514c covers the peripheral portion of the first surface 502s' of the absorbent layer 502'. In some embodiments, each third region 514c includes different characteristics from the characteristics of the first regions 514a1, 514a2, 514a3, 514a4. For example, the third region 514c has a higher resistance than the first regions 514a1, 514a2, 514a3, 514a4. In some embodiments, third region 514c includes an insulating material. In some embodiments, the third area 514c and the second area 514b may be continuous areas surrounding the first areas 514a1, 514a2, 514a3, 514a4. In some embodiments, third area 514c is a separate area and is also separate from second area 514b. In some embodiments, the material of the third region 514c and the second region 514b may be the same. The third region 514c can further block the electrical conduction between the first doped regions 501a', 501b' through the peripheral portion of the passivation layer 514, and also block the electrical conduction between the first doped regions 501a', 501b' along the passivation layer 514. and the interface between the peripheral portion of the absorber layer 502'. In some embodiments, from the cross-sectional view of the light detection device 500c, the passivation layer 514 further includes two fourth regions 514e. The fourth area 514e is between two of the first areas 514a1, 514a2, 514a3, and 514a4. In some embodiments, each fourth region 514e includes different characteristics than the characteristics of the first regions 514a1, 514a2, 514a3, 514a4. For example, the fourth region 514e has a higher resistance than the first regions 514a1, 514a2, 514a3, and 514a4. In some embodiments, fourth region 514e includes an insulating material. In some embodiments, the fourth area 514e, the third area 514c, and the second area 514b may be continuous areas surrounding the first areas 514a1, 514a2, 514a3, 514a4. In some embodiments, the fourth area 514e is a separate area and is also separate from the second area 514b and the third area 514c. In some embodiments, the material of the fourth region 514e, the third region 514c, and the second region 514b may be the same. The fourth region 514e may further block electrical conduction between the first doped regions 501a', 501b' through the portion of the passivation layer 514 between the first regions 514a1, 514a2, 514a3, 514a4. As a result, the leakage current is further reduced. In some embodiments, first regions 514a1, 514a2, 514a3, 514a4 are conductive regions. The second area 514b, the third area 514c and the fourth area 514e are insulating areas.

在一些實施例中,各個第二摻雜區503a’,503b’包括一深度d1。各個第一摻雜區501a’,501b’包括一深度d2。各個第二摻雜區503a’,503b’的深度d1大於各個第一摻雜區501a’,501b’的深度d2。在一些實施例中,深度d1與深度d2之比不小於1.5。在一些實施例中,深度d1是從吸收層502’的第一表面502s’測量到第二摻質具有背景濃度(例如1×1015cm-3)的位置。在一些實施例中,深 度d2是從吸收層502'的第一表面502s’測量到第一摻質具有背景濃度(例如1×1015cm-3)的位置。由於各個第二摻雜區503a’,503b’的深度d1大於每個第一摻雜區501a’,501b’的深度d2,所以可以保持調變帶寬。 In some embodiments, each second doped region 503a', 503b' includes a depth d1 . Each first doped region 501a', 501b' includes a depth d2 . The depth d 1 of each second doped region 503a', 503b' is greater than the depth d 2 of each first doped region 501a', 501b'. In some embodiments, the ratio of depth d 1 to depth d 2 is not less than 1.5. In some embodiments, depth d 1 is measured from the first surface 502 s ′ of the absorber layer 502 ′ to the location where the second dopant has a background concentration (eg, 1×10 15 cm −3 ). In some embodiments, depth d2 is measured from the first surface 502s' of the absorber layer 502' to the location where the first dopant has a background concentration (eg, 1×10 15 cm −3 ). Since the depth d 1 of each second doped region 503a', 503b' is greater than the depth d 2 of each first doped region 501a', 501b', the modulation bandwidth can be maintained.

圖5D繪示根據一些實施例的光偵測裝置的剖視圖。圖5D中的光偵測裝置500d類似於圖5B中的光偵測裝置,其中差異描述於下。光偵測裝置500d可以沒有第二摻雜區503a’,503b’。也就是說,在控制接觸層506a’,506b’正下方的吸收層502’的區域可以是本質的或包括摻質,並且具有峰值摻質濃度低於大約1×1015cm-3的摻質分佈。術語“本質”是指半導體材料的區域,例如在控制接觸層506a’,506b’正下方的吸收層502’和/或鈍化層514,未故意添加摻質。在一些實施例中,取決於各種因素,包括吸收層502’的材料、控制接觸層506a’,506b’的材料、鈍化層514的材料、第二矽化物區515a’,515b’的材料以及吸收層502’中的雜質或缺陷程度,吸收層502’上的控制接觸層506a’,506b’可導致形成蕭特基接觸、歐姆接觸或具有在兩者之間的中間特性的一組合。 Figure 5D illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 500d in Figure 5D is similar to the light detection device in Figure 5B, with the differences described below. The light detection device 500d may not have the second doped regions 503a', 503b'. That is, the region of the absorber layer 502' directly beneath the control contact layers 506a', 506b' may be intrinsic or include dopants and have a peak dopant concentration of less than approximately 1×10 15 cm −3 distribution. The term "essentially" refers to regions of semiconductor material, such as the absorber layer 502' and/or the passivation layer 514 directly beneath the control contact layers 506a', 506b', to which no dopants are intentionally added. In some embodiments, depending on various factors, including the material of the absorber layer 502', the material of the control contact layers 506a', 506b', the material of the passivation layer 514, the material of the second silicide regions 515a', 515b', and the absorber The level of impurities or defects in layer 502', control contact layers 506a', 506b' on absorber layer 502' can result in the formation of a Schottky contact, an ohmic contact, or a combination with intermediate properties between the two.

圖5E繪示根據一些實施例的光偵測裝置的剖視圖。圖5E中的光偵測裝置500e類似於圖5C中的光偵測裝置500c,其中差異描述於下。光偵測裝置500e可以沒有第二摻雜區503a’,503b’,類似於圖5D中的描述。 Figure 5E illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 500e in FIG. 5E is similar to the light detection device 500c in FIG. 5C, with the differences described below. The photodetection device 500e may be without the second doped regions 503a', 503b', similar to that described in Figure 5D.

圖5F繪示根據一些實施例的光偵測裝置的剖視圖。圖5F中的光偵測裝置500f類似於圖5B中的光偵測裝置500b,其中差異描述於下。鈍化層514包括彼此分離的兩個中間區域514d1、514d2。中間區域514d1在第二摻雜區503a’和控制接觸層506a’之間。在一些實施例中,鈍化層514包括半導體材料。在一些實施例中,中間區域514d1在第二摻雜區503a’和第二矽化物區515a’之間。中間區域514d2在第二摻雜區503b’和控制接觸層506b’之間。在一些實施例中,中間區域514d2在第二摻雜區503b’和第二矽化物區515b’之間。在一些實施例中,中間區域514d1、514d2可以是本質的。在一些實施例中,中間區域514d1、 514d2具有與第二摻雜區503a’,503b’的第二導電類型相同或不同的導電類型。在一些實施例中,各個中間區域514d1、514d2包括一摻質以及一摻質分佈。中間區域514d1、514d2的峰值摻質濃度小於第二摻雜區503a’,503b’的峰值摻質濃度。在一些實施例中,中間區域514d1、514d2的峰值摻質濃度在5×1016cm-3至5×1017cm-3之間。由於中間區域514d1、514d2的峰值摻質濃度小於第二摻雜區503a’,503b’的峰值摻質濃度,所以中間區域514d1、514d2可以阻擋第二摻雜區503a’,503b之間透過鈍化層514的電傳導,並且阻擋第二摻雜區503a’,503b’之間的沿著鈍化層514和吸收層502’之間的界面的電傳導。 Figure 5F illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 500f in FIG. 5F is similar to the light detection device 500b in FIG. 5B, with the differences described below. Passivation layer 514 includes two intermediate regions 514d1, 514d2 that are separated from each other. The intermediate region 514d1 is between the second doped region 503a' and the control contact layer 506a'. In some embodiments, passivation layer 514 includes a semiconductor material. In some embodiments, the intermediate region 514d1 is between the second doped region 503a' and the second silicide region 515a'. The intermediate region 514d2 is between the second doped region 503b' and the control contact layer 506b'. In some embodiments, the intermediate region 514d2 is between the second doped region 503b' and the second silicide region 515b'. In some embodiments, intermediate regions 514d1, 514d2 may be intrinsic. In some embodiments, the intermediate regions 514d1, 514d2 have the same or a different conductivity type than the second conductivity type of the second doped regions 503a', 503b'. In some embodiments, each intermediate region 514d1, 514d2 includes a dopant and a dopant distribution. The peak dopant concentration of the middle regions 514d1 and 514d2 is smaller than the peak dopant concentration of the second doped regions 503a' and 503b'. In some embodiments, the peak dopant concentration of the intermediate regions 514d1, 514d2 is between 5×10 16 cm −3 and 5×10 17 cm −3 . Since the peak dopant concentration of the middle regions 514d1 and 514d2 is smaller than the peak dopant concentration of the second doped regions 503a' and 503b', the middle regions 514d1 and 514d2 can block the passivation layer between the second doped regions 503a' and 503b. 514, and blocks the electrical conduction between the second doped regions 503a', 503b' along the interface between the passivation layer 514 and the absorption layer 502'.

在一些實施例中,一種用於製造光偵測裝置500f的方法包括以下步驟:形成第一摻雜區501a’,501b’;在吸收層502’中形成第二摻雜區503a’,503b’;在吸收層502’的第一表面502s’上形成鈍化層514。 In some embodiments, a method for manufacturing the light detection device 500f includes the following steps: forming first doped regions 501a', 501b'; forming second doped regions 503a', 503b' in the absorber layer 502' ; Form a passivation layer 514 on the first surface 502s' of the absorption layer 502'.

在一些實施例中,在吸收層502’的第一表面502s’上方形成鈍化層514的步驟包括在吸收層502’的第一表面502s’上方形成一半導體層;然後通過任何合適的方法在半導體層中形成中間區域514d1,514d2,例如分別在第二摻雜區503a’,503b’上的部分半導體層中摻雜摻質。 In some embodiments, forming the passivation layer 514 over the first surface 502s' of the absorber layer 502' includes forming a semiconductor layer over the first surface 502s' of the absorber layer 502'; and then forming a semiconductor layer over the first surface 502s' of the absorber layer 502' by any suitable method. Intermediate regions 514d1 and 514d2 are formed in the layer, for example, dopants are doped in part of the semiconductor layer on the second doped regions 503a' and 503b' respectively.

在一些實施例中,用於製造光偵測裝置500f的方法還包括在鈍化層514中形成第一矽化物區513a’,513b’和第二矽化物區515a’,515b’。 In some embodiments, the method for fabricating the light detection device 500f further includes forming first silicide regions 513a', 513b' and second silicide regions 515a', 515b' in the passivation layer 514.

在一些實施例中,形成第一摻雜區501a’,501b’的步驟包括在吸收層502’的第一表面502s’上形成鈍化層514的步驟之前,在吸收層502’中摻雜第一摻質。在一些實施例中,形成第一摻雜區501a’,501b’的步驟還包括在吸收層502’的第一表面502s’上形成鈍化層514的步驟之後,在鈍化層514中摻雜第一摻質。 In some embodiments, the step of forming the first doped regions 501a', 501b' includes doping the first doped regions 501a', 501b' in the absorber layer 502' before the step of forming the passivation layer 514 on the first surface 502s' of the absorber layer 502'. Doping. In some embodiments, the step of forming the first doped regions 501a', 501b' further includes doping the first passivation layer 514 in the passivation layer 514 after the step of forming the passivation layer 514 on the first surface 502s' of the absorber layer 502'. Doping.

圖5G繪示根據一些實施例的光偵測裝置的剖視圖。圖5G中的光偵測裝置500g類似於圖5C中的光偵測裝置500c,其中差異描述於下。鈍化層514 包括兩個中間區域514d1、514d2,類似於圖5F中所述的中間區域514d1、514d2。通過第二區域514b與中間區域514d1、514d2的組合,可以進一步降低第二摻雜區503a’503b’之間的漏電流。 Figure 5G illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 500g in FIG. 5G is similar to the light detection device 500c in FIG. 5C, with the differences described below. Passivation layer 514 Two intermediate regions 514d1, 514d2 are included, similar to the intermediate regions 514d1, 514d2 described in Figure 5F. Through the combination of the second region 514b and the middle regions 514d1 and 514d2, the leakage current between the second doped regions 503a' 503b' can be further reduced.

圖5H繪示根據一些實施例的光偵測裝置的剖視圖。圖5H中的光偵測裝置500h類似於圖5G中的光偵測裝置500g,其中差異描述於下。光偵測裝置500h還包括圍繞吸收層502’的至少一部分的阻擋層519。在一些實施例中,阻擋層519的導電類型與吸收層502’的導電類型相同。阻擋層519可以阻擋吸收層502’中的光生電荷到達基底504’,這增加了光偵測裝置500h的光生載子的收集效率。阻擋層519還可以阻擋基底504’中的光生電荷到達吸收層502’,這增加了光偵測裝置500h的光生載子的速度。阻擋層519可以包括與吸收層502’的材料相同的材料、與基底504’的材料相同的材料、吸收層502’和基底504’的材料的組合,或者不同於吸收層502’和基底504’的材料。在一些實施例中,阻擋層519的形狀可以是但不限於環形。在一些實施例中,阻擋層519可以到達基底504’的第一表面504s。在一些實施例中,阻擋層519包括摻質並且具有峰值摻質濃度在1×1015cm-3至1×1020cm-3範圍內的摻質分佈。阻擋層519可以減少兩個相鄰像素之間的串擾。 Figure 5H illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 500h in Figure 5H is similar to the light detection device 500g in Figure 5G, with the differences described below. The light detection device 500h also includes a blocking layer 519 surrounding at least a portion of the absorbing layer 502'. In some embodiments, barrier layer 519 is of the same conductivity type as absorber layer 502'. The blocking layer 519 can block the photogenerated charges in the absorbing layer 502' from reaching the substrate 504', which increases the collection efficiency of the photogenerated carriers of the light detection device 500h. The blocking layer 519 can also block the photogenerated charges in the substrate 504' from reaching the absorbing layer 502', which increases the speed of the photogenerated carriers of the photodetection device 500h. Barrier layer 519 may comprise the same material as the absorbent layer 502', the same material as the substrate 504', a combination of materials of the absorbent layer 502' and the substrate 504', or different from the absorbent layer 502' and the substrate 504' s material. In some embodiments, the shape of barrier layer 519 may be, but is not limited to, annular. In some embodiments, barrier layer 519 may reach first surface 504s of substrate 504'. In some embodiments, barrier layer 519 includes dopants and has a dopant distribution with a peak dopant concentration in the range of 1×10 15 cm −3 to 1×10 20 cm −3 . The blocking layer 519 can reduce crosstalk between two adjacent pixels.

在一些實施例中,光偵測裝置500h還包括電連接到阻擋層519的導電層(圖未示)。可以通過導電層以偏壓電壓將阻擋層519偏壓以釋放未被第一摻雜區501a’,501b’收集的載子。 In some embodiments, the light detection device 500h further includes a conductive layer (not shown) electrically connected to the barrier layer 519 . The barrier layer 519 can be biased with a bias voltage through the conductive layer to release carriers that are not collected by the first doped regions 501a', 501b'.

圖6A顯示依據一些實施例之可增進電荷轉移速度的光偵測裝置的剖視圖。此光偵測裝置600a包含控制金屬線606a,606b和讀出金屬線608a,608b。控制金屬線606a,606b和讀出金屬線608a,608b電性耦接到鍺基光吸收材料602之表面602s。控制金屬線606a,606b分別電性耦接到表面602s上的P型區域603a,603b。讀出金屬線608a,608b分別電性耦接到表面602s上的N型區域601a,601b。 圖6A顯示的實施例分別在表面602s上添加一N型區域617及在表面602ss上添加一P型區域619。此N型區域617及P型區域619大體位在鍺基光吸收材料602中央,光信號IL可沿此位置通過。由於N型區域617及P型區域619集體形成一PN接面,在N型區域617及P型區域619之間有內建垂直電場,此電場有利於分開吸收光子產生的電子一電洞對;其中電子會移向N型區域617,而電洞會移向P型區域619。N型區域617經過操作可收集電子,而P型區域619經過操作可收集電洞。根據控制信號cs1,cs2,儲存在N型區域617的電子可移到N型區域601a或是N型區域601b。依據光偵測裝置600a的操作,金屬線610可為浮接,或是由一偏壓電壓ca1偏壓。依據一實施方式,N型區域601a,601b之摻雜濃度大於N型區域617之摻雜濃度。 FIG. 6A shows a cross-sectional view of a light detection device that can enhance charge transfer speed according to some embodiments. The light detection device 600a includes control metal lines 606a, 606b and readout metal lines 608a, 608b. The control metal lines 606a, 606b and the readout metal lines 608a, 608b are electrically coupled to the surface 602s of the germanium-based light absorbing material 602. The control metal lines 606a, 606b are respectively electrically coupled to the P-type regions 603a, 603b on the surface 602s. Sense metal lines 608a, 608b are electrically coupled to N-type regions 601a, 601b, respectively, on surface 602s. The embodiment shown in FIG. 6A respectively adds an N-type region 617 on the surface 602s and a P-type region 619 on the surface 602ss. The N-type region 617 and the P-type region 619 are generally located in the center of the germanium-based light absorbing material 602, and the optical signal IL can pass along this position. Since the N-type region 617 and the P-type region 619 collectively form a PN junction, there is a built-in vertical electric field between the N-type region 617 and the P-type region 619. This electric field is conducive to separating the electron-hole pairs generated by absorbing photons; The electrons will move to the N-type region 617, and the holes will move to the P-type region 619. N-type region 617 is operated to collect electrons, and P-type region 619 is operated to collect holes. According to the control signals cs1 and cs2, the electrons stored in the N-type region 617 can move to the N-type region 601a or the N-type region 601b. Depending on the operation of the light detection device 600a, the metal line 610 may be floating or biased by a bias voltage ca1. According to one embodiment, the doping concentration of the N-type regions 601a, 601b is greater than the doping concentration of the N-type region 617.

圖6B顯示依據一些實施例之可增進電荷轉移速度的光偵測裝置的剖視圖。此光偵測裝置600b類似於光偵測裝置600a。差異為此實施例中,P型區域619可經由一矽穿孔604v偏壓,其中由P型區域619收集的電洞可經由矽穿孔604v放電,此矽穿孔604v由一偏壓電壓ca2所偏壓。 FIG. 6B shows a cross-sectional view of a light detection device that can enhance charge transfer speed according to some embodiments. The light detection device 600b is similar to the light detection device 600a. The difference is that in this embodiment, the P-type region 619 can be biased through a silicon through-hole 604v, wherein the holes collected by the P-type region 619 can be discharged through the silicon through-hole 604v, and the silicon through-hole 604v is biased by a bias voltage ca2 .

圖6C顯示依據一些實施例之可增進電荷轉移速度的光偵測裝置的剖視圖。圖6C之光偵測裝置600c類似於光偵測裝置600b。差異為此實施例中,P型區域619可為U形或是井形以在鍺基光吸收材料602之下圍繞此鍺基光吸收材料602。再者,此P型區域619電性耦接至一偏壓電壓ca2。因此光生電洞可以被P型區域619收集且放電。 FIG. 6C shows a cross-sectional view of a light detection device that can enhance charge transfer speed according to some embodiments. The light detection device 600c of Figure 6C is similar to the light detection device 600b. The difference is that in this embodiment, the P-type region 619 may be U-shaped or well-shaped to surround the germanium-based light-absorbing material 602 under the germanium-based light-absorbing material 602 . Furthermore, the P-type region 619 is electrically coupled to a bias voltage ca2. Therefore, the photogenerated holes can be collected by the P-type region 619 and discharged.

圖6D繪示根據一些實施例的光偵測裝置的剖視圖。光偵測裝置600d包括基底604’。光偵測裝置還包括像素(圖未標),該像素包括由基底604’支撐的吸收層602’。像素在吸收層602’中包括由遮光板(圖未示)限定的吸收區域AR。吸收層602’包括第一表面602s’和與第一表面602s’相對的第二表面602ss’。吸收區域AR是接收通過遮光板的光學窗口入射的光信號的虛擬區域。像素包括電性耦 接到吸收層602’的第一開關(圖未標)和第二開關(圖未標)。第一開關包括控制接觸層606a’和讀出接觸層608a’。第二開關包括控制接觸層606b’和讀出接觸層608b’。在一些實施例中,讀出接觸層608a’,608b’在基底604’的第一表面604s上。在一些實施例中,讀出接觸層608a’,608b’設置在吸收區域AR的兩個相對側。在一些實施例中,吸收區域AR的寬度小於控制接觸層606a’,606b’之間的距離d3。在一些實施例中,控制接觸層606a’,606b’設置在吸收區域AR的兩個相對側。在一些實施例中,吸收層602’的第一表面602s’與基底604’的第一表面604s基本上齊平。光偵測裝置600d包括多個重複的像素。光偵測裝置600d包括包括多個重複像素的像素陣列。在一些實施例中,像素陣列可以是一維或二維陣列的像素。 Figure 6D illustrates a cross-sectional view of a light detection device according to some embodiments. Light detection device 600d includes a substrate 604'. The light detection device also includes a pixel (not shown) including an absorbing layer 602' supported by a substrate 604'. The pixel includes an absorption area AR defined by a light shield (not shown) in the absorption layer 602'. The absorbing layer 602' includes a first surface 602s' and a second surface 602ss' opposite the first surface 602s'. The absorption area AR is a virtual area that receives an optical signal incident through the optical window of the light shield. Pixels include electrically coupled The first switch (not labeled) and the second switch (not labeled) connected to the absorption layer 602'. The first switch includes a control contact layer 606a' and a sense contact layer 608a'. The second switch includes a control contact layer 606b' and a sense contact layer 608b'. In some embodiments, readout contact layers 608a', 608b' are on first surface 604s of substrate 604'. In some embodiments, readout contact layers 608a', 608b' are disposed on opposite sides of the absorbing area AR. In some embodiments, the width of the absorption area AR is less than the distance d3 between the control contact layers 606a', 606b'. In some embodiments, control contact layers 606a', 606b' are disposed on two opposite sides of the absorbing area AR. In some embodiments, the first surface 602s' of the absorbent layer 602' is substantially flush with the first surface 604s of the substrate 604'. The light detection device 600d includes a plurality of repeated pixels. Light detection device 600d includes a pixel array including a plurality of repeating pixels. In some embodiments, the pixel array may be a one-dimensional or two-dimensional array of pixels.

在一些實施例中,控制接觸層606a’,606b’在基底604’的第一表面604s和吸收層602'的第一表面602s’兩者上。換句話說,控制接觸層606a’,606b’的一部分在基底604’的第一表面604s’之上,而控制接觸層606a’,606b’的另一部分在吸收層602’的第一表面602s’之上。在一些實施例中,控制接觸層606a’,606b’在基底604’與吸收層602’之間的界面的一部分上。在一些實施例中,控制接觸層606a’,606b’之間的距離d3小於吸收層602’的寬度w3。在一些實施例中,讀出接觸層608a’,608b’之間的距離d4大於吸收層602’的寬度w3In some embodiments, control contact layers 606a', 606b' are on both the first surface 604s of the substrate 604' and the first surface 602s' of the absorbent layer 602'. In other words, a portion of the control contact layers 606a', 606b' is on the first surface 604s' of the substrate 604', and another portion of the control contact layers 606a', 606b' is on the first surface 602s' of the absorber layer 602'. above. In some embodiments, control contact layers 606a', 606b' are on a portion of the interface between substrate 604' and absorber layer 602'. In some embodiments, the distance d 3 between the control contact layers 606a', 606b' is less than the width w 3 of the absorber layer 602'. In some embodiments, the distance d4 between the readout contact layers 608a', 608b' is greater than the width w3 of the absorber layer 602'.

在一些實施例中,未摻雜區605a,605b就在控制接觸層606a’,606b’之下。即,在控制接觸層606a’,606b’正下方的吸收層602’和基底604’的部分可以是本質的或包括摻質,並且具有峰值摻質濃度低於約1×1015cm-3的摻質分佈。術語“本質”是指在控制接觸層606a’,606b’正下方的半導體材料部分未故意添加摻質。在一些實施例中,取決於各種因素,包括吸收層602’的材料、基底604’的材料、控制接觸層606a’,606b’的材料,以及吸收層602’和基底604’的雜質或缺陷程度,吸收層602’和基底604’上的控制接觸層606a’,606b’可以導致形成蕭特基接觸、歐姆接觸或其特性在兩者之間的組合。 In some embodiments, undoped regions 605a, 605b are directly beneath control contact layers 606a', 606b'. That is, the portions of the absorber layer 602' and the substrate 604' directly beneath the control contact layers 606a', 606b' may be intrinsic or include dopants and have a peak dopant concentration below about 1×10 15 cm −3 Dopant distribution. The term "essentially" means that the portion of the semiconductor material directly beneath the control contact layers 606a', 606b' has no intentionally added dopants. In some embodiments, depending on various factors, including the material of the absorber layer 602', the material of the substrate 604', the materials of the control contact layers 606a', 606b', and the level of impurities or defects in the absorber layer 602' and the substrate 604' , the control contact layers 606a', 606b' on the absorber layer 602' and the substrate 604' can result in the formation of a Schottky contact, an ohmic contact, or a combination of properties in between.

像素還包括兩個控制信號cs1,cs2,其控制控制接觸層606a’,606b’,以控制由吸收層602’中的吸收的光子產生的電子或電洞的移動方向。例如,當使用電壓時,如果控制信號cs1相對於控制信號cs2偏置,則在控制接觸層606a’,606b’正下方的兩個部分之間會產生電場,並且根據電場的方向,自由電荷會向讀出接觸層608b’,608a’正下方的兩個部分的其中之一漂移。 The pixel also includes two control signals cs1, cs2, which control the contact layers 606a', 606b' to control the movement direction of electrons or holes generated by absorbed photons in the absorption layer 602'. For example, when using voltage, if control signal cs1 is biased relative to control signal cs2, an electric field will be generated between the two parts directly beneath the control contact layers 606a', 606b', and depending on the direction of the electric field, the free charges will Drift to one of the two portions directly beneath the readout contact layers 608b', 608a'.

在一些實施例中,像素還包括分別電性耦接到第一開關和第二開關的第一讀出電路(圖未示)和第二讀出電路(圖未示),用以處理收集的電荷。第一讀出電路電性耦接到讀出接觸層608a’。第二讀出電路電性耦接到讀出接觸層608b’。 In some embodiments, the pixel further includes a first readout circuit (not shown) and a second readout circuit (not shown) electrically coupled to the first switch and the second switch respectively, for processing the collected charge. The first readout circuit is electrically coupled to the readout contact layer 608a'. The second readout circuit is electrically coupled to the readout contact layer 608b'.

在一些實施例中,第一開關包括在讀出接觸層608a’下的第一摻雜區601a’。第二開關包括在讀出的接觸層608b’下的第一摻雜區601b’。 In some embodiments, the first switch includes a first doped region 601a' under the sense contact layer 608a'. The second switch includes a first doped region 601b' under the sensed contact layer 608b'.

在一些實施例中,第一摻雜區601a’,601b’是第一導電類型。在一些實施例中,各個第一摻雜區601a’,601b’包括一第一摻質和一摻質分佈。第一摻雜區601a’,601b’的峰值摻質濃度取決於讀出接觸層608a’,608b’的材料和吸收層602’的材料,例如在5×1018cm-3至5×1020cm-3之間。第一摻雜區601a’,601b’用於收集由吸收層602’中的吸收區域AR產生的載子,其基於兩個控制信號cs1,cs2的控制,分別由第一讀出電路(圖未示)和第二讀出電路(圖未示)處理。 In some embodiments, the first doped regions 601a', 601b' are of the first conductivity type. In some embodiments, each first doped region 601a', 601b' includes a first dopant and a dopant distribution. The peak dopant concentration of the first doped regions 601a', 601b' depends on the material of the readout contact layer 608a', 608b' and the material of the absorption layer 602', for example, between 5×10 18 cm −3 and 5×10 20 between cm -3 . The first doped regions 601a', 601b' are used to collect carriers generated by the absorption region AR in the absorption layer 602', which are based on the control of two control signals cs1, cs2 and are respectively controlled by the first readout circuit (not shown in the figure). shown) and the second readout circuit (not shown).

光偵測裝置600d的像素還包括在吸收層602’中的第三摻雜區617’。第三摻雜區617’具有與第一摻雜區601a’,601b’的第一導電類型相同的第三導電類型。光偵測裝置600d的像素還包括在吸收層602’中的第四摻雜區618。在一些實施例中,第四摻雜區618在第三摻雜區617’與第二表面602ss’之間。在一些實施例中,第三摻雜區617’包括一第三摻質並且具有峰值摻質濃度在1×1018cm-3與5×1020cm-3之間的摻質分佈。與吸收層602’的第二表面602ss’相比,第三摻雜區617’的峰值摻質濃度更靠近吸收層602’的第一表面602s’。在一些實施例中,具有 峰值摻質濃度的第三摻雜區617’的位置與吸收層602’的第一表面602s’之間的距離不大於50nm。在一些實施例中,第四摻雜區618包括一第四摻質,並且具有與第三摻雜區617’的第三導電類型不同的第四導電類型。在一些實施例中,第四摻雜區618包括第四摻質並且具有峰值摻質濃度在1×1018cm-3和5×1020cm-3之間的摻質分佈。與吸收層602’的第一表面602s’相比,第四摻雜區618的峰值摻質濃度更接近吸收層602’的第二表面602ss’。 The pixel of the light detection device 600d also includes a third doped region 617' in the absorber layer 602'. The third doped region 617' has the same third conductivity type as the first conductivity type of the first doped regions 601a', 601b'. The pixel of light detection device 600d also includes a fourth doped region 618 in the absorber layer 602'. In some embodiments, the fourth doped region 618 is between the third doped region 617' and the second surface 602ss'. In some embodiments, the third doped region 617' includes a third dopant and has a dopant distribution with a peak dopant concentration between 1×10 18 cm −3 and 5×10 20 cm −3 . The peak dopant concentration of the third doped region 617' is closer to the first surface 602s' of the absorbing layer 602' than to the second surface 602ss' of the absorbing layer 602'. In some embodiments, the distance between the location of the third doped region 617' having the peak dopant concentration and the first surface 602s' of the absorber layer 602' is no greater than 50 nm. In some embodiments, the fourth doped region 618 includes a fourth dopant and has a fourth conductivity type that is different from the third conductivity type of the third doped region 617'. In some embodiments, the fourth doped region 618 includes a fourth dopant and has a dopant profile with a peak dopant concentration between 1×10 18 cm −3 and 5×10 20 cm −3 . The peak dopant concentration of the fourth doped region 618 is closer to the second surface 602ss' of the absorbing layer 602' than to the first surface 602s' of the absorbing layer 602'.

由於第三摻雜區617’和第四摻雜區618共同形成一垂直光電二極體,因此在第三摻雜區617’和第四摻雜區618之間建立了一個內置的垂直電場,可以幫助分離由吸收的光子產生的電子-電洞對,例如,當第三摻雜區617’是n型並且第四摻雜區618是p型時,電子趨於向第三摻雜區617’移動且電洞趨於向第四摻雜區618移動。第三摻雜區617’用於收集電子,第四摻雜區618用於收集電洞。可以基於控制信號cs1,cs2將存儲在第三摻雜區617’中的電子移動到第一摻雜區601b’或第一摻雜區601a’。因此,光偵測裝置600d的量子效率更高,並且朝向第一摻雜區601b’或第一摻雜區601a’移動的載子的數量也更高。 Since the third doped region 617' and the fourth doped region 618 together form a vertical photodiode, a built-in vertical electric field is established between the third doped region 617' and the fourth doped region 618. Can help separate electron-hole pairs generated by absorbed photons, for example, when the third doped region 617' is n-type and the fourth doped region 618 is p-type, the electrons tend to move towards the third doped region 617 ' moves and the holes tend to move toward the fourth doped region 618. The third doped region 617' is used to collect electrons, and the fourth doped region 618 is used to collect holes. The electrons stored in the third doping region 617' may be moved to the first doping region 601b' or the first doping region 601a' based on the control signals cs1, cs2. Therefore, the quantum efficiency of the light detection device 600d is higher, and the number of carriers moving toward the first doped region 601b' or the first doped region 601a' is also higher.

在一些實施例中,從光偵測裝置600d的剖視圖來看,光偵測裝置600d還包括至少設置在吸收層602’的兩個相對側的隔離區624。隔離區624在基底604’中,並且與吸收層602’物理上分離。在一些實施例中,隔離區624是填充有介電材料或絕緣材料的溝槽,以用作兩個相鄰像素之間的高電阻區域,從而阻止電流流過隔離區624並改善相鄰像素之間的電隔離。介電材料或絕緣材料可以包括但不限於,氧化物材料,包括二氧化矽(SiO2),或氮化物材料,包括氮化矽(Si3N4),或矽材料,包括非晶矽、多晶矽、單晶矽或磊晶矽。 In some embodiments, from the cross-sectional view of the light detection device 600d, the light detection device 600d further includes at least isolation regions 624 disposed on two opposite sides of the absorption layer 602'. Isolation region 624 is in substrate 604' and is physically separated from absorber layer 602'. In some embodiments, isolation region 624 is a trench filled with dielectric or insulating material to serve as a high-resistance region between two adjacent pixels to prevent current flow through isolation region 624 and improve adjacent pixels. electrical isolation between them. Dielectric materials or insulating materials may include, but are not limited to, oxide materials, including silicon dioxide (SiO 2 ), or nitride materials, including silicon nitride (Si 3 N 4 ), or silicon materials, including amorphous silicon, Polycrystalline silicon, monocrystalline silicon or epitaxial silicon.

在一些實施例中,隔離區624從基底604’的第一表面604s延伸並且從第一表面604s延伸到預定深度。在一些實施例中,隔離區624從基底604’的第二表面604ss延伸並且從第二表面604ss延伸到預定深度。在一些實施例中,隔離區 624從第一表面604s至第二表面604ss穿透基底604’。 In some embodiments, the isolation region 624 extends from the first surface 604s of the substrate 604' and extends from the first surface 604s to a predetermined depth. In some embodiments, the isolation region 624 extends from the second surface 604ss of the substrate 604' and extends from the second surface 604ss to a predetermined depth. In some embodiments, the isolation zone 624 penetrates the substrate 604' from the first surface 604s to the second surface 604ss.

在一些實施例中,隔離區624是具有導電類型的摻雜區。隔離區624的導電類型可以與第一摻雜區601a’,601b’的第一導電類型不同或相同。隔離區624的摻雜可以產生能隙偏移引起的位能勢壘,其阻礙電流流過隔離區624並且改善相鄰像素之間的電隔離。在一些實施例中,隔離區624包括與基底604’的材料不同的半導體材料。在基底604’和隔離區624之間形成的兩種不同半導體材料之間的界面可以產生能隙偏移引起的能障,阻礙電流流過隔離區624並改善相鄰像素之間的電隔離。在一些實施例中,隔離區624的形狀可以是環形。在一些實施例中,隔離區624可以包括兩個獨立區域,其設置在吸收層602’的兩個相對側。 In some embodiments, isolation region 624 is a doped region with a conductivity type. The conductivity type of the isolation region 624 may be different or the same as the first conductivity type of the first doping regions 601a', 601b'. Doping of the isolation region 624 can create a potential energy barrier caused by an energy gap shift, which blocks current flow through the isolation region 624 and improves electrical isolation between adjacent pixels. In some embodiments, isolation region 624 includes a semiconductor material that is different from the material of substrate 604'. The interface between two different semiconductor materials formed between the substrate 604' In some embodiments, the isolation region 624 may be annular in shape. In some embodiments, isolation region 624 may include two separate regions disposed on opposite sides of absorbent layer 602'.

在一些實施例中,光偵測裝置600d還包括在吸收層602'的第一表面602s’上的導電層610’。導電層610’在第三摻雜區617’上。取決於光偵測裝置600d的操作,導電層610’可以是浮接的或被偏壓電壓ca1偏壓。 In some embodiments, the light detection device 600d further includes a conductive layer 610' on the first surface 602s' of the absorbing layer 602'. The conductive layer 610' is on the third doped region 617'. Depending on the operation of the light detection device 600d, the conductive layer 610' may be floating or biased by the bias voltage ca1.

圖6E繪示根據一些實施例的光偵測裝置的剖視圖。圖6E中的光偵測裝置600e類似於圖6D中的光偵測裝置600d,其中差異描述於下。在一些實施例中,第一開關還包括在控制接觸層606a’之下的第二摻雜區603a’。第二開關還包括在控制接觸層606b’之下的第二摻雜區603b’。在一些實施例中,第三摻雜區617’與第二摻雜區603a’,603b’分離。在一些實施例中,第三摻雜區617’在第二摻雜區603a’,603b’之間。在一些實施例中,各個第二摻雜區603a’,603b’的一部分形成在吸收層602’中,並且第二摻雜區603a’,603b’的另一部分形成在基底604’中。第二摻雜區603a’,603b形成在吸收層602’和基底604’兩者中。在一些實施例中,各個第二摻雜區603a’,603b’覆蓋基底604’與吸收層602’之間的界面的一部分。在一些實施例中,第二摻雜區603a’,603b'具有與第一摻雜區601b’,603b'的第一導電類型不同的第二導電類型。在一些實施例中,第二摻雜區603a’,603b’包括一第二摻質以及一摻質分佈。第二摻雜區603a’,603b的峰值摻質濃度取決 於控制接觸層606b’,606a’的材料和吸收層602’的材料以及基底604’的材料,例如在1×1017cm-3至5×1020cm-3之間。在一些實施例中,被第二摻雜區603a’,603b’覆蓋的基底604’與吸收層602’之間的界面處濃度在1×1017cm-3至5×1020cm-3之間。第二摻雜區603a’,603b’與控制接觸層606b’,606a’形成蕭特基接觸、歐姆接觸或其組合。基於控制信號cs1,cs2的控制,第二摻雜區603a’,603b’用於來解調從吸收層602’產生的載子。通過形成覆蓋基底604’和吸收層602’之間的界面的第二摻雜區603a’,603b’,光偵測裝置600e可以同時具有令人滿意的暗電流和解調對比度。在一些實施例中,控制接觸層606b’,606a’可以完全形成在吸收層602’之上,或者可以完全形成在基底604’之上。 Figure 6E illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 600e in FIG. 6E is similar to the light detection device 600d in FIG. 6D, with the differences described below. In some embodiments, the first switch also includes a second doped region 603a' under the control contact layer 606a'. The second switch also includes a second doped region 603b' under the control contact layer 606b'. In some embodiments, the third doped region 617' is separated from the second doped regions 603a', 603b'. In some embodiments, the third doped region 617' is between the second doped regions 603a', 603b'. In some embodiments, a portion of each second doped region 603a', 603b' is formed in the absorber layer 602', and another portion of the second doped region 603a', 603b' is formed in the substrate 604'. Second doped regions 603a', 603b are formed in both the absorber layer 602' and the substrate 604'. In some embodiments, each second doped region 603a', 603b' covers a portion of the interface between the substrate 604' and the absorber layer 602'. In some embodiments, the second doped regions 603a', 603b' have a second conductivity type that is different from the first conductivity type of the first doped regions 601b', 603b'. In some embodiments, the second doped regions 603a', 603b' include a second dopant and a dopant distribution. The peak dopant concentration of the second doped regions 603a', 603b depends on the material of the control contact layer 606b', 606a', the material of the absorption layer 602' and the material of the substrate 604', for example, between 1×10 17 cm -3 and Between 5×10 20 cm -3 . In some embodiments, the concentration at the interface between the substrate 604' covered by the second doped regions 603a', 603b' and the absorbing layer 602' is between 1×10 17 cm −3 and 5×10 20 cm −3 between. The second doped regions 603a', 603b' and the control contact layers 606b', 606a' form a Schottky contact, an ohmic contact or a combination thereof. Based on the control of the control signals cs1, cs2, the second doped regions 603a', 603b' are used to demodulate the carriers generated from the absorption layer 602'. By forming the second doped regions 603a', 603b' covering the interface between the substrate 604' and the absorption layer 602', the light detection device 600e can have satisfactory dark current and demodulation contrast at the same time. In some embodiments, the control contact layers 606b', 606a' may be formed entirely over the absorber layer 602', or may be formed entirely over the substrate 604'.

圖6F繪示根據一些實施例的光偵測裝置的剖視圖。圖6F中的光偵測裝置600f類似於圖6D中的光偵測裝置600d,其中差異描述於下。控制接觸層606a’,606b’完全形成在吸收層602’的第一表面602s’上。 Figure 6F illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 600f in FIG. 6F is similar to the light detection device 600d in FIG. 6D, with the differences described below. Control contact layers 606a', 606b' are formed entirely on first surface 602s' of absorber layer 602'.

圖6G繪示根據一些實施例的光偵測裝置的剖視圖。圖6G中的光偵測裝置600g類似於圖6F中的光偵測裝置600f,其中差異描述於下。在一些實施例中,第一開關還包括在控制接觸層606a’下的第二摻雜區603a’。第二開關還包括在控制接觸層606b’下的第二摻雜區603b’。圖6G中的第二摻雜區603a’,603b’與前面提到的第二摻雜區相似,例如如圖6E中所述的第二摻雜區603a’,603b’,除了在圖6G中第二摻雜區603a’,603b’完全形成在吸收層602’中。 Figure 6G illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 600g in FIG. 6G is similar to the light detection device 600f in FIG. 6F, with the differences described below. In some embodiments, the first switch also includes a second doped region 603a' under the control contact layer 606a'. The second switch also includes a second doped region 603b' under the control contact layer 606b'. The second doped regions 603a', 603b' in Figure 6G are similar to the previously mentioned second doped regions, such as the second doped regions 603a', 603b' described in Figure 6E, except that in Figure 6G The second doped regions 603a', 603b' are completely formed in the absorber layer 602'.

圖6H繪示根據一些實施例的光偵測裝置的剖視圖。圖6H中的光偵測裝置600h類似於圖6D中的光偵測裝置600d,其中差異描述於下。在一些實施例中,讀出接觸層608a’,608b’之間的距離d4小於吸收層602’的寬度w3。在一些實施例中,光偵測裝置600g沒有如圖6D所述的第四摻雜區618。在一些實施例中,光偵測裝置600g還包括圍繞吸收層602’的至少一部分的阻擋層619’。在一些實施例中,阻擋層619’的導電類型與吸收層602’的導電類型相同。阻擋層619’可以阻 擋吸收層602’中的光生電荷到達基底604’,這提高了光偵測裝置600g的光生載子的收集效率。阻擋層619’還可阻擋基底604’中的光生電荷到達吸收層602’,這增加了光偵測裝置600g的光生載子的速度。阻擋層619’可以包括與吸收層602’的材料相同、與基底604’的材料相同的一材料、吸收層602’的材料和吸收層602’的材料的組合的一材料,或與吸收層602’的材料和基底604’的材料不同。在一些實施例中,阻擋層619’的形狀可以是但不限於環形。在一些實施例中,阻擋層619’可以到達基底604’的第一表面604s。 Figure 6H illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 600h in Figure 6H is similar to the light detection device 600d in Figure 6D, with the differences described below. In some embodiments, the distance d4 between the readout contact layers 608a', 608b' is less than the width w3 of the absorber layer 602'. In some embodiments, the photodetection device 600g does not have the fourth doped region 618 as shown in FIG. 6D. In some embodiments, light detection device 600g further includes a barrier layer 619' surrounding at least a portion of absorber layer 602'. In some embodiments, barrier layer 619' is of the same conductivity type as absorber layer 602'. The blocking layer 619' can block the photogenerated charges in the absorbing layer 602' from reaching the substrate 604', which improves the collection efficiency of the photogenerated carriers of the light detection device 600g. The blocking layer 619' can also block the photogenerated charges in the substrate 604' from reaching the absorbing layer 602', which increases the speed of the photogenerated carriers of the photodetection device 600g. Barrier layer 619' may include a material that is the same as the material of absorber layer 602', a material that is the same as the material of substrate 604', a combination of the material of absorber layer 602' and the material of absorber layer 602', or a material that is the same as the material of absorber layer 602'. The material of ' is different from the material of base 604 '. In some embodiments, the shape of barrier layer 619' may be, but is not limited to, annular. In some embodiments, barrier layer 619' may reach first surface 604s of substrate 604'.

由於第三摻雜區617’和阻擋層619’共同形成一垂直光電二極體,因此在第三摻雜區617’和阻擋層619’之間建立了內置的垂直電場,這可以幫助分離由吸收層602’中的吸收光子產生的電子-電洞對,例如,當第三摻雜區617’是n型並且阻擋層619’是p型時,電子趨於向第三摻雜區617’移動而電洞趨於向阻擋層619’移動。第三摻雜區617’用來收集電子並用作初步收集器。阻擋層619’用來收集電洞。可以基於控制信號cs1,cs2將存儲在第三摻雜區617’中的電子進一步移動到第一摻雜區601b’或第一摻雜區601a’。在一些實施例中,阻擋層619’可以通過偏壓電壓ca2偏壓以釋放未被第一摻雜區601a’,601b’收集的載子。因此,提高了光偵測裝置600g的解調對比度。 Since the third doped region 617' and the barrier layer 619' together form a vertical photodiode, a built-in vertical electric field is established between the third doped region 617' and the barrier layer 619', which can help separate the Electron-hole pairs generated by absorbed photons in the absorbing layer 602', for example, when the third doped region 617' is n-type and the blocking layer 619' is p-type, the electrons tend to move towards the third doped region 617' Move and the holes tend to move toward the barrier layer 619'. The third doped region 617' is used to collect electrons and serves as a preliminary collector. Barrier layer 619' is used to collect holes. The electrons stored in the third doping region 617' may be further moved to the first doping region 601b' or the first doping region 601a' based on the control signals cs1, cs2. In some embodiments, the barrier layer 619' may be biased by the bias voltage ca2 to release carriers that are not collected by the first doped regions 601a', 601b'. Therefore, the demodulation contrast of the light detection device 600g is improved.

圖6I繪示根據一些實施例的光偵測裝置的剖視圖。圖6I中的光偵測裝置600i類似於圖6G中的光偵測裝置600g,其中差異描述於下。在一些實施例中,第一開關還包括在吸收層602’和控制接觸層606a之間的一第一介電層633a。第二開關可以進一步包括在吸收層602’和控制接觸層606b之間的一第二介電層633b。第一介電層633a防止從控制接觸層606a’至吸收層602’的直接電流傳導,但允許在吸收層602’內建立電場,以響應施加於控制接觸層606a’的一電壓。第二介電層633b防止從控制接觸層606b’至吸收層602’的直接電流傳導,但允許在吸收層602’內建立電場,以響應施加於控制接觸層606b’的一電壓。建立的電場可以吸 引或排斥吸收層602’內的電荷載子。 Figure 6I illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 600i in FIG. 6I is similar to the light detection device 600g in FIG. 6G, with the differences described below. In some embodiments, the first switch further includes a first dielectric layer 633a between the absorber layer 602' and the control contact layer 606a. The second switch may further include a second dielectric layer 633b between the absorber layer 602' and the control contact layer 606b. First dielectric layer 633a prevents direct current conduction from control contact layer 606a' to absorber layer 602', but allows an electric field to be established within absorber layer 602' in response to a voltage applied to control contact layer 606a'. The second dielectric layer 633b prevents direct current conduction from the control contact layer 606b' to the absorber layer 602', but allows an electric field to be established within the absorber layer 602' in response to a voltage applied to the control contact layer 606b'. The electric field established can attract Attract or repel charge carriers within the absorbing layer 602'.

圖6J繪示根據一些實施例的光偵測裝置的剖視圖。圖6J中的光偵測裝置600j類似於圖6I中的光偵測裝置600i,其中差異描述於下。在一些實施例中,第一開關還包括在第一介電層633a下方的第二摻雜區603a’。第二開關還包括在第二介電層633b下方的第二摻雜區603b’。第二摻雜區603a’,603b’與前面提到的第二摻雜區相似,例如如圖6G所描述的第二摻雜區603a’,603b’。 Figure 6J illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 600j in FIG. 6J is similar to the light detection device 600i in FIG. 6I, with the differences described below. In some embodiments, the first switch further includes a second doped region 603a' under the first dielectric layer 633a. The second switch also includes a second doped region 603b' under the second dielectric layer 633b. The second doped regions 603a', 603b' are similar to the previously mentioned second doped regions, such as the second doped regions 603a', 603b' described in FIG. 6G.

圖6K繪示根據一些實施例的光偵測裝置的剖視圖。圖6K中的光偵測裝置600k類似於圖6H中的光偵測裝置600h,其中差異描述於下。在一些實施例中,第三摻雜區617’與第二摻雜區603a’的遠離第一開關的第一摻雜區601a’的一部分重疊。第三摻雜區617’還與第二摻雜區603b’的遠離第二開關的第一摻雜區601b’的一部分重疊。在一些實施例中,第二摻雜區603a’的遠離第一摻雜區601a’的部分包括第三摻質和第二摻質兩者,其中第三摻質不同於第二摻質。類似地,第二摻雜區603b’的遠離第一摻雜區601b’的部分包括第三摻質和第二摻質兩者。 Figure 6K illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 600k in Figure 6K is similar to the light detection device 600h in Figure 6H, with the differences described below. In some embodiments, the third doped region 617' overlaps a portion of the second doped region 603a' of the first doped region 601a' away from the first switch. The third doped region 617' also overlaps a portion of the second doped region 603b' of the first doped region 601b' away from the second switch. In some embodiments, the portion of the second doped region 603a' remote from the first doped region 601a' includes both a third dopant and a second dopant, where the third dopant is different from the second dopant. Similarly, a portion of the second doped region 603b' remote from the first doped region 601b' includes both the third dopant and the second dopant.

圖6L繪示根據一些實施例的光偵測裝置的剖視圖。圖6L中的光偵測裝置600l類似於圖6H中的光偵測裝置600h,其中差異描述於下。在一些實施例中,各個像素的吸收層602’包括阻礙區640。阻礙區640在第二摻雜區603a’,603b’之間並且與第三摻雜區617’完全重疊。在一些實施例中,阻礙區640包括一摻質,並且具有不同於第三摻雜區617’的第三導電類型的導電類型。在一些實施例中,阻礙區640具有一摻質和一摻質分佈,其峰值摻質濃度高於第三摻雜區617’的峰值摻質濃度。在一些實施例中,阻礙區640的峰值摻質濃度在1×1018cm-3和5×1020cm-3之間。 Figure 6L illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 600l in Figure 6L is similar to the light detection device 600h in Figure 6H, with the differences described below. In some embodiments, the absorbing layer 602' of each pixel includes a blocking region 640. The barrier region 640 is between the second doped regions 603a', 603b' and completely overlaps the third doped region 617'. In some embodiments, the barrier region 640 includes a dopant and has a conductivity type different from the third conductivity type of the third doped region 617'. In some embodiments, the barrier region 640 has a dopant and a dopant distribution whose peak dopant concentration is higher than the peak dopant concentration of the third doped region 617'. In some embodiments, barrier region 640 has a peak dopant concentration between 1×10 18 cm −3 and 5×10 20 cm −3 .

阻礙區640可以阻止待收集的載子到達吸收層602’的第一表面602s’。結果是,降低了光偵測裝置600l的兩個第二摻雜區603a’,603b’之間的表面漏電流。 The blocking region 640 may prevent carriers to be collected from reaching the first surface 602s' of the absorbing layer 602'. As a result, the surface leakage current between the two second doped regions 603a', 603b' of the light detection device 600l is reduced.

圖6M繪示根據一些實施例的光偵測裝置的剖視圖。圖6M中的光偵測裝置600m類似於圖6G中的光偵測裝置600g,其中差異描述於下。在一些實施例中,光偵測裝置600m的像素還包括在吸收層602’中的兩個反摻雜區651a,651b。各個反摻雜區651a,651b具有與第一摻雜區601a’,601b’的第一導電類型不同的導電類型。例如,如果光偵測裝置被配置為處理所收集的電子以進一步應用,則第一摻雜區601a’,601b’為n型,第三摻雜區617’為n型,並且反摻雜區651a,651b為p型。在一些實施例中,反摻雜區651a,651b與遠離第三摻雜區617’的第一摻雜區601a’,601b’的一部分重疊,並且第一摻雜區601a’,601b’的其他部分未與反摻雜區651a,651b重疊。在一些實施例中,各個第一摻雜區601a’,601b’與相應的反摻雜區651a,651b完全重疊。 Figure 6M illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 600m in FIG. 6M is similar to the light detection device 600g in FIG. 6G, with the differences described below. In some embodiments, the pixel of the light detection device 600m also includes two counter-doped regions 651a, 651b in the absorber layer 602'. Each counter-doped region 651a, 651b has a different conductivity type than the first conductivity type of the first doped region 601a', 601b'. For example, if the photodetection device is configured to process the collected electrons for further applications, then the first doped regions 601a', 601b' are n-type, the third doped region 617' is n-type, and the counter-doped region 651a and 651b are p-type. In some embodiments, the counter-doped regions 651a, 651b overlap with a portion of the first doped regions 601a', 601b' away from the third doped region 617', and other portions of the first doped regions 601a', 601b' Portions do not overlap with the counter-doped regions 651a, 651b. In some embodiments, each first doped region 601a', 601b' completely overlaps the corresponding counter-doped region 651a, 651b.

在一些實施例中,各個反摻雜區651a,651b包括一摻質以及具有峰值摻質濃度的摻質分佈。峰值摻質濃度不小於1×1016cm-3。在一些實施例中,反摻雜區651a,651b的峰值摻質濃度低於第一摻雜區601b',601a'的峰值摻質濃度。在一些實施例中,反摻雜區651a,651b的峰值摻質濃度在1×1016cm-3與1×1019cm-3之間。在一些實施例中,反摻雜區651a,651b用作暗電流減小區域,用於降低光偵測裝置600m的暗電流。與沒有反摻雜區651a,651b的光偵測裝置相比,包括與第一摻雜區601a’,601b’的至少一部分重疊的反摻雜區651a,651b的光偵測裝置在吸收層602’中具有更薄的空乏區,因此光偵測裝置600m具有較低的暗電流。 In some embodiments, each counter-doped region 651a, 651b includes a dopant and a dopant profile having a peak dopant concentration. The peak dopant concentration is not less than 1×10 16 cm -3 . In some embodiments, the peak dopant concentration of the counter-doped regions 651a, 651b is lower than the peak dopant concentration of the first doped regions 601b', 601a'. In some embodiments, the peak dopant concentration of the counter-doped regions 651a, 651b is between 1×10 16 cm −3 and 1×10 19 cm −3 . In some embodiments, the counter-doping regions 651a, 651b are used as dark current reduction regions for reducing the dark current of the photodetection device 600m. Compared with the light detection device without the anti-doped regions 651a, 651b, the light detection device including the anti-doped regions 651a, 651b overlapping at least a portion of the first doped regions 601a', 601b' has a lower surface area in the absorber layer 602. ' has a thinner depletion region, so the light detection device 600m has a lower dark current.

圖6N繪示根據一些實施例的光偵測裝置的剖視圖。圖6N中的光偵測裝置600n類似於圖6M中的光偵測裝置600m,其中差異描述於下。在一些實施例中,第一開關還包括在吸收層602’和控制接觸層606a’之間的一第一介電層633a。第二開關可以進一步包括在吸收層602’和控制接觸層606b’之間的一第二介電層633b。第一介電層633a和第二介電層633b類似於圖6I中所述的第一介電層633a和 第二介電層633b。 Figure 6N illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 600n in FIG. 6N is similar to the light detection device 600m in FIG. 6M, with the differences described below. In some embodiments, the first switch further includes a first dielectric layer 633a between the absorber layer 602' and the control contact layer 606a'. The second switch may further include a second dielectric layer 633b between the absorber layer 602' and the control contact layer 606b'. The first dielectric layer 633a and the second dielectric layer 633b are similar to the first dielectric layer 633a and the first dielectric layer 633b described in FIG. 6I Second dielectric layer 633b.

圖6O繪示根據一些實施例的光偵測裝置的剖視圖。圖6O中的光偵測裝置600o類似於圖6M中的光偵測裝置600m,其中差異描述於下。在一些實施例中,第一開關還包括在控制接觸層606a’下的一第二摻雜區603a’。第二開關還包括在控制接觸層606b’下的一第二摻雜區603b’。第二摻雜區603a’,603b’類似於前述的第二摻雜區,如圖6G所描述的第二摻雜區603a’,603b’。 Figure 6O illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 600o in Figure 6O is similar to the light detection device 600m in Figure 6M, with the differences described below. In some embodiments, the first switch further includes a second doped region 603a' under the control contact layer 606a'. The second switch also includes a second doped region 603b' under the control contact layer 606b'. The second doped regions 603a', 603b' are similar to the aforementioned second doped regions, such as the second doped regions 603a', 603b' described in FIG. 6G.

圖6P繪示根據一些實施例的光偵測裝置的剖視圖。圖6P中的光偵測裝置600p類似於圖6O中的光偵測裝置600o,其中差異描述於下。在一些實施例中,第一開關還包括在吸收層602’和控制接觸層606a’之間的一第一介電層633a。第二開關可以進一步包括在吸收層602’和控制接觸層606b’之間的一第二介電層633b。第一介電層633a和第二介電層633b類似於圖6I中所述的第一介電層633a和第二介電層633b。 Figure 6P illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 600p in FIG. 6P is similar to the light detection device 600o in FIG. 6O, with the differences described below. In some embodiments, the first switch further includes a first dielectric layer 633a between the absorber layer 602' and the control contact layer 606a'. The second switch may further include a second dielectric layer 633b between the absorber layer 602' and the control contact layer 606b'. The first dielectric layer 633a and the second dielectric layer 633b are similar to the first dielectric layer 633a and the second dielectric layer 633b described in FIG. 6I.

圖6Q繪示根據一些實施例的光偵測裝置的剖視圖。圖6Q中的光偵測裝置600q類似於圖6M中的光偵測裝置600m,其中差異描述於下。在一些實施例中,整個第一摻雜區601a’與反摻雜區651a重疊。在一些實施例中,從光偵測裝置600q的剖視圖來看,反摻雜區651a相對於第一摻雜區601a’是不對稱的輪廓。反摻雜區651a的不對稱輪廓是相對於第一摻雜區601a’。在一些實施例中,反摻雜區651a包括第一部分(圖未標)和第二部分(圖未標)。第一部分比第二部分更靠近第三摻雜區617’。第一部分具有第一寬度W5,第二部分具有大於第一寬度W5的第二寬度W6。在一些實施例中,整個第一摻雜區601b’與反摻雜區651b重疊。在一些實施例中,從光偵測裝置600q的橫截面來看,反摻雜區651b相對於第一摻雜區601b’是不對稱的輪廓。反摻雜區651b的不對稱輪廓是相對於第一摻雜區601b’的。在一些實施例中,反摻雜區651b包括第一部分(圖未標)和第二部分(圖未標)。第一部分比第二部分更靠近第三摻雜區617’。第一部分具有第一 寬度W7,第二部分具有大於第一寬度W7的第二寬度W8。在一些實施例中,第一開關還包括在吸收層602’和控制接觸層606a’之間的一第一介電層633a。在一些實施例中,第二開關可以進一步包括在吸收層602’和控制接觸層606b’之間的一第二介電層633b。第一介電層633a和第二介電層633b分別類似於前述的第一介電層和第二介電層,例如圖6I中所述的第一介電層633a和第二介電層633b。 Figure 6Q illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 600q in FIG. 6Q is similar to the light detection device 600m in FIG. 6M, with the differences described below. In some embodiments, the entire first doped region 601a' overlaps the counter-doped region 651a. In some embodiments, from the cross-sectional view of the light detection device 600q, the counter-doped region 651a has an asymmetric profile relative to the first doped region 601a'. The asymmetric profile of the counter-doped region 651a is relative to the first doped region 601a'. In some embodiments, the counter-doped region 651a includes a first portion (not labeled) and a second portion (not labeled). The first part is closer to the third doped region 617' than the second part. The first portion has a first width W 5 and the second portion has a second width W 6 that is greater than the first width W 5 . In some embodiments, the entire first doped region 601b' overlaps the counter-doped region 651b. In some embodiments, the counter-doped region 651b has an asymmetric profile relative to the first doped region 601b' when viewed from a cross-section of the light detection device 600q. The asymmetric profile of the counter-doped region 651b is relative to the first doped region 601b'. In some embodiments, the counter-doped region 651b includes a first portion (not labeled) and a second portion (not labeled). The first part is closer to the third doped region 617' than the second part. The first portion has a first width W 7 and the second portion has a second width W 8 that is greater than the first width W 7 . In some embodiments, the first switch further includes a first dielectric layer 633a between the absorber layer 602' and the control contact layer 606a'. In some embodiments, the second switch may further include a second dielectric layer 633b between the absorber layer 602' and the control contact layer 606b'. The first dielectric layer 633a and the second dielectric layer 633b are respectively similar to the aforementioned first dielectric layer and the second dielectric layer, such as the first dielectric layer 633a and the second dielectric layer 633b described in FIG. 6I .

圖6R繪示根據一些實施例的光偵測裝置的剖視圖。圖6R中的光偵測裝置600r類似於圖6Q中的光偵測裝置600q,其中差異描述於下。在一些實施例中,第一開關還包括在控制接觸層606a’下的一第二摻雜區603a’。第二開關還包括在控制接觸層606b’下的一第二摻雜區603b’。第二摻雜區603a’,603b’類似於前述的第二摻雜區,例如如圖6G所示的第二摻雜區603a’,603b’。在一些實施例中,第一開關還包括在第二摻雜區603a’和控制接觸層606a’之間的一第一介電層633a。在一些實施例中,第二開關可以進一步包括在第二摻雜區603b’和控制接觸層606b’之間的一第二介電層633b。第一介電層633a和第二介電層633b類似於前述的第一介電層和第二介電層,例如圖6I中所述的第一介電層633a和第二介電層633b。 Figure 6R illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 600r in FIG. 6R is similar to the light detection device 600q in FIG. 6Q, with the differences described below. In some embodiments, the first switch further includes a second doped region 603a' under the control contact layer 606a'. The second switch also includes a second doped region 603b' under the control contact layer 606b'. The second doped regions 603a', 603b' are similar to the aforementioned second doped regions, such as the second doped regions 603a', 603b' shown in FIG. 6G. In some embodiments, the first switch further includes a first dielectric layer 633a between the second doped region 603a' and the control contact layer 606a'. In some embodiments, the second switch may further include a second dielectric layer 633b between the second doped region 603b' and the control contact layer 606b'. The first dielectric layer 633a and the second dielectric layer 633b are similar to the aforementioned first dielectric layer and the second dielectric layer, such as the first dielectric layer 633a and the second dielectric layer 633b described in FIG. 6I.

圖6S繪示根據一些實施例的光偵測裝置的剖視圖。圖6S中的光偵測裝置600s類似於圖6M中的光偵測裝置600m,其中差異描述於下。光偵測裝置600s的像素還包括在吸收層602’中的兩個嵌入反摻雜區652a,652b。在一些實施例中,嵌入反摻雜區652a,652b與吸收層602'的第一表面602s’分離。在一些實施例中,嵌入反摻雜區652a與反摻雜區651a重疊。在一些實施例中,嵌入反摻雜區652b與反摻雜區651b重疊。反摻雜區651a,651b和嵌入反摻雜區652a,652b可以以不同的步驟形成,例如通過不同的遮罩。在一些實施例中,嵌入反摻雜區652a從反摻雜區651a朝向第三摻雜區617’延伸。在一些實施例中,嵌入反摻雜區652b從反摻雜區651b朝向第三摻雜區617’延伸。在一些實施例中,嵌入反摻雜區652a 的一部分在控制接觸層606a’和第二表面602ss’之間。在一些實施例中,嵌入反摻雜區652b的一部分在控制接觸層606b’和第二表面602ss’之間。在一些實施例中,各個嵌入反摻雜區652a,652b具有與第一摻雜區601b’,601a’的第一導電類型不同的導電類型。在一些實施例中,各個嵌入反摻雜區652a,652b包括具有一摻質以及具有一峰值摻質濃度的摻質分佈。峰值摻質濃度不小於1×1016cm-3。在一些實施例中,嵌入反摻雜區652a,652b峰值摻質濃度低於第一摻雜區601b’,601a’的峰值摻質濃度。在一些實施例中,嵌入反摻雜區652a,652b的峰值摻質濃度在1×1016cm-3與1×1019cm-3之間。在一些實施例中,吸收層602’的第一表面602s’與具有峰值摻質濃度的嵌入反摻雜區652a,652b的位置之間的距離不小於50nm。在一些實施例中,第二表面602ss’與具有峰值摻質濃度的嵌入反摻雜區652a,652b的位置之間的距離不小於50nm,或不小於300nm。在一些實施例中,吸收層602’的第一表面602s’與具有峰值摻質濃度的嵌入反摻雜區652a,652b的位置之間的距離小於第二表面602ss’與具有峰值摻質濃度的嵌入反摻雜區652a,652b的位置之間的距離。在一些實施例中,吸收層602’的第一表面602s’與具有峰值摻質濃度的嵌入反摻雜區652a,652b之間的距離在50nm至400nm之間。可以通過任何合適的方法來控制每個嵌入反摻雜區652a,652b的摻質分佈,例如通過包括提供多個注入劑量和能量的佈植。在一些實施例中,嵌入反摻雜區652a,652b的摻質和反摻雜區651a,651b的摻質可以相同。 Figure 6S illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 600s in Figure 6S is similar to the light detection device 600m in Figure 6M, with the differences described below. The pixel of the light detection device 600s also includes two embedded counter-doped regions 652a, 652b in the absorber layer 602'. In some embodiments, the embedded counterdoped regions 652a, 652b are separated from the first surface 602s' of the absorber layer 602'. In some embodiments, embedded counter-doped region 652a overlaps counter-doped region 651a. In some embodiments, embedded counter-doped region 652b overlaps counter-doped region 651b. The counter-doped regions 651a, 651b and the embedded counter-doped regions 652a, 652b may be formed in different steps, such as through different masks. In some embodiments, embedded counter-doped region 652a extends from counter-doped region 651a toward third doped region 617'. In some embodiments, embedded counter-doped region 652b extends from counter-doped region 651b toward third doped region 617'. In some embodiments, a portion of embedded counter-doped region 652a is between control contact layer 606a' and second surface 602ss'. In some embodiments, a portion of embedded counter-doped region 652b is between control contact layer 606b' and second surface 602ss'. In some embodiments, each embedded counter-doped region 652a, 652b has a different conductivity type than the first conductivity type of the first doped region 601b', 601a'. In some embodiments, each embedded counterdoped region 652a, 652b includes a dopant profile having a dopant and having a peak dopant concentration. The peak dopant concentration is not less than 1×10 16 cm -3 . In some embodiments, the peak dopant concentration of the embedded counter-doped regions 652a, 652b is lower than the peak dopant concentration of the first doped regions 601b', 601a'. In some embodiments, the peak dopant concentration of the embedded counter-doped regions 652a, 652b is between 1×10 16 cm −3 and 1×10 19 cm −3 . In some embodiments, the distance between the first surface 602s' of the absorber layer 602' and the location of the embedded counter-doped regions 652a, 652b having the peak dopant concentration is no less than 50 nm. In some embodiments, the distance between the second surface 602ss' and the location of the embedded counter-doped regions 652a, 652b having the peak dopant concentration is no less than 50 nm, or no less than 300 nm. In some embodiments, the distance between the first surface 602s' of the absorber layer 602' and the location of the embedded counterdoped regions 652a, 652b having the peak dopant concentration is less than the distance between the second surface 602ss' having the peak dopant concentration. The distance between the locations of embedded counter-doped regions 652a, 652b. In some embodiments, the distance between the first surface 602s' of the absorber layer 602' and the embedded counterdoped regions 652a, 652b having the peak dopant concentration is between 50 nm and 400 nm. The dopant profile of each embedded counterdoped region 652a, 652b may be controlled by any suitable method, such as by implantation including providing multiple implant doses and energies. In some embodiments, the dopant of the embedded counter-doped regions 652a, 652b and the dopant of the counter-doped regions 651a, 651b may be the same.

通過嵌入反摻雜區652a,652b和反摻雜區651a,651b的組合,可以在一定路徑上限制載子在吸收層602'中的流動,從而降低了體暗電流注入(bulk dark current injection)。例如,當第三摻雜區617’是n型並且阻擋層619’是p型時,電子傾向於朝著第三摻雜區617’移動,且電洞傾向於朝著阻擋層619’移動。第三摻雜區617’用來收集電子並用作初步收集器。基於控制信號cs1,cs2,存儲在第三摻雜區617’中的電子可以通過吸收層602’的第一表面602s’與嵌入反摻雜區 652a,652b之間的區域進一步移動到第一摻雜區601b’或第一摻雜區601a’。結果是,進一步降低了光偵測裝置600s的暗電流。 By embedding the combination of counter-doping regions 652a, 652b and counter-doping regions 651a, 651b, the flow of carriers in the absorption layer 602' can be restricted on a certain path, thereby reducing bulk dark current injection. . For example, when the third doped region 617' is n-type and the blocking layer 619' is p-type, electrons tend to move toward the third doping region 617', and holes tend to move toward the blocking layer 619'. The third doped region 617' is used to collect electrons and serves as a preliminary collector. Based on the control signals cs1, cs2, the electrons stored in the third doped region 617' can pass through the first surface 602s' of the absorption layer 602' and be embedded in the counter-doped region. The area between 652a and 652b further moves to the first doped region 601b' or the first doped region 601a'. As a result, the dark current of the light detection device 600s is further reduced.

圖6T繪示根據一些實施例的光偵測裝置的剖視圖。圖6T中的光偵測裝置600t類似於圖6S中的光偵測裝置600s,其中差異描述於下。在一些實施例中,第一開關還包括在控制接觸層606a’下的一第二摻雜區603a’。第二開關還包括在控制接觸層606b’下的一第二摻雜區603b’。第二摻雜區603a’,603b’類似於前述的第二摻雜區,例如如圖6G所示的第二摻雜區603a’,603b’。在一些實施例中,第一開關還包括在第二摻雜區603a’和控制接觸層606a’之間的一第一介電層633a。在一些實施例中,第二開關可以進一步包括在第二摻雜區603b’和控制接觸層606b'之間的一第二介電層633b。第一介電層633a和第二介電層633b類似於前述的第一介電層和第二介電層,例如圖6I中所述的第一介電層633a和第二介電層633b。 Figure 6T illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 600t in FIG. 6T is similar to the light detection device 600s in FIG. 6S, with the differences described below. In some embodiments, the first switch further includes a second doped region 603a' under the control contact layer 606a'. The second switch also includes a second doped region 603b' under the control contact layer 606b'. The second doped regions 603a', 603b' are similar to the aforementioned second doped regions, such as the second doped regions 603a', 603b' shown in FIG. 6G. In some embodiments, the first switch further includes a first dielectric layer 633a between the second doped region 603a' and the control contact layer 606a'. In some embodiments, the second switch may further include a second dielectric layer 633b between the second doped region 603b' and the control contact layer 606b'. The first dielectric layer 633a and the second dielectric layer 633b are similar to the aforementioned first dielectric layer and the second dielectric layer, such as the first dielectric layer 633a and the second dielectric layer 633b described in FIG. 6I.

圖6U繪示根據一些實施例的光偵測裝置的剖視圖。圖6U中的光偵測裝置600u類似於圖6M中的光偵測裝置600m,其中差異描述於下。光偵測裝置600u的像素還包括在吸收層602’中的淺反摻雜區653a,653b。在一些實施例中,淺反摻雜區653a,653b沿著垂直方向D1分別在讀出接觸層608a’,608b’之下。在一些實施例中,淺反摻雜區653a與反摻雜區651a和第一摻雜區601a’重疊。在一些實施例中,淺反摻雜區653b與反摻雜區651b和第一摻雜區601b’重疊。反摻雜區651a,651b和淺反摻雜區653a,653b可以以不同的步驟形成,例如通過不同的遮罩。在一些實施例中,各個淺反摻雜區653a,653b具有與第一摻雜區601b’,601a’的第一導電類型不同的導電類型。在一些實施例中,各個淺反摻雜區653a,653b包括一摻質以及具有一峰值摻質濃度的摻質分佈。峰值摻質濃度不小於1×1015cm-3。在一些實施例中,淺反摻雜區653a,653b的峰值摻質濃度低於第一摻雜區601b’,601a’的峰值摻質濃度。在一些實施例中,淺反摻雜區653a,653b 的峰值摻質濃度在1×1015cm-3與1×1018cm-3之間或在1×1016cm-3與5×1017cm-3之間。在一些實施例中,吸收層602’的第一表面602s’與具有峰值摻質濃度的淺反摻雜區653a,653b之間的距離不大於50nm。在一些實施例中,淺反摻雜區653a,653b的摻質和反摻雜區651a,651b的摻質可以相同。淺反摻雜區653a,653b可以鈍化存在於吸收層602’的第一表面602s’上的表面缺陷。此外,淺反摻雜區653a,653b可以進一步調整吸收層602’的第一表面602s’附近的空乏區。結果是,可以進一步降低光偵測裝置600u的暗電流。 Figure 6U illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 600u in FIG. 6U is similar to the light detection device 600m in FIG. 6M, with the differences described below. The pixels of the light detection device 600u also include shallow counter-doped regions 653a, 653b in the absorber layer 602'. In some embodiments, shallow counter-doped regions 653a, 653b are respectively beneath the readout contact layers 608a', 608b' along the vertical direction D1. In some embodiments, shallow counter-doped region 653a overlaps counter-doped region 651a and first doped region 601a'. In some embodiments, shallow counter-doped region 653b overlaps counter-doped region 651b and first doped region 601b'. The counter-doped regions 651a, 651b and the shallow counter-doped regions 653a, 653b may be formed in different steps, such as through different masks. In some embodiments, each shallow counter-doped region 653a, 653b has a different conductivity type than the first conductivity type of the first doped region 601b', 601a'. In some embodiments, each shallow counter-doped region 653a, 653b includes a dopant and a dopant profile having a peak dopant concentration. The peak dopant concentration is not less than 1×10 15 cm -3 . In some embodiments, the peak dopant concentration of the shallow counter-doped regions 653a, 653b is lower than the peak dopant concentration of the first doped regions 601b', 601a'. In some embodiments, the peak dopant concentration of the shallow counter-doped regions 653a, 653b is between 1×10 15 cm −3 and 1×10 18 cm −3 or between 1×10 16 cm −3 and 5×10 Between 17 cm -3 . In some embodiments, the distance between the first surface 602s' of the absorber layer 602' and the shallow counter-doped regions 653a, 653b having the peak dopant concentration is no greater than 50 nm. In some embodiments, the dopant of the shallow counter-doped regions 653a, 653b and the dopant of the counter-doped regions 651a, 651b may be the same. The shallow counter-doped regions 653a, 653b can passivate surface defects existing on the first surface 602s' of the absorber layer 602'. In addition, the shallow counter-doping regions 653a, 653b can further adjust the depletion region near the first surface 602s' of the absorber layer 602'. As a result, the dark current of the light detection device 600u can be further reduced.

圖6V繪示根據一些實施例的光偵測裝置的剖視圖。圖6V中的光偵測裝置600v類似於圖6U中的光偵測裝置600u,其中差異描述於下。在一些實施例中,第一開關還包括在控制接觸層606a’下的一第二摻雜區603a’。第二開關還包括在控制接觸層606b’下的一第二摻雜區603b’。第二摻雜區603a’,603b’類似於前述的第二摻雜區,例如如圖6G所示的第二摻雜區603a’,603b’。在一些實施例中,第一開關還包括在第二摻雜區603a’和控制接觸層606a’之間的一第一介電層633a。在一些實施例中,第二開關可以進一步包括在第二摻雜區603b’和控制接觸層606b’之間的一第二介電層633b。第一介電層633a和第二介電層633b類似於前述的第一介電層和第二介電層,例如圖6I中所述的第一介電層633a和第二介電層633b。 Figure 6V illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 600v in FIG. 6V is similar to the light detection device 600u in FIG. 6U, with the differences described below. In some embodiments, the first switch further includes a second doped region 603a' under the control contact layer 606a'. The second switch also includes a second doped region 603b' under the control contact layer 606b'. The second doped regions 603a', 603b' are similar to the aforementioned second doped regions, such as the second doped regions 603a', 603b' shown in FIG. 6G. In some embodiments, the first switch further includes a first dielectric layer 633a between the second doped region 603a' and the control contact layer 606a'. In some embodiments, the second switch may further include a second dielectric layer 633b between the second doped region 603b' and the control contact layer 606b'. The first dielectric layer 633a and the second dielectric layer 633b are similar to the aforementioned first dielectric layer and the second dielectric layer, such as the first dielectric layer 633a and the second dielectric layer 633b described in FIG. 6I.

在一些實施例中,光偵測裝置600g至600v還可包括如圖6D中所描述的隔離區(圖未示)。在一些實施例中,隔離區的導電類型不同於阻擋層619’的導電類型。例如,如果阻擋層619’的導電類型是p型,則隔離區的導電類型是n型。隔離區與阻擋層619’分離。 In some embodiments, the light detection devices 600g to 600v may further include isolation regions (not shown) as described in FIG. 6D. In some embodiments, the conductivity type of the isolation region is different from the conductivity type of barrier layer 619'. For example, if the conductivity type of barrier layer 619' is p-type, then the conductivity type of the isolation region is n-type. The isolation area is separated from the barrier layer 619'.

圖7A顯示依據一些實施例之具有表面空乏模式的光偵測裝置的剖視圖。此光偵測裝置700a包含控制金屬線706a,706b和讀出金屬線708a,708b。控制金屬線706a,706b和讀出金屬線708a,708b電性耦接到鍺基光吸收材料702之 表面702s。控制金屬線706a,706b分別電性耦接到表面702s上的P型區域703a,703b。讀出金屬線708a,708b分別電性耦接到表面702s上的N型區域701a,701b。此實施例包含在表面702s上之一層間介電層(Interlayer dielectric)ILD及在層間介電層ILD上形成之金屬721,716a,716b,718a及718b。這些金屬721,716a,716b,718a及718b可經過偏壓而產生空乏區721d,716ad,716bd,718ad及718bd。施加到金屬721,716a,716b,718a及718b的偏壓可為不同或是相同電壓,或者金屬721,716a,716b,718a及718b中部份的金屬可以浮接。 Figure 7A shows a cross-sectional view of a light detection device with surface depletion mode according to some embodiments. The light detection device 700a includes control metal lines 706a, 706b and readout metal lines 708a, 708b. Control metal lines 706a, 706b and readout metal lines 708a, 708b are electrically coupled to the germanium-based light absorbing material 702. Surface 702s. Control metal lines 706a, 706b are electrically coupled to P-type regions 703a, 703b respectively on surface 702s. Sense metal lines 708a, 708b are electrically coupled to N-type regions 701a, 701b, respectively, on surface 702s. This embodiment includes an interlayer dielectric ILD on surface 702s and metals 721, 716a, 716b, 718a and 718b formed on the interlayer dielectric ILD. These metals 721, 716a, 716b, 718a and 718b can be biased to create depletion regions 721d, 716ad, 716bd, 718ad and 718bd. The bias voltages applied to metals 721, 716a, 716b, 718a and 718b can be different or the same voltage, or portions of metals 721, 716a, 716b, 718a and 718b can be floating.

空乏區721d可降低P型區域703a及P型區域703b之間的暗電流。空乏區716ad可降低P型區域703a及N型區域701a之間的暗電流。空乏區716bd可降低P型區域703b及N型區域701b之間的暗電流。空乏區718ad可降低N型區域701a及另一像素(未顯示於圖7A)之間的暗電流。空乏區718bd可降低N型區域701b及另一像素(未顯示於圖7A)之間的暗電流。因此藉由形成這些表面空乏區,可降低功耗及所產生的雜訊。 The depletion region 721d can reduce the dark current between the P-type region 703a and the P-type region 703b. The depletion region 716ad can reduce dark current between the P-type region 703a and the N-type region 701a. The depletion region 716bd can reduce the dark current between the P-type region 703b and the N-type region 701b. The depletion region 718ad can reduce the dark current between the N-type region 701a and another pixel (not shown in FIG. 7A). The depletion region 718bd can reduce the dark current between the N-type region 701b and another pixel (not shown in FIG. 7A). Therefore, by forming these surface depletion regions, power consumption and generated noise can be reduced.

如上所述,這些金屬721,716a,716b,718a及718b可經由偏壓而產生這些空乏區721d,716ad,716bd,718ad及718bd。在其他的應用中,金屬721,716a,716b,718a及718b可經由偏壓而使這些區域721d,716ad,716bd,718ad及718bd為累積(Accumulation)區域或是反轉(Inversion)區域而非空乏區。 As mentioned above, the metals 721, 716a, 716b, 718a and 718b can be biased to create the depletion regions 721d, 716ad, 716bd, 718ad and 718bd. In other applications, metals 721, 716a, 716b, 718a and 718b can be biased so that these regions 721d, 716ad, 716bd, 718ad and 718bd are accumulation regions or inversion regions instead of depletion. district.

除了降低漏電流外,這些金屬721,716a,716b,718a及718b還可以將光信號IL的殘存信號反射到鍺基光吸收材料702,以使其相應轉換為電子-電洞對。這些金屬721,716a,716b,718a及718b可作為反射鏡,以將未完全被鍺基光吸收材料702吸收及轉換的光線反射回鍺基光吸收材料702,並再度吸收。此可增加整體吸收效率及增加系統效能。 In addition to reducing leakage current, these metals 721, 716a, 716b, 718a and 718b can also reflect the residual signal of the optical signal IL to the germanium-based light absorbing material 702, so that it is converted into electron-hole pairs accordingly. These metals 721, 716a, 716b, 718a and 718b can serve as reflectors to reflect light that is not completely absorbed and converted by the germanium-based light absorbing material 702 back to the germanium-based light absorbing material 702 and absorb it again. This increases overall absorption efficiency and increases system performance.

再者,圖7B顯示本發明之另一選擇實施例。相較於圖7A之實施例,在圖7B所示實施例中使用極化介電質(Polarized dielectrics)721e,716ae,716be, 718ae及718be(例如:HfO2)。因為在極化介電質721e,716ae,716be,718ae及718be中具有電偶極,不需對於金屬721,716a,716b,718a及718b施加偏壓,或使僅對於金屬721,716a,716b,718a及718b施加小偏壓,即可產生空乏/累積/反轉區721d,716ad,716bd,718ad及718bd。 Furthermore, FIG. 7B shows another alternative embodiment of the present invention. Compared with the embodiment of FIG. 7A, polarized dielectrics 721e, 716ae, and 716be are used in the embodiment of FIG. 7B. 718ae and 718be (for example: HfO2). Because there are electric dipoles in the polarizing dielectrics 721e, 716ae, 716be, 718ae, and 718be, there is no need to bias the metals 721, 716a, 716b, 718a, and 718b, or only the metals 721, 716a, 716b, Applying a small bias voltage to 718a and 718b can generate depletion/accumulation/inversion regions 721d, 716ad, 716bd, 718ad and 718bd.

圖7C顯示光偵測裝置700c的平面圖。此金屬721,716a,716b,718a及718b及極化介電質721e,716ae,716be,718ae及718be的形成方式可具有選擇性。基於不同的設計需求,元件實施者設計的光偵測裝置可具有或是不具有這些元件。此外,圖7C所示之金屬及極化介電質係在垂直方向添加;圖7D揭露一種可選擇的方式,金屬723a,723b及極化介電質725a,725b係在水平方向添加。 Figure 7C shows a plan view of the light detection device 700c. The metals 721, 716a, 716b, 718a and 718b and the polarizing dielectrics 721e, 716ae, 716be, 718ae and 718be can be formed selectively. Based on different design requirements, the light detection device designed by the component implementer may or may not include these components. In addition, the metal and polarized dielectric shown in FIG. 7C are added in the vertical direction; FIG. 7D discloses an alternative method in which the metal 723a, 723b and the polarized dielectric 725a, 725b are added in the horizontal direction.

圖8A顯示依據一些實施例之具有表面離子佈植(Surface ion implantation)的光偵測裝置的剖視圖。此光偵測裝置800a包含控制金屬線806a,806b和讀出金屬線808a,808b。控制金屬線806a,806b和讀出金屬線808a,808b電性耦接到鍺基光吸收材料802之表面802s。控制金屬線806a,806b分別電性耦接到表面802s上的P型區域803a,803b。讀出金屬線808a,808b分別電性耦接到表面802s上的N型區域801a,801b。為了提供高表面電阻以抑制表面漏電流,本發明使用中性離子注入以作為表面處理。如此圖所示,離子處理區829,831a,831b,833a及833b接受離子佈植(例如矽、鍺、碳,氫),其中加速離子與物質相撞且在注入區破壞原子週期性或是晶格結構。晶格破壞(例如原子空位或是間隙)會斷開電子包絡函數所遇到的週期位能勢,因此電子/電洞會更可能散開。此效應為更低的遷移率及更高的電阻。 Figure 8A shows a cross-sectional view of a light detection device with surface ion implantation according to some embodiments. The light detection device 800a includes control metal lines 806a, 806b and readout metal lines 808a, 808b. The control metal lines 806a, 806b and the readout metal lines 808a, 808b are electrically coupled to the surface 802s of the germanium-based light absorbing material 802. The control metal lines 806a, 806b are respectively electrically coupled to the P-type regions 803a, 803b on the surface 802s. Sense metal lines 808a, 808b are electrically coupled to N-type regions 801a, 801b, respectively, on surface 802s. In order to provide high surface resistance to suppress surface leakage current, the present invention uses neutral ion implantation as a surface treatment. As shown in this figure, the ion processing areas 829, 831a, 831b, 833a and 833b receive ion implantation (such as silicon, germanium, carbon, hydrogen), in which the accelerated ions collide with the material and destroy the atomic periodicity or crystal structure in the implantation area. lattice structure. Lattice disruptions (such as atomic vacancies or gaps) break the periodic potential energy encountered by the electron envelope function, so the electrons/holes are more likely to spread out. The effect is lower mobility and higher resistance.

圖8B顯示具有表面離子佈植的光偵測裝置800b的平面圖。如此圖所示,離子處理區829,831a,831b,833a及833b係在垂直方向形成於摻雜區801a,801b,803a及803b之間。依據一些實施方式,離子處理區829,831a,831b,833a及833b可在其他位置形成,因此本圖所示實施例僅為參考而非本案限制。 圖9A顯示依據一些實施例之具有像素間隔離(Pixel to pixel isolation)的光偵測裝置的剖視圖。此光偵測裝置900a包含控制金屬線906a,906b和讀出金屬線908a,908b。控制金屬線906a,906b和讀出金屬線908a,908b電性耦接到鍺基光吸收材料902之表面902s。控制金屬線906a,906b分別電性耦接到表面902s上的P型區域903a,903b。讀出金屬線908a,908b分別電性耦接到表面902s上的N型區域901a,901b。此實施例具有一隔離區924,此隔離區924為環形且圍繞鍺基光吸收材料902。依據一實施方式,此隔離區924為N型區域。依據鍺基光吸收材料902的類型、半導體基底904的類型及其他因素,此隔離區924也為P型區域。藉由此隔離區924,光偵測裝置900a可降低至鄰近元件的串擾信號及/或功率。 Figure 8B shows a plan view of a light detection device 800b with surface ion implantation. As shown in this figure, ion treatment regions 829, 831a, 831b, 833a and 833b are formed between the doping regions 801a, 801b, 803a and 803b in the vertical direction. According to some embodiments, the ion treatment regions 829, 831a, 831b, 833a and 833b can be formed at other locations, so the embodiment shown in this figure is for reference only and not a limitation of this case. FIG. 9A shows a cross-sectional view of a light detection device with pixel to pixel isolation according to some embodiments. The light detection device 900a includes control metal lines 906a, 906b and readout metal lines 908a, 908b. Control metal lines 906a, 906b and readout metal lines 908a, 908b are electrically coupled to surface 902s of germanium-based light absorbing material 902. Control metal lines 906a, 906b are electrically coupled to P-type regions 903a, 903b respectively on surface 902s. Sense metal lines 908a, 908b are electrically coupled to N-type regions 901a, 901b, respectively, on surface 902s. This embodiment has an isolation region 924 that is annular and surrounds the germanium-based light absorbing material 902 . According to one embodiment, the isolation region 924 is an N-type region. Depending on the type of germanium-based light absorbing material 902, the type of semiconductor substrate 904, and other factors, the isolation region 924 is also a P-type region. Through this isolation area 924, the light detection device 900a can reduce crosstalk signals and/or power to adjacent components.

圖9B顯示依據一些實施例之具有像素間隔離的光偵測裝置900b的平面圖。如此圖所示,此隔離區924為一完整環形。在其他實施方式,此隔離區924可為斷開(Fragmented)或是不連續。 Figure 9B shows a plan view of a light detection device 900b with inter-pixel isolation in accordance with some embodiments. As shown in this figure, the isolation area 924 is a complete ring shape. In other embodiments, the isolation area 924 may be fragmented or discontinuous.

圖9C顯示依據一些實施例之具有像素間隔離的光偵測裝置的剖視圖。此光偵測裝置900c具有在隔離區924內的額外窄淺隔離區924a。隔離區924及隔離區924a具有不同的摻雜濃度。此架構可抑制由表面導通路徑來的串擾。 Figure 9C shows a cross-sectional view of a light detection device with inter-pixel isolation according to some embodiments. The light detection device 900c has an additional narrow and shallow isolation area 924a within the isolation area 924. The isolation region 924 and the isolation region 924a have different doping concentrations. This architecture suppresses crosstalk from surface conduction paths.

圖9D顯示依據一些實施例之具有像素間隔離的光偵測裝置的剖視圖。此光偵測裝置900d具有額外之溝渠隔離區域924b,此溝渠隔離區域924b由隔離區924a延伸到半導體基底904的底部。溝渠隔離區域924b可為氧化物溝渠,其可阻隔鍺基光吸收材料902及鄰近元件之間的電路徑。 Figure 9D shows a cross-sectional view of a light detection device with inter-pixel isolation according to some embodiments. The light detection device 900d has an additional trench isolation region 924b extending from the isolation region 924a to the bottom of the semiconductor substrate 904. The trench isolation region 924b may be an oxide trench that blocks electrical paths between the germanium-based light absorbing material 902 and adjacent components.

圖9E顯示依據一些實施例之具有像素間隔離的光偵測裝置的剖視圖。此光偵測裝置900e具有額外之溝渠隔離區域924b,此溝渠隔離區域924b由半導體基底904的第一表面延伸到半導體基底904的底部。溝渠隔離區域924b可為氧化物溝渠,其可阻隔鍺基光吸收材料902及鄰近元件之間的電路徑。 Figure 9E shows a cross-sectional view of a light detection device with inter-pixel isolation according to some embodiments. The light detection device 900e has an additional trench isolation region 924b extending from the first surface of the semiconductor substrate 904 to the bottom of the semiconductor substrate 904. The trench isolation region 924b may be an oxide trench that blocks electrical paths between the germanium-based light absorbing material 902 and adjacent components.

圖10A顯示依據一些實施例之光偵測裝置的剖視圖。此光偵測裝置 1000a包含控制金屬線1006a,1006b和讀出金屬線1008a,1008b。控制金屬線1006a,1006b和讀出金屬線1008a,1008b電性耦接到鍺基光吸收材料1002之表面1002s。控制金屬線1006a,1006b分別電性耦接到表面1002s上的P型區域1003a,1003b。讀出金屬線1008a,1008b分別電性耦接到表面1002s上的N型區域1001a,1001b。同樣的,此光偵測裝置1000a可藉由光信號IL獲得一距離資訊。更明確而言,當光信號IL入射到吸收區域AR,此光信號IL會被轉換成電子一電洞對且被P型區域1003a,1003b產生的電場分開。根據控制信號cs1,cs2,電子會移向N型區域1001a或是N型區域1001b。依據一些實施方式,控制信號cs1及cs2為差動信號。在一些實施方案中,控制信號cs1和cs2中其中之一者可以是一固定的電壓信號(例如,0.5V)且另一控制信號是時變的電壓信號(例如,在0V和1V之間操作的弦波信號、時脈信號或脈衝信號)。由於光偵測裝置1000a與目標物體(圖10A中未繪示)之間存在一距離,光信號IL與發射器(圖10A中未繪示)所發射出的發射光之間具有一相位延遲。通過一調變信號調變的一發射光且經由另一調變信號(此另一調變信號通過控制金屬線1006a,1006b)以解調出電子-電洞對。存儲在電容1010a,1010b中的電子或電洞將根據該距離而變化。因此,光偵測裝置1000a可以依據電容1010a上的電壓v1及電容1010b上的電壓v2獲得距離資訊。根據一實施例,光偵測裝置100b可以基於電壓v1和電壓v2作為輸入的變數以計算出距離資訊。例如,在一脈衝飛行時間(Pulse time-of-flight)的應用中,可以將相關於電壓v1和電壓v2的一電壓比例作為輸入變數。在另一實施例中,在連續波飛行時間(Continues-wave time-of-flight)的應用中,可以將相關於電壓v1和電壓v2的一同相(In-phase)和正交(Quadrature)電壓作為輸入變數。 Figure 10A shows a cross-sectional view of a light detection device according to some embodiments. This light detection device 1000a includes control metal lines 1006a, 1006b and sense metal lines 1008a, 1008b. The control metal lines 1006a, 1006b and the readout metal lines 1008a, 1008b are electrically coupled to the surface 1002s of the germanium-based light absorbing material 1002. The control metal lines 1006a, 1006b are respectively electrically coupled to the P-type regions 1003a, 1003b on the surface 1002s. Sense metal lines 1008a, 1008b are electrically coupled to N-type regions 1001a, 1001b, respectively, on surface 1002s. Similarly, the light detection device 1000a can obtain distance information through the light signal IL. More specifically, when the optical signal IL is incident on the absorption region AR, the optical signal IL will be converted into an electron-hole pair and separated by the electric field generated by the P-type regions 1003a and 1003b. According to the control signals cs1 and cs2, the electrons will move to the N-type region 1001a or the N-type region 1001b. According to some embodiments, the control signals cs1 and cs2 are differential signals. In some embodiments, one of the control signals cs1 and cs2 may be a fixed voltage signal (eg, 0.5V) and the other control signal is a time-varying voltage signal (eg, operating between 0V and 1V sine wave signal, clock signal or pulse signal). Since there is a distance between the light detection device 1000a and the target object (not shown in FIG. 10A ), there is a phase delay between the light signal IL and the emitted light emitted by the emitter (not shown in FIG. 10A ). An emitted light is modulated by a modulation signal and passed through another modulation signal (the other modulation signal passes through the control metal lines 1006a, 1006b) to demodulate electron-hole pairs. The electrons or holes stored in the capacitors 1010a, 1010b will vary depending on this distance. Therefore, the light detection device 1000a can obtain distance information based on the voltage v1 on the capacitor 1010a and the voltage v2 on the capacitor 1010b. According to an embodiment, the light detection device 100b can calculate the distance information based on the voltage v1 and the voltage v2 as input variables. For example, in a pulse time-of-flight application, a voltage ratio related to the voltage v1 and the voltage v2 can be used as an input variable. In another embodiment, in continuous-wave time-of-flight applications, the in-phase (In-phase) and quadrature (Quadrature) voltages related to the voltage v1 and the voltage v2 can be as input variables.

除了偵測距離外,光偵測裝置1000a包含N型區域1001a,1001b與P型區域1003a,1003b深度不同的設計;且增加了N井1011a,1011b,其可降低P型區域1003a,1003b之間的漏電流。第二,光偵測裝置1000a包含一井形P型區域1019, 此井形P型區域1019包覆鍺基光吸收材料1002且施加偏壓電壓ca2後可收集電洞及釋放電洞。第三,光偵測裝置1000a包含一鈍化層1014及層間介電層ILD,以處理表面1002s上的缺陷。第四,光偵測裝置1000a包含一金屬1021,此金屬1021可施加偏壓或是不施加偏壓,以在表面1002s上建立累積、反轉或是空乏。此金屬1021也可作為鏡面以將光信號IL的殘餘信號反射回鍺基光吸收材料1002以轉換成電子一電洞對。第五,此鍺基光吸收材料1002包含金屬矽化物1013a,1013b,1015a及1015b以降低電壓降。第六,光偵測裝置1000a可添加隔離區1024,此隔離區1024可由摻雜材料或是由絕緣氧化物形成。此隔離區1024可電性耦合至一偏壓電壓ca3。在一些實施方式中,隔離區1024及P型區域1019可由一金屬層而電性耦合,且此金屬層係浮接或是電性耦合到一電壓源。 In addition to the detection distance, the light detection device 1000a includes a design with different depths of the N-type regions 1001a, 1001b and the P-type regions 1003a, 1003b; and adds N wells 1011a, 1011b, which can reduce the distance between the P-type regions 1003a, 1003b. leakage current. Second, the light detection device 1000a includes a well-shaped P-type region 1019, The well-shaped P-type region 1019 is coated with the germanium-based light absorbing material 1002 and can collect holes and release holes after applying a bias voltage ca2. Third, the light detection device 1000a includes a passivation layer 1014 and an interlayer dielectric layer ILD to handle defects on the surface 1002s. Fourth, the light detection device 1000a includes a metal 1021 that can be biased or unbiased to create accumulation, inversion, or depletion on the surface 1002s. The metal 1021 can also serve as a mirror to reflect the residual signal of the optical signal IL back to the germanium-based light absorbing material 1002 to convert it into an electron-hole pair. Fifth, the germanium-based light absorbing material 1002 includes metal silicides 1013a, 1013b, 1015a and 1015b to reduce voltage drop. Sixth, the photodetection device 1000a can add an isolation region 1024. The isolation region 1024 can be formed of a doped material or an insulating oxide. The isolation region 1024 can be electrically coupled to a bias voltage ca3. In some embodiments, isolation region 1024 and P-type region 1019 may be electrically coupled by a metal layer that is floating or electrically coupled to a voltage source.

圖10B顯示依據一些實施例之光偵測裝置的剖視圖。圖10B顯示之光偵測裝置1000b類似於光偵測裝置1000a,然而圖10B顯示之光偵測裝置1000b的控制金屬線1006a,1006b係電性耦合到未摻雜區1005a,1005b。 Figure 10B shows a cross-sectional view of a light detection device according to some embodiments. The light detection device 1000b shown in FIG. 10B is similar to the light detection device 1000a. However, the control metal lines 1006a and 1006b of the light detection device 1000b shown in FIG. 10B are electrically coupled to the undoped regions 1005a and 1005b.

再者,雖然上述實施例使用鍺基光吸收材料1002以吸收光信號IL,一種實施方式也可以不使用此鍺基光吸收材料1002。如圖10C所示,光偵測裝置1000c可用半導體基底1004作為光吸收材料。在一些實施方式中,半導體基底1004可由矽(Silicon)、矽-鍺(Silicon-germanium)、鍺(Germanim)或III-V族化合物所製成,再者,如圖10D所示,在半導體基底1004表面1002s上也可以加上P型區域1003a,1003b及N井1011a,1011b。 Furthermore, although the above embodiment uses the germanium-based light absorbing material 1002 to absorb the light signal IL, an implementation may not use the germanium-based light absorbing material 1002. As shown in FIG. 10C , the light detection device 1000c can use the semiconductor substrate 1004 as the light absorbing material. In some embodiments, the semiconductor substrate 1004 can be made of silicon, silicon-germanium, germanium, or III-V compounds. Furthermore, as shown in FIG. 10D , the semiconductor substrate P-type regions 1003a, 1003b and N-wells 1011a, 1011b can also be added to the surface 1002s of 1004.

前述的光偵測裝置1000a,1000b,1000c及1000d說明圖1A-9E實施例的可能組合。須知元件實施者可以任意組合二或多個前述實施例以實現其他的光偵測裝置,且可實現多種組合。 The aforementioned light detection devices 1000a, 1000b, 1000c and 1000d illustrate possible combinations of the embodiments of Figures 1A-9E. It should be noted that device implementers can arbitrarily combine two or more of the foregoing embodiments to implement other light detection devices, and various combinations can be achieved.

在上述實施例中的摻雜區的摻雜濃度可以適度設計。以圖10A實施例為例,N型區域1001a,1001b的摻雜濃度與P型區域1003a,1003b的摻雜濃度可為 不同。依據一個實施方式,P型區域1003a,1003b為輕度摻雜,而N型區域1001a,1001b為重度摻雜。一般而言,輕度摻雜的摻雜濃度為1016/cm3到低於1018/cm3;重度摻雜的摻雜濃度1018/cm3到1020/cm3或是更高。藉由調整摻雜濃度,在控制金屬線1006a,1006b及P型區域1003a,1003b之間可以形成蕭特基接觸;在讀出金屬線1008a,1008b及N型區域1001a,1001b之間可以形成歐姆接觸(Ohmic contact)。在此狀況下,在控制金屬線1006a,1006b及P型區域1003a,1003b之間的電阻會高於在讀出金屬線1008a,1008b及N型區域1001a,1001b之間的電阻。 The doping concentration of the doping region in the above embodiment can be appropriately designed. Taking the embodiment of FIG. 10A as an example, the doping concentrations of the N-type regions 1001a and 1001b may be different from the doping concentrations of the P-type regions 1003a and 1003b. According to one embodiment, the P-type regions 1003a, 1003b are lightly doped, and the N-type regions 1001a, 1001b are heavily doped. Generally speaking, the doping concentration of lightly doped is 10 16 /cm 3 to less than 10 18 /cm 3 ; the doping concentration of heavily doped is 10 18 /cm 3 to 10 20 /cm 3 or higher. By adjusting the doping concentration, a Schottky contact can be formed between the control metal lines 1006a, 1006b and the P-type regions 1003a, 1003b; an ohmic contact can be formed between the readout metal lines 1008a, 1008b and the N-type regions 1001a, 1001b. Ohmic contact. In this case, the resistance between the control metal lines 1006a, 1006b and the P-type regions 1003a, 1003b will be higher than the resistance between the readout metal lines 1008a, 1008b and the N-type regions 1001a, 1001b.

另一方面,這些摻雜區的摻雜類型也可以不同方式實現。以圖10A實施例為例,P型區域1003a,1003b若改採用N型摻雜,則區域1003a,1003b可為N型區域。同樣的,N型區域1001a,1001b若改採用P型摻雜,則區域1001a,1001b可為P型區域。因此,可採用摻雜區1001a,1001b,1003a及1003b都為相同摻雜形態之實施方式。 On the other hand, the doping types of these doped regions can also be implemented in different ways. Taking the embodiment of FIG. 10A as an example, if the P-type regions 1003a and 1003b are doped with N-type, the regions 1003a and 1003b can be N-type regions. Similarly, if the N-type regions 1001a and 1001b are doped with P-type, the regions 1001a and 1001b can be P-type regions. Therefore, an implementation in which the doping regions 1001a, 1001b, 1003a and 1003b are all in the same doping form can be adopted.

圖11A顯示依據一些實施例之光偵測裝置的平面圖。光偵測裝置1100a包含在鍺基光吸收材料1102的佈局位置,這些佈局位置對應控制金屬線1106a,1106b、讀出金屬線1108a,1108b、N型區域1101a,1101b及P型區域1103a,1103b的位置。在此實施例中,控制金屬線1106a,1106b係在x軸上,然而讀出金屬線1108a,1108b並不在x軸上。在此實施例中,此四個終端並非完全在同一軸上,藉此降低光偵測裝置1100a的面積。每一元件間之幾何關係顯示於圖11A。 Figure 11A shows a plan view of a light detection device according to some embodiments. The light detection device 1100a includes layout positions of the germanium-based light absorbing material 1102. These layout positions correspond to the control metal lines 1106a, 1106b, the readout metal lines 1108a, 1108b, the N-type regions 1101a, 1101b and the P-type regions 1103a, 1103b. Location. In this embodiment, the control wires 1106a, 1106b are tied to the x-axis, whereas the sense wires 1108a, 1108b are not. In this embodiment, the four terminals are not completely on the same axis, thereby reducing the area of the light detection device 1100a. The geometric relationship between each component is shown in Figure 11A.

圖11B顯示依據一些實施例之光偵測裝置的平面圖。相較於圖11A,在圖11B中,控制金屬線1106a,1106b並不在x軸上,而是沿著與x軸垂直的方向與讀出金屬線1108a,1108b對齊。同樣的,每一元件間之幾何關係顯示於圖11B。 Figure 11B shows a plan view of a light detection device according to some embodiments. Compared with Figure 11A, in Figure 11B, the control metal lines 1106a, 1106b are not on the x-axis, but are aligned with the readout metal lines 1108a, 1108b along the direction perpendicular to the x-axis. Likewise, the geometric relationship between each component is shown in Figure 11B.

圖11C顯示依據一些實施例之光偵測裝置的平面圖。控制金屬線1106a,1106b形成於吸收區域AR之上,且在光學窗口WD之對角線上彼此相對。 讀出金屬線1108a,1108b係在x軸上形成。 Figure 11C shows a plan view of a light detection device according to some embodiments. Control metal lines 1106a, 1106b are formed on the absorption area AR and face each other on the diagonal of the optical window WD. Sense metal lines 1108a, 1108b are formed on the x-axis.

圖11D顯示依據一些實施例之光偵測裝置的平面圖。圖11D之光偵測裝置類似於圖11C所示者,然而鍺基光吸收材料1102旋轉一角度,以使x軸為鍺基光吸收材料1102之對角線方向。這可以降低光偵測裝置之整體面積。 Figure 11D shows a plan view of a light detection device according to some embodiments. The light detection device of FIG. 11D is similar to that shown in FIG. 11C , however, the germanium-based light absorbing material 1102 is rotated at an angle such that the x-axis is the diagonal direction of the germanium-based light absorbing material 1102 . This can reduce the overall area of the light detection device.

圖11E顯示依據一些實施例之光偵測裝置的平面圖。圖11E之實施例與先前實施例之差異為光學窗口WD為八角形。此光學窗口WD也可設計為其他形狀(例如,圓形或是六角形)。 Figure 11E shows a plan view of a light detection device according to some embodiments. The difference between the embodiment of FIG. 11E and the previous embodiment is that the optical window WD is octagonal. The optical window WD can also be designed in other shapes (for example, circular or hexagonal).

圖11A-11D顯示一些實施例,其中控制金屬線1106a,1106b、讀出金屬線1108a,1108b、N型區域1101a,1101b及P型區域1103a,1103b的佈局位置經過調整。實施者也可以設計對於不同元件的不同幾何關係以降低或是最小化晶片面積。這些可選擇實施例僅用以說明而非本發明的限制。 11A-11D show some embodiments in which the layout positions of control metal lines 1106a, 1106b, readout metal lines 1108a, 1108b, N-type regions 1101a, 1101b and P-type regions 1103a, 1103b are adjusted. Implementers can also design different geometric relationships for different components to reduce or minimize die area. These alternative embodiments are illustrative only and not limiting of the invention.

上述的光偵測裝置使用單一光偵測器作為實施例,此單一光偵測器係做單一像素應用。下面說明的光偵測裝置係做多像素應用(例如影像像素陣列或是影像感測器)。 The above-mentioned light detection device uses a single light detector as an embodiment, and this single light detector is used for a single pixel application. The light detection device described below is used for multi-pixel applications (such as image pixel arrays or image sensors).

依據一些實施方式,光偵測裝置可經設計而接收相同或是不同光信號,例如具有相同或是不同波長、有相同或是多重調變、或是在不同的時間訊框操作。 According to some embodiments, the light detection devices may be designed to receive the same or different optical signals, such as having the same or different wavelengths, having the same or multiple modulations, or operating at different time frames.

參考圖12A,此光偵測裝置1200a具有一像素陣列,例如包含四個像素12021,12022,12023及12024。每一像素可為依據本發明所述實施例的光偵測器。在一實施例中,陣列中的像素12021,12024接收具有光波長λ1之光信號IL;且陣列中的像素12022,12023接收具有光波長λ2之光信號IL。依據另外的實施例,本發明之光信號IL僅有單一波長λ,但是具有多個調變頻率fmod1及fmod2(或是更多)。例如,對像素12021,12024施加調變頻率fmod1以在光信號IL中解調此頻率成份;對像素12022,12023施加調變頻率fmod2以在光信號IL中解調此頻率成份。 在另一實施例中,相類似地,光信號IL僅有單一波長λ,但是具有多個調變頻率fmod1及fmod2(或是更多)。然而,在時間點t1,陣列中的像素係以調變頻率fmod1驅動,以在光信號IL中解調此頻率成份;在時間點t2,陣列中的像素係以調變頻率fmod2驅動,以在光信號IL中解調此頻率成份,因此光偵測裝置1200a係在分時多工模式(Time multiplexing mode)下操作。 Referring to FIG. 12A, the light detection device 1200a has a pixel array, for example, including four pixels 12021, 12022, 12023 and 12024. Each pixel may be a photodetector according to embodiments of the invention. In one embodiment, the pixels 12021 and 12024 in the array receive the optical signal IL having the optical wavelength λ 1 ; and the pixels 12022 and 12023 in the array receive the optical signal IL having the optical wavelength λ 2 . According to another embodiment, the optical signal IL of the present invention has only a single wavelength λ, but has multiple modulation frequencies f mod1 and f mod2 (or more). For example, the modulation frequency f mod1 is applied to the pixels 12021 and 12024 to demodulate the frequency component in the optical signal IL; the modulation frequency f mod2 is applied to the pixels 12022 and 12023 to demodulate the frequency component in the optical signal IL. In another embodiment, similarly, the optical signal IL has only a single wavelength λ, but has multiple modulation frequencies f mod1 and f mod2 (or more). However, at time point t 1 , the pixels in the array are driven at the modulation frequency f mod1 to demodulate this frequency component in the optical signal IL; at time point t 2 , the pixels in the array are driven at the modulation frequency f mod2 is driven to demodulate this frequency component in the optical signal IL, so the light detection device 1200a operates in a time multiplexing mode (Time multiplexing mode).

在另一實施例中,光波長λ1及λ2分別在頻率fmod1及fmod2下調變且被光偵測裝置1200a收集。在時間點t1,陣列中的像素係在頻率fmod1操作,以解調波長為λ1的光信號;在時間點t2,陣列中的像素係在頻率fmod2操作,以解調波長為λ2的光信號。在另一實施例中,具有光波長λ1及λ2的光信號IL係分別被頻率fmod1及頻率fmod2調變,其中像素12021,12024由頻率fmod1驅動;而像素12022,12023由頻率fmod2驅動,以同時對於入射的調變光信號進行解調。本領域技術人員可知光波長、調變機制、及分時多工方式可以其他方式組合,仍可實現本發明。 In another embodiment, the light wavelengths λ 1 and λ 2 are modulated at frequencies f mod1 and f mod2 respectively and are collected by the light detection device 1200a. At the time point t 1 , the pixels in the array operate at the frequency f mod1 to demodulate the optical signal with the wavelength λ 1 ; at the time point t 2 , the pixels in the array operate at the frequency f mod2 to demodulate the wavelength λ 1 λ 2 optical signal. In another embodiment, the optical signals IL having optical wavelengths λ 1 and λ 2 are modulated by frequencies f mod1 and frequency f mod2 respectively, wherein the pixels 12021 and 12024 are driven by the frequency f mod1 ; and the pixels 12022 and 12023 are driven by the frequency f mod1. f mod2 drive to simultaneously demodulate the incident modulated optical signal. Those skilled in the art will know that optical wavelengths, modulation mechanisms, and time-division multiplexing methods can be combined in other ways, and the present invention can still be implemented.

參考圖12B,此光偵測裝置1200b具有四個像素12021,12022,12023及12024。每一像素為依據本發明所述實施例的光偵測器。除了如圖12A所示之佈局外,圖12B所示之像素12021,12022,12023及12024係為錯開的佈局,每一像素的寬度及長度係與相鄰像素的寬度及長度方向垂直。 Referring to FIG. 12B, the light detection device 1200b has four pixels 12021, 12022, 12023 and 12024. Each pixel is a photodetector according to embodiments of the invention. In addition to the layout shown in Figure 12A, the pixels 12021, 12022, 12023 and 12024 shown in Figure 12B are in a staggered layout, and the width and length of each pixel are perpendicular to the width and length of adjacent pixels.

圖13A顯示依據一些實施例之光偵測裝置1300a之方塊圖,此光偵測裝置1300a使用具有相位變化的調變機制。此光偵測裝置1300a為使用間接飛行時間的深度影像感測器,以偵測一目標物件1310之距離資訊。此光偵測裝置1300a包含一像素陣列1302、雷射二極體驅動器(LDD)1304、雷射二極體(LD)1306及時脈驅動電路1308(包含時脈驅動器13081,13082)。像素陣列1302包含所述實施例之多數個光偵測器。一般而言,感測器晶片產生及發出時脈信號以1)由雷射二極體驅動器1304對被發射的光信號進行調變;及2)由像素陣列1302對接收/吸收光信號進行解調。為了得到深度資訊,在整個像素陣列的所有光偵測器係參 考相同的時脈進行解調,此相同時脈在一時間順序上以四個正交相位變化,例如,0°、90°、180°及270°,而在發射器端沒有相位變化。然而,在此實施例中,此四正交相位變化係在發射器端實施,而在接收器端沒有相位變化,此於下面說明中解釋。 FIG. 13A shows a block diagram of a light detection device 1300a using a modulation mechanism with phase change according to some embodiments. The light detection device 1300a is a depth image sensor using indirect time-of-flight to detect distance information of a target object 1310. The light detection device 1300a includes a pixel array 1302, a laser diode driver (LDD) 1304, a laser diode (LD) 1306 and a clock driver circuit 1308 (including clock drivers 13081, 13082). Pixel array 1302 includes a plurality of light detectors of the described embodiments. Generally speaking, the sensor chip generates and transmits clock signals to 1) modulate the emitted light signal by the laser diode driver 1304; and 2) decode the received/absorbed light signal by the pixel array 1302. tune. In order to obtain depth information, all light detectors in the entire pixel array are Demodulation is performed using the same clock that changes in four orthogonal phases in a time sequence, for example, 0°, 90°, 180° and 270°, with no phase changes at the transmitter end. However, in this embodiment, the four quadrature phase changes are implemented at the transmitter end and there are no phase changes at the receiver end, as explained below.

參考圖13B,其顯示由時脈驅動器13081,13082分別產生的時脈信號CLK1及CLK2的時序圖。時脈信號CLK1為具有四正交相位變化(例如0°、90°、180°及270°)之調變信號,而時脈信號CLK2為不具相位變化之解調信號。更明確而言,時脈信號CLK1驅動雷射二極體驅動器1304,使雷射二極體1306產生調變發射光信號TL。時脈信號CLK2及其反向信號CLK2’(未顯示於圖13B)係分別用作控制信號cs1及控制信號cs2(如前述實施例所述),以進行解調。換言之,在此實施例,控制信號cs1及控制信號cs2係為差動信號。此實施例可避免在影像感測器因為寄生電阻一電容引發記憶效應可能導致的時間同調(Temporal coherence)問題。 Referring to FIG. 13B , a timing diagram of clock signals CLK1 and CLK2 generated by clock drivers 13081 and 13082 respectively is shown. The clock signal CLK1 is a modulation signal with four orthogonal phase changes (eg, 0°, 90°, 180° and 270°), while the clock signal CLK2 is a demodulated signal without phase changes. More specifically, the clock signal CLK1 drives the laser diode driver 1304 to cause the laser diode 1306 to generate a modulated emission light signal TL. The clock signal CLK2 and its inverted signal CLK2' (not shown in FIG. 13B) are respectively used as the control signal cs1 and the control signal cs2 (as described in the previous embodiment) for demodulation. In other words, in this embodiment, the control signal cs1 and the control signal cs2 are differential signals. This embodiment can avoid the temporal coherence problem that may be caused by the memory effect caused by parasitic resistance and capacitance in the image sensor.

參考圖13C及13D,相較於圖13A,此光偵測裝置1300c在接收端使用兩個解調機制。像素陣列1302包含兩個部份,第一像素陣列1302a及第二像素陣列1302b。第一解調機制應用於第一像素陣列1302a,而第二解調機制應用於第二像素陣列1302b,且第一解調機制與第二解調機制在時間順序上不同。例如,第一解調機制應用於第一像素陣列1302a且具有如下時間順序的相位變化:0°、90°、180°及270°;第二解調機制應用於第二像素陣列1302b且具有如下時間順序的相位變化:90°、180°、270°及0°。淨效應為第一像素陣列1302a的相位變化與第二像素陣列1302b的相位變化為正交(Quadrature),而在發射器端無相位變化。此種操作可以降低由電源器吸取出的最大瞬間電流(如果解調波形不是理想方波)。 Referring to Figures 13C and 13D, compared to Figure 13A, the light detection device 1300c uses two demodulation mechanisms at the receiving end. The pixel array 1302 includes two parts, a first pixel array 1302a and a second pixel array 1302b. The first demodulation mechanism is applied to the first pixel array 1302a, and the second demodulation mechanism is applied to the second pixel array 1302b, and the first demodulation mechanism and the second demodulation mechanism are different in time order. For example, the first demodulation mechanism is applied to the first pixel array 1302a and has the following temporal sequence of phase changes: 0°, 90°, 180°, and 270°; the second demodulation mechanism is applied to the second pixel array 1302b and has the following Temporal phase changes: 90°, 180°, 270° and 0°. The net effect is that the phase change of the first pixel array 1302a is quadrature with the phase change of the second pixel array 1302b, and there is no phase change at the emitter end. This operation can reduce the maximum instantaneous current drawn by the power supply (if the demodulated waveform is not an ideal square wave).

參考圖13E,其顯示使用光偵測裝置1300c之調變機制。與圖13D所示 相較,此實施例係在發射器端採取相位變化,而在接收端的兩個不同的像素陣列1302a,1302b不採取相位變化;但是在兩個不同的像素陣列1302a,1302b設定不同的固定相位,且這兩個不同的固定相位彼此正交。例如,在發射器端的調變信號為時脈信號CLK1,具有如下時間順序的相位變化:0°、90°、180°及270°。時脈信號CLK2用以解調被像素陣列1302a吸收的入射光信號IL且具有固定相位為0°。時脈信號CLK3用以解調被像素陣列1302b吸收的入射光信號IL且具有固定相位為90°。 Referring to Figure 13E, a modulation mechanism using light detection device 1300c is shown. As shown in Figure 13D In comparison, this embodiment adopts phase changes at the transmitter end, but does not adopt phase changes at the two different pixel arrays 1302a and 1302b at the receiving end; however, different fixed phases are set at the two different pixel arrays 1302a and 1302b. And these two different fixed phases are orthogonal to each other. For example, the modulation signal at the transmitter end is the clock signal CLK1, which has the following time-sequential phase changes: 0°, 90°, 180° and 270°. The clock signal CLK2 is used to demodulate the incident light signal IL absorbed by the pixel array 1302a and has a fixed phase of 0°. The clock signal CLK3 is used to demodulate the incident light signal IL absorbed by the pixel array 1302b and has a fixed phase of 90°.

在圖13A-13E所示實施例,雖然作為調變及解調信號的時脈信號具有50%之工作週期(Duty cycle),在其他可的實施方式中,工作週期可以不同(例如具有30%之工作週期)。在一些實施方式中,可使用弦波作為調變及解調信號以取代方波。 In the embodiment shown in FIGS. 13A-13E , although the clock signal as the modulation and demodulation signal has a duty cycle of 50%, in other possible implementations, the duty cycle may be different (for example, with a duty cycle of 30%). working cycle). In some embodiments, sinusoidal waves may be used as modulation and demodulation signals instead of square waves.

圖14顯示依據一些實施例,使用具有相位改變調變機制的光偵測裝置操作方法。在其他的實施例中,可以執行所示流程的部份或是所有步驟。同樣的,本發明的實施例也包含不同及/或額外步驟,或是以不同順序執行這些步驟。 Figure 14 illustrates an operation method of a light detection device using a phase change modulation mechanism according to some embodiments. In other embodiments, some or all steps of the illustrated process may be performed. Likewise, embodiments of the invention may also include different and/or additional steps, or perform these steps in a different order.

在圖14所示的實施例中,光偵測方法包含下列步驟。步驟1401:發射由一第一調變信號所調變之一光信號,其中此光信號係被在多重時間訊框中具有一或多個預定相位之第一調變信號所調變。步驟1402:由一光偵測器接收反射之光信號。步驟1403:一或多個解調信號解調此反射光信號,其中一或多個解調信號為在多重時間訊框中具有一或多個預定相位之一或多個信號。步驟1404:在一電容上輸出至少一電壓信號。在此方法中,光偵測器可使用本發明所述實施例或是其變化實施方式。 In the embodiment shown in Figure 14, the light detection method includes the following steps. Step 1401: Emit an optical signal modulated by a first modulation signal, wherein the optical signal is modulated by the first modulation signal having one or more predetermined phases in multiple time frames. Step 1402: Receive the reflected light signal with a light detector. Step 1403: Demodulate the reflected light signal with one or more demodulation signals, wherein the one or more demodulation signals are one or more signals with one or more predetermined phases in multiple time frames. Step 1404: Output at least one voltage signal on a capacitor. In this method, the photodetector may use the embodiments of the present invention or variations thereof.

圖15A繪示根據一些實施例的光偵測裝置的俯視圖。光偵測裝置1500a包括一基底1504。光偵測裝置1500a還包括一像素(圖未標),其包括由 基底1504支撐的吸收層1502。像素還包括在吸收層1502中由遮光板(圖未示)定義的吸收區域AR。吸收區域AR是接收通過遮光板入射的光信號的虛擬區域。像素包括電性耦接到吸收層1502的第一開關(圖未標)和第二開關(圖未標)。第一開關包括一控制接觸層1506a和一讀出接觸層1508a。第二開關包括一控制接觸層1506b和一讀出接觸層1508b。在一些實施例中,讀出接觸層1508a,1508b和控制接觸層1506a,1506b形成在吸收層1502的第一表面上。在一些實施例中,讀出接觸層1508a,1508b和控制接觸層1506a,1506b形成在吸收區域AR的同一側。在一些實施例中,從光偵測裝置1500a的俯視圖看,沿Y方向Y1的讀出接觸層1508a,1508b之間的距離大於沿Y方向Y1的控制接觸層1506a,1506b之間的距離。在一些實施例中,從光偵測裝置1500a的俯視圖來看,沿著基本上垂直於Y方向Y1的方向,控制接觸層1506a,1506b比讀出接觸層1508a,1508b更接近吸收區域AR。 Figure 15A illustrates a top view of a light detection device according to some embodiments. The light detection device 1500a includes a substrate 1504. The light detection device 1500a also includes a pixel (not labeled), which includes The absorbent layer 1502 is supported by the substrate 1504 . The pixel also includes an absorption area AR defined by a light shield (not shown) in the absorption layer 1502 . The absorption area AR is a virtual area that receives an optical signal incident through the light shielding plate. The pixel includes a first switch (not labeled) and a second switch (not labeled) electrically coupled to the absorbing layer 1502. The first switch includes a control contact layer 1506a and a sense contact layer 1508a. The second switch includes a control contact layer 1506b and a sense contact layer 1508b. In some embodiments, sense contact layers 1508a, 1508b and control contact layers 1506a, 1506b are formed on the first surface of absorber layer 1502. In some embodiments, the sense contact layers 1508a, 1508b and the control contact layers 1506a, 1506b are formed on the same side of the absorption area AR. In some embodiments, from a top view of the light detection device 1500a, the distance between the read contact layers 1508a, 1508b along the Y direction Y1 is greater than the distance between the control contact layers 1506a, 1506b along the Y direction Y1. In some embodiments, from a top view of the light detection device 1500a, the control contact layers 1506a, 1506b are closer to the absorption area AR than the readout contact layers 1508a, 1508b along a direction substantially perpendicular to the Y direction Y1.

在一些實施例中,像素還包括第一讀出電路(圖未示)和第二讀出電路(圖未示),其分別電性耦接到第一開關和第二開關,以處理收集的電荷。第一讀出電路電性耦接到讀出接觸層1508a。第二讀出電路電性耦接到讀出接觸層1508b。 In some embodiments, the pixel further includes a first readout circuit (not shown) and a second readout circuit (not shown), which are electrically coupled to the first switch and the second switch respectively to process the collected charge. The first readout circuit is electrically coupled to the readout contact layer 1508a. The second readout circuit is electrically coupled to the readout contact layer 1508b.

像素還可以包括控制信號(圖未示),該控制信號控制控制接觸層1506a,1506b,如前面提到的實施例中所述。 The pixels may also include control signals (not shown) that control the control contact layers 1506a, 1506b, as described in the previously mentioned embodiments.

在一些實施例中,像素還包括形成在吸收層1502中並且在第一開關和第二開關之間的一引導區域1517。在一些實施例中,引導區域1517在吸收層1502的位於控制接觸層1506a,1506b正下方的部分之間。在一些實施例中,引導區域1517的一部分在吸收區域AR中。即,引導區域1517沿著基本上垂直於吸收層1502的第一表面的方向與吸收區域AR重疊。在一些實施例中,引導區域1517具有一導電類型。在一些實施例中,如果光偵測裝置被配置為收集電子, 則引導區域1517是n型。在一些實施例中,如果光偵測裝置被配置為收集電洞,則引導區域1517是p型。在一些實施例中,引導區域1517不耦合至任何外部控制,因此是浮接的。 In some embodiments, the pixel also includes a guide region 1517 formed in the absorbing layer 1502 and between the first switch and the second switch. In some embodiments, the guide region 1517 is between the portion of the absorbent layer 1502 directly beneath the control contact layers 1506a, 1506b. In some embodiments, a portion of the guide area 1517 is in the absorption area AR. That is, the guide area 1517 overlaps the absorption area AR along a direction substantially perpendicular to the first surface of the absorption layer 1502 . In some embodiments, guide region 1517 has a conductivity type. In some embodiments, if the light detection device is configured to collect electrons, Then the boot area 1517 is n-type. In some embodiments, if the light detection device is configured to collect holes, guide region 1517 is p-type. In some embodiments, boot region 1517 is not coupled to any external control and is therefore floating.

在一些實施例中,引導區域1517包括一摻質並且具有峰值摻質濃度不小於1×1015cm-3的摻質分佈。在一些實施例中,引導區域1517的峰值摻質濃度在1×1015cm-3和1×1017cm-3之間。 In some embodiments, guide region 1517 includes a dopant and has a dopant distribution with a peak dopant concentration of no less than 1×10 15 cm −3 . In some embodiments, the peak dopant concentration of guide region 1517 is between 1×10 15 cm −3 and 1×10 17 cm −3 .

引導區域1517用於促進載子從吸收區域AR向設置第一開關和第二開關的方向流動,然後基於兩個控制信號(圖未示)的控制通過控制接觸層1506a,1506b進行解調。 The guide area 1517 is used to promote the flow of carriers from the absorption area AR to the direction in which the first switch and the second switch are set, and then demodulated through the control contact layers 1506a, 1506b based on the control of two control signals (not shown).

光偵測裝置1500a包括多個重複的像素。光偵測裝置1500a包括具有多個重複像素的像素陣列。在一些實施例中,像素陣列可以是一維或二維陣列的像素。 The light detection device 1500a includes a plurality of repeated pixels. The light detection device 1500a includes a pixel array having a plurality of repeating pixels. In some embodiments, the pixel array may be a one-dimensional or two-dimensional array of pixels.

在一些實施例中,光偵測裝置1500a還包括圍繞吸收層1502的至少一部分的阻擋層1519。阻擋層1519具有一導電類型。在一些實施例中,阻擋層1519的導電類型與吸收層1502的導電類型相同。阻擋層1519可以阻擋吸收層1502中的光生電荷到達基底1504,這增加了光偵測裝置1500a的光生載子的收集效率。阻擋層1519還可以阻擋基底1504中的光生電荷到達吸收層1502,這增加了光偵測裝置1500a的光生載子的速度。阻擋層1519可以包括與吸收層1502的材料相同、與基底1504的材料相同的材料、吸收層1502的材料和基底1504的材料的組合的材料,或者可以不同於吸收層1502的材料和基底1504的材料。在一些實施例中,阻擋層1519的形狀可以是但不限於環形。在一些實施例中,阻擋層1519包括一摻質,並且具有峰值摻質濃度範圍為1015cm-3至1020cm-3的摻質分佈。阻擋層1519可以減少兩個相鄰像素之間的串擾。 In some embodiments, the light detection device 1500a further includes a blocking layer 1519 surrounding at least a portion of the absorbing layer 1502. Barrier layer 1519 has a conductivity type. In some embodiments, barrier layer 1519 is of the same conductivity type as absorber layer 1502 . The blocking layer 1519 can block the photogenerated charges in the absorbing layer 1502 from reaching the substrate 1504, which increases the collection efficiency of the photogenerated carriers of the photodetection device 1500a. The blocking layer 1519 can also block the photogenerated charges in the substrate 1504 from reaching the absorbing layer 1502, which increases the speed of the photogenerated carriers of the photodetection device 1500a. Barrier layer 1519 may include a material that is the same as the material of absorber layer 1502 , the same material as the material of substrate 1504 , a combination of the materials of absorber layer 1502 and the material of substrate 1504 , or may be different from the materials of absorber layer 1502 and substrate 1504 Material. In some embodiments, the shape of barrier layer 1519 may be, but is not limited to, annular. In some embodiments, barrier layer 1519 includes a dopant and has a dopant distribution with a peak dopant concentration ranging from 10 15 cm −3 to 10 20 cm −3 . The blocking layer 1519 can reduce crosstalk between two adjacent pixels.

圖15B繪示根據一些實施例的光偵測裝置的俯視圖。圖15B中的光 偵測裝置1500b類似於圖15A中的光偵測裝置1500a,其中差異描述於下。在一些實施例中,沿Y方向Y1的讀出接觸層1508a,1508b之間的距離可以與沿Y方向Y1的控制接觸層1506a,1506b之間的距離基本相同。在一些實施例中,控制接觸層1506a在吸收區域AR和讀出接觸層1508a之間。在一些實施例中,控制接觸層1506b在吸收區域AR和讀出接觸層1508b之間。在一些實施例中,引導區域1517可以與吸收區域AR相鄰並且不與吸收區域AR重疊。 Figure 15B illustrates a top view of a light detection device according to some embodiments. The light in Figure 15B The detection device 1500b is similar to the light detection device 1500a in FIG. 15A, with the differences described below. In some embodiments, the distance between the sense contact layers 1508a, 1508b along the Y direction Y1 may be substantially the same as the distance between the control contact layers 1506a, 1506b along the Y direction Y1. In some embodiments, control contact layer 1506a is between absorption area AR and readout contact layer 1508a. In some embodiments, control contact layer 1506b is between absorption area AR and readout contact layer 1508b. In some embodiments, guide area 1517 may be adjacent to and non-overlapping the absorbent area AR.

圖15C繪示根據一些實施例的光偵測裝置的剖視圖。在一些實施例中,圖15C繪示沿圖15A或圖15B中的A-A’線的剖視圖。在一些實施例中,圖15C所示的剖視圖可以是沿著光偵測裝置的任何可能的截面線的剖視圖。在一些實施例中,第一開關還包括在讀出接觸層1508a下的第一摻雜區1501a。第二開關還包括在讀出接觸層1508b下的第一摻雜區1501b。在一些實施例中,第一摻雜區1501a,1501b是第一導電類型。在一些實施例中,第一摻雜區1501a,1501b包括第一摻質。第一摻雜區1501a,1501b的峰值摻質濃度取決於讀出接觸層1508a,1508b的材料和吸收層1502的材料,例如在5×1018cm-3至5×1020cm-3之間。第一摻雜區1501a,1501b用於收集從吸收層1502產生的載子,其基於兩個控制信號(圖未示)的控制而分別由第一讀出電路(圖未示)和第二讀出電路(圖未示)處理。 Figure 15C illustrates a cross-sectional view of a light detection device according to some embodiments. In some embodiments, FIG. 15C illustrates a cross-sectional view along line AA' in FIG. 15A or 15B. In some embodiments, the cross-sectional view shown in FIG. 15C may be a cross-sectional view along any possible cross-section line of the light detection device. In some embodiments, the first switch also includes a first doped region 1501a under the sense contact layer 1508a. The second switch also includes a first doped region 1501b under the sense contact layer 1508b. In some embodiments, the first doped regions 1501a, 1501b are of the first conductivity type. In some embodiments, the first doped regions 1501a, 1501b include a first dopant. The peak dopant concentration of the first doped regions 1501a, 1501b depends on the material of the readout contact layer 1508a, 1508b and the material of the absorption layer 1502, for example, between 5×10 18 cm −3 and 5×10 20 cm −3 . The first doped regions 1501a, 1501b are used to collect carriers generated from the absorption layer 1502, which are controlled by a first readout circuit (not shown) and a second readout circuit respectively based on the control of two control signals (not shown). Output circuit (not shown) processing.

在一些實施例中,阻擋層1519的導電類型不同於各個第一摻雜區1501b,1501a的第一導電類型。在一些實施例中,引導區域1517的峰值摻質濃度低於第一摻雜區1501a,1501b的峰值摻質濃度。在一些實施例中,光偵測裝置1500c還包括電性耦接到阻擋層1519的導電層(圖未示)。在一些實施例中,可以透過導電層以偏壓電壓來偏壓阻擋層1519,以釋放未被第一摻雜區1501a,1501b收集的載子。 In some embodiments, the conductivity type of barrier layer 1519 is different from the first conductivity type of each first doped region 1501b, 1501a. In some embodiments, the peak dopant concentration of the guide region 1517 is lower than the peak dopant concentration of the first doped regions 1501a, 1501b. In some embodiments, the light detection device 1500c further includes a conductive layer (not shown) electrically coupled to the blocking layer 1519. In some embodiments, the barrier layer 1519 can be biased with a bias voltage through the conductive layer to release carriers that are not collected by the first doped regions 1501a, 1501b.

在一些實施例中,第一開關還包括在控制接觸層1506a下的第二摻雜區1503a。第二開關還包括在控制接觸層1506b下的第二摻雜區1503b。在一些實 施例中,第二摻雜區1503a,1503b具有與第一摻雜區1501b,1501a的第一導電類型不同的第二導電類型。在一些實施例中,第二摻雜區1503a,1503b包括一第二摻質。第二摻雜區1503a,1503b的峰值摻質濃度取決於控制接觸層1506b,1506a的材料和吸收層1502的材料,例如在1×1017cm-3至5×1020cm-3之間。第二摻雜區1503a,1503b與控制接觸層1506b,1506a形成蕭特基接觸、歐姆接觸或其組合。基於控制信號(圖未示)的控制,第二摻雜區1503a,1503b用於來解調從吸收層1502產生的載子。在一些實施例中,引導區域1517在第二摻雜區1503a,1503b之間。 In some embodiments, the first switch also includes a second doped region 1503a under the control contact layer 1506a. The second switch also includes a second doped region 1503b under the control contact layer 1506b. In some embodiments, the second doped regions 1503a, 1503b have a second conductivity type that is different from the first conductivity type of the first doped regions 1501b, 1501a. In some embodiments, the second doped regions 1503a, 1503b include a second dopant. The peak dopant concentration of the second doped regions 1503a, 1503b depends on the material of the control contact layer 1506b, 1506a and the material of the absorption layer 1502, for example, between 1×10 17 cm −3 and 5×10 20 cm −3 . The second doped regions 1503a, 1503b and the control contact layers 1506b, 1506a form a Schottky contact, an ohmic contact or a combination thereof. Based on the control of a control signal (not shown), the second doped regions 1503a and 1503b are used to demodulate carriers generated from the absorption layer 1502. In some embodiments, the guide region 1517 is between the second doped regions 1503a, 1503b.

在一些實施例中,各個第二摻雜區1503a,1503b的深度大於各個第一摻雜區1501a,1501b的深度。深度係從吸收層1502的第一表面1502s到摻質達到背景濃度(例如1×1015cm-3)的位置來測量。在一些實施例中,引導區域1517的深度不大於各個第二摻雜區1503a,1503b的深度。 In some embodiments, the depth of each second doped region 1503a, 1503b is greater than the depth of each first doped region 1501a, 1501b. Depth is measured from the first surface 1502s of the absorber layer 1502 to the point where the dopant reaches a background concentration (eg, 1×10 15 cm −3 ). In some embodiments, the depth of the guide region 1517 is no greater than the depth of each second doped region 1503a, 1503b.

在一些實施例中,引導區域1517可以是浮接的。在一些實施例中,光偵測裝置1500c可以進一步包括電連接至引導區域1517的導電層(圖未示)。在一些實施例中,引導區域1517可以透過導電層被一偏壓電壓偏壓。在一些實施例中,引導區域1517和阻擋層1519共同形成為一垂直光電二極體,在引導區域1517和阻擋層1519之間建立有內置的垂直電場,其可以幫助分離由吸收層1502中的吸收的光子產生的電子-電洞對。術語“垂直”是基本上垂直於吸收層1502的第一表面的方向。 In some embodiments, boot area 1517 may be floating. In some embodiments, the light detection device 1500c may further include a conductive layer (not shown) electrically connected to the guide region 1517. In some embodiments, the guide region 1517 may be biased by a bias voltage through the conductive layer. In some embodiments, the guide region 1517 and the barrier layer 1519 together form a vertical photodiode, and a built-in vertical electric field is established between the guide region 1517 and the barrier layer 1519 , which can help separate photodiodes formed by the absorber layer 1502 Absorbed photons create electron-hole pairs. The term "vertical" is a direction that is substantially perpendicular to the first surface of absorbent layer 1502.

圖15D繪示根據一些實施例的光偵測裝置的剖視圖。在一些實施例中,圖15D所示的剖視圖可以是沿著光偵測裝置的任何可能的截面線的剖視圖。圖15D中的光偵測裝置1500d類似於圖15C中的光偵測裝置1500c,其中差異描述於下。在一些實施例中,光偵測裝置進一步1500d包括兩個反摻雜區1551a,1551b。在一些實施例中,反摻雜區1551a,1551b形成在吸收層1502 中。在一些實施例中,反摻雜區1551a與第一摻雜區1501a的至少一部分重疊。反摻雜區1551b與第一摻雜區1501b的至少一部分重疊。在一些實施例中,反摻雜區1551a,1551b與遠離控制接觸層1506a,1506b的第一摻雜區1501a,1501b的一部分重疊,並且第一摻雜區1501a,1501b的其他部分不與反摻雜區1551a,1551b重疊。在一些實施例中,各個第一摻雜區1501a,1501b的全部都與相應的反摻雜區1551a,1551b重疊。 Figure 15D illustrates a cross-sectional view of a light detection device according to some embodiments. In some embodiments, the cross-sectional view shown in FIG. 15D may be a cross-sectional view along any possible cross-section line of the light detection device. The light detection device 1500d in Figure 15D is similar to the light detection device 1500c in Figure 15C, with the differences described below. In some embodiments, the light detection device 1500d further includes two counter-doped regions 1551a, 1551b. In some embodiments, counter-doped regions 1551a, 1551b are formed in the absorber layer 1502 middle. In some embodiments, counter-doped region 1551a overlaps at least a portion of first doped region 1501a. The counter-doped region 1551b overlaps at least a portion of the first doped region 1501b. In some embodiments, the counter-doped regions 1551a, 1551b overlap a portion of the first doped regions 1501a, 1501b remote from the control contact layer 1506a, 1506b, and other portions of the first doped regions 1501a, 1501b are not counter-doped. The hybrid areas 1551a and 1551b overlap. In some embodiments, all of each first doped region 1501a, 1501b overlaps a corresponding counter-doped region 1551a, 1551b.

各個反摻雜區1551a,1551b具有與第一摻雜區1501a,1501b的第一導電類型不同的導電類型。例如,如果第一摻雜區1501a,1501b是n型,則反摻雜區1551a,1551b是p型。在一些實施例中,各個反摻雜區1551a,1551b包括摻質以及具有峰值摻質濃度的摻質分佈。峰值摻質濃度不小於1×1016cm-3。在一些實施例中,反摻雜區1551a,1551b的峰值摻質濃度低於第一摻雜區1501b,1501a的峰值摻質濃度。在一些實施例中,各個反摻雜區1551a,1551b的峰值摻質濃度在1x1016cm-3和1x1019cm-3之間。在一些實施例中,反摻雜區1551a,1551b用作暗電流減小區,用於降低光偵測裝置1500d的暗電流。與不具有反摻雜區1551a,1551b的光偵測裝置相比,包括與第一摻雜區1501a,1501b的至少一部分重疊的反摻雜區1551a,1551b的光偵測裝置1500d在吸收層1502內具有更薄的空乏區,因此光偵測裝置1500d具有較低的暗電流。 Each counter-doped region 1551a, 1551b has a different conductivity type than the first conductivity type of the first doped region 1501a, 1501b. For example, if the first doped regions 1501a, 1501b are n-type, then the counter-doped regions 1551a, 1551b are p-type. In some embodiments, each counter-doped region 1551a, 1551b includes dopant and a dopant profile having a peak dopant concentration. The peak dopant concentration is not less than 1×10 16 cm -3 . In some embodiments, the peak dopant concentration of the counter-doped regions 1551a, 1551b is lower than the peak dopant concentration of the first doped regions 1501b, 1501a. In some embodiments, the peak dopant concentration of each counter-doped region 1551a, 1551b is between 1x10 16 cm -3 and 1x10 19 cm -3 . In some embodiments, the counter-doping regions 1551a, 1551b serve as dark current reduction regions for reducing the dark current of the photodetection device 1500d. Compared with the light detection device without the anti-doped regions 1551a, 1551b, the light detection device 1500d including the anti-doped regions 1551a, 1551b overlapping at least a portion of the first doped regions 1501a, 1501b has a lower surface area in the absorber layer 1502. There is a thinner depletion region inside, so the light detection device 1500d has a lower dark current.

在一些實施例中,反摻雜區1551a,1551b可以降低兩個第一摻雜區1501a,1501b之間的耦合。 In some embodiments, counter-doped regions 1551a, 1551b can reduce coupling between the two first doped regions 1501a, 1501b.

在一些實施例中,光偵測裝置1500d可以進一步包括電連接至阻擋層1519的導電層1521。可以透過導電層1521以偏壓電壓將阻擋層1519偏壓,以釋放未被第一摻雜區1501a,1501b收集的載子。在一些實施例中,阻擋層1519可以被偏壓並且因此在阻擋層1519和引導區域1517之間提供一垂直電場,這可以幫助分離在吸收區域AR中產生的電子-電洞對。在一些實施例中,光偵測裝置1500d 可以進一步包括電連接到引導區域1517並用以偏壓引導區域1517的另一導電層(圖未示),這進一步增強了阻擋層1519和引導區域1517之間的垂直電場。 In some embodiments, the light detection device 1500d may further include a conductive layer 1521 electrically connected to the blocking layer 1519. The barrier layer 1519 can be biased with a bias voltage through the conductive layer 1521 to release carriers that are not collected by the first doped regions 1501a, 1501b. In some embodiments, barrier layer 1519 can be biased and thus provide a vertical electric field between barrier layer 1519 and guide region 1517, which can help separate electron-hole pairs generated in absorption region AR. In some embodiments, the light detection device 1500d Another conductive layer (not shown) electrically connected to and used to bias the guide region 1517 may further be included, which further enhances the vertical electric field between the barrier layer 1519 and the guide region 1517.

圖15E繪示根據一些實施例的光偵測裝置的俯視圖。圖15E中的光偵測裝置1500e類似於圖15A中的光偵測裝置,其中差異描述於下。光偵測裝置1500e沒有阻擋層1519。讀出接觸層1508a,1508b、控制接觸層1506a,1506b形成在基底1504的第一表面上。引導區域1517形成在吸收層1502和基底1504兩者中。換句話說,引導區域1517的一部分在吸收層1502中,引導區域1517的另一部分在基底1504中。在一些實施例中,引導區域1517覆蓋基底1504和吸收層1502之間的界面的一部份。在一些實施例中,從光偵測裝置1500e的頂視圖來看,光偵測裝置1500e還包括形成在基底1504中並且圍繞吸收層1502、讀出接觸層1508a,1508b和控制接觸層1506a,1506b的一隔離區1524。隔離區1524與吸收層1502分離。在一些實施例中,隔離區1524是填充有介電材料或絕緣材料的溝槽,以用作兩個相鄰像素之間的高電阻區域,從而阻礙了跨隔離區1524的電流流動,並改善相鄰像素之間的電隔離。所述介電材料或絕緣材料可以包括但不限於包括SiO2的氧化物材料或包括Si3N4的氮化物材料或包括非晶矽、多晶矽、單晶矽或磊晶矽的矽材料。在一些實施例中,從光偵測裝置1500e的橫截面看,隔離區1524從基底1504的第一表面(圖未示)延伸並且從第一表面延伸到一預定深度。在一些實施例中,隔離區1524從基底1504的第二表面(圖未示)延伸並且從第二表面延伸到一預定深度。在一些實施例中,隔離區1524從第一表面至第二表面貫穿基底1504。 Figure 15E illustrates a top view of a light detection device according to some embodiments. The light detection device 1500e in Figure 15E is similar to the light detection device in Figure 15A, with the differences described below. The light detection device 1500e does not have the blocking layer 1519. Sense contact layers 1508a, 1508b and control contact layers 1506a, 1506b are formed on the first surface of the substrate 1504. Guide regions 1517 are formed in both absorbent layer 1502 and substrate 1504. In other words, a portion of the guide area 1517 is in the absorbent layer 1502 and another portion of the guide area 1517 is in the substrate 1504. In some embodiments, guide region 1517 covers a portion of the interface between substrate 1504 and absorbent layer 1502. In some embodiments, from a top view of the light detection device 1500e, the light detection device 1500e also includes a readout contact layer 1508a, 1508b and a control contact layer 1506a, 1506b formed in the substrate 1504 and surrounding the absorber layer 1502. A quarantine area 1524. Isolation region 1524 is separated from absorber layer 1502. In some embodiments, isolation region 1524 is a trench filled with dielectric or insulating material to serve as a high-resistance region between two adjacent pixels, thereby impeding current flow across isolation region 1524 and improving Electrical isolation between adjacent pixels. The dielectric material or insulating material may include, but is not limited to, an oxide material including SiO 2 or a nitride material including Si 3 N 4 or a silicon material including amorphous silicon, polycrystalline silicon, monocrystalline silicon or epitaxial silicon. In some embodiments, the isolation region 1524 extends from the first surface (not shown) of the substrate 1504 and extends from the first surface to a predetermined depth when viewed from a cross-section of the light detection device 1500e. In some embodiments, isolation region 1524 extends from a second surface (not shown) of substrate 1504 and extends from the second surface to a predetermined depth. In some embodiments, isolation region 1524 extends through substrate 1504 from the first surface to the second surface.

在一些實施例中,隔離區1524是具有導電類型的摻雜區。隔離區1524的摻雜可以產生能隙偏移引起的位能勢壘(bandgap offset-induced potential energy barrier),其阻止了電流流過隔離區1524,並改善光偵測裝置1500e的相鄰像素之間的電隔離。在一些實施例中,隔離區1524包括與基底1504的材料不同的 半導體材料。在基底1504和隔離區1524之間形成的兩種不同半導體材料之間的界面可以產生能隙偏移引起的能障,其阻止了電流流過隔離區1524,並改善了光偵測裝置1500e相鄰像素之間的電隔離。在一些實施例中,隔離區1524的形狀可以是環形。在一些實施例中,隔離區1524可以包括兩個獨立區域,其設置在吸收層1502的兩個相對側。 In some embodiments, isolation region 1524 is a doped region with a conductivity type. The doping of the isolation region 1524 can generate a bandgap offset-induced potential energy barrier, which prevents current from flowing through the isolation region 1524 and improves the distance between adjacent pixels of the light detection device 1500e. electrical isolation. In some embodiments, isolation region 1524 includes a material different from that of substrate 1504 Semiconductor materials. The interface between two different semiconductor materials formed between the substrate 1504 and the isolation region 1524 can create an energy barrier caused by the energy gap shift, which prevents current from flowing through the isolation region 1524 and improves the phase of the light detection device 1500e Electrical isolation between adjacent pixels. In some embodiments, the isolation region 1524 may be annular in shape. In some embodiments, isolation region 1524 may include two separate regions disposed on opposite sides of absorbent layer 1502 .

圖15F繪示根據一些實施例的光偵測裝置的剖視圖。在一些實施例中,圖15F繪示沿圖15E中的A-A’線的剖視圖。在一些實施例中,圖15F所示的剖視圖可以是沿著光偵測裝置的任何可能的截面線的剖視圖。在一些實施例中,光偵測裝置1500f的第一開關還包括一第一摻雜區1501a,其類似於前述的第一摻雜區,例如圖15C中描述的第一摻雜區1501a。在一些實施例中,第二開關還包括一第一摻雜區1501b,其類似於前述的第一摻雜區,例如圖15C中描述的第一摻雜區1501b。在一些實施例中,第一開關還包括一第二摻雜區1503a,其類似於前述的第二摻雜區,例如圖15C中描述的第二摻雜區1503a。在一些實施例中,第二開關包括一第二摻雜區1503b,其類似於前述的第二摻雜區,例如圖15C中描述的第二摻雜區1503b。引導區域1517在第二摻雜區1503a,1503b之間。在一些實施例中,隔離區1524的導電類型可以與第一摻雜區1501a,1501b的第一導電類型不同或相同。 Figure 15F illustrates a cross-sectional view of a light detection device according to some embodiments. In some embodiments, Figure 15F illustrates a cross-sectional view along line A-A' in Figure 15E. In some embodiments, the cross-sectional view shown in FIG. 15F may be a cross-sectional view along any possible cross-section line of the light detection device. In some embodiments, the first switch of the light detection device 1500f further includes a first doping region 1501a, which is similar to the aforementioned first doping region, such as the first doping region 1501a described in FIG. 15C. In some embodiments, the second switch further includes a first doped region 1501b, which is similar to the aforementioned first doped region, such as the first doped region 1501b described in FIG. 15C. In some embodiments, the first switch further includes a second doped region 1503a, which is similar to the aforementioned second doped region, such as the second doped region 1503a described in FIG. 15C. In some embodiments, the second switch includes a second doped region 1503b, which is similar to the aforementioned second doped region, such as the second doped region 1503b described in FIG. 15C. The guide region 1517 is between the second doped regions 1503a, 1503b. In some embodiments, the conductivity type of the isolation region 1524 may be different or the same as the first conductivity type of the first doped regions 1501a, 1501b.

圖15G繪示根據一些實施例的光偵測裝置的俯視圖。圖15G中的光偵測裝置1500g類似於圖15E中的光偵測裝置1500e,其中差異描述於下。在一些實施例中,光偵測裝置的像素還包括形成在吸收層1502中的排出區域1518。在一些實施例中,排出區域1518設置在吸收區域AR的相對於吸收區域AR設置有第一開關和第二開關的相反側。在一些實施例中,吸收區域AR在排出區域1518與控制接觸層1506a或控制接觸層1506b之間。 Figure 15G illustrates a top view of a light detection device according to some embodiments. The light detection device 1500g in Figure 15G is similar to the light detection device 1500e in Figure 15E, with the differences described below. In some embodiments, the pixel of the light detection device further includes a drain region 1518 formed in the absorbing layer 1502. In some embodiments, the discharge area 1518 is disposed on an opposite side of the absorption area AR relative to the absorption area AR where the first switch and the second switch are disposed. In some embodiments, the absorption area AR is between the exhaust area 1518 and the control contact layer 1506a or the control contact layer 1506b.

排出區域1518具有不同於引導區域1517的導電類型的導電類型。在 一些實施例中,排出區域1518包括一摻質並且具有峰值摻質濃度範圍為1×1018cm-3至5×1020cm-3的摻質分佈。在光偵測裝置1500g的操作中,排出區域1518用於釋放未被第一摻雜區1501a,1501b收集的載子。因此,光偵測裝置1500g具有改善的可靠性和量子效率。在一些實施例中,光偵測裝置1500g的像素還包括電性耦接到排出區域1518並且設置在吸收層1502上的一導電層1541,用於偏壓排出區域1518。例如,如果光偵測裝置1500g被配置為收集電子,則電洞可以通過排出區域1518和導電層1541被釋放。 The drain region 1518 has a conductivity type different from that of the guide region 1517 . In some embodiments, the drain region 1518 includes a dopant and has a dopant distribution with a peak dopant concentration ranging from 1×10 18 cm −3 to 5×10 20 cm −3 . During operation of the photodetection device 1500g, the drain region 1518 is used to release carriers that are not collected by the first doped regions 1501a, 1501b. Therefore, the light detection device 1500g has improved reliability and quantum efficiency. In some embodiments, the pixel of the light detection device 1500g further includes a conductive layer 1541 electrically coupled to the drain region 1518 and disposed on the absorber layer 1502 for biasing the drain region 1518. For example, if light detection device 1500g is configured to collect electrons, holes may be released through drain region 1518 and conductive layer 1541.

圖15H繪示根據一些實施例的光偵測裝置的剖視圖。在一些實施例中,圖15H繪示沿圖15G中的B-B’線的剖視圖。在一些實施例中,圖15H所示的剖視圖可以是沿著光偵測裝置的任何可能的截面線的剖視圖。 Figure 15H illustrates a cross-sectional view of a light detection device according to some embodiments. In some embodiments, Figure 15H illustrates a cross-sectional view along line B-B' in Figure 15G. In some embodiments, the cross-sectional view shown in FIG. 15H may be a cross-sectional view along any possible cross-section line of the light detection device.

圖15I繪示根據一些實施例的光偵測裝置的俯視圖。圖15I中的光偵測裝置1500i類似於圖15A中的光偵測裝置1500a,其中差異描述於下。在一些實施例中,光偵測裝置1500i的像素還包括一排出區域1518,其類似於圖15G中描述的排出區域1518。其中區別描述於下。排出區域1518形成在吸收層1502和基底1504兩者中。換句話說,排出區域1518的一部分在吸收層1502中,排出區域1518的另一部分在基底1504中。光偵測裝置1500i的像素還包括電性耦接至排出區域1518的一導電層1541,以用於偏壓排出區域1518,如圖15G所示。導電層1541設置在基底1504上方並且與排出區域1518重疊。 Figure 15I illustrates a top view of a light detection device according to some embodiments. The light detection device 1500i in Figure 15I is similar to the light detection device 1500a in Figure 15A, with the differences described below. In some embodiments, the pixels of light detection device 1500i also include a discharge area 1518, which is similar to the discharge area 1518 described in Figure 15G. The differences are described below. Drainage region 1518 is formed in both absorbent layer 1502 and substrate 1504 . In other words, a portion of the drain region 1518 is in the absorbent layer 1502 and another portion of the drain region 1518 is in the substrate 1504 . The pixel of the light detection device 1500i also includes a conductive layer 1541 electrically coupled to the drain region 1518 for biasing the drain region 1518, as shown in FIG. 15G. Conductive layer 1541 is disposed over substrate 1504 and overlaps drain region 1518 .

圖15J繪示根據一些實施例的光偵測裝置的剖視圖。在一些實施例中,圖15J繪示沿圖15I中的B-B’線的剖視圖。在一些實施例中,圖15J所示的剖視圖可以是沿著光偵測裝置的任何可能的截面線的剖視圖。 Figure 15J illustrates a cross-sectional view of a light detection device according to some embodiments. In some embodiments, Figure 15J illustrates a cross-sectional view along line B-B' in Figure 15I. In some embodiments, the cross-sectional view shown in FIG. 15J may be a cross-sectional view along any possible cross-section line of the light detection device.

圖15K繪示根據一些實施例的光偵測裝置的俯視圖。圖15K中的光偵測裝置1500k類似於圖15E中的光偵測裝置1500e,其中差異描述於下。在一些實施例中,控制接觸層1506a,1506b在吸收層1502的第一表面上,其可以增 加吸收層1502中的控制接觸層1506a,1506b正下方的部分之間的橫向電場。在一些實施例中,光偵測裝置1500k的像素可以進一步包括如圖15G或圖15I中所述的一排出區域1518。在一些實施例中,光偵測裝置1500k可以進一步包括如圖15G或圖15I中所述的一導電層1541。 Figure 15K illustrates a top view of a light detection device according to some embodiments. The light detection device 1500k in Figure 15K is similar to the light detection device 1500e in Figure 15E, with the differences described below. In some embodiments, control contact layers 1506a, 1506b are on the first surface of absorber layer 1502, which can increase A lateral electric field is added between the portion of the absorber layer 1502 directly beneath the control contact layers 1506a, 1506b. In some embodiments, the pixels of the light detection device 1500k may further include a discharge area 1518 as described in Figure 15G or Figure 15I. In some embodiments, the light detection device 1500k may further include a conductive layer 1541 as shown in FIG. 15G or 15I.

圖15L繪示根據一些實施例的光偵測裝置的剖視圖。在一些實施例中,圖15L繪示沿圖15K中的A-A’線的剖視圖。在一些實施例中,圖15L所示的剖視圖可以是沿著光偵測裝置的任何可能的截面線的剖視圖。在一些實施例中,第一開關還包括一第一摻雜區1501a,其類似於前述的第一摻雜區,例如圖15C中所述的第一摻雜區1501a。在一些實施例中,第二開關還包括一第一摻雜區1501b,其類似於前述的第一摻雜區,例如圖15C中描述的第一摻雜區1501b。在一些實施例中,第一開關還包括一第二摻雜區1503a,其類似於前述的第二摻雜區,例如圖15C中描述的第二摻雜區1503a。在一些實施例中,第二開關包括一第二摻雜區1503b,其類似於前述的第二摻雜區,例如圖15C中描述的第二摻雜區1503b。引導區域1517在第二摻雜區1503a,1503b之間。 Figure 15L illustrates a cross-sectional view of a light detection device according to some embodiments. In some embodiments, Figure 15L illustrates a cross-sectional view along line A-A' in Figure 15K. In some embodiments, the cross-sectional view shown in FIG. 15L may be a cross-sectional view along any possible cross-section line of the light detection device. In some embodiments, the first switch further includes a first doped region 1501a, which is similar to the aforementioned first doped region, such as the first doped region 1501a shown in FIG. 15C. In some embodiments, the second switch further includes a first doped region 1501b, which is similar to the aforementioned first doped region, such as the first doped region 1501b described in FIG. 15C. In some embodiments, the first switch further includes a second doped region 1503a, which is similar to the aforementioned second doped region, such as the second doped region 1503a described in FIG. 15C. In some embodiments, the second switch includes a second doped region 1503b, which is similar to the aforementioned second doped region, such as the second doped region 1503b described in FIG. 15C. The guide region 1517 is between the second doped regions 1503a, 1503b.

圖16A繪示根據一些實施例的光偵測裝置的剖視圖。光偵測裝置1600a包括一基底1604。光偵測裝置1600a還包括一像素,其包括由基底1604支撐的一吸收層1602。像素包括類似於前述的吸收區域AR的一吸收區域AR,例如圖15A所示的吸收區域AR。像素包括電性耦接到吸收層1602的一第一開關(圖未標)和一第二開關(圖未標)。第一開關包括一控制接觸層1606a和一讀出接觸層1608a。第二開關包括一控制接觸層1606b和一讀出接觸層1608b。在一些實施例中,讀出接觸層1608a,1608b和控制接觸層1606a,1606b形成在吸收層1602的第一表面1602s上。在一些實施例中,吸收區域AR的寬度小於讀出接觸層1608a,1608b之間的距離。在一些實施例中,讀出接觸層1608a,1608b被設置在吸收區域AR的兩個相對側。 Figure 16A illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1600a includes a substrate 1604. The light detection device 1600a also includes a pixel including an absorbing layer 1602 supported by the substrate 1604. The pixel includes an absorption area AR similar to the aforementioned absorption area AR, such as the absorption area AR shown in FIG. 15A. The pixel includes a first switch (not labeled) and a second switch (not labeled) electrically coupled to the absorbing layer 1602. The first switch includes a control contact layer 1606a and a sense contact layer 1608a. The second switch includes a control contact layer 1606b and a sense contact layer 1608b. In some embodiments, sense contact layers 1608a, 1608b and control contact layers 1606a, 1606b are formed on first surface 1602s of absorber layer 1602. In some embodiments, the width of the absorption region AR is less than the distance between the readout contact layers 1608a, 1608b. In some embodiments, readout contact layers 1608a, 1608b are disposed on opposite sides of the absorption area AR.

光偵測裝置1600a包括多個重複的像素。光偵測裝置1600a包括具有多個重複像素的像素陣列。在一些實施例中,像素陣列可以是一維或二維陣列的像素。 The light detection device 1600a includes a plurality of repeated pixels. The light detection device 1600a includes a pixel array having a plurality of repeating pixels. In some embodiments, the pixel array may be a one-dimensional or two-dimensional array of pixels.

在一些實施例中,未摻雜區1605a,1605b位在控制接觸層1606a,1606b的正下方。即,吸收層1602在控制接觸層1606a,1606b正下方的部分可以是本質的或包括摻質,並且具有峰值摻質濃度低於大約1×1015cm-3的摻質分佈。術語“本質”是指吸收層1602在控制接觸層1606a,1606b正下方的部分未故意添加摻質。在一些實施例中,取決於各種因素,包括吸收層1602的材料、控制接觸層1606a,1606b的材料以及吸收層1602的雜質或缺陷程度,吸收層1602上的控制接觸層1606a,1606b可導致蕭特基接觸、歐姆接觸或具有在兩者之間的中間特性的一組合的形成。 In some embodiments, undoped regions 1605a, 1605b are located directly beneath control contact layers 1606a, 1606b. That is, the portion of the absorber layer 1602 directly beneath the control contact layers 1606a, 1606b may be intrinsic or include dopants and have a dopant distribution with a peak dopant concentration below approximately 1×10 15 cm −3 . The term "essentially" means that the portion of the absorber layer 1602 directly beneath the control contact layers 1606a, 1606b is not intentionally doped. In some embodiments, control contact layers 1606a, 1606b on absorber layer 1602 may cause degeneration depending on various factors, including the material of absorber layer 1602, the material of control contact layers 1606a, 1606b, and the level of impurities or defects in absorber layer 1602. The formation of a special contact, an ohmic contact, or a combination with properties intermediate between the two.

在一些實施例中,像素還包括控制控制接觸層1606a,1606b的兩個控制信號cs1,cs2,以控制由吸收層1602中的吸收光子產生的電子或電洞的移動方向。例如,當使用電壓時如果控制信號cs1相對於控制信號cs2偏置,則在控制接觸層1606a,1606b的正下方的兩個未摻雜區1605a,1605b之間會產生電場,且取決於電場的方向,自由電荷會向兩個未摻雜區1605a,1605b之一漂移。 In some embodiments, the pixel also includes two control signals cs1, cs2 that control the contact layers 1606a, 1606b to control the moving direction of electrons or holes generated by absorbed photons in the absorbing layer 1602. For example, if control signal cs1 is biased relative to control signal cs2 when using a voltage, an electric field will be generated between the two undoped regions 1605a, 1605b directly beneath the control contact layers 1606a, 1606b, and depending on the electric field direction, the free charges will drift toward one of the two undoped regions 1605a, 1605b.

在一些實施例中,像素包括兩個電容1610a,1610b。讀出接觸層1608a電性耦接到電容1610a,且讀出接觸層1608b電性耦接到電容1610b。電容1610a,1610b類似於前述的電容。在一些實施例中,像素還包括分別電性耦接到第一開關和第二開關的第一讀出電路和第二讀出電路,用以處理收集的電荷。第一讀出電路可以包括電容1610a。第二讀出電路可以包括電容1610b。第一讀出電路電性耦接到讀出接觸層1608a。第二讀出電路電性耦接到讀出接觸層1608b。 In some embodiments, a pixel includes two capacitors 1610a, 1610b. Sense contact layer 1608a is electrically coupled to capacitor 1610a, and sense contact layer 1608b is electrically coupled to capacitor 1610b. Capacitors 1610a, 1610b are similar to the previously described capacitors. In some embodiments, the pixel further includes a first readout circuit and a second readout circuit electrically coupled to the first switch and the second switch, respectively, for processing the collected charges. The first readout circuit may include capacitor 1610a. The second readout circuit may include capacitor 1610b. The first readout circuit is electrically coupled to the readout contact layer 1608a. The second readout circuit is electrically coupled to the readout contact layer 1608b.

在一些實施例中,第一開關包括在吸收層1602中並且在讀出接觸層1608a下的一第一摻雜區1601a。第二開關包括在吸收層1602中並且在讀出接觸層1608b下的一第一摻雜區1601b。在一些實施例中,第一摻雜區1601a類似於前述的第一摻雜區,例如圖15C中描述的第一摻雜區1501a。在一些實施例中,第一摻雜區1601b類似於前述的第一摻雜區,例如圖15C中描述的第一摻雜區1501b。 In some embodiments, the first switch includes a first doped region 1601a in the absorber layer 1602 and under the sense contact layer 1608a. The second switch includes a first doped region 1601b in the absorber layer 1602 and under the sense contact layer 1608b. In some embodiments, the first doped region 1601a is similar to the aforementioned first doped region, such as the first doped region 1501a depicted in FIG. 15C. In some embodiments, the first doped region 1601b is similar to the aforementioned first doped region, such as the first doped region 1501b described in FIG. 15C.

光偵測裝置1600a的像素還包括在吸收層1602中的通道區1630。在一些實施例中,通道區1630沿著基本垂直吸收層1602的第一表面1602s的方向佈置在兩個開關與吸收層1602的第二表面1602ss之間。 The pixels of light detection device 1600a also include channel regions 1630 in absorbing layer 1602. In some embodiments, the channel region 1630 is disposed between the two switches and the second surface 1602ss of the absorbing layer 1602 in a direction substantially perpendicular to the first surface 1602s of the absorbing layer 1602.

通道區1630沿著垂直方向D1在控制接觸層1606a,1606b下方。通道區1630包括一摻質,且具有與第一摻雜區1601a,1601b的第一導電類型相同的導電類型。在一些實施例中,通道區1630包括一摻質並且具有峰值摻質濃度不小於1×1015cm-3的摻質分佈。在一些實施例中,通道區1630的峰值摻質濃度在1×1015cm-3與5×1017cm-3之間。在一些實施例中,通道區1630的峰值摻質濃度位於吸收層1602中。通道區1630是位於吸收層1602中的一埋入區。在一些實施例中,第一表面1602s和具有峰值摻質濃度的通道區1630的位置之間的距離不小於30nm。在一些實施例中,第二表面1602ss和具有峰值摻質濃度的通道區1630的位置之間的距離不小於30nm。在一些實施例中,吸收層1602的第一表面1602s和具有峰值摻質濃度的通道區1630的位置之間的距離小於第二表面1602ss和具有峰值摻質濃度的通道區1630的位置之間的距離。 Channel region 1630 is beneath control contact layers 1606a, 1606b along vertical direction D1. The channel region 1630 includes a dopant and has the same conductivity type as the first conductivity type of the first doped regions 1601a, 1601b. In some embodiments, channel region 1630 includes a dopant and has a dopant distribution with a peak dopant concentration of no less than 1×10 15 cm −3 . In some embodiments, the peak dopant concentration of channel region 1630 is between 1×10 15 cm −3 and 5×10 17 cm −3 . In some embodiments, the peak dopant concentration of channel region 1630 is located in absorber layer 1602 . Channel region 1630 is a buried region located in absorber layer 1602. In some embodiments, the distance between the first surface 1602s and the location of the channel region 1630 having the peak dopant concentration is no less than 30 nm. In some embodiments, the distance between the second surface 1602ss and the location of the channel region 1630 having the peak dopant concentration is no less than 30 nm. In some embodiments, the distance between the first surface 1602s of the absorber layer 1602 and the location of the channel region 1630 having the peak dopant concentration is less than the distance between the second surface 1602ss and the location of the channel region 1630 having the peak dopant concentration. distance.

在一些實施例中,吸收層1602的第一表面1602s和具有通道區1630的峰值摻質濃度的通道區1630的位置之間的距離在50nm至650nm之間。通道區1630的摻質分佈可以通過任何合適的方法來控制,例如通過包括提供多個注入劑量和能量的佈植。在一些實施例中,通道區1630的寬度大於控制接觸層 1606a,1606b之間的距離d3,以降低光偵測裝置1600a的兩個控制接觸層1606a,1606b之間的漏電流。在一些實施例中,通道區1630的寬度在10nm至500nm之間。 In some embodiments, the distance between the first surface 1602s of the absorber layer 1602 and the location of the channel region 1630 having the peak dopant concentration of the channel region 1630 is between 50 nm and 650 nm. The dopant profile of channel region 1630 may be controlled by any suitable method, such as by implantation including providing multiple implant doses and energies. In some embodiments, the width of the channel region 1630 is greater than the distance d 3 between the control contact layers 1606a, 1606b to reduce leakage current between the two control contact layers 1606a, 1606b of the light detection device 1600a. In some embodiments, channel region 1630 has a width between 10 nm and 500 nm.

通道區1630促進從吸收層1602產生的載子流向第一摻雜區1601a或第一摻雜區1601b,而不會到達吸收層1602的第一表面1602s。結果是,累積在控制接觸層1606a,1606b下方的部分之間的載子變少。因此,提高了解調對比度,且光偵測裝置1600a的兩個控制接觸層1606a,1606b之間的漏電流變得較低。 The channel region 1630 facilitates carriers generated from the absorption layer 1602 to flow toward the first doping region 1601a or the first doping region 1601b without reaching the first surface 1602s of the absorption layer 1602. As a result, fewer carriers accumulate between portions beneath control contact layers 1606a, 1606b. Therefore, the demodulation contrast is improved, and the leakage current between the two control contact layers 1606a, 1606b of the photodetection device 1600a becomes lower.

在一些實施例中,通道區1630可以與第一摻雜區1601a,1601b重疊。即,通道區1630可以連接到第一摻雜區1601a,1601b。如果第一開關開啟並且第二開關斷閉,則可以通過偏壓第二開關的第一摻雜區1601b來將載子推向第一摻雜區1601a流動。也就是說,通過電壓控制,通道區1630與對於載子是關閉的開關的第一摻雜區之間會斷開,因此載子將不會流入到關閉的開關的第一摻雜區中。 In some embodiments, the channel region 1630 may overlap the first doped regions 1601a, 1601b. That is, the channel region 1630 may be connected to the first doped regions 1601a, 1601b. If the first switch is turned on and the second switch is turned off, carriers can be pushed toward the first doped region 1601a to flow by biasing the first doped region 1601b of the second switch. That is to say, through voltage control, the channel region 1630 will be disconnected from the first doped region of the switch that is closed for carriers, so carriers will not flow into the first doped region of the closed switch.

在一些實施例中,通道區1630與第一摻雜區1601a,1601b分離,以降低第一摻雜區1601a,1601b之間的漏電流。 In some embodiments, the channel region 1630 is separated from the first doped regions 1601a, 1601b to reduce leakage current between the first doped regions 1601a, 1601b.

圖16B繪示根據一些實施例的光偵測裝置的剖視圖。圖16B中的光偵測裝置1600b類似於圖16A中的光偵測裝置1600a,其中差異描述於下。在一些實施例中,第一開關還包括在吸收層1602中並且在控制接觸層1606a下的一第二摻雜區1603a。第二開關還包括在吸收層1602中並且在控制接觸層1606b下的一第二摻雜區1603b。第二摻雜區1503a類似於前述的第二摻雜區,例如圖15C中描述的第二摻雜區1503a。第二摻雜區1503b類似於前述的第二摻雜區,例如圖15C中描述的第二摻雜區1503b。在一些實施例中,通道區1630與第二摻雜區1603a,1603b重疊。即,重疊區域可以包括通道區1630的摻質和第二摻雜 區1603a,1603b的摻質,其中兩種摻質是不同的。 Figure 16B illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1600b in Figure 16B is similar to the light detection device 1600a in Figure 16A, with the differences described below. In some embodiments, the first switch also includes a second doped region 1603a in the absorber layer 1602 and under the control contact layer 1606a. The second switch also includes a second doped region 1603b in the absorber layer 1602 and under the control contact layer 1606b. The second doped region 1503a is similar to the aforementioned second doped region, such as the second doped region 1503a described in FIG. 15C. The second doped region 1503b is similar to the aforementioned second doped region, such as the second doped region 1503b described in FIG. 15C. In some embodiments, the channel region 1630 overlaps the second doped regions 1603a, 1603b. That is, the overlapping region may include the doping of the channel region 1630 and the second doping The dopants of regions 1603a and 1603b are different.

圖16C繪示根據一些實施例的光偵測裝置的剖視圖。圖16C中的光偵測裝置1600c類似於圖16A中的光偵測裝置1600a,其中差異描述於下。在一些實施例中,第一開關還包括在吸收層1602和控制接觸層1606a之間的一第一介電層1633a。第二開關可以進一步包括在吸收層1602和控制接觸層1606b之間的一第二介電層1633b。 Figure 16C illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1600c in Figure 16C is similar to the light detection device 1600a in Figure 16A, with the differences described below. In some embodiments, the first switch also includes a first dielectric layer 1633a between the absorber layer 1602 and the control contact layer 1606a. The second switch may further include a second dielectric layer 1633b between the absorber layer 1602 and the control contact layer 1606b.

第一介電層1633a防止從控制接觸層1606a至吸收層1602的直接電流傳導,但允許在吸收層1602內建立電場,以響應施加於控制接觸層1606a的一電壓。第二介電層1633b防止從控制接觸層1606b至吸收層1602的直接電流傳導,但允許在吸收層1602內建立電場,以響應施加於控制接觸層1606b的一電壓。建立的電場可以吸引或排斥吸收層1602內的電荷載子。 First dielectric layer 1633a prevents direct current conduction from control contact layer 1606a to absorber layer 1602, but allows an electric field to be established within absorber layer 1602 in response to a voltage applied to control contact layer 1606a. Second dielectric layer 1633b prevents direct current conduction from control contact layer 1606b to absorber layer 1602, but allows an electric field to be established within absorber layer 1602 in response to a voltage applied to control contact layer 1606b. The established electric field can attract or repel charge carriers within the absorber layer 1602.

圖16D繪示根據一些實施例的光偵測裝置的剖視圖。圖16D中的光偵測裝置1600d類似於圖16C中的光偵測裝置1600c,其中差異描述於下。在一些實施例中,第一開關還包括在第一介電層1633a下方的一第二摻雜區1603a。第二開關還包括在第二介電層1633b下方的一第二摻雜區1603b。第二摻雜區1603a,1603b類似於前述的第二摻雜區,例如圖16B中描述的第二摻雜區1603a,1603b。 Figure 16D illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1600d in Figure 16D is similar to the light detection device 1600c in Figure 16C, with the differences described below. In some embodiments, the first switch further includes a second doped region 1603a under the first dielectric layer 1633a. The second switch also includes a second doped region 1603b under the second dielectric layer 1633b. The second doped regions 1603a, 1603b are similar to the aforementioned second doped regions, such as the second doped regions 1603a, 1603b described in FIG. 16B.

圖16E繪示根據一些實施例的光偵測裝置的剖視圖。圖16E中的光偵測裝置1600e類似於圖16A中的光偵測裝置1600a,其中差異描述於下。在一些實施例中,像素的吸收層1602包括一阻礙區1640。阻礙區1640在第一摻雜區1601a,1601b之間。阻礙區1640在第一表面1602s和通道區1630之間。 Figure 16E illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1600e in Figure 16E is similar to the light detection device 1600a in Figure 16A, with the differences described below. In some embodiments, the absorbing layer 1602 of the pixel includes a barrier region 1640. The barrier region 1640 is between the first doping regions 1601a, 1601b. Obstruction area 1640 is between first surface 1602s and channel area 1630.

在一些實施例中,阻礙區1640包括一摻質並且具有一導電類型。在一些實施例中,阻礙區1640具有一摻質分佈,其峰值摻質濃度不同於通道區1630的峰值摻質濃度。在一些實施例中,阻礙區1640的導電類型與通道區1630 的導電類型相同,且阻礙區1640的峰值摻質濃度低於通道區1630的峰值摻質濃度。例如,如果光偵測裝置1600e被配置為處理所收集的電子以進一步應用,第一摻雜區1601b,1601a為n型,通道區1630為n型,阻礙區1640為n型,且阻礙區1640的峰值摻質濃度低於通道區1630的峰值摻質濃度。 In some embodiments, barrier region 1640 includes a dopant and has a conductivity type. In some embodiments, barrier region 1640 has a dopant profile with a peak dopant concentration that is different from the peak dopant concentration of channel region 1630 . In some embodiments, the conductivity type of barrier region 1640 is the same as that of channel region 1630 have the same conductivity type, and the peak dopant concentration of the barrier region 1640 is lower than the peak dopant concentration of the channel region 1630 . For example, if the photodetection device 1600e is configured to process the collected electrons for further applications, the first doped regions 1601b, 1601a are n-type, the channel region 1630 is n-type, the blocking region 1640 is n-type, and the blocking region 1640 The peak dopant concentration of is lower than the peak dopant concentration of channel region 1630 .

在一些實施例中,阻礙區1640的導電類型不同於通道區1630的導電類型,且阻礙區1640的峰值摻質濃度高於通道區1630的峰值摻質濃度。在一些實施例中,阻礙區1640的峰值摻質濃度在1×1018cm-3和5×1020cm-3之間。例如,如果光偵測裝置1600e被配置為處理所收集的電子以進一步應用,第一摻雜區1601b,1601a為n型,通道區1630為n型,阻礙區1640為p型,且阻礙區1640的峰值摻質濃度高於通道區1630的峰值摻質濃度。 In some embodiments, the conductivity type of the barrier region 1640 is different from the conductivity type of the channel region 1630 , and the peak dopant concentration of the barrier region 1640 is higher than the peak dopant concentration of the channel region 1630 . In some embodiments, barrier region 1640 has a peak dopant concentration between 1×10 18 cm −3 and 5×10 20 cm −3 . For example, if the photodetection device 1600e is configured to process the collected electrons for further applications, the first doped regions 1601b, 1601a are n-type, the channel region 1630 is n-type, the blocking region 1640 is p-type, and the blocking region 1640 The peak dopant concentration of is higher than the peak dopant concentration of channel region 1630 .

阻礙區1640可以阻擋要被收集的載子到達吸收層1602的第一表面1602s。結果是,可以提高光偵測裝置1600e的收集效率。 The blocking region 1640 may block carriers to be collected from reaching the first surface 1602s of the absorbing layer 1602. As a result, the collection efficiency of the light detection device 1600e can be improved.

圖16F繪示根據一些實施例的光偵測裝置的剖視圖。圖16F中的光偵測裝置1600f類似於圖16E中的光偵測裝置1600e,其中差異描述於下。光偵測裝置1600f還包括一第一緩衝區1661和一第二緩衝區1662。第一緩衝區1661和第二緩衝區1662位於吸收層1602中。第一緩衝區1661位於第一摻雜區1601a,1601b之間,且與第一摻雜區1601b相鄰或重疊。在一些實施例中,第一緩衝區1661與通道區1630分離,以降低光偵測裝置1600f的暗電流。第二緩衝區1662在第一摻雜區1601a,1601b之間,且與第一摻雜區1601a相鄰或重疊。在一些實施例中,第二緩衝區1662與通道區1630分離,以降低光偵測裝置1600f的暗電流。第一緩衝區1661和第二緩衝區1662可以進一步調整吸收層1602中的空乏區,例如第一摻雜區1601a,1601b周圍的空乏區以及吸收層1602的第一表面1602s附近的空乏區。 Figure 16F illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1600f in Figure 16F is similar to the light detection device 1600e in Figure 16E, with the differences described below. The light detection device 1600f also includes a first buffer area 1661 and a second buffer area 1662. The first buffer area 1661 and the second buffer area 1662 are located in the absorbing layer 1602. The first buffer region 1661 is located between the first doping regions 1601a and 1601b, and is adjacent to or overlapping the first doping region 1601b. In some embodiments, the first buffer area 1661 is separated from the channel area 1630 to reduce the dark current of the light detection device 1600f. The second buffer region 1662 is between the first doping regions 1601a and 1601b, and is adjacent to or overlapping the first doping region 1601a. In some embodiments, the second buffer area 1662 is separated from the channel area 1630 to reduce the dark current of the light detection device 1600f. The first buffer region 1661 and the second buffer region 1662 can further adjust the depletion region in the absorption layer 1602, such as the depletion region around the first doping regions 1601a, 1601b and the depletion region near the first surface 1602s of the absorption layer 1602.

在一些實施例中,各個第一緩衝區1661和第二緩衝區1662具有一導 電類型。在一些實施例中,各個第一緩衝區1661和第二緩衝區1662包括一第五摻質並且具有一峰值摻質濃度的摻質分佈。所述峰值摻質濃度不小於1×1016cm-3。在一些實施例中,第一緩衝區1661和第二緩衝區1662的峰值摻質濃度低於第一摻雜區1601b,1601a的峰值摻質濃度。在一些實施例中,第一緩衝區1661和第二緩衝區1662的峰值摻質濃度在例如1x1016cm-3和1x1018cm-3之間。 In some embodiments, each of the first buffer area 1661 and the second buffer area 1662 has a conductivity type. In some embodiments, each of the first buffer region 1661 and the second buffer region 1662 includes a fifth dopant and has a dopant profile with a peak dopant concentration. The peak dopant concentration is not less than 1×10 16 cm -3 . In some embodiments, the peak dopant concentration of the first buffer region 1661 and the second buffer region 1662 is lower than the peak dopant concentration of the first doped regions 1601b, 1601a. In some embodiments, the peak dopant concentration of the first buffer region 1661 and the second buffer region 1662 is, for example, between 1×10 16 cm −3 and 1×10 18 cm −3 .

由於各個第一緩衝區1661和第二緩衝區1662都具有低於第一摻雜區1601b,1601a的峰值摻質濃度的峰值摻質濃度,所以可以改善光偵測裝置1600f的可靠性。 Since each of the first buffer region 1661 and the second buffer region 1662 has a peak dopant concentration lower than that of the first doping regions 1601b, 1601a, the reliability of the light detection device 1600f can be improved.

在一些實施例中,第一緩衝區1661和第二緩衝區1662的導電類型與第一摻雜區1601a,1601b的第一導電類型相同。例如,如果光偵測裝置1600f被配置為處理所收集的電子以進一步應用,則第一摻雜區1601a,1601b為n型,通道區1630為n型,且第一緩衝區1661第二緩衝區1662為n型。 In some embodiments, the conductivity type of the first buffer region 1661 and the second buffer region 1662 is the same as the first conductivity type of the first doped regions 1601a, 1601b. For example, if the photodetection device 1600f is configured to process the collected electrons for further applications, then the first doped regions 1601a, 1601b are n-type, the channel region 1630 is n-type, and the first buffer region 1661 and the second buffer region 1662 is n type.

具有與第一摻雜區1601a,1601b的第一導電類型相同的導電類型的第一緩衝區1661和第二緩衝區1662可以提高載子收集效率,因為載子收集可以被第一緩衝區1661和第二緩衝區1662限制在吸收層1602的第一表面1602s附近。 The first buffer region 1661 and the second buffer region 1662 having the same conductivity type as the first conductivity type of the first doped regions 1601a, 1601b can improve the carrier collection efficiency, because the carrier collection can be controlled by the first buffer region 1661 and The second buffer zone 1662 is limited adjacent the first surface 1602s of the absorbent layer 1602.

在一些實施例中,第一緩衝區1661和第二緩衝區1662的導電類型不同於第一摻雜區1601a,1601b的第一導電類型。例如,如果光偵測裝置1600f被配置為處理所收集的電子以進一步應用,則第一摻雜區1601a,1601b為n型,通道區1630為n型,且第一緩衝區1661和第二緩衝區1662為p型。第一緩衝區1661阻止載子在第一表面1602s附近流入第一摻雜區1601b,並同時降低局部暗電流。第二緩衝區1662阻止載子在第一表面1602s附近流入第一摻雜區1601a,並同時降低局部暗電流。 In some embodiments, the conductivity type of the first buffer region 1661 and the second buffer region 1662 is different from the first conductivity type of the first doped regions 1601a, 1601b. For example, if the photodetection device 1600f is configured to process the collected electrons for further applications, then the first doping regions 1601a, 1601b are n-type, the channel region 1630 is n-type, and the first and second buffer regions 1661 and 1661 are n-type. Region 1662 is p-type. The first buffer region 1661 prevents carriers from flowing into the first doping region 1601b near the first surface 1602s and simultaneously reduces local dark current. The second buffer region 1662 prevents carriers from flowing into the first doping region 1601a near the first surface 1602s and simultaneously reduces local dark current.

具有不同於第一摻雜區1601a,1601b的第一導電類型的導電類型的第一緩衝區1661和第二緩衝區1662可以提高載子收集效率,因為載子收集可以 被限制在遠離吸收層1602的第一表面1602s的區域內,例如,被限制在第一摻雜區1601a,1601b的遠離吸收層1602的第一表面1602s的部分。 The first buffer region 1661 and the second buffer region 1662 having a conductive type different from the first conductive type of the first doped regions 1601a, 1601b can improve carrier collection efficiency because the carrier collection can Confined to a region far away from the first surface 1602s of the absorbing layer 1602, for example, limited to a portion of the first doped regions 1601a, 1601b far away from the first surface 1602s of the absorbing layer 1602.

在一些實施例中,第一緩衝區1661的深度d5小於第一摻雜區1601b的深度d2。在一些實施例中,第二緩衝區1662的深度d6小於第一摻雜區1601a的深度d2。所述深度係從吸收層1602的第一表面1602s測量到摻質分佈達到背景濃度的位置(例如1×1015cm-3)。 In some embodiments, the depth d 5 of the first buffer region 1661 is less than the depth d 2 of the first doped region 1601 b. In some embodiments, the depth d 6 of the second buffer region 1662 is less than the depth d 2 of the first doped region 1601a. The depth is measured from the first surface 1602s of the absorber layer 1602 to the point where the dopant distribution reaches the background concentration (eg, 1×10 15 cm −3 ).

圖16G繪示根據一些實施例的光偵測裝置的剖視圖。圖16G中的光偵測裝置1600g類似於圖16F中的光偵測裝置1600f,其中差異描述於下。在一些實施例中,通道區1630可以與第一緩衝區1661和第二緩衝區1662重疊。也就是說,通道區1630可以連接到第一緩衝區1661和第二緩衝區1662。由於通道區1630連接到第一緩衝區1661和第二緩衝區1662,改善了光偵測裝置1600g的解調對比度。 Figure 16G illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1600g in Figure 16G is similar to the light detection device 1600f in Figure 16F, with the differences described below. In some embodiments, channel area 1630 may overlap first buffer area 1661 and second buffer area 1662. That is, the channel area 1630 may be connected to the first buffer area 1661 and the second buffer area 1662. Since the channel area 1630 is connected to the first buffer area 1661 and the second buffer area 1662, the demodulation contrast of the light detection device 1600g is improved.

圖16H繪示根據一些實施例的光偵測裝置的剖視圖。圖16H中的光偵測裝置1600h類似於圖16A中的光偵測裝置1600a,其中差異描述於下。在一些實施例中,光偵測裝置1600h的像素還包括在吸收層1602中的兩個反摻雜區1651a,1651b。反摻雜區1651a,1651b類似於前述的反摻雜區,例如,圖15D中所描述的反摻雜區1551a,1551b。 Figure 16H illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1600h in Figure 16H is similar to the light detection device 1600a in Figure 16A, with the differences described below. In some embodiments, the pixel of the light detection device 1600h also includes two counter-doped regions 1651a, 1651b in the absorber layer 1602. The counter-doped regions 1651a, 1651b are similar to the aforementioned counter-doped regions, for example, the counter-doped regions 1551a, 1551b described in Figure 15D.

圖16I繪示根據一些實施例的光偵測裝置的剖視圖。圖16I中的光偵測裝置1600i類似於圖16A中的光偵測裝置1600a,其中差異描述於下。在一些實施例中,光偵測裝置1600i還包括圍繞吸收層1602的一阻擋層1619。阻擋層1619類似於前述的阻擋層,例如圖15A和圖15C中的阻擋層1519。光偵測裝置1600i還包括電性耦接至阻擋層1619的一導電層1609。在一些實施例中,可以通過導電層1609以偏壓電壓ca2對阻擋層1619進行偏壓,以釋放未被第一摻雜區1601a,1601b收集的載子。 Figure 16I illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1600i in FIG. 16I is similar to the light detection device 1600a in FIG. 16A, with the differences described below. In some embodiments, the light detection device 1600i further includes a blocking layer 1619 surrounding the absorbing layer 1602. Barrier layer 1619 is similar to the previously described barrier layers, such as barrier layer 1519 in Figures 15A and 15C. The light detection device 1600i also includes a conductive layer 1609 electrically coupled to the blocking layer 1619. In some embodiments, the barrier layer 1619 can be biased with a bias voltage ca2 through the conductive layer 1609 to release carriers that are not collected by the first doped regions 1601a, 1601b.

在一些實施例中,由於通道區1630和阻擋層1619共同形成一垂直光電二極體,因此在通道區1630和阻擋層1619之間建立了內置的垂直電場,其可以幫助分離由吸收層1602中的吸收光子產生的電子-電洞,例如,當通道區1630為n型並且阻擋層1619為p型時,電子趨於向通道區1630移動並且電洞趨於向阻擋層1619移動。通道區1630被用來收集電子並用作初步收集器。阻擋層1619被用來收集電洞。存儲在通道區1630中的電子可以基於控制信號cs1,cs2進一步移動到第一摻雜區1601b或第一摻雜區1601a。因此,改善了光偵測裝置1600i的解調對比度。 In some embodiments, since the channel region 1630 and the barrier layer 1619 together form a vertical photodiode, a built-in vertical electric field is established between the channel region 1630 and the barrier layer 1619 , which can help separate components from the absorber layer 1602 Electrons-holes generated by the absorption of photons, for example, when the channel region 1630 is n-type and the blocking layer 1619 is p-type, the electrons tend to move toward the channel region 1630 and the holes tend to move toward the blocking layer 1619. Channel region 1630 is used to collect electrons and serves as a preliminary collector. Barrier layer 1619 is used to collect holes. The electrons stored in the channel region 1630 may further move to the first doping region 1601b or the first doping region 1601a based on the control signals cs1, cs2. Therefore, the demodulation contrast of the light detection device 1600i is improved.

圖16J繪示根據一些實施例的光偵測裝置的剖視圖。圖16J中的光偵測裝置1600j類似於圖16I中的光偵測裝置1600i,其中差異描述於下。在一些實施例中,光偵測裝置1600j的像素還包括反摻雜區1651a,1651b。反摻雜區1651a,1651b類似於前述的反摻雜區,例如圖16H中所述的反摻雜區1651a,1651b。在一些實施例中,像素的吸收層1602包括一阻礙區1640。阻礙區1640類似於前述的阻礙區,例如圖16E中所描述的阻礙區1640。在一些實施例中,光偵測裝置1600j的像素還包括一第一緩衝區1661和一第二緩衝區1662。第一緩衝區1661和第二緩衝區1662類似於如圖16F中所述的第一緩衝區1661和第二緩衝區1662。 Figure 16J illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1600j in Figure 16J is similar to the light detection device 1600i in Figure 16I, with the differences described below. In some embodiments, the pixels of the light detection device 1600j further include anti-doped regions 1651a, 1651b. The counter-doped regions 1651a, 1651b are similar to the aforementioned counter-doped regions, such as the counter-doped regions 1651a, 1651b described in FIG. 16H. In some embodiments, the absorbing layer 1602 of the pixel includes a barrier region 1640. Blocking area 1640 is similar to the blocking areas described previously, such as the blocking area 1640 described in Figure 16E. In some embodiments, the pixels of the light detection device 1600j further include a first buffer 1661 and a second buffer 1662. The first buffer area 1661 and the second buffer area 1662 are similar to the first buffer area 1661 and the second buffer area 1662 as described in Figure 16F.

在一些實施例中,如果第一緩衝區1661和第二緩衝區1662的導電類型與第一摻雜區1601a,1601b的第一導電類型相同,則各整個第一摻雜區1601b,1601a都分別與反摻雜區1651b,1651a重疊。在一些實施例中,第一緩衝區1661與第一摻雜區1601b相鄰或與反摻雜區1651b的一部分重疊,且第二緩衝區1662與第一摻雜區1601a相鄰並且與反摻雜區1651a的一部分重疊。即,第一緩衝區1661與反摻雜區1651b重疊的部分包括第五摻質和反摻雜區1651a的摻質,其中第五摻質與反摻雜區1651b的摻質不同。反摻雜區1651b的峰值摻質濃 度低於第一緩衝區1661的峰值摻質濃度。類似地,第二緩衝區1662與反摻雜區1651a重疊的部分包括反摻雜區1651a的摻質和第五摻質。反摻雜區1651a的峰值摻質濃度低於第二緩衝區1662的峰值摻質濃度。 In some embodiments, if the conductivity type of the first buffer region 1661 and the second buffer region 1662 is the same as the first conductivity type of the first doping regions 1601a, 1601b, then the entire first doping regions 1601b, 1601a respectively Overlapping with the counter-doped regions 1651b and 1651a. In some embodiments, the first buffer region 1661 is adjacent to the first doped region 1601b or overlaps a portion of the counter-doped region 1651b, and the second buffer region 1662 is adjacent to the first doped region 1601a and overlaps with the counter-doped region 1651b. A part of the heterogeneous areas 1651a overlaps. That is, the overlapping portion of the first buffer region 1661 and the counter-doped region 1651b includes the fifth dopant and the dopant of the counter-doped region 1651a, wherein the fifth dopant is different from the dopant of the counter-doped region 1651b. The peak dopant concentration of the anti-doped region 1651b is lower than the peak dopant concentration of the first buffer region 1661. Similarly, the portion of the second buffer region 1662 overlapping the counter-doped region 1651a includes the dopant and the fifth dopant of the counter-doped region 1651a. The peak dopant concentration of the counter-doped region 1651a is lower than the peak dopant concentration of the second buffer region 1662.

在一些實施例中,第一緩衝區1661和第二緩衝區1662的導電類型不同於第一摻雜區1601a,1601b的第一導電類型,反摻雜區1651b與第一摻雜區1601b的一部分重疊,且反摻雜區1651a與第一摻雜區1601a的一部分重疊。即,第一摻雜區1601b的遠離吸收層1602的第一表面1602s的部分既不與反摻雜區1651b重疊也不與第一緩衝區1661重疊,且第一摻雜區1601a的遠離吸收層1602的第一表面1602s的部分既不與反摻雜區1651a重疊也不與第二緩衝區1662重疊。 In some embodiments, the conductivity type of the first buffer region 1661 and the second buffer region 1662 is different from the first conductivity type of the first doped regions 1601a, 1601b, and the counter-doped region 1651b is a portion of the first doped region 1601b. overlap, and the counter-doped region 1651a overlaps a portion of the first doped region 1601a. That is, the portion of the first doped region 1601b away from the first surface 1602s of the absorption layer 1602 neither overlaps with the counter-doped region 1651b nor the first buffer region 1661, and the portion of the first doping region 1601a away from the absorption layer The portion of first surface 1602s of 1602 neither overlaps counter-doped region 1651a nor second buffer region 1662.

具有不同於第一摻雜區1601a,1601b的第一導電類型的導電類型的第一緩衝區1661和第二緩衝區1662可以改善載子收集效率,因為載子收集可以被限制在遠離吸收層1602的第一表面1602s的區域內,例如,被限制在第一摻雜區1601a的遠離吸收層1602的第一表面1602s,且既不與反摻雜區1651a重疊也不與第二緩衝區1662重疊的部分;並被限制在第一摻雜區1601b的遠離吸收層1602的第一表面1602s,且既不與反摻雜區1651b重疊也不與第一緩衝區1661重疊的部分。 The first buffer region 1661 and the second buffer region 1662 having a conductivity type different from the first conductivity type of the first doped regions 1601a, 1601b can improve carrier collection efficiency because carrier collection can be limited away from the absorption layer 1602 The region of the first surface 1602s is, for example, limited to the first surface 1602s of the first doped region 1601a away from the absorbing layer 1602, and neither overlaps the counter-doped region 1651a nor the second buffer region 1662 and is limited to the portion of the first doped region 1601b that is far away from the first surface 1602s of the absorbing layer 1602 and overlaps neither the counter-doped region 1651b nor the first buffer region 1661.

圖16K繪示根據一些實施例的光偵測裝置的剖視圖。圖16K中的光偵測裝置1600k類似於圖16J中的光偵測裝置1600j,其中差異描述於下。在一些實施例中,光偵測裝置1600k還包括第二摻雜區1603a,1603b。第二摻雜區1603a,1603b類似於前述的第二摻雜區,例如圖16B中描述的第二摻雜區1603a,1603b。在一些實施例中,第一緩衝區1661與第二摻雜區1603b分離。在一些實施例中,第二緩衝區1662與第二摻雜區1603a分離。在一些實施例中,第一緩衝區1661、第一摻雜區1601b和反摻雜區1651b可以在不同的步驟中 形成,例如通過不同的遮罩。第二緩衝區1662、第一摻雜區1601a和反摻雜區1651a可以在不同的步驟中形成,例如通過不同的遮罩。 Figure 16K illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1600k in Figure 16K is similar to the light detection device 1600j in Figure 16J, with the differences described below. In some embodiments, the light detection device 1600k further includes second doped regions 1603a, 1603b. The second doped regions 1603a, 1603b are similar to the aforementioned second doped regions, such as the second doped regions 1603a, 1603b described in FIG. 16B. In some embodiments, the first buffer region 1661 is separated from the second doped region 1603b. In some embodiments, the second buffer region 1662 is separated from the second doped region 1603a. In some embodiments, the first buffer region 1661, the first doped region 1601b and the counter-doped region 1651b may be in different steps. Formed, for example, by different masks. The second buffer region 1662, the first doped region 1601a and the counter-doped region 1651a may be formed in different steps, such as through different masks.

在一些實施例中,如果阻礙區1640的導電類型不同於通道區1630的導電類型,則阻礙區1640與第二摻雜區1603a,1603b分離。即,阻礙區1640不與第二摻雜區1603a,1603b重疊。在一些實施例中,阻礙區1640的寬度小於通道區1630的寬度。 In some embodiments, the barrier region 1640 is separated from the second doped regions 1603a, 1603b if the conductivity type of the barrier region 1640 is different from the conductivity type of the channel region 1630. That is, the barrier region 1640 does not overlap with the second doping regions 1603a, 1603b. In some embodiments, the width of obstruction area 1640 is less than the width of channel area 1630.

在一些實施例中,如果阻礙區1640的導電類型與通道區1630的導電類型相同,則阻礙區1640可以連接到第二摻雜區1603a,1603b。即,阻礙區1640與第二摻雜區1603a,1603b重疊。 In some embodiments, the barrier region 1640 may be connected to the second doped regions 1603a, 1603b if the conductivity type of the barrier region 1640 is the same as the conductivity type of the channel region 1630. That is, the barrier region 1640 overlaps the second doped regions 1603a, 1603b.

具有與第一摻雜區1601a,1601b的第一導電類型相同的導電類型的第一緩衝區1661和第二緩衝區1662可以改善載子收集效率,因為載子收集可以被第一緩衝區1661和第二緩衝區1662限制在吸收層的第一表面1602s附近,並且因為具有相反導電類型的兩個區域之間的距離縮短了,即第一緩衝區1661和第二摻雜區1603b之間的距離短於第一緩衝區1661和第二摻雜區1603b之間的距離;且第二緩衝區1662與第二摻雜區1603a之間的距離短於第一摻雜區1601a與第二摻雜區1603a之間的距離。 The first buffer region 1661 and the second buffer region 1662 having the same conductivity type as the first conductivity type of the first doping regions 1601a, 1601b can improve the carrier collection efficiency because the carrier collection can be eliminated by the first buffer region 1661 and The second buffer region 1662 is limited near the first surface 1602s of the absorber layer, and because the distance between the two regions with opposite conductivity types is shortened, that is, the distance between the first buffer region 1661 and the second doped region 1603b Shorter than the distance between the first buffer region 1661 and the second doped region 1603b; and the distance between the second buffer region 1662 and the second doped region 1603a is shorter than the distance between the first doped region 1601a and the second doped region The distance between 1603a.

在一些實施例中,第一緩衝區1661的深度d5小於第二摻雜區1603b的深度d1。在一些實施例中,第二緩衝區1662的深度d6小於第二摻雜區1603a的深度d1In some embodiments, the depth d 5 of the first buffer region 1661 is less than the depth d 1 of the second doped region 1603b. In some embodiments, the depth d 6 of the second buffer region 1662 is less than the depth d 1 of the second doped region 1603a.

圖16L繪示根據一些實施例的光偵測裝置的剖視圖。圖16L中的光偵測裝置1600l類似於圖16J中的光偵測裝置1600j,其中差異描述於下。在一些實施例中,第一開關還包括在吸收層1602和控制接觸層1606a之間的一第一介電層1633a。第二開關可以進一步包括在吸收層1602和控制接觸層1606b之間的一第二介電層1633b。第一介電層1633a和第二介電層1633b類似於前述的第一介 電層和第二介電層,例如圖16C中所描述的第一介電層1633a和第二介電層1633b。 Figure 16L illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1600l in Figure 16L is similar to the light detection device 1600j in Figure 16J, with the differences described below. In some embodiments, the first switch also includes a first dielectric layer 1633a between the absorber layer 1602 and the control contact layer 1606a. The second switch may further include a second dielectric layer 1633b between the absorber layer 1602 and the control contact layer 1606b. The first dielectric layer 1633a and the second dielectric layer 1633b are similar to the aforementioned first dielectric layer. An electrical layer and a second dielectric layer, such as the first dielectric layer 1633a and the second dielectric layer 1633b depicted in Figure 16C.

圖16M繪示根據一些實施例的光偵測裝置的剖視圖。圖16M中的光偵測裝置1600m類似於圖16L中的光偵測裝置1600l,其中差異描述於下。在一些實施例中,光偵測裝置1600m還包括分別在第一介電層1633a和第二介電層1633b下方的第二摻雜區1603a,1603b。第二摻雜區1603a,1603b類似於前述的第二摻雜區,例如圖16B中描述的第二摻雜區1603a,1603b。 Figure 16M illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1600m in Figure 16M is similar to the light detection device 1600l in Figure 16L, with the differences described below. In some embodiments, the light detection device 1600m further includes second doped regions 1603a, 1603b respectively under the first dielectric layer 1633a and the second dielectric layer 1633b. The second doped regions 1603a, 1603b are similar to the aforementioned second doped regions, such as the second doped regions 1603a, 1603b described in FIG. 16B.

圖17A繪示根據一些實施例的光偵測裝置的剖視圖。光偵測裝置1700a包括一基底1704。光偵測裝置還包括一像素,該像素包括由基底1704支撐的一吸收層1702。吸收層1702完全在基底1704的第一表面1704s上方。像素包括在吸收層1702中的一吸收區域AR。吸收區域AR類似於前述的吸收區域,例如圖15A中描述的吸收區域AR。像素包括電性耦接到吸收層1702一第一開關(圖未標)和一第二開關(圖未標)。第一開關包括一控制接觸層1706a和一讀出接觸層1708a。第二開關包括一控制接觸層1706b和一讀出接觸層1708b。在一些實施例中,讀出接觸層1708a,1708b形成在基底1704的第一表面1704s上。在一些實施例中,吸收層1702在控制接觸層1706b,1706b之間。在一些實施例中,控制接觸層1706b,1706b設置在吸收層1702的兩個相對側。在一些實施例中,吸收層1702的寬度w1小於控制接觸層1706b,1706b之間的距離d3。在一些實施例中,入射光信號從吸收層1702的第一表面1702s進入吸收區域AR。在一些實施例中,吸收層1702可以是本質的。 Figure 17A illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1700a includes a substrate 1704. The light detection device also includes a pixel including an absorbing layer 1702 supported by the substrate 1704 . Absorbent layer 1702 is completely over first surface 1704s of substrate 1704. The pixel includes an absorption area AR in the absorption layer 1702 . The absorption area AR is similar to the aforementioned absorption areas, such as the absorption area AR described in Figure 15A. The pixel includes a first switch (not labeled) and a second switch (not labeled) electrically coupled to the absorbing layer 1702. The first switch includes a control contact layer 1706a and a sense contact layer 1708a. The second switch includes a control contact layer 1706b and a sense contact layer 1708b. In some embodiments, readout contact layers 1708a, 1708b are formed on first surface 1704s of substrate 1704. In some embodiments, absorber layer 1702 is between control contact layers 1706b, 1706b. In some embodiments, control contact layers 1706b, 1706b are disposed on opposite sides of the absorbent layer 1702. In some embodiments, the width wi of the absorber layer 1702 is less than the control contact layer 1706b, the distance d3 between the control contact layers 1706b. In some embodiments, the incident light signal enters the absorption area AR from the first surface 1702s of the absorption layer 1702. In some embodiments, absorbent layer 1702 may be intrinsic.

在一些實施例中,光偵測裝置1700a包括多個重複的像素。光偵測裝置1700a包括具有多個重複像素的像素陣列。在一些實施例中,像素陣列可以是一維或二維陣列的像素。 In some embodiments, light detection device 1700a includes multiple repeating pixels. The light detection device 1700a includes a pixel array having a plurality of repeating pixels. In some embodiments, the pixel array may be a one-dimensional or two-dimensional array of pixels.

在一些實施例中,像素還包括分別電性耦接到第一開關和第二開關 的一第一讀出電路(圖未示)和一第二讀出電路(圖未示),以處理收集的電荷。第一讀出電路電性耦接到讀出接觸層1708a。第二讀出電路電性耦接到讀出接觸層1708b。 In some embodiments, the pixel further includes a device electrically coupled to the first switch and the second switch respectively. A first readout circuit (not shown) and a second readout circuit (not shown) are provided to process the collected charges. The first readout circuit is electrically coupled to the readout contact layer 1708a. The second readout circuit is electrically coupled to the readout contact layer 1708b.

在一些實施例中,第一開關包括一第一摻雜區1701a,其在基底1704中且在讀出接觸層1708a下方。第二開關包括一第一摻雜區1701b,在基底1704中且在讀出接觸層1708b下方。第一摻雜區1701a,1701b類似於前述的第一摻雜區,例如圖16A中描述的第一摻雜區1601a,1601b。在一些實施例中,光偵測裝置1700a的像素還包括在吸收層1702中的一埋入區1731。 In some embodiments, the first switch includes a first doped region 1701a in the substrate 1704 below the readout contact layer 1708a. The second switch includes a first doped region 1701b in the substrate 1704 and below the readout contact layer 1708b. The first doping regions 1701a, 1701b are similar to the aforementioned first doping regions, such as the first doping regions 1601a, 1601b described in FIG. 16A. In some embodiments, the pixel of the light detection device 1700a further includes a buried region 1731 in the absorbing layer 1702.

埋入區1731比吸收層1702的第一表面1702s更靠近基底1704的第一表面1704s。埋入區1731包括一摻質,並且具有與第一摻雜區1701a,1701b的第一導電類型相同的導電類型。在一些實施例中,埋入區1731包括一摻質並且具有峰值摻質濃度不小於1×1015cm-3的摻質分佈。在一些實施例中,埋入區1731的峰值摻質濃度在1×1015cm-3和5×1017cm-3之間。在一些實施例中,埋入區1731的峰值摻質濃度位於吸收層1702中。在一些實施例中,基底1704的第一表面1704s與具有峰值摻質濃度的埋入區1731的位置之間的距離不超過50nm。可以通過任何合適的方法來控制埋入區1731的摻雜分佈,例如通過包括提供多個注入劑量和能量的佈植。 The buried region 1731 is closer to the first surface 1704s of the substrate 1704 than the first surface 1702s of the absorber layer 1702. The buried region 1731 includes a dopant and has the same conductivity type as the first conductivity type of the first doped regions 1701a, 1701b. In some embodiments, the buried region 1731 includes a dopant and has a dopant distribution with a peak dopant concentration of no less than 1×10 15 cm −3 . In some embodiments, the peak dopant concentration of buried region 1731 is between 1×10 15 cm −3 and 5×10 17 cm −3 . In some embodiments, the peak dopant concentration of buried region 1731 is located in absorber layer 1702 . In some embodiments, the distance between the first surface 1704s of the substrate 1704 and the location of the buried region 1731 having the peak dopant concentration is no more than 50 nm. The doping profile of buried region 1731 may be controlled by any suitable method, such as by implantation including providing multiple implant doses and energies.

在一些實施例中,埋入區1731的摻質可以通過基底1704和吸收層1702之間的界面擴散到基底1704。在一些實施例中,在基底1704和吸收層1702之間的界面處的摻雜濃度不小於1×1015cm-3。因此,可以鈍化界面處的缺陷。 In some embodiments, the dopants of buried region 1731 may diffuse into substrate 1704 through the interface between substrate 1704 and absorber layer 1702 . In some embodiments, the doping concentration at the interface between substrate 1704 and absorber layer 1702 is no less than 1×10 15 cm −3 . Therefore, defects at the interface can be passivated.

在一些實施例中,光偵測裝置1700a的像素還包括在吸收層1702中的一排斥區1741。排斥區1741與埋入區1731相對。在一些實施例中,與基底1740的第一表面1704s相比,排斥區1741更靠近吸收層1702的第一表面1702s。在一些實施例中,排斥區1741的導電類型不同於第一摻雜區1701a,1701b的第 一導電類型。在一些實施例中,排斥區1741包括一摻質以及峰值摻質濃度不小於5×1015cm-3的摻質分佈。在一些實施例中,埋入區1731的峰值摻質濃度在1×1018cm-3和5×1020cm-3之間。 In some embodiments, the pixel of the light detection device 1700a further includes an exclusion region 1741 in the absorbing layer 1702. The exclusion area 1741 is opposite to the buried area 1731. In some embodiments, the exclusion zone 1741 is closer to the first surface 1702s of the absorbent layer 1702 than to the first surface 1704s of the substrate 1740. In some embodiments, the conductivity type of the exclusion region 1741 is different from the first conductivity type of the first doped regions 1701a, 1701b. In some embodiments, the exclusion region 1741 includes a dopant and a dopant distribution with a peak dopant concentration of no less than 5×10 15 cm −3 . In some embodiments, the peak dopant concentration of buried region 1731 is between 1×10 18 cm −3 and 5×10 20 cm −3 .

排斥區1741可以在吸收層中排斥要被收集在的載子,從而驅動載子向基底1704移動。因此,改善了光偵測裝置1700a的操作速度。例如,如果光偵測裝置1700a被配置為收集電子,則排斥區1741可以排斥電子並且推動電子向基底1704移動。 The repulsive region 1741 may repel carriers to be collected in the absorbing layer, thereby driving the carriers toward the substrate 1704 . Therefore, the operation speed of the light detection device 1700a is improved. For example, if the light detection device 1700a is configured to collect electrons, the repulsion region 1741 may repel the electrons and push the electrons toward the substrate 1704.

在一些實施例中,載子在吸收層1702中產生,並且載子的解調和收集在基底1704中。 In some embodiments, carriers are generated in absorber layer 1702 and demodulated and collected in substrate 1704 .

在一些實施例中,排斥區1741可以是浮接的。在一些實施例中,光偵測裝置1700a還包括電性耦接至排斥區1741的一導電層1710。例如,排斥區1741可以通過導電層1710耦合至接地。 In some embodiments, exclusion region 1741 may be floating. In some embodiments, the light detection device 1700a further includes a conductive layer 1710 electrically coupled to the exclusion region 1741. For example, exclusion region 1741 may be coupled to ground through conductive layer 1710.

在一些實施例中,由於吸收層1702中的埋入區1731和排斥區1741共同形成一垂直光電二極體,所以在埋入區1731和排斥區1741之間建立了內置的垂直電場,這可以幫助分離由吸收層1702中的吸收的光子產生的電子-電洞對,例如,當埋入區1731是n型而排斥區1741是p型時,電子趨於向埋入區1731移動,且電洞趨於向排斥區1741移動。埋入區1731用來收集電子並用作初步收集器。排斥區1741用於收集電洞。基於控制信號cs1,cs2,存儲在埋入區1731中的電子可以越過基底1704與吸收層1702之間的界面進一步移動到第一摻雜區1701b或第一摻雜區1701a。因此,改善了光偵測裝置1700a的解調對比度。 In some embodiments, since the buried region 1731 and the repelling region 1741 in the absorbing layer 1702 jointly form a vertical photodiode, a built-in vertical electric field is established between the buried region 1731 and the repelling region 1741, which can Helps separate electron-hole pairs generated by absorbed photons in the absorbing layer 1702. For example, when the buried region 1731 is n-type and the repelling region 1741 is p-type, electrons tend to move toward the buried region 1731, and the electrons tend to move toward the buried region 1731. The hole tends to move towards the exclusion zone 1741. The buried region 1731 is used to collect electrons and serves as a preliminary collector. Exclusion area 1741 is used to collect holes. Based on the control signals cs1, cs2, the electrons stored in the buried region 1731 may further move across the interface between the substrate 1704 and the absorption layer 1702 to the first doping region 1701b or the first doping region 1701a. Therefore, the demodulation contrast of the light detection device 1700a is improved.

圖17B繪示根據一些實施例的光偵測裝置的剖視圖。圖17B中的光偵測裝置1700b類似於圖17A中的光偵測裝置1700a,其中差異描述於下。在一些實施例中,第一開關還包括在基底1704中並且在控制接觸層1706a下的第二摻雜區1703a。第二開關還包括在基底1704中並且在控制接觸層1706b下的第二 摻雜區1703b。第二摻雜區1703a,1703b類似於前述的第二摻雜區,例如圖16B中描述的第二摻雜區1603a,1603b。 Figure 17B illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1700b in Figure 17B is similar to the light detection device 1700a in Figure 17A, with the differences described below. In some embodiments, the first switch also includes a second doped region 1703a in the substrate 1704 and under the control contact layer 1706a. The second switch also includes a second switch in the substrate 1704 and under the control contact layer 1706b. Doped region 1703b. The second doped regions 1703a, 1703b are similar to the aforementioned second doped regions, such as the second doped regions 1603a, 1603b described in FIG. 16B.

圖17C繪示根據一些實施例的光偵測裝置的剖視圖。圖17C中的光偵測裝置1700c類似於圖17A中的光偵測裝置1700a,其中差異描述於下。在一些實施例中,第一開關還包括在基底1704和控制接觸層1706a之間的一第一介電層1733a。第二開關可以進一步包括在基底1704和控制接觸層1706b之間的一第二介電層1733b。第一介電層1733a防止從控制接觸層1706a到基底1704的直接電流傳導,但允許在基底1704內建立電場,以響應施加於控制接觸層1706a的一電壓。第二介電層1733b防止從控制接觸層1706b到基底1704的直接電流傳導,但允許在基底1704內建立電場,以響應施加於控制接觸層1706b的一電壓。建立的電場可以吸引或排斥基底1704內的電荷載子。 Figure 17C illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1700c in Figure 17C is similar to the light detection device 1700a in Figure 17A, with the differences described below. In some embodiments, the first switch also includes a first dielectric layer 1733a between the substrate 1704 and the control contact layer 1706a. The second switch may further include a second dielectric layer 1733b between the substrate 1704 and the control contact layer 1706b. First dielectric layer 1733a prevents direct current conduction from control contact layer 1706a to substrate 1704, but allows an electric field to be established within substrate 1704 in response to a voltage applied to control contact layer 1706a. Second dielectric layer 1733b prevents direct current conduction from control contact layer 1706b to substrate 1704, but allows an electric field to be established within substrate 1704 in response to a voltage applied to control contact layer 1706b. The established electric field can attract or repel charge carriers within substrate 1704.

圖17D繪示根據一些實施例的光偵測裝置的剖視圖。圖17D中的光偵測裝置1700d類似於圖17C中的光偵測裝置1700c,在下面描述差異。在一些實施例中,第一開關還包括在基底1704中並且在第一介電層1733a下的一第二摻雜區1703a。第二開關還包括在基底1704中並且在第一介電層1733b下的一第二摻雜區1703b。第二摻雜區1703a,1703b類似於前述的第二摻雜區,例如圖16B中描述的第二摻雜區1603a,1603b。 Figure 17D illustrates a cross-sectional view of a light detection device according to some embodiments. Light detection device 1700d in Figure 17D is similar to light detection device 1700c in Figure 17C, with differences described below. In some embodiments, the first switch also includes a second doped region 1703a in the substrate 1704 and under the first dielectric layer 1733a. The second switch also includes a second doped region 1703b in the substrate 1704 and under the first dielectric layer 1733b. The second doped regions 1703a, 1703b are similar to the aforementioned second doped regions, such as the second doped regions 1603a, 1603b described in FIG. 16B.

圖17E繪示根據一些實施例的光偵測裝置的剖視圖。圖17E中的光偵測裝置1700e類似於圖17A中的光偵測裝置1700a,其中差異描述於下。在一些實施例中,光偵測裝置1700e還包括在基底1704中的一第一緩衝區1761和一第二緩衝區1762。第一緩衝區1761和第二緩衝區1762類似於如圖16F中所描述的第一緩衝區1661和第二1662。 Figure 17E illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1700e in Figure 17E is similar to the light detection device 1700a in Figure 17A, with the differences described below. In some embodiments, the light detection device 1700e further includes a first buffer area 1761 and a second buffer area 1762 in the substrate 1704. The first buffer area 1761 and the second buffer area 1762 are similar to the first buffer area 1661 and the second buffer area 1662 as described in Figure 16F.

第一緩衝區1761和第二緩衝區1762可以進一步調整基底1704中的空乏區,例如第一摻雜區1701a,1701b周圍的空乏區以及基底1704的第一表面 1704s附近的空乏區。 The first buffer region 1761 and the second buffer region 1762 can further adjust the depletion region in the substrate 1704, such as the depletion region around the first doped regions 1701a, 1701b and the first surface of the substrate 1704. The depletion zone near 1704s.

具有不同於第一摻雜區1701a,1701b的第一導電類型的導電類型的第一緩衝區1761和第二緩衝區1762可以改善載子收集效率,因為載子收集可以被限制在遠離基底1704的第一表面1704s的區域內,例如,被限制在第一摻雜區1701a,1701b的遠離基底1704的第一表面1704s的部分。 The first buffer region 1761 and the second buffer region 1762 having a conductivity type different from the first conductivity type of the first doped regions 1701a, 1701b can improve carrier collection efficiency because carrier collection can be limited away from the substrate 1704 The area of the first surface 1704s is, for example, limited to a portion of the first doped regions 1701a, 1701b that is remote from the first surface 1704s of the substrate 1704.

具有與第一摻雜區1701a,1701b的第一導電類型相同的導電類型的第一緩衝區1761和第二緩衝區1762可以改善載子收集效率,因為載子收集可以被第一緩衝區1761和第二緩衝區1762限制在基底1704的第一表面1704s附近。 The first buffer region 1761 and the second buffer region 1762 having the same conductivity type as the first conductivity type of the first doped regions 1701a, 1701b can improve the carrier collection efficiency because the carrier collection can be eliminated by the first buffer region 1761 and The second buffer zone 1762 is limited adjacent the first surface 1704s of the substrate 1704.

在一些實施例中,光偵測裝置1700e可以進一步包括在控制接觸層1706a,1706b下方的第二摻雜區(圖未示)。第二摻雜區與前述的第二摻雜區相似,例如如圖17B所示的第二摻雜區1703a,1703b。在這樣的實施例中,與第一摻雜區1701a,1701b的第一導電類型相同的導電類型的第一緩衝區1761和第二緩衝區1762可以改善載子收集效率,因為載子收集可以被第一緩衝區1761和第二緩衝區1762限制在基底1704的第一表面1704s附近,並且由於具有相反導電類型的兩個區域之間的距離縮短了,即第一緩衝區1761和第二摻雜區(圖未示)之間的距離短於第一摻雜區1701b和第二摻雜區(圖未示)之間的距離;第二緩衝區1762與第二摻雜區(圖未示)之間的距離短於第一摻雜區1701a與第二摻雜區(圖未示)之間的距離。 In some embodiments, the light detection device 1700e may further include a second doped region (not shown) under the control contact layers 1706a, 1706b. The second doped region is similar to the aforementioned second doped region, such as the second doped regions 1703a and 1703b shown in FIG. 17B. In such an embodiment, the first buffer region 1761 and the second buffer region 1762 of the same conductivity type as the first conductivity type of the first doping regions 1701a, 1701b can improve carrier collection efficiency because the carrier collection can be The first buffer region 1761 and the second buffer region 1762 are limited near the first surface 1704s of the substrate 1704, and due to the shortened distance between the two regions with opposite conductivity types, that is, the first buffer region 1761 and the second doped The distance between the regions (not shown) is shorter than the distance between the first doped region 1701b and the second doped region (not shown); the second buffer region 1762 and the second doped region (not shown) The distance is shorter than the distance between the first doped region 1701a and the second doped region (not shown).

在一些實施例中,光偵測裝置1700e可以進一步包括如圖17C所示的第一介電層1733a和第二介電層1733b。 In some embodiments, the light detection device 1700e may further include a first dielectric layer 1733a and a second dielectric layer 1733b as shown in FIG. 17C.

圖17F繪示根據一些實施例的光偵測裝置的剖視圖。圖17F中的光偵測裝置1700f類似於圖17A中的光偵測裝置1700a,其中差異描述於下。在一些實施例中,光偵測裝置1700f的像素還包括在基底1704中的反摻雜區1751a,1751b。反摻雜區1751a,1751b類似於前述的反摻雜區,例如如圖16H所述的反 摻雜區1651a,1651b。由於反摻雜區1751a,1751b與第一摻雜區1701a,1701b的至少一部分重疊,所以光偵測裝置1700f在基底1704中具有較薄的空乏區,因此光偵測裝置1700f具有較低的暗電流。 Figure 17F illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1700f in Figure 17F is similar to the light detection device 1700a in Figure 17A, with the differences described below. In some embodiments, the pixels of the light detection device 1700f also include counter-doped regions 1751a, 1751b in the substrate 1704. The counter-doping regions 1751a and 1751b are similar to the aforementioned counter-doping regions, such as the counter-doping regions shown in Figure 16H. Doped regions 1651a, 1651b. Since the counter-doping regions 1751a, 1751b overlap at least a portion of the first doping regions 1701a, 1701b, the light detection device 1700f has a thinner depletion region in the substrate 1704, and therefore the light detection device 1700f has a lower dark current.

在一些實施例中,光偵測裝置1700f可以進一步包括如前所述的第一介電層和第二介電層,例如如圖17C所示的第一介電層1733a和第二介電層1733b。 In some embodiments, the light detection device 1700f may further include a first dielectric layer and a second dielectric layer as described above, such as a first dielectric layer 1733a and a second dielectric layer as shown in FIG. 17C 1733b.

圖17G繪示根據一些實施例的光偵測裝置的剖視圖。圖17G中的光偵測裝置1700g類似於圖17F中的光偵測裝置1700f,其中差異描述於下。在一些實施例中,光偵測裝置1700g的像素還包括在基底1704中的一第一緩衝區1761和一第二緩衝區1762。第一緩衝區1761和第二緩衝區1762類似於前述的第一緩衝區域和第二緩衝區域,例如如圖17E中所述的第一緩衝區域1761和第二緩衝區域1762。在一些實施例中,光偵測裝置1700g可以進一步包括如前所述的第一介電層和第二介電層,例如如圖17C中所述的第一介電層1733a和第二介電層1733b。 Figure 17G illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1700g in Figure 17G is similar to the light detection device 1700f in Figure 17F, with the differences described below. In some embodiments, the pixels of the light detection device 1700g further include a first buffer 1761 and a second buffer 1762 in the substrate 1704. The first buffer area 1761 and the second buffer area 1762 are similar to the aforementioned first buffer area and the second buffer area, such as the first buffer area 1761 and the second buffer area 1762 as shown in FIG. 17E. In some embodiments, the light detection device 1700g may further include a first dielectric layer and a second dielectric layer as described above, such as the first dielectric layer 1733a and the second dielectric layer as shown in FIG. 17C. Layer 1733b.

圖17H繪示根據一些實施例的光偵測裝置的剖視圖。圖17H中的光偵測裝置1700h類似於圖17A中的光偵測裝置1700a,其中差異描述於下。在一些實施例中,光偵測裝置1700h包括多個埋入區。例如,光偵測裝置1700h包括一第一埋入區1731a,其類似於圖17A中描述的埋入區1731。光偵測裝置1700h的像素還包括一第二埋入區1731b。第二埋入區1731b在基底1704中。第二埋入區1731b形成在基底1704的第一表面1704s。第二埋入區1731b也包括一摻質,並且具有與第一摻雜區1701a,1701b的第一導電類型相同的導電類型。在一些實施例中,第二埋入區1731b的峰值摻質濃度位於基底1704中。在一些實施例中,基底1704的第一表面1704s與具有峰值摻質濃度的第二埋入區1731b的位置之間的距離不超過50nm。在一些實施例中,第二埋入區1731b的摻質可以通過 基底1704和吸收層1702之間的界面擴散到吸收層1702。因此,界面處的缺陷可以被鈍化。在一些實施例中,第二埋入區1731b的寬度w2大於吸收層1702的寬度w1Figure 17H illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1700h in Figure 17H is similar to the light detection device 1700a in Figure 17A, with the differences described below. In some embodiments, the light detection device 1700h includes multiple buried regions. For example, the light detection device 1700h includes a first buried region 1731a, which is similar to the buried region 1731 described in FIG. 17A. The pixel of the light detection device 1700h also includes a second buried region 1731b. The second buried region 1731b is in the substrate 1704. The second buried region 1731b is formed on the first surface 1704s of the substrate 1704. The second buried region 1731b also includes a dopant and has the same conductivity type as the first conductivity type of the first doped regions 1701a, 1701b. In some embodiments, the peak dopant concentration of second buried region 1731b is located in substrate 1704. In some embodiments, the distance between the first surface 1704s of the substrate 1704 and the location of the second buried region 1731b having the peak dopant concentration is no more than 50 nm. In some embodiments, the dopant of the second buried region 1731b may diffuse into the absorbing layer 1702 through the interface between the substrate 1704 and the absorbing layer 1702. Therefore, defects at the interface can be passivated. In some embodiments, the width w 2 of the second buried region 1731b is greater than the width w 1 of the absorber layer 1702 .

在一些實施例中,第一埋入區1731a的摻質和第二埋入區1731a的摻質可以相同。在一些實施例中,第一埋入區1731a的峰值摻質濃度和第二埋入區1731a的峰值摻質濃度在基底1704和吸收層1702之間的界面的相對兩側。在一些實施例中,吸收層1702可以是本質的。 In some embodiments, the dopant of the first buried region 1731a and the dopant of the second buried region 1731a may be the same. In some embodiments, the peak dopant concentration of the first buried region 1731a and the peak dopant concentration of the second buried region 1731a are on opposite sides of the interface between the substrate 1704 and the absorber layer 1702. In some embodiments, absorbent layer 1702 may be intrinsic.

圖17I繪示根據一些實施例的光偵測裝置的剖視圖。圖17I中的光偵測裝置1700i類似於圖17H中的光偵測裝置1700h,其中差異描述於下。在一些實施例中,光偵測裝置1700i的像素還包括在基底1704中的一第一緩衝區1761和一第二緩衝區1762。第一緩衝區域1761和第二緩衝區域1762類似於前述的第一緩衝區域和第二緩衝區域,例如如圖17E中所述的第一緩衝區域1761和第二緩衝區域1762。在一些實施例中,光偵測裝置1700i的像素還包括在基底1704中的反摻雜區1751a,1751b。反摻雜區1751a,1751b類似於之前提到的反摻雜區,例如如圖17F中所描述的反向摻雜1751a,1751b。 Figure 17I illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1700i in Figure 17I is similar to the light detection device 1700h in Figure 17H, with the differences described below. In some embodiments, the pixels of the light detection device 1700i further include a first buffer 1761 and a second buffer 1762 in the substrate 1704 . The first buffer area 1761 and the second buffer area 1762 are similar to the aforementioned first buffer area and the second buffer area, such as the first buffer area 1761 and the second buffer area 1762 as shown in FIG. 17E. In some embodiments, the pixels of the light detection device 1700i also include counter-doped regions 1751a, 1751b in the substrate 1704. The counter-doped regions 1751a, 1751b are similar to the previously mentioned counter-doped regions, such as counter-doped 1751a, 1751b as depicted in Figure 17F.

在一些實施例中,光偵測裝置1700i的第一開關還包括在基底中並且在控制接觸層1706a下方的一第二摻雜區(圖未示)。光偵測裝置1700i的第二開關還包括在基底1704中並且在控制接觸層1706b之下的第二摻雜區(圖未示)。第二摻雜區1703a,1703b類似於前述的第二摻雜區,例如圖17B中描述的第二摻雜區1703a,1703b。 In some embodiments, the first switch of the photodetection device 1700i also includes a second doped region (not shown) in the substrate and under the control contact layer 1706a. The second switch of photodetection device 1700i also includes a second doped region (not shown) in substrate 1704 and beneath control contact layer 1706b. The second doped regions 1703a, 1703b are similar to the aforementioned second doped regions, such as the second doped regions 1703a, 1703b described in FIG. 17B.

圖18A繪示根據一些實施例的光偵測裝置的剖視圖。光偵測裝置1800a包括一基底1804。光偵測裝置1800a還包括一像素,該像素包括由基底1804支撐的一吸收層1802。該像素在吸收層1802中包括一吸收區域AR。吸收區域AR與前述的吸收區域AR類似,例如圖15A中描述的吸收區域AR。像素還包 括在吸收層1802上方的一載子控制層1810。在一些實施例中,載子控制層1810在吸收層1802的第一表面1802s上。在一些實施例中,載子控制層1810以磊晶形成在吸收層1802的第一表面1802s上。 Figure 18A illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1800a includes a substrate 1804. The light detection device 1800a also includes a pixel including an absorbing layer 1802 supported by the substrate 1804. The pixel includes an absorption area AR in the absorption layer 1802 . The absorption area AR is similar to the aforementioned absorption area AR, such as the absorption area AR described in FIG. 15A. Pixel return package Enclosed above the absorber layer 1802 is a carrier control layer 1810 . In some embodiments, carrier control layer 1810 is on first surface 1802s of absorber layer 1802. In some embodiments, the carrier control layer 1810 is epitaxially formed on the first surface 1802s of the absorber layer 1802.

在一些實施例中,吸收層1802接收光信號並將光信號轉換成電信號。在一些實施例中,載子控制層1810的材料不同於吸收層1802的材料。 In some embodiments, absorbing layer 1802 receives optical signals and converts the optical signals into electrical signals. In some embodiments, the material of carrier control layer 1810 is different from the material of absorber layer 1802 .

在一些實施例中,載子控制層1810的材料包括一半導體材料。在一些實施例中,吸收層1802的材料包括一半導體材料。在一些實施例中,吸收層1802的材料具有第一能隙,並且載子控制層1810的材料具有大於第一能隙的第二能隙。在一些實施例中,載子控制層1810的導電類型不同於吸收層1802的導電類型。在一些實施例中,載子控制層1810的導電類型與吸收層1802的導電類型相同。在一些實施例中,半導體材料包括III-V族半導體材料或IV族半導體材料。在一些實施例中,載子控制層1810包括矽,且吸收層1802包括鍺。在一些實施例中,載子控制層1810包括非晶矽、多晶矽、結晶矽或其組合。 In some embodiments, the material of carrier control layer 1810 includes a semiconductor material. In some embodiments, the material of absorber layer 1802 includes a semiconductor material. In some embodiments, the material of absorber layer 1802 has a first energy gap, and the material of carrier control layer 1810 has a second energy gap that is greater than the first energy gap. In some embodiments, the conductivity type of carrier control layer 1810 is different from the conductivity type of absorber layer 1802 . In some embodiments, the conductivity type of carrier control layer 1810 is the same as the conductivity type of absorber layer 1802 . In some embodiments, the semiconductor material includes III-V semiconductor material or Group IV semiconductor material. In some embodiments, carrier control layer 1810 includes silicon and absorber layer 1802 includes germanium. In some embodiments, carrier control layer 1810 includes amorphous silicon, polycrystalline silicon, crystalline silicon, or combinations thereof.

在一些實施例中,載子控制層1810和吸收層1802是一異質接面二極體。在一些實施例中,載子控制層1810的厚度小於吸收層1802的厚度。在一些實施例中,載子控制層1810的厚度不小於100nm且不大於500nm。在一些實施例中,載子控制層1810的厚度在200nm至500nm之間。在一些實施例中,光偵測裝置1800a還包括電性耦接到載子控制層1810的一讀出接觸層1808。讀出接觸層1808在載子控制層1810的第一表面1810s上。載子控制層1810可以通過讀出接觸層1808被一偏壓電壓偏壓,以控制和收集載子。 In some embodiments, carrier control layer 1810 and absorber layer 1802 are a heterojunction diode. In some embodiments, the thickness of carrier control layer 1810 is less than the thickness of absorber layer 1802. In some embodiments, the thickness of carrier control layer 1810 is no less than 100 nm and no more than 500 nm. In some embodiments, the thickness of carrier control layer 1810 is between 200 nm and 500 nm. In some embodiments, the photodetection device 1800a further includes a readout contact layer 1808 electrically coupled to the carrier control layer 1810. A readout contact layer 1808 is on the first surface 1810s of the carrier control layer 1810 . The carrier control layer 1810 may be biased with a bias voltage through the sense contact layer 1808 to control and collect carriers.

在一些實施例中,光偵測裝置1800a包括在讀出接觸層1808下方的一第一摻雜區(圖未示)。第一摻雜區包括一第一摻質,並且具有峰值摻質濃度在1x 1017cm-3至5 x 1020cm-3範圍內的摻質分佈。第一摻雜區是為了方便控制載子的移動和收集。 In some embodiments, the photodetection device 1800a includes a first doped region (not shown) under the readout contact layer 1808. The first doped region includes a first dopant and has a dopant distribution with a peak dopant concentration ranging from 1×10 17 cm -3 to 5×10 20 cm -3 . The first doped region is to facilitate the control of carrier movement and collection.

在一些實施例中,如果光偵測裝置1800a被配置為收集電子,則在讀出接觸層1808下方的第一摻雜區是n型的。 In some embodiments, if the light detection device 1800a is configured to collect electrons, the first doped region beneath the readout contact layer 1808 is n-type.

光偵測裝置1800a包括多個重複的像素。光偵測裝置1800a包括包括多個重複像素的像素陣列。在一些實施例中,像素陣列可以是一維或二維陣列的像素。 The light detection device 1800a includes a plurality of repeated pixels. Light detection device 1800a includes a pixel array including a plurality of repeating pixels. In some embodiments, the pixel array may be a one-dimensional or two-dimensional array of pixels.

在一些實施例中,在吸收層1802中產生的載子流過吸收層1802和載子控制層1810之間的界面,然後流到要控制的載子控制層1810中,例如被形成在載子控制層1810上的讀出接觸層1808解調和收集。這樣,由於隨後的製程可以在載子控制層1810上而不是在吸收層1802上完成,因此可以改善微縮能力和製程整合。此外,由於吸收功能和例如載子的解調和載子的收集的載子控制功能,分別在吸收層1802和載子控制層1810中進行,其中載子控制層1810的能隙大於吸收層的能隙1802,故光偵測裝置1800a的暗電流較低。 In some embodiments, carriers generated in the absorber layer 1802 flow through the interface between the absorber layer 1802 and the carrier control layer 1810 and then flow into the carrier control layer 1810 to be controlled, for example, formed in the carrier control layer 1810 . The readout contact layer 1808 on the control layer 1810 demodulates and collects. In this way, since subsequent processes can be completed on the carrier control layer 1810 instead of the absorber layer 1802, scaling capabilities and process integration can be improved. In addition, since the absorption function and the carrier control function such as the demodulation of carriers and the collection of carriers are performed in the absorption layer 1802 and the carrier control layer 1810 respectively, wherein the energy gap of the carrier control layer 1810 is larger than the energy gap of the absorption layer gap 1802, so the dark current of the light detection device 1800a is lower.

在一些實施例中,光偵測裝置1800a可以應用於CMOS影像感測器。 In some embodiments, the light detection device 1800a can be applied to a CMOS image sensor.

圖18B繪示根據一些實施例的光偵測裝置的剖視圖。圖18B中的光偵測裝置1800b類似於圖18A中的光偵測裝置1800a,其中差異描述於下。 Figure 18B illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1800b in Figure 18B is similar to the light detection device 1800a in Figure 18A, with the differences described below.

在一些實施例中,光偵測裝置1800b的像素還包括電連接到載子控制層1810的一控制接觸層1806。控制接觸層1806形成在載子控制層1810的第一表面1810s上。 In some embodiments, the pixel of the light detection device 1800b further includes a control contact layer 1806 electrically connected to the carrier control layer 1810. Control contact layer 1806 is formed on first surface 1810s of carrier control layer 1810.

在一些實施例中,光偵測裝置1800b還包括在控制接觸層1806正下方的一第二摻雜區(圖未示)。第二摻雜區的導電類型不同於第一摻雜區的導電類型。在一些實施例中,第二摻雜區包括一第二摻質,並且具有一摻質分佈,其摻質濃度在1×1017cm-3至5×1020cm-3的範圍內。第二摻雜區用於促進收集與由讀出接觸層1808收集的載子不同的載子。第二摻雜區可以通過控制接觸層1806以一偏壓電壓偏壓以釋放收集的載子。 In some embodiments, the light detection device 1800b further includes a second doped region (not shown) directly below the control contact layer 1806. The conductivity type of the second doped region is different from the conductivity type of the first doped region. In some embodiments, the second doped region includes a second dopant and has a dopant distribution with a dopant concentration in a range of 1×10 17 cm -3 to 5×10 20 cm -3 . The second doped region is used to facilitate collection of carriers that are different from those collected by the readout contact layer 1808 . The second doped region can be biased with a bias voltage by controlling the contact layer 1806 to release the collected carriers.

圖18C繪示根據一些實施例的光偵測裝置的剖視圖。圖18C中的光偵測裝置1800c類似於圖18B中的光偵測裝置1800b,其中差異描述於下。 Figure 18C illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1800c in Figure 18C is similar to the light detection device 1800b in Figure 18B, with the differences described below.

在一些實施例中,光偵測裝置1800c還包括圍繞吸收層1802的至少一部分的一阻擋層1819。阻擋層1819可以類似於前述的阻擋層,例如如圖15A中所述的阻擋層1519。 In some embodiments, the light detection device 1800c further includes a blocking layer 1819 surrounding at least a portion of the absorbing layer 1802. Barrier layer 1819 may be similar to the previously described barrier layers, such as barrier layer 1519 as described in Figure 15A.

在一些實施例中,光偵測裝置1800c還包括一導電層1809,其電連接到阻擋層1819並且在基底1804的第一表面1804s上。阻擋層1819可以通過導電層1809以一偏壓電壓偏壓,以釋放載子。 In some embodiments, the light detection device 1800c also includes a conductive layer 1809 electrically connected to the blocking layer 1819 and on the first surface 1804s of the substrate 1804. The barrier layer 1819 can be biased with a bias voltage through the conductive layer 1809 to release carriers.

圖18D示出根據一些實施例的光偵測裝置的剖視圖。 Figure 18D shows a cross-sectional view of a light detection device according to some embodiments.

光偵測裝置1800d包括一基底1804。光偵測裝置1800d進一步包括一像素,其包括由基底1804支撐的一吸收層1802。像素包括在吸收層1802中的一吸收區域AR。吸收區域AR與前述吸收區域AR類似,例如圖15A中描述的吸收區域AR。像素還包括在吸收層1802上的一載子控制層1810。在一些實施例中,載子控制層1810在吸收層1802的第一表面1802s上。在一些實施例中,載子控制層1810磊晶形成在吸收層1802的第一表面1802s上。載子控制層1810可以類似於圖18A中描述的載子控制層1810。像素還包括電性耦接到吸收層1802的一第一開關(圖未標)和一第二開關(圖未標)。第一開關包括一控制接觸層1806a和一讀出接觸層1808a。第二開關包括一控制接觸層1806b和一讀出接觸層1808b。在一些實施例中,讀出接觸層1808a,1808b和控制接觸層1806a,1806b形成在載子控制層1810的第一表面1810s上。在一些實施例中,吸收區域AR的寬度小於讀出接觸層1808a,1808b之間的距離。在一些實施例中,讀出接觸層1808a,1808b設置在吸收區域AR的兩個相對側。 The light detection device 1800d includes a substrate 1804. The light detection device 1800d further includes a pixel including an absorbing layer 1802 supported by the substrate 1804. The pixel includes an absorption area AR in the absorption layer 1802 . The absorption area AR is similar to the aforementioned absorption area AR, such as the absorption area AR described in Figure 15A. The pixel also includes a carrier control layer 1810 on the absorbing layer 1802. In some embodiments, carrier control layer 1810 is on first surface 1802s of absorber layer 1802. In some embodiments, carrier control layer 1810 is epitaxially formed on first surface 1802s of absorber layer 1802. The carrier control layer 1810 may be similar to the carrier control layer 1810 described in Figure 18A. The pixel also includes a first switch (not labeled) and a second switch (not labeled) electrically coupled to the absorbing layer 1802. The first switch includes a control contact layer 1806a and a sense contact layer 1808a. The second switch includes a control contact layer 1806b and a sense contact layer 1808b. In some embodiments, sense contact layers 1808a, 1808b and control contact layers 1806a, 1806b are formed on the first surface 1810s of the carrier control layer 1810. In some embodiments, the width of the absorption region AR is less than the distance between the readout contact layers 1808a, 1808b. In some embodiments, readout contact layers 1808a, 1808b are disposed on opposite sides of the absorption area AR.

在一些實施例中,一未摻雜區(圖未標)在控制接觸層1806a的正下方。另一個未摻雜區(圖未標)在控制接觸層1806b的正下方。即,載子控 制層1810的位於控制接觸層1806a,1806b正下方的部分可以是本質的,或者可以包括具有一摻質,其峰值摻質濃度低於約1×1015cm-3。術語“本質”是指載子控制層1810的在控制接觸層1806a,1806b正下方的部分未故意添加摻質。在一些實施例中,取決於包括載子控制層1810材料、控制接觸層1806a,1806b的材料,以及載子控制層1810的雜質或缺陷程度在內的各種因素,載子控制層1810上的控制接觸層1806a,1806b可以導致蕭特基接觸、歐姆接觸或其具有在兩者之間的中間特性的一組合的形成。 In some embodiments, an undoped region (not labeled) is directly beneath the control contact layer 1806a. Another undoped region (not labeled) is directly beneath the control contact layer 1806b. That is, the portion of the carrier control layer 1810 directly beneath the control contact layers 1806a, 1806b may be intrinsic or may include a dopant having a peak dopant concentration of less than about 1×10 15 cm −3 . The term "essentially" means that the portion of the carrier control layer 1810 directly beneath the control contact layers 1806a, 1806b is not intentionally doped. In some embodiments, control on the carrier control layer 1810 depends on various factors including the material of the carrier control layer 1810 , the materials of the control contact layers 1806a, 1806b , and the level of impurities or defects in the carrier control layer 1810 . Contact layers 1806a, 1806b may result in the formation of a Schottky contact, an Ohmic contact, or a combination thereof with intermediate properties between the two.

像素還包括兩個控制信號cs1,cs2,其控制控制接觸層1806a,1806b,以控制載子控制層1810中載子的移動方向,其中,載子由吸收層1802中吸收的光子產生。當使用電壓時,如果控制信號cs1相對於控制信號cs2偏置,則在載子控制層1810的位於控制接觸層1806a,1806b正下方的兩個部分之間產生電場,且取決於電場的方向,自由電荷向讀出接觸層1808b,1808a的正下方的載子控制層1810的兩個未摻雜部分之一漂移。 The pixel also includes two control signals cs1, cs2, which control the contact layers 1806a, 1806b to control the moving direction of carriers in the carrier control layer 1810, where the carriers are generated by photons absorbed in the absorption layer 1802. When voltage is used, if control signal cs1 is biased relative to control signal cs2, an electric field is generated between the two portions of carrier control layer 1810 directly beneath the control contact layers 1806a, 1806b, and depending on the direction of the electric field, The free charge drifts toward one of the two undoped portions of the carrier control layer 1810 directly beneath the readout contact layers 1808b, 1808a.

在一些實施例中,光偵測裝置1800d包括如前所述的兩個電容,例如圖16A中描述的電容1610a,1610b。電容用於存儲在吸收層1802中產生的載子,並基於兩個控制信號cs1,cs2的控制流入載子控制層1810。 In some embodiments, the light detection device 1800d includes two capacitors as described above, such as the capacitors 1610a and 1610b described in FIG. 16A. The capacitor is used to store carriers generated in the absorption layer 1802 and flow into the carrier control layer 1810 based on the control of two control signals cs1 and cs2.

在一些實施例中,光偵測裝置1800d還包括一第一讀出電路和一第二讀出電路,第一讀出電路和第二讀出電路分別電性耦接到第一開關和第二開關,以處理收集的電荷。第一讀出電路可以包括電容中的一個。第二讀出電路可以包括另一個電容。第一讀出電路電性耦接到讀出接觸層1808a。第二讀出電路電性耦接到讀出接觸層1808b。 In some embodiments, the light detection device 1800d further includes a first readout circuit and a second readout circuit. The first readout circuit and the second readout circuit are electrically coupled to the first switch and the second readout circuit respectively. switch to process the collected charge. The first readout circuit may include one of the capacitors. The second readout circuit may include another capacitor. The first readout circuit is electrically coupled to the readout contact layer 1808a. The second readout circuit is electrically coupled to the readout contact layer 1808b.

光偵測裝置1800d包括多個重複的像素。光偵測裝置1800d包括包括多個重複像素的像素陣列在一些實施例中,像素陣列可以是一維或二維陣列的像素。 Light detection device 1800d includes a plurality of repeated pixels. The light detection device 1800d includes a pixel array including a plurality of repeating pixels. In some embodiments, the pixel array may be a one-dimensional or two-dimensional array of pixels.

在一些實施例中,在吸收層1802中產生的載子流過吸收層1802和載子控制層1810之間的界面,然後流入到載子控制層1810中以被控制,例如被控制接觸層1806a,1806b和讀出接觸層1808b,1808a解調和收集。這樣,由於可以在載子控制層1810上而不是在吸收層1802上完成隨後的製程,因此可以改善微縮能力和製程整合。此外,由於吸收功能和例如載子解調和載子收集的載子控制功能,分別操作在吸收層1802和載子控制層1810,且其中載子控制層1810的能隙大於吸收層1802的能隙,故光偵測裝置1800d的暗電流較低。 In some embodiments, carriers generated in the absorber layer 1802 flow through the interface between the absorber layer 1802 and the carrier control layer 1810 and then flow into the carrier control layer 1810 to be controlled, such as by the controlled contact layer 1806a , 1806b and readout contact layer 1808b, 1808a for demodulation and collection. In this way, since subsequent processes can be completed on the carrier control layer 1810 instead of the absorber layer 1802, scaling capabilities and process integration can be improved. In addition, due to the absorption function and the carrier control function such as carrier demodulation and carrier collection, the absorption layer 1802 and the carrier control layer 1810 are respectively operated, and the energy gap of the carrier control layer 1810 is larger than the energy gap of the absorption layer 1802 , so the dark current of the light detection device 1800d is lower.

圖18E繪示根據一些實施例的光偵測裝置的剖視圖。圖18E中的光偵測裝置1800e類似於圖18D中的光偵測裝置,其中差異描述於下。在一些實施例中,光偵測裝置1800e還包括一阻擋層1819。阻擋層1819可以類似於之前提到的阻擋層,例如圖15A中描述的阻擋層1519。光偵測裝置1800e還包括一導電層1809,其電連接到阻擋層1819。阻擋層1819可以通過導電層1809以一偏壓電壓偏壓,以釋放載子。 Figure 18E illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1800e in Figure 18E is similar to the light detection device in Figure 18D, with the differences described below. In some embodiments, the light detection device 1800e further includes a blocking layer 1819. Barrier layer 1819 may be similar to previously mentioned barrier layers, such as barrier layer 1519 depicted in Figure 15A. The light detection device 1800e also includes a conductive layer 1809 electrically connected to the blocking layer 1819. The barrier layer 1819 can be biased with a bias voltage through the conductive layer 1809 to release carriers.

圖18F繪示根據一些實施例的光偵測裝置的剖視圖。圖18F中的光偵測裝置1800f類似於圖18E中的光偵測裝置1800e,其中差異描述於下。在一些實施例中,第一開關在讀出接觸層1808a下方和載子控制層1810中包括一第一摻雜區1801a。第二開關在讀出接觸層1808b下方和載子控制層1810中包括一第一摻雜區1801b。在一些實施例中,第一摻雜區1801a,1801b均為第一導電類型。在一些實施例中,第一摻雜區1801a,1801b包括一第一摻質。第一摻雜區1801a,1801b的峰值摻質濃度取決於讀出接觸層1808a,1808b的材料和載子控制層1810的材料,例如在5×1018cm-3至5×1020cm-3之間。在一些實施例中,第一摻雜區1801a,1801b的峰值摻質濃度位於載子控制層1810中。第一摻雜區1801a,1801b用於收集從吸收層1802產生和流出的載子,其基於兩個控制信號cs1,cs2的控制,分別進一步被第一讀出電路(圖未示)和第二讀出電路(圖 未示)處理。 Figure 18F illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1800f in Figure 18F is similar to the light detection device 1800e in Figure 18E, with the differences described below. In some embodiments, the first switch includes a first doped region 1801a beneath the sense contact layer 1808a and in the carrier control layer 1810. The second switch includes a first doped region 1801b below the sense contact layer 1808b and in the carrier control layer 1810. In some embodiments, the first doping regions 1801a and 1801b are both of the first conductivity type. In some embodiments, the first doped regions 1801a, 1801b include a first dopant. The peak dopant concentration of the first doped regions 1801a, 1801b depends on the material of the readout contact layer 1808a, 1808b and the material of the carrier control layer 1810, for example, between 5×10 18 cm −3 and 5×10 20 cm −3 between. In some embodiments, the peak dopant concentration of the first doped regions 1801a, 1801b is located in the carrier control layer 1810. The first doping regions 1801a and 1801b are used to collect carriers generated and outflowed from the absorption layer 1802. Based on the control of two control signals cs1 and cs2, they are further controlled by a first readout circuit (not shown) and a second readout circuit respectively. Readout circuit (not shown) processing.

圖18G繪示根據一些實施例的光偵測裝置的剖視圖。圖18G中的光偵測裝置1800g類似於圖18F中的光偵測裝置1800f,其中差異描述於下。在一些實施例中,第一開關還包括在控制接觸層1806a下方的一第二摻雜區1803a。第二開關還包括在控制接觸層1806b下方的一第二摻雜區1803b。第二摻雜區1803a,1803b在載子控制層1810中。在一些實施例中,第二摻雜區1803a,1803b各具有與第一摻雜區1801b,1801a的導電類型不同的第二導電類型。在一些實施例中,各個第二摻雜區1803a,1803b包括一第二摻質。第二摻雜區1803a,1803b的峰值摻質濃度取決於控制接觸層1806b,1806a的材料和載子控制層1810的材料,例如在1×1017cm-3至5×1020cm-3之間。在一些實施例中,第二摻雜區1803a,1803b的峰值摻質濃度位於載子控制層1810中。第二摻雜區1803a,1803b與控制接觸層1806b,1806a形成蕭特基接觸、歐姆接觸或其組合。第二摻雜區1803a,1803b用於基於控制信號cs1,cs2的控制來解調從吸收層1802產生並流動過來的載子。在一些實施例中,各個第一摻雜區1801a,1801b的深度d2和各個第二摻雜區1803a,1803b的深度d1小於載子控制層1810的厚度。深度係從載子控制層1810的表面1810s測量至摻質分佈達到背景濃度的位置,例如1 x 1015cm-3。在一些實施例中,載子控制層1810與吸收層1802之間以及在第二摻雜區1803a,1803b下方的界面部分具有或小於背景濃度,例如1×1015cm-3。在一些實施例中,在載子控制層1810與吸收層1802之間以及在第一摻雜區1801a,1801b之下的界面部分具有或小於背景濃度,例如1×1015cm-3Figure 18G illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1800g in Figure 18G is similar to the light detection device 1800f in Figure 18F, with the differences described below. In some embodiments, the first switch also includes a second doped region 1803a below the control contact layer 1806a. The second switch also includes a second doped region 1803b below the control contact layer 1806b. The second doped regions 1803a, 1803b are in the carrier control layer 1810. In some embodiments, the second doped regions 1803a, 1803b each have a second conductivity type that is different from the conductivity type of the first doped regions 1801b, 1801a. In some embodiments, each second doped region 1803a, 1803b includes a second dopant. The peak dopant concentration of the second doped regions 1803a, 1803b depends on the material of the control contact layer 1806b, 1806a and the material of the carrier control layer 1810, for example, between 1×10 17 cm −3 and 5×10 20 cm −3 between. In some embodiments, the peak dopant concentration of the second doped regions 1803a, 1803b is located in the carrier control layer 1810. The second doped regions 1803a, 1803b and the control contact layers 1806b, 1806a form a Schottky contact, an ohmic contact or a combination thereof. The second doping regions 1803a and 1803b are used to demodulate the carriers generated and flowing from the absorption layer 1802 based on the control of the control signals cs1 and cs2. In some embodiments, the depth d 2 of each first doped region 1801 a, 1801 b and the depth d 1 of each second doped region 1803 a, 1803 b are less than the thickness of the carrier control layer 1810 . The depth is measured from the surface 1810s of the carrier control layer 1810 to the point where the dopant profile reaches the background concentration, for example 1 x 10 15 cm -3 . In some embodiments, the portion of the interface between the carrier control layer 1810 and the absorption layer 1802 and below the second doped regions 1803a, 1803b has a background concentration or less, such as 1×10 15 cm −3 . In some embodiments, the portion of the interface between the carrier control layer 1810 and the absorber layer 1802 and under the first doped regions 1801a, 1801b has a background concentration or less, such as 1×10 15 cm −3 .

在一些實施例中,由於吸收功能和例如為載子解調和載子收集的載子控制功能,分別操作在吸收層1802和載子控制層1810,且其中載子控制層1810的能隙大於吸收層1802的能隙,故光偵測裝置1800g的兩個控制接觸層1806a,1806b之間的漏電流較低。 In some embodiments, due to the absorption function and the carrier control function, such as carrier demodulation and carrier collection, the absorption layer 1802 and the carrier control layer 1810 are respectively operated, and the energy gap of the carrier control layer 1810 is larger than the absorption layer 1802 . The energy gap of layer 1802 is low, so the leakage current between the two control contact layers 1806a and 1806b of the photodetection device 1800g is low.

圖18H繪示根據一些實施例的光偵測裝置的剖視圖。圖18H中的光偵測裝置1800h類似於圖18F中的光偵測裝置1800f,其中差異描述於下。在一些實施例中,第一開關還包括在載子控制層1810和控制接觸層1806a之間的一第一介電層1833a。第二開關還可以包括在載子控制層1810和控制接觸層1806b之間的一第二介電層1833b。第一介電層1833a防止從控制接觸層1806a到載子控制層1810的直接電流傳導,但允許在載子控制層1810內建立電場,以響應施加於控制接觸層1806a的一電壓。第二介電層1833b防止從控制接觸層1806b到載子控制層1810的直接電流傳導,但允許在載子控制層1810內建立電場,以響應施加於控制接觸層1806b的一電壓。建立的電場可以吸引或排斥載子控制層1810內的電荷載子,其中電荷載子從吸收層1802產生並從吸收層1802流出。 Figure 18H illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1800h in Figure 18H is similar to the light detection device 1800f in Figure 18F, with the differences described below. In some embodiments, the first switch further includes a first dielectric layer 1833a between the carrier control layer 1810 and the control contact layer 1806a. The second switch may also include a second dielectric layer 1833b between the carrier control layer 1810 and the control contact layer 1806b. First dielectric layer 1833a prevents direct current conduction from control contact layer 1806a to carrier control layer 1810, but allows an electric field to be established within carrier control layer 1810 in response to a voltage applied to control contact layer 1806a. Second dielectric layer 1833b prevents direct current conduction from control contact layer 1806b to carrier control layer 1810, but allows an electric field to be established within carrier control layer 1810 in response to a voltage applied to control contact layer 1806b. The established electric field can attract or repel charge carriers within carrier control layer 1810 where charge carriers are generated from and flow out of absorber layer 1802 .

圖18I繪示根據一些實施例的光偵測裝置的剖視圖。圖18I中的光偵測裝置1800i類似於圖18H中的光偵測裝置1800h,其中差異描述於下。在一些實施例中,第一開關還包括在第一介電層1833a下方的一第二摻雜區1803a。第二開關還包括在第二介電層1833b下方的第二摻雜區1803b。第二摻雜區1803a,1803b類似於如圖18G中所述的第二摻雜區1803a,1803b。 Figure 18I illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1800i in Figure 18I is similar to the light detection device 1800h in Figure 18H, with the differences described below. In some embodiments, the first switch further includes a second doped region 1803a below the first dielectric layer 1833a. The second switch also includes a second doped region 1803b beneath the second dielectric layer 1833b. The second doped regions 1803a, 1803b are similar to the second doped regions 1803a, 1803b described in Figure 18G.

圖18J繪示根據一些實施例的光偵測裝置的剖視圖。圖18J中的光偵測裝置1800j類似於圖18G中的光偵測裝置1800g,其中差異描述於下。在一些實施例中,光偵測裝置1800j的像素還包括在載子控制層1810中的兩個反摻雜區1851a,1851b。反摻雜區1851a,1851b類似於前述的反摻雜區,例如圖15D中描述的反摻雜區1551a,1551b。在一些實施例中,反摻雜區1851a,1851b的峰值摻質濃度位於載子控制層1810中。在一些實施例中,反摻雜區1851a,1851b的摻質可擴散到吸收層1802中。摻雜區1851a,1851b用作暗電流減小區,用於降低光偵測裝置1800j的暗電流。與沒有反摻雜區1851a,1851b的光偵測裝置相比,包括與第一摻雜區1801a,1801b的至少一部分重疊的反摻雜區1851a, 1851b的光偵測裝置1800j在載子控制層1810中具有更薄的空乏區,因此光偵測裝置1800j具有較低的暗電流。 Figure 18J illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1800j in Figure 18J is similar to the light detection device 1800g in Figure 18G, with the differences described below. In some embodiments, the pixel of the light detection device 1800j further includes two counter-doped regions 1851a, 1851b in the carrier control layer 1810. The counter-doped regions 1851a, 1851b are similar to the aforementioned counter-doped regions, such as the counter-doped regions 1551a, 1551b described in Figure 15D. In some embodiments, the peak dopant concentration of the counter-doped regions 1851a, 1851b is located in the carrier control layer 1810. In some embodiments, the dopant of the counterdoped regions 1851a, 1851b may diffuse into the absorber layer 1802. The doping regions 1851a and 1851b serve as dark current reduction regions for reducing the dark current of the light detection device 1800j. Compared with the light detection device without the counter-doped regions 1851a, 1851b, including the counter-doped region 1851a overlapping at least a portion of the first doped regions 1801a, 1801b, The photodetection device 1800j of 1851b has a thinner depletion region in the carrier control layer 1810, so the photodetection device 1800j has a lower dark current.

圖18K繪示根據一些實施例的光偵測裝置的剖視圖。圖18K中的光偵測裝置1800k類似於圖18J中的光偵測裝置1800j,其中差異描述於下。光偵測裝置1800k的像素還包括一第一緩衝區1861和一第二緩衝區1862。第一緩衝區1861和第二緩衝區1862位於載子控制層1810中。第一緩衝區1861和第二緩衝區1862類似於前述的第一緩衝區和第二緩衝區,例如圖16J中描述的第一緩衝區1661和第二緩衝區1662。在一些實施例中,第一緩衝區1861和第二緩衝區1862的峰值摻質濃度位於載子控制層1810中。 Figure 18K illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1800k in Figure 18K is similar to the light detection device 1800j in Figure 18J, with the differences described below. The pixels of the light detection device 1800k also include a first buffer area 1861 and a second buffer area 1862. The first buffer area 1861 and the second buffer area 1862 are located in the carrier control layer 1810. The first buffer area 1861 and the second buffer area 1862 are similar to the aforementioned first buffer area and the second buffer area, such as the first buffer area 1661 and the second buffer area 1662 described in FIG. 16J. In some embodiments, the peak dopant concentrations of the first buffer region 1861 and the second buffer region 1862 are located in the carrier control layer 1810 .

第一緩衝區1861和第二緩衝區1862可以進一步調整載子控制層1810的第一表面1810s附近的空乏區。 The first buffer area 1861 and the second buffer area 1862 may further adjust the depletion area near the first surface 1810s of the carrier control layer 1810.

在一些實施例中,類似於圖16J中所述,第一緩衝區1861和第二緩衝區1862的導電類型與第一摻雜區1801a,1801b的第一導電類型相同。具有與第一摻雜區1801a,1801b的第一導電類型相同的導電類型的第一緩衝區1861和第二緩衝區1862可以提高載子收集效率,因為載子收集可以被第一緩衝區1861和第二緩衝區1862限制在載子控制層1810的第一表面1810s附近,並且由於縮短了具有相反導電類型的兩個區域之間的距離,即,第一緩衝區1861和第二摻雜區1803b之間的距離短於第一摻雜區1801b和第二摻雜區1803b之間的距離;第二緩衝區1862與第二摻雜區1803a之間的距離小於第一摻雜區1801a與第二摻雜區1803a之間的距離。 In some embodiments, similar to that described in Figure 16J, the conductivity type of the first buffer region 1861 and the second buffer region 1862 is the same as the first conductivity type of the first doped regions 1801a, 1801b. The first buffer region 1861 and the second buffer region 1862 having the same conductivity type as the first conductivity type of the first doping regions 1801a, 1801b can improve the carrier collection efficiency, because the carrier collection can be controlled by the first buffer region 1861 and The second buffer region 1862 is limited near the first surface 1810s of the carrier control layer 1810 and due to shortening the distance between the two regions with opposite conductivity types, namely, the first buffer region 1861 and the second doped region 1803b The distance between them is shorter than the distance between the first doping region 1801b and the second doping region 1803b; the distance between the second buffer region 1862 and the second doping region 1803a is shorter than the distance between the first doping region 1801a and the second doping region 1803a. The distance between doped regions 1803a.

在一些實施例中,如圖16J中類似地描述,第一緩衝區1861和第二緩衝區1862的導電類型不同於第一摻雜區1801a,1801b的第一導電類型。例如,如果光偵測裝置1800k被配置為處理所收集的電子以供進一步應用,則第一摻雜區1801a,1801b為n型,第二摻雜區1803a,1803b為p型,反摻雜區 1851a,1851b為p型,且第一緩衝區1861和第二緩衝區1862為p型。第一緩衝區1861阻止載子在載子控制層1810的第一表面1810s附近流入第一摻雜區1801b,並同時降低局部暗電流。第二緩衝區1862阻止載子在載子控制層1810的第一表面1810s附近流入第一摻雜區1801a,並同時降低局部暗電流。 In some embodiments, as similarly depicted in Figure 16J, the conductivity type of the first buffer region 1861 and the second buffer region 1862 is different from the first conductivity type of the first doped regions 1801a, 1801b. For example, if the photodetection device 1800k is configured to process the collected electrons for further applications, the first doped regions 1801a, 1801b are n-type, the second doped regions 1803a, 1803b are p-type, and the counter-doped regions 1801a, 1801b are p-type. 1851a and 1851b are p-type, and the first buffer 1861 and the second buffer 1862 are p-type. The first buffer region 1861 prevents carriers from flowing into the first doping region 1801b near the first surface 1810s of the carrier control layer 1810, and simultaneously reduces local dark current. The second buffer region 1862 prevents carriers from flowing into the first doped region 1801a near the first surface 1810s of the carrier control layer 1810 and simultaneously reduces local dark current.

在一些實施例中,反摻雜區1851b僅與第一摻雜區1801b的一部分重疊,即,第一摻雜區1801b的遠離載子控制層1810的第一表面1810s的一部分均不與反摻雜區1851b或第一緩衝區1861重疊。在一些實施例中,反摻雜區1851a僅與第一摻雜區1801a的一部分重疊,即,第一摻雜區1801a的遠離載子控制層1810的第一表面1810s的一部分均不與反摻雜區1851a或第二緩衝區1862重疊。 In some embodiments, the counter-doped region 1851b overlaps only a portion of the first doped region 1801b, that is, none of the portion of the first surface 1810s of the first doped region 1801b away from the carrier control layer 1810 overlaps with the counter-doped region 1851b. The miscellaneous area 1851b or the first buffer area 1861 overlaps. In some embodiments, the counter-doped region 1851a only overlaps a part of the first doped region 1801a, that is, none of the part of the first surface 1810s of the first doped region 1801a away from the carrier control layer 1810 overlaps with the counter-doped region 1851a. The miscellaneous area 1851a or the second buffer area 1862 overlaps.

具有不同於第一摻雜區1801a,1801b的第一導電類型的導電類型的第一緩衝區1861和第二緩衝區1862可以提高載子收集效率,因為載子收集可以被限制在遠離載子控制層1810的第一表面1810s的區域內,例如,被限制在第一摻雜區域1801a的遠離載子控制層1810的第一表面1810s,且不與反摻雜區1851a或第二緩衝區1862重疊的部分;並且被限制在第一摻雜區1801b的遠離載子控制層1810的第一表面1810s且不與反摻雜區1851b或第一緩衝區1861重疊的部分。 The first buffer region 1861 and the second buffer region 1862 having a conductivity type different from the first conductivity type of the first doping regions 1801a, 1801b can improve carrier collection efficiency because the carrier collection can be limited away from the carrier control The region of the first surface 1810s of the layer 1810 is, for example, limited to the first surface 1810s of the first doped region 1801a away from the carrier control layer 1810 and does not overlap with the counter-doped region 1851a or the second buffer region 1862 and is limited to a portion of the first doped region 1801b that is away from the first surface 1810s of the carrier control layer 1810 and does not overlap with the counter-doped region 1851b or the first buffer region 1861.

在一些實施例中,類似於如圖16K中描述的,第一緩衝區1861包括一深度d5,其小於第一摻雜區1801b的深度d2。在一些實施例中,第一緩衝區1861的深度d5小於第二摻雜區1803b的深度d1。在一些實施例中,第二緩衝區1862包括一深度d6,其小於第一摻雜區1801a的深度d2。在一些實施例中,第二緩衝區1862的深度d6小於第二摻雜區1803a的深度d1In some embodiments, similar to that depicted in Figure 16K, the first buffer region 1861 includes a depth d5 that is less than the depth d2 of the first doped region 1801b. In some embodiments, the depth d 5 of the first buffer region 1861 is less than the depth d 1 of the second doped region 1803b. In some embodiments, the second buffer region 1862 includes a depth d 6 that is less than the depth d 2 of the first doped region 1801a. In some embodiments, the depth d 6 of the second buffer region 1862 is less than the depth d 1 of the second doped region 1803a.

圖18L繪示根據一些實施例的光偵測裝置的剖視圖。圖18L中的光偵測裝置1800l類似於圖18G中的光偵測裝置1800g,其中差異描述於下。光偵測裝置1800l的像素還包括阻障區1820a,1820b。在一些實施例中,阻障區1820a 的一部分在吸收層1802中。阻障區1820b的一部分在吸收層1802中。在一些實施例中,阻障區1820a形成在吸收層1802和載子控制層1810兩者中。阻障區1820b形成在吸收層1802和載子控制層1810兩者中。阻障區1820a,1820b覆蓋載子控制層1810和吸收層2002之間的界面的一部分。 Figure 18L illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1800l in Figure 18L is similar to the light detection device 1800g in Figure 18G, with the differences described below. The pixels of the light detection device 1800l also include barrier regions 1820a, 1820b. In some embodiments, barrier region 1820a is in the absorbing layer 1802. A portion of barrier region 1820b is in absorber layer 1802. In some embodiments, barrier region 1820a is formed in both absorber layer 1802 and carrier control layer 1810. Barrier region 1820b is formed in both absorber layer 1802 and carrier control layer 1810. Barrier regions 1820a, 1820b cover a portion of the interface between carrier control layer 1810 and absorber layer 2002.

在一些實施例中,阻障區1820a在第一開關和第二表面1802ss’之間。在一些實施例中,阻障區1820a沿著垂直方向D1部分地在第一摻雜區1801a下方。阻障區1820b在第二開關和第二表面1802ss之間。在一些實施例中,阻障區1820b沿著垂直方向D1部分地在第一摻雜區1801b下方。在一些實施例中,阻障區1820a沿著垂直方向D1部分地在第二摻雜區1803a下方。阻障區1820b沿著垂直方向D1部分地在第二摻雜區1803b下方。在一些實施例中,吸收區域AR的寬度w3大於控制接觸層1806a,1806b之間的距離d3。在一些實施例中,吸收區域AR的寬度w3比阻障區1820a和1820b的外側之間的距離w4短。 In some embodiments, barrier region 1820a is between the first switch and second surface 1802ss'. In some embodiments, the barrier region 1820a is partially beneath the first doped region 1801a along the vertical direction D1. Barrier region 1820b is between the second switch and second surface 1802ss. In some embodiments, barrier region 1820b is partially beneath first doped region 1801b along vertical direction D1. In some embodiments, barrier region 1820a is partially beneath second doped region 1803a along vertical direction D1. The barrier region 1820b is partially under the second doped region 1803b along the vertical direction D1. In some embodiments, the width w 3 of the absorption area AR is greater than the distance d 3 between the control contact layers 1806a, 1806b. In some embodiments, the width w 3 of the absorbing region AR is shorter than the distance w 4 between the outsides of the barrier regions 1820a and 1820b.

在一些實施例中,各個阻障區1820a,1820b具有與第一摻雜區1801a,1801b的第一導電類型不同的導電類型。在一些實施例中,各個阻障區1820a,1820b包括一摻質並且具有帶有峰值摻質濃度的一摻質分佈。該峰值摻質濃度低於第一摻雜區1801b,1801a的峰值摻質濃度。在一些實施例中,阻障區1820a,1820b的峰值摻質濃度例如不大於1×1018cm-3。在一些實施例中,吸收層1802與載子控制層1810之間的被阻障區1820a,1820b覆蓋的界面處的濃度不小於1×1015cm-3In some embodiments, each barrier region 1820a, 1820b has a different conductivity type than the first conductivity type of the first doped region 1801a, 1801b. In some embodiments, each barrier region 1820a, 1820b includes a dopant and has a dopant profile with a peak dopant concentration. The peak dopant concentration is lower than the peak dopant concentration of the first doped regions 1801b, 1801a. In some embodiments, the peak dopant concentration of the barrier regions 1820a, 1820b is, for example, no greater than 1×10 18 cm −3 . In some embodiments, the concentration at the interface between the absorption layer 1802 and the carrier control layer 1810 covered by the barrier regions 1820a, 1820b is not less than 1×10 15 cm −3 .

在一些實施例中,阻障區1820a,1820b包括與吸收層1802的材料不同並且與載子控制層1810的材料不同的一材料。在一些實施例中,阻障區1820a,1820b包括一絕緣材料,以用作吸收區域AR與第一摻雜區1801a,1801b之間的高電阻區。 In some embodiments, barrier regions 1820a, 1820b include a material that is different from the material of absorber layer 1802 and that is different from the material of carrier control layer 1810. In some embodiments, the barrier regions 1820a, 1820b include an insulating material to serve as a high resistance region between the absorption region AR and the first doped regions 1801a, 1801b.

在一些實施例中,阻障區1820a,1802b能夠限制載子的路徑,其在 吸收層1802中產生,然後流向載子控制層1810。結果是,與沒有阻障區的光偵測裝置相比,可以擴大吸收區域AR,因此可以在吸收區域AR中產生更多的載子,然後通過限制在阻障區1820a,1802b之間的路徑流入載子控制層1810。此外,阻障區1820a,1820b還可以阻擋在吸收層1802中產生的暗電流。因此,光偵測裝置1800l的解調對比度得以改善,並且光偵測裝置1800l的暗電流可以同時降低。 In some embodiments, barrier regions 1820a, 1802b can limit the path of carriers, which It is generated in the absorption layer 1802 and then flows to the carrier control layer 1810. As a result, compared to a light detection device without barrier regions, the absorption region AR can be enlarged and therefore more carriers can be generated in the absorption region AR and then by limiting the path between the barrier regions 1820a, 1802b into the carrier control layer 1810. In addition, the barrier regions 1820a and 1820b can also block dark current generated in the absorption layer 1802. Therefore, the demodulation contrast of the light detection device 1800l is improved, and the dark current of the light detection device 1800l can be reduced simultaneously.

在一些實施例中,光偵測裝置1800l還包括一第一緩衝區1861和一第二緩衝區1862,如圖18K所示。 In some embodiments, the light detection device 1800l further includes a first buffer 1861 and a second buffer 1862, as shown in Figure 18K.

在一些實施例中,光偵測裝置1800l還包括如圖18J所示的反摻雜區1851a,1851b。 In some embodiments, the light detection device 1800l further includes counter-doping regions 1851a, 1851b as shown in Figure 18J.

圖18M繪示根據一些實施例的光偵測裝置的剖視圖。圖18M中的光偵測裝置1800m類似於圖18G中的光偵測裝置1800g,其中差異描述於下。 Figure 18M illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1800m in Figure 18M is similar to the light detection device 1800g in Figure 18G, with the differences described below.

光偵測裝置1800m的像素還包括在載子控制層1810中並且在第一開關和第二開關之間的一第三摻雜區1817。在一些實施例中,第三摻雜區1817在第二摻雜區1803a,1803b之間。第三摻雜區1817具有與第一摻雜區1801b,1801a的第一導電類型相同的第三導電類型。在一些實施例中,第三摻雜區1817包括一摻質以及一摻質分佈,摻質分佈具有一峰值摻質濃度,其低於第一摻雜區1801b,1801a的峰值摻質濃度。在一些實施例中,第三摻雜區1817的峰值摻質濃度不大於1×1018cm-3。在一些實施例中,第三摻雜區1817的峰值摻質濃度位於載子控制層1810中。在一些實施例中,第三摻雜區1817的摻質可以擴散到吸收層1802中。 The pixel of the photodetection device 1800m also includes a third doped region 1817 in the carrier control layer 1810 and between the first switch and the second switch. In some embodiments, the third doped region 1817 is between the second doped regions 1803a, 1803b. The third doped region 1817 has the same third conductivity type as the first conductivity type of the first doped regions 1801b, 1801a. In some embodiments, the third doped region 1817 includes a dopant and a dopant distribution having a peak dopant concentration that is lower than the peak dopant concentration of the first doped regions 1801b, 1801a. In some embodiments, the peak dopant concentration of the third doped region 1817 is no greater than 1×10 18 cm −3 . In some embodiments, the peak dopant concentration of the third doped region 1817 is located in the carrier control layer 1810 . In some embodiments, the dopants of the third doped region 1817 may diffuse into the absorber layer 1802 .

由於第三摻雜區1817和阻擋層1819共同形成一垂直光電二極體,因此在第三摻雜區1817和阻擋層1819之間建立有內置的垂直電場,這可以有助於分離由吸收層1802中吸收的光子產生的電子-電洞對,例如,當第三摻雜區1817 為n型而阻擋層1819為p型時,電子趨於向第三摻雜區1817移動並且電洞趨於向阻擋層1819移動。第三摻雜區1817用於收集電子,阻擋層1819用於收集電洞。第三摻雜區1817用作一初步收集器。然後,基於控制信號cs1,cs2,存儲在第三摻雜區1817中的電子可以移動到第一摻雜區1801b或第一摻雜區1801a。 Since the third doped region 1817 and the barrier layer 1819 together form a vertical photodiode, a built-in vertical electric field is established between the third doped region 1817 and the barrier layer 1819, which can help separate the absorber layer from Electron-hole pairs generated by absorbed photons in 1802, for example, when the third doped region 1817 When the barrier layer 1819 is n-type and the barrier layer 1819 is p-type, electrons tend to move toward the third doped region 1817 and holes tend to move toward the barrier layer 1819 . The third doped region 1817 is used to collect electrons, and the blocking layer 1819 is used to collect holes. The third doped region 1817 serves as a preliminary collector. Then, based on the control signals cs1, cs2, the electrons stored in the third doping region 1817 may move to the first doping region 1801b or the first doping region 1801a.

在一些實施例中,由於吸收層1802和載子控制層1810之間的能隙差異,在吸收層1802中產生的載子可能難以從吸收層1802通過它們之間的界面流到載子控制層1810。第三摻雜區1817用作吸引載子的通道。結果是,由於在吸收層1802中產生的載子將集中地流向第三摻雜區1817,然後流入載子控制層1810,因此也可以擴大吸收區域AR。因此,光偵測裝置1800m的量子效率更高,並且朝向第一摻雜區1801b或第一摻雜區1801a移動的載子的數量也更高。 In some embodiments, due to the energy gap difference between the absorbing layer 1802 and the carrier control layer 1810, carriers generated in the absorbing layer 1802 may have difficulty flowing from the absorbing layer 1802 to the carrier control layer through the interface between them. 1810. The third doped region 1817 serves as a channel for attracting carriers. As a result, since the carriers generated in the absorption layer 1802 will flow intensively to the third doped region 1817 and then into the carrier control layer 1810, the absorption region AR can also be enlarged. Therefore, the quantum efficiency of the photodetection device 1800m is higher, and the number of carriers moving toward the first doped region 1801b or the first doped region 1801a is also higher.

在一些實施例中,光偵測裝置1800m還可包括如圖18L中所描述的阻障區1820a,1820b,以進一步將載子限制在一定路徑中。 In some embodiments, the light detection device 1800m may also include barrier regions 1820a, 1820b as described in Figure 18L to further restrict carriers in a certain path.

在一些實施例中,光偵測裝置1800m還包括如圖18K中所描述的一第一緩衝區1861和一第二緩衝區1862,以進一步調整在載子控制層1810的第一表面1810s附近的空乏區。 In some embodiments, the light detection device 1800m further includes a first buffer area 1861 and a second buffer area 1862 as described in FIG. 18K to further adjust the temperature near the first surface 1810s of the carrier control layer 1810. empty area.

在一些實施例中,光偵測裝置1800m還包括如圖18J所示的反摻雜區1851a,1851b,以進一步降低光偵測裝置1800m的暗電流。 In some embodiments, the light detection device 1800m further includes anti-doped regions 1851a, 1851b as shown in FIG. 18J to further reduce the dark current of the light detection device 1800m.

圖18N繪示根據一些實施例的光偵測裝置的剖視圖。圖18N中的光偵測裝置1800n類似於圖18M中的光偵測裝置1800m,其中差異描述於下。像素的載子控制層1810還包括阻礙區1840。阻礙區1840在第一開關和第二開關之間。在一些實施例中,阻礙區1840位於第二摻雜區1803a,1803b之間,並且比第三摻雜區1817更靠近載子控制層1810的第一表面1810s。阻礙區1840與第二摻雜區1803a,1803b分離。 Figure 18N illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1800n in Figure 18N is similar to the light detection device 1800m in Figure 18M, with the differences described below. The carrier control layer 1810 of the pixel also includes a barrier region 1840 . The blocking area 1840 is between the first switch and the second switch. In some embodiments, the barrier region 1840 is located between the second doped regions 1803a, 1803b and closer to the first surface 1810s of the carrier control layer 1810 than the third doped region 1817. The barrier region 1840 is separated from the second doped regions 1803a, 1803b.

在一些實施例中,阻礙區1840沿著垂直方向D1與第三摻雜區1817重 疊。在一些實施例中,阻礙區1840包括一摻質,並且具有與第三摻雜區1817的第三導電類型不同的導電類型。在一些實施例中,阻礙區1840包括一摻質並且具有帶有峰值摻質濃度的摻質分佈。該峰值摻質濃度高於第三摻雜區1817的峰值摻質濃度。在一些實施例中,阻礙區1840的峰值摻質濃度在1×1018cm-3和5×1020cm-3之間。 In some embodiments, the barrier region 1840 overlaps the third doped region 1817 along the vertical direction D1. In some embodiments, barrier region 1840 includes a dopant and has a different conductivity type than the third conductivity type of third doped region 1817 . In some embodiments, barrier region 1840 includes a dopant and has a dopant profile with a peak dopant concentration. The peak dopant concentration is higher than the peak dopant concentration of the third doped region 1817 . In some embodiments, barrier region 1840 has a peak dopant concentration between 1×10 18 cm −3 and 5×10 20 cm −3 .

阻礙區1840可以阻擋待收集的載子到達載子控制層1810的第一表面1810s。結果是,減少了光偵測裝置1800n的兩個第二摻雜區1803a,1803b之間的表面漏電流。 The blocking region 1840 may block carriers to be collected from reaching the first surface 1810s of the carrier control layer 1810 . As a result, the surface leakage current between the two second doped regions 1803a, 1803b of the photodetection device 1800n is reduced.

在一些實施例中,光偵測裝置1800n還可以包括如圖18L所示的阻障區1820a,1820b,以進一步將載子的流動限制在特定路徑中。 In some embodiments, the light detection device 1800n may also include barrier regions 1820a, 1820b as shown in FIG. 18L to further restrict the flow of carriers in a specific path.

在一些實施例中,光偵測裝置1800n還包括如圖18K中所描述的一第一緩衝區1861和一第二緩衝區1862,以進一步調整在載子控制層1810的第一表面1810s附近的空乏區。 In some embodiments, the light detection device 1800n further includes a first buffer area 1861 and a second buffer area 1862 as described in FIG. 18K to further adjust the temperature near the first surface 1810s of the carrier control layer 1810. empty area.

在一些實施例中,光偵測裝置1800n還包括如圖18J所示的反摻雜區1851a,1851b,以進一步降低光偵測裝置1800n的暗電流。 In some embodiments, the light detection device 1800n further includes anti-doped regions 1851a, 1851b as shown in FIG. 18J to further reduce the dark current of the light detection device 1800n.

圖18O繪示根據一些實施例的光偵測裝置的剖視圖。圖18O中的光偵測裝置1800o類似於圖18M中的光偵測裝置1800m,其中差異描述於下。光偵測裝置1800o的像素還包括在載子控制層1810中的一通道區1830。通道區1830在垂直方向D1上位於控制接觸層1806a,1806b的下方。在一些實施例中,載子控制層1810沿著垂直方向D1在第二摻雜區1803a,1803b下方。通道區1830包括一摻質,並且具有與第一摻雜區1801a,1801b的第一導電類型相同的導電類型。在一些實施例中,通道區1830包括一摻質,並且具有峰值摻質濃度不小於1×1015cm-3的摻質分佈。在一些實施例中,通道區1830的峰值摻質濃度在1×1015cm-3與5×1017cm-3之間。在一些實施例中,通道區1830的峰值摻質濃度位 於載子控制層1810中。在一些實施例中,載子控制層1810的第一表面1810s與具有峰值摻質濃度的通道區1830的位置之間的距離不小於30nm。通道區1830促使從吸收層1802產生的載子流向第一摻雜區1801a,1801b而不會到達載子控制層1810的第一表面1810s。因此,改善了解調對比度並且光偵測裝置1800o的兩個控制接觸層1806a,1806b之間的漏電流得以較低。 Figure 18O illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1800o in Figure 18O is similar to the light detection device 1800m in Figure 18M, with the differences described below. The pixel of the light detection device 1800o also includes a channel region 1830 in the carrier control layer 1810. The channel region 1830 is located below the control contact layers 1806a, 1806b in the vertical direction D1. In some embodiments, the carrier control layer 1810 is beneath the second doped regions 1803a, 1803b along the vertical direction D1. The channel region 1830 includes a dopant and has the same conductivity type as the first conductivity type of the first doped regions 1801a, 1801b. In some embodiments, channel region 1830 includes a dopant and has a dopant distribution with a peak dopant concentration of no less than 1×10 15 cm −3 . In some embodiments, the peak dopant concentration of channel region 1830 is between 1×10 15 cm −3 and 5×10 17 cm −3 . In some embodiments, the peak dopant concentration of channel region 1830 is located in carrier control layer 1810 . In some embodiments, the distance between the first surface 1810s of the carrier control layer 1810 and the location of the channel region 1830 having the peak dopant concentration is no less than 30 nm. The channel region 1830 encourages carriers generated from the absorber layer 1802 to flow toward the first doped regions 1801a, 1801b without reaching the first surface 1810s of the carrier control layer 1810. Therefore, the demodulation contrast is improved and the leakage current between the two control contact layers 1806a, 1806b of the photodetection device 1800o is lowered.

在一些實施例中,通道區1830與第二摻雜區1803a,1803b重疊。 In some embodiments, the channel region 1830 overlaps the second doped regions 1803a, 1803b.

在一些實施例中,通道區1830可以與第一摻雜區1801a,1801b重疊。即,通道區1830可以連接到第一摻雜區1801a,1801b。如果第一開關開啟並且第二開關關閉,則可以通過偏壓第二開關的第一摻雜區1801b來將載子推向第一摻雜區1801a流動。也就是說,通過電壓控制,在通道區1830與對於載子關閉的開關的第一摻雜區之間會斷開,因此載子將不會流入到關閉的開關的第一摻雜區中。 In some embodiments, the channel region 1830 may overlap the first doped regions 1801a, 1801b. That is, the channel region 1830 may be connected to the first doped regions 1801a, 1801b. If the first switch is turned on and the second switch is turned off, carriers can be pushed toward the first doped region 1801a to flow by biasing the first doped region 1801b of the second switch. That is, through voltage control, there will be a disconnection between the channel region 1830 and the first doped region of the switch that is closed for carriers, so carriers will not flow into the first doped region of the switch that is closed.

藉由第三摻雜區1817和通道區1830的組合,在吸收層1802中產生的載子集中地流向第三摻雜區1817,並基於兩個控制信號cs1,cs2的控制,通過通道區1830移向第一摻雜區1801a,1801b之一。 Through the combination of the third doping region 1817 and the channel region 1830, the carriers generated in the absorption layer 1802 flow to the third doping region 1817 in a concentrated manner, and pass through the channel region 1830 based on the control of the two control signals cs1 and cs2. Move to one of the first doped regions 1801a, 1801b.

在一些實施例中,光偵測裝置1800o還可包括如圖18L中所描述的阻障區1820a,1820b,以進一步將載子的流動限制在特定路徑中。 In some embodiments, the light detection device 1800o may also include barrier regions 1820a, 1820b as described in FIG. 18L to further restrict the flow of carriers to specific paths.

在一些實施例中,光偵測裝置1800o還包括如圖18K中所描述的一第一緩衝區1861和一第二緩衝區1862,以進一步修改在載子控制層1810的第一表面1810s附近的空乏區。 In some embodiments, the light detection device 1800o further includes a first buffer 1861 and a second buffer 1862 as described in FIG. 18K to further modify the near first surface 1810s of the carrier control layer 1810. empty area.

在一些實施例中,光偵測裝置1800o還包括如圖18J所示的反摻雜區1851a,1851b,以進一步降低光偵測裝置1800o的暗電流。 In some embodiments, the light detection device 1800o further includes anti-doped regions 1851a, 1851b as shown in FIG. 18J to further reduce the dark current of the light detection device 1800o.

在一些實施例中,像素的載子控制層1810還包括如圖18N所示的阻礙區1840,以阻擋載子到達第一表面1810s。 In some embodiments, the carrier control layer 1810 of the pixel further includes a blocking region 1840 as shown in FIG. 18N to block carriers from reaching the first surface 1810s.

圖18P繪示根據一些實施例的光偵測裝置的剖視圖。圖18P中的光偵測裝置1800p類似於圖18F中的光偵測裝置1800f,其中差異描述於下。光偵測裝置1800p的像素還包括在載子控制層1810中的淺通道區1831。淺通道區1831沿著垂直方向D1在控制接觸層1806a,1806b下方。淺通道區1831包括一摻質,並且具有與第一摻雜區1801a,1801b的第一導電類型相同的導電類型。在一些實施例中,淺通道區1831包括具有不小於1×1015cm-3的峰值摻質濃度的摻質分佈。在一些實施例中,淺通道區1831的峰值摻質濃度在1×1015cm-3與5×1017cm-3之間。在一些實施例中,淺通道區1831的峰值摻質濃度位於載子控制層1810中。在一些實施例中,第一表面1810s與具有峰值摻質濃度的淺通道區1831的位置之間的距離小於30nm。淺通道區1831可以吸引在吸收層1802中產生的載子,並且基於兩個控制信號cs1,cs2的控制進一步限制載子流向第一摻雜區1801a,1801b其中之一。 Figure 18P illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1800p in Figure 18P is similar to the light detection device 1800f in Figure 18F, with the differences described below. The pixels of photodetection device 1800p also include shallow channel regions 1831 in carrier control layer 1810. The shallow channel region 1831 is beneath the control contact layers 1806a, 1806b along the vertical direction D1. The shallow channel region 1831 includes a dopant and has the same conductivity type as the first conductivity type of the first doped regions 1801a, 1801b. In some embodiments, shallow channel region 1831 includes a dopant profile having a peak dopant concentration of no less than 1×10 15 cm −3 . In some embodiments, the peak dopant concentration of shallow channel region 1831 is between 1×10 15 cm −3 and 5×10 17 cm −3 . In some embodiments, the peak dopant concentration of shallow channel region 1831 is located in carrier control layer 1810 . In some embodiments, the distance between the first surface 1810s and the location of the shallow channel region 1831 having the peak dopant concentration is less than 30 nm. The shallow channel region 1831 can attract carriers generated in the absorption layer 1802, and further restricts the flow of carriers to one of the first doping regions 1801a, 1801b based on the control of two control signals cs1, cs2.

因此,光偵測裝置1800p的解調對比度被改善,並且光偵測裝置1800p的兩個控制接觸層1806a,1806b之間的漏電流較低。 Therefore, the demodulation contrast of the light detection device 1800p is improved, and the leakage current between the two control contact layers 1806a, 1806b of the light detection device 1800p is lower.

在一些實施例中,光偵測裝置1800p的像素還包括在載子控制層1810中並且在第一開關和第二開關之間的一第三摻雜區1817。第三摻雜區1817類似於如圖18M中所述的第三摻雜區1817。第三摻雜區1817用作一垂直通道以進一步吸引從吸收層1802產生的載子。 In some embodiments, the pixel of the light detection device 1800p further includes a third doped region 1817 in the carrier control layer 1810 and between the first switch and the second switch. The third doped region 1817 is similar to the third doped region 1817 described in Figure 18M. The third doped region 1817 serves as a vertical channel to further attract carriers generated from the absorption layer 1802.

在一些實施例中,光偵測裝置1800p的像素還包括如圖18L所示的阻障區1820a,1820b,以進一步將載子的流動限制在特定路徑中。在一些實施例中,由於阻障區1820a,1820b阻擋了載子的流動,並且由於第三摻雜區1817吸引了載子,因此在吸收層1802中產生的載子集中地流向第三摻雜區1817並基於兩個控制信號cs1,cs2的控制,通過淺通道區1831向第一摻雜區1801a,1801b其中之一移動。由於光偵測裝置1800p包括阻障區1820a,1820b和第三摻雜區 1817,因此可以擴大吸收區域AR。 In some embodiments, the pixels of the light detection device 1800p further include barrier regions 1820a, 1820b as shown in FIG. 18L to further restrict the flow of carriers in specific paths. In some embodiments, because the barrier regions 1820a, 1820b block the flow of carriers, and because the third doping region 1817 attracts carriers, the carriers generated in the absorption layer 1802 flow concentratedly toward the third doping region. The region 1817 moves to one of the first doping regions 1801a and 1801b through the shallow channel region 1831 based on the control of the two control signals cs1 and cs2. Since the light detection device 1800p includes barrier regions 1820a, 1820b and a third doping region 1817, so the absorption area AR can be expanded.

在一些實施例中,光偵測裝置1800p的像素還包括如圖18J所示的反摻雜區1851a,1851b,以進一步降低光偵測裝置1800p的暗電流。 In some embodiments, the pixels of the light detection device 1800p further include anti-doped regions 1851a, 1851b as shown in FIG. 18J to further reduce the dark current of the light detection device 1800p.

在一些實施例中,光偵測裝置1800p的像素還包括如圖18K所示的一第一緩衝區1861和一第二緩衝區1862,以進一步修調整載子控制層1810的第一表面1810s附近的空乏區。 In some embodiments, the pixels of the light detection device 1800p further include a first buffer 1861 and a second buffer 1862 as shown in FIG. 18K to further modify the vicinity of the first surface 1810s of the carrier control layer 1810 empty area.

圖18Q繪示根據一些實施例的光偵測裝置的剖視圖。圖18Q中的光偵測裝置1800q類似於圖18O中的光偵測裝置1800o,其中差異描述於下。 Figure 18Q illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1800q in Figure 18Q is similar to the light detection device 1800o in Figure 18O, with the differences described below.

在一些實施例中,像素的載子控制層1810還包括如圖18N所示的一阻礙區1840,以阻擋要收集的載子到達第一表面1810s。 In some embodiments, the carrier control layer 1810 of the pixel further includes a blocking region 1840 as shown in FIG. 18N to block the carriers to be collected from reaching the first surface 1810s.

在一些實施例中,光偵測裝置1800q的像素還包括如圖18L所述的阻障區1820a,1820b,以進一步將載子的流動限制在特定路徑中。 In some embodiments, the pixels of the light detection device 1800q also include barrier regions 1820a, 1820b as shown in FIG. 18L to further restrict the flow of carriers in specific paths.

在一些實施例中,光偵測裝置1800q的像素還包括如圖18K所示的一第一緩衝區1861和一第二緩衝區1862,以進一步修改載子控制層1810的第一表面1810s附近的空乏區。 In some embodiments, the pixels of the light detection device 1800q further include a first buffer 1861 and a second buffer 1862 as shown in FIG. 18K to further modify the pixels near the first surface 1810s of the carrier control layer 1810. empty area.

在一些實施例中,光偵測裝置1800q的像素還包括如圖18J所示的反摻雜區1851a,1851b,以進一步降低光偵測裝置1800q的暗電流。 In some embodiments, the pixels of the light detection device 1800q further include counter-doped regions 1851a, 1851b as shown in FIG. 18J to further reduce the dark current of the light detection device 1800q.

圖18R繪示根據一些實施例的光偵測裝置的剖視圖。圖18R中的光偵測裝置1800r類似於圖18P中的光偵測裝置1800p,其中差異描述於下。第一開關還包括在淺通道區1831和控制接觸層1806a之間的一第一介電層1833a。第二開關可以進一步包括在淺通道區1831和控制接觸層1806b之間的一第二介電層1833b。第一介電層1833a和第二介電層1833b分別類似於如圖18H所示的第一介電層1833a和第二介電層1833b。 Figure 18R illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1800r in Figure 18R is similar to the light detection device 1800p in Figure 18P, with the differences described below. The first switch also includes a first dielectric layer 1833a between the shallow channel region 1831 and the control contact layer 1806a. The second switch may further include a second dielectric layer 1833b between the shallow channel region 1831 and the control contact layer 1806b. The first dielectric layer 1833a and the second dielectric layer 1833b are similar to the first dielectric layer 1833a and the second dielectric layer 1833b respectively as shown in FIG. 18H.

圖18S繪示根據一些實施例的光偵測裝置的剖視圖。圖18S中的光偵 測裝置1800s類似於圖18Q中的光偵測裝置1800q,其中差異描述於下。第一開關還包括在第二摻雜區1803a和控制接觸層1806a之間的一第一介電層1833a。第二開關可以進一步包括在第二摻雜區1803b和控制接觸層1806b之間的一第二介電層1833b。第一介電層1833a和第二介電層1833b分別類似於如圖18H所示的第一介電層1833a和第二介電層1833b。 Figure 18S illustrates a cross-sectional view of a light detection device according to some embodiments. Optical detection in Figure 18S Detection device 1800s is similar to light detection device 1800q in Figure 18Q, with differences described below. The first switch also includes a first dielectric layer 1833a between the second doped region 1803a and the control contact layer 1806a. The second switch may further include a second dielectric layer 1833b between the second doped region 1803b and the control contact layer 1806b. The first dielectric layer 1833a and the second dielectric layer 1833b are similar to the first dielectric layer 1833a and the second dielectric layer 1833b respectively as shown in FIG. 18H.

圖18T繪示根據一些實施例的光偵測裝置的剖視圖。圖18T中的光偵測裝置1800t類似於圖18E中的光偵測裝置1800e,其中差異描述於下。 Figure 18T illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1800t in Figure 18T is similar to the light detection device 1800e in Figure 18E, with the differences described below.

光偵測裝置1800t還包括在載子控制層1810的第一表面1810s上的一第一導電層1811。在一些實施例中,第一導電層1811在控制接觸層1806a,1806b之間。第一導電層1811可被一偏壓電壓偏壓以降低光偵測裝置1800t的漏電流。 The light detection device 1800t also includes a first conductive layer 1811 on the first surface 1810s of the carrier control layer 1810. In some embodiments, first conductive layer 1811 is between control contact layers 1806a, 1806b. The first conductive layer 1811 can be biased by a bias voltage to reduce the leakage current of the light detection device 1800t.

在一些實施例中,光偵測裝置1800t還包括在載子控制層1810的第一表面1810s上的一調整接觸層1812a。在一些實施例中,從剖視圖看,讀出接觸層1808a在控制接觸層1806a和調整接觸層1812a之間。光偵測裝置1800t還包括在載子控制層1810的第一表面1810s上的一調整接觸層1812b。在一些實施例中,從剖視圖看,讀出接觸層1808b在控制接觸層1806b和調整接觸層1812b之間。 In some embodiments, the light detection device 1800t further includes an adjustment contact layer 1812a on the first surface 1810s of the carrier control layer 1810. In some embodiments, the sense contact layer 1808a is between the control contact layer 1806a and the adjustment contact layer 1812a when viewed in cross-section. The light detection device 1800t also includes an adjustment contact layer 1812b on the first surface 1810s of the carrier control layer 1810. In some embodiments, the sense contact layer 1808b is between the control contact layer 1806b and the adjustment contact layer 1812b when viewed in cross-section.

在一些實施例中,調整接觸層1812a,1812b可各自被一偏壓電壓偏壓以對載子控制層1810中的電場進行塑形。因此,光偵測裝置1800t的暗電流較低。調整接觸層1812a用於塑形第一開關附近的電場。調整接觸層1812b用於塑形第二開關附近的電場。 In some embodiments, the adjustment contact layers 1812a, 1812b may each be biased by a bias voltage to shape the electric field in the carrier control layer 1810. Therefore, the dark current of the light detection device 1800t is lower. Tuned contact layer 1812a is used to shape the electric field near the first switch. Tuned contact layer 1812b is used to shape the electric field near the second switch.

圖18U繪示根據一些實施例的光偵測裝置的剖視圖。圖18U中的光偵測裝置1800u類似於圖18T中的光偵測裝置1800t,其中差異描述於下。 Figure 18U illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1800u in Figure 18U is similar to the light detection device 1800t in Figure 18T, with the differences described below.

第一開關還包括在載子控制層1810和控制接觸層1806a之間的一第 一介電層1833a。第二開關還可包括在載子控制層1810和控制接觸層1806b之間的一第二介電層1833b。第一介電層1833a和第二介電層1833b分別類似於如圖18H所示的第一介電層1833a和第二介電層1833b。 The first switch also includes a first switch between the carrier control layer 1810 and the control contact layer 1806a. A dielectric layer 1833a. The second switch may also include a second dielectric layer 1833b between the carrier control layer 1810 and the control contact layer 1806b. The first dielectric layer 1833a and the second dielectric layer 1833b are similar to the first dielectric layer 1833a and the second dielectric layer 1833b respectively as shown in FIG. 18H.

光偵測裝置1800u還包括在載子控制層1810和調整接觸層1812a之間的一第三介電層1834a。光偵測裝置1800u還包括在載子控制層1810和調整接觸層1812b之間的一第四介電層1834b。 The photodetection device 1800u also includes a third dielectric layer 1834a between the carrier control layer 1810 and the adjustment contact layer 1812a. The photodetection device 1800u also includes a fourth dielectric layer 1834b between the carrier control layer 1810 and the adjustment contact layer 1812b.

在一些實施例中,光偵測裝置1800u還包括在載子控制層1810和第一導電層1811之間的一第五介電層1832。 In some embodiments, the light detection device 1800u further includes a fifth dielectric layer 1832 between the carrier control layer 1810 and the first conductive layer 1811.

在一些實施例中,光偵測裝置1800u還包括如圖18L所述的第一摻雜區1801a,1801b。在一些實施例中,光偵測裝置1800u還包括如圖18L所述的第二摻雜區1803a,1803b。 In some embodiments, the light detection device 1800u further includes first doped regions 1801a, 1801b as shown in FIG. 18L. In some embodiments, the light detection device 1800u further includes second doped regions 1803a, 1803b as shown in FIG. 18L.

在一些實施例中,光偵測裝置1800u的像素還包括如圖18L所述的阻障區1820a,1820b。 In some embodiments, the pixels of the light detection device 1800u further include barrier regions 1820a, 1820b as shown in FIG. 18L.

在一些實施例中,光偵測裝置1800u的像素還包括如圖18K所述的反摻雜區1851a,1851b。 In some embodiments, the pixels of the light detection device 1800u further include counter-doped regions 1851a, 1851b as shown in FIG. 18K.

在一些實施例中,光偵測裝置1800u的像素還包括如圖18K所述的一第一緩衝區1861和一第二緩衝區1862。 In some embodiments, the pixels of the light detection device 1800u further include a first buffer 1861 and a second buffer 1862 as shown in FIG. 18K.

在一些實施例中,光偵測裝置1800u的像素還包括如圖18M所述的第三摻雜區1817。 In some embodiments, the pixel of the light detection device 1800u further includes a third doped region 1817 as shown in FIG. 18M.

在一些實施例中,光偵測裝置1800u的像素還包括如圖18N所述的阻礙區1840。 In some embodiments, the pixels of the light detection device 1800u further include a blocking area 1840 as described in FIG. 18N.

在一些實施例中,光偵測裝置1800u的像素還包括如圖18O所述的通道區1830或如圖18P所述的淺通道區1831。 In some embodiments, the pixels of the light detection device 1800u further include a channel area 1830 as shown in FIG. 18O or a shallow channel area 1831 as shown in FIG. 18P.

在一些實施例中,圖18D至18U中的光偵測裝置可以進一步包括兩 個第一矽化物區,各個第一矽化物區分別是在相應的讀出接觸層1808a,1808b下。第一矽化物區在載子控制層1810中,並且可以類似於如圖5B中所描述的第一矽化物區513a’,513b’。在一些實施例中,圖18D至18G、18J至18Q、18T中的光偵測裝置可以進一步包括在控制接觸層1806a,1806b下的兩個第二矽化物區。第二矽化物區在載子控制層1810中,並且可以類似於如圖5B中所描述的第二矽化物區515a’,515b’。 In some embodiments, the light detection device in FIGS. 18D to 18U may further include two first silicide regions, each first silicide region being under a corresponding readout contact layer 1808a, 1808b. The first silicide regions are in the carrier control layer 1810 and may be similar to the first silicide regions 513a', 513b' as depicted in Figure 5B. In some embodiments, the light detection devices in Figures 18D-18G, 18J-18Q, and 18T may further include two second silicide regions under the control contact layers 1806a, 1806b. The second silicide region is in the carrier control layer 1810 and may be similar to the second silicide regions 515a', 515b' as depicted in Figure 5B.

只要本領域技術人員能夠產生,這些元素的組合就在本公開的範圍內。 Combinations of these elements are within the scope of the present disclosure as long as those skilled in the art can produce them.

圖19A繪示根據一些實施例的光偵測裝置的剖視圖。光偵測裝置1900a包括一基底1904。光偵測裝置1900a還包括一像素,該像素包括由基底1904支撐的一吸收層1902。該像素在吸收層1902中包括一吸收區域AR。吸收區域AR與前述吸收區域類似,例如圖15A中描述的吸收區域AR。像素包括電性耦接到吸收層1902的一第一開關(圖未標)和一第二開關(圖未標)。第一開關包括一控制接觸層1906a和一讀出接觸層1908a。第二開關包括一控制接觸層1906b和一讀出接觸層1908b。第一開關還包括在讀出接觸層1908a下方的一第一摻雜區1901a。第二開關還包括在讀出接觸層1908b下方的一第一摻雜區1901b。在一些實施例中,像素還包括分別電性耦接到第一開關和第二開關的一第一讀出電路(圖未示)和一第二讀出電路(圖未示),以處理收集的電荷。第一讀出電路電性耦接到讀出接觸層1908a。第二讀出電路電性耦接到讀出接觸層1908b。 Figure 19A illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1900a includes a substrate 1904. Light detection device 1900a also includes a pixel including an absorbing layer 1902 supported by substrate 1904. The pixel includes an absorption area AR in the absorption layer 1902 . The absorption area AR is similar to the aforementioned absorption areas, such as the absorption area AR described in Figure 15A. The pixel includes a first switch (not labeled) and a second switch (not labeled) electrically coupled to the absorbing layer 1902. The first switch includes a control contact layer 1906a and a sense contact layer 1908a. The second switch includes a control contact layer 1906b and a sense contact layer 1908b. The first switch also includes a first doped region 1901a below the sense contact layer 1908a. The second switch also includes a first doped region 1901b below the sense contact layer 1908b. In some embodiments, the pixel further includes a first readout circuit (not shown) and a second readout circuit (not shown) electrically coupled to the first switch and the second switch respectively to process the collection. of charge. The first readout circuit is electrically coupled to the readout contact layer 1908a. The second readout circuit is electrically coupled to the readout contact layer 1908b.

控制接觸層1906a,1906b類似於前述的控制接觸層,例如圖16A中描述的控制接觸層1606a,1606b。讀出接觸層1908b,1908a類似於前述的讀出接觸層,例如圖16A中所描述的讀出接觸層1608a,1608b。第一摻雜區1901b,1901a類似於前述的第一摻雜區,例如圖16A中描述的第一摻雜區1601a,1601b。 Control contact layers 1906a, 1906b are similar to previously described control contact layers, such as the control contact layers 1606a, 1606b described in Figure 16A. The sense contact layers 1908b, 1908a are similar to the sense contact layers previously described, such as the sense contact layers 1608a, 1608b depicted in Figure 16A. The first doping regions 1901b, 1901a are similar to the aforementioned first doping regions, such as the first doping regions 1601a, 1601b described in FIG. 16A.

在一些實施例中,光偵測裝置1900a還包括一阻擋層1919,其類似於前述的阻擋層,例如圖15A和圖15C中描述的阻擋層1519。 In some embodiments, the light detection device 1900a further includes a blocking layer 1919, which is similar to the aforementioned blocking layer, such as the blocking layer 1519 described in Figures 15A and 15C.

在一些實施例中,光偵測裝置1900a的像素還包括一第三摻雜區1917,其類似於圖6G中描述的第三摻雜區617’。 In some embodiments, the pixel of the light detection device 1900a further includes a third doped region 1917, which is similar to the third doped region 617' described in FIG. 6G.

在一些實施例中,光偵測裝置1900a的像素還包括一阻礙區1940,其類似於圖6L中描述的阻礙區640。 In some embodiments, the pixels of the light detection device 1900a also include a blocking region 1940, which is similar to the blocking region 640 described in Figure 6L.

在一些實施例中,光偵測裝置1900a還包括一導電層1909,其電性耦接到阻擋層1919,以偏壓阻擋層1919。 In some embodiments, the light detection device 1900a further includes a conductive layer 1909 that is electrically coupled to the barrier layer 1919 to bias the barrier layer 1919.

光偵測裝置1900a還包括一導電層1909,電性耦接到阻擋層1919。 The light detection device 1900a also includes a conductive layer 1909 electrically coupled to the blocking layer 1919.

在一些實施例中,光偵測裝置1900a的像素還包括在吸收層1902中的兩個反摻雜區1951a,1951b。反摻雜區1951a,1951b類似於前述的反摻雜區,例如在圖15D中所描述的反摻雜區1551a,1551b。 In some embodiments, the pixel of the light detection device 1900a further includes two counter-doped regions 1951a, 1951b in the absorber layer 1902. The counter-doped regions 1951a, 1951b are similar to the aforementioned counter-doped regions, such as the counter-doped regions 1551a, 1551b described in Figure 15D.

在一些實施例中,光偵測裝置1900a的像素還包括一第一緩衝區1961和一第二緩衝區1962。第一緩衝區1961和第二緩衝區1962在吸收層1902中。第一緩衝區1961和第二緩衝區1962分別類似於圖16F所述的第一緩衝區1661和第二緩衝區1662。第一緩衝區1961和第二緩衝區1962可以進一步調整吸收層1902的第一表面1902s附近的空乏區。 In some embodiments, the pixels of the light detection device 1900a further include a first buffer 1961 and a second buffer 1962. The first buffer area 1961 and the second buffer area 1962 are in the absorbing layer 1902. The first buffer area 1961 and the second buffer area 1962 are respectively similar to the first buffer area 1661 and the second buffer area 1662 described in Figure 16F. The first buffer area 1961 and the second buffer area 1962 can further adjust the depletion area near the first surface 1902s of the absorption layer 1902.

在一些實施例中,光偵測裝置1900a進一步包括一導電層(圖未示),其在吸收層1902的第一表面1902s上,並且電連接到阻礙區1940。 In some embodiments, the light detection device 1900a further includes a conductive layer (not shown) on the first surface 1902s of the absorbing layer 1902 and electrically connected to the barrier region 1940.

在一些實施例中,如前所述,第一緩衝區1961的深度d5小於第一摻雜區1901b的深度d2,第二緩衝區1962的深度d6小於第一摻雜區1901a的深度d2In some embodiments, as mentioned above, the depth d 5 of the first buffer region 1961 is less than the depth d 2 of the first doped region 1901 b, and the depth d 6 of the second buffer region 1962 is less than the depth of the first doped region 1901 a. d 2 .

圖19B繪示根據一些實施例的光偵測裝置的剖視圖。圖19B中的光偵測裝置1900b類似於圖19A中的光偵測裝置1900a,其中差異描述於下。在一些實施例中,第一開關還包括在控制接觸層1906a下方的第二摻雜區1903a。第 二開關還包括在控制接觸層1906b下方的第二摻雜區1903b。第二摻雜區1903a,1903b類似於前述的第二摻雜區,例如圖16B中所述的第二摻雜區1603a,1603b。 Figure 19B illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1900b in Figure 19B is similar to the light detection device 1900a in Figure 19A, with the differences described below. In some embodiments, the first switch also includes a second doped region 1903a beneath the control contact layer 1906a. No. The second switch also includes a second doped region 1903b below the control contact layer 1906b. The second doped regions 1903a, 1903b are similar to the aforementioned second doped regions, such as the second doped regions 1603a, 1603b described in FIG. 16B.

在一些實施例中,第三摻雜區1917與第二摻雜區1903a的遠離第一開關的第一摻雜區1901a的一部分重疊。第三摻雜區1917還與第二摻雜區1903b的遠離第二開關的第一摻雜區1901b的一部分重疊。在一些實施例中,整個第二摻雜區1903a,1903b與第三摻雜區1917重疊並且與第一緩衝區1961和第二緩衝區1962分開。 In some embodiments, the third doped region 1917 overlaps a portion of the second doped region 1903a away from the first doped region 1901a of the first switch. The third doped region 1917 also overlaps a portion of the second doped region 1903b away from the first doped region 1901b of the second switch. In some embodiments, the entire second doped region 1903a, 1903b overlaps the third doped region 1917 and is separate from the first buffer region 1961 and the second buffer region 1962.

在一些實施例中,如前所述,第一緩衝區1961的深度d5小於第二摻雜區1903b的深度d1。在一些實施例中,第二緩衝區1962的深度d6小於第二摻雜區1903a的深度d1In some embodiments, as previously described, the depth d 5 of the first buffer region 1961 is less than the depth d 1 of the second doped region 1903b. In some embodiments, the depth d 6 of the second buffer region 1962 is less than the depth d 1 of the second doped region 1903a.

圖19C繪示根據一些實施例的光偵測裝置的剖視圖。圖19C中的光偵測裝置1900c類似於圖19A中的光偵測裝置1900a,其中差異描述於下。 Figure 19C illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1900c in Figure 19C is similar to the light detection device 1900a in Figure 19A, with the differences described below.

在一些實施例中,第一開關還包括在吸收層1902和控制接觸層1906a之間的一第一介電層1933a。第二開關可以進一步包括在吸收層1902和控制接觸層1906b之間的一第二介電層1933b。第一介電層1933a和第二介電層1933a類似於前述的第一介電層和第二介電層,例如如圖16C中所述的第一介電層1633a和第二介電層1633b。 In some embodiments, the first switch also includes a first dielectric layer 1933a between the absorber layer 1902 and the control contact layer 1906a. The second switch may further include a second dielectric layer 1933b between the absorber layer 1902 and the control contact layer 1906b. The first dielectric layer 1933a and the second dielectric layer 1933a are similar to the aforementioned first dielectric layer and the second dielectric layer, such as the first dielectric layer 1633a and the second dielectric layer 1633b as described in FIG. 16C .

圖19D繪示根據一些實施例的光偵測裝置的剖視圖。圖19D中的光偵測裝置1900d類似於圖19C中的光偵測裝置1900c,其中差異描述於下。在一些實施例中,第一開關還包括在控制接觸層1906a之下的一第二摻雜區1903a。第二開關還包括在控制接觸層1906b下方的一第二摻雜區1903b。第二摻雜區1903b,1903a類似於前述的第二摻雜區,例如圖16B中所述的第二摻雜區1603a,1603b。 Figure 19D illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 1900d in Figure 19D is similar to the light detection device 1900c in Figure 19C, with the differences described below. In some embodiments, the first switch also includes a second doped region 1903a beneath the control contact layer 1906a. The second switch also includes a second doped region 1903b below the control contact layer 1906b. The second doped regions 1903b, 1903a are similar to the aforementioned second doped regions, such as the second doped regions 1603a, 1603b described in FIG. 16B.

圖20A繪示根據一些實施例的光偵測裝置的剖視圖。光偵測裝置2000a包括一基底2004。光偵測裝置2000a還包括一像素,其包括由基底2004支撐的一吸收層2002。像素在吸收層2002中包括一吸收區域AR。吸收區域AR與前述吸收區域AR類似,例如圖15A中描述的吸收區域AR。像素還包括在吸收層2002上方的一載子收集層2050。在一些實施例中,載子收集層2050在吸收層2002的第一表面2002s上。在一些實施例中,載子收集層2050磊晶形成在吸收層2002的第一表面2002s上。 Figure 20A illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 2000a includes a substrate 2004. The light detection device 2000a also includes a pixel including an absorbing layer 2002 supported by the substrate 2004. The pixel includes an absorption area AR in the absorption layer 2002 . The absorption area AR is similar to the aforementioned absorption area AR, such as the absorption area AR described in Figure 15A. The pixel also includes a carrier collection layer 2050 above the absorbing layer 2002. In some embodiments, carrier collection layer 2050 is on first surface 2002s of absorber layer 2002. In some embodiments, carrier collection layer 2050 is epitaxially formed on first surface 2002s of absorber layer 2002.

像素還包括電性耦接到吸收層2002的一第一開關(圖未標)和一第二開關(圖未標)。第一開關包括一控制接觸層2006a和一讀出接觸層2008a。第二開關包括一控制接觸層2006b和一讀出接觸層2008b。在一些實施例中,讀出接觸層2008a,2008b和控制接觸層2006a,2006b形成在載子收集層2050的第一表面2050s上。在一些實施例中,吸收區域AR的寬度小於讀出接觸層2008a,2008b之間的距離。在一些實施例中,讀出接觸層2008a,2008b設置在吸收區域AR的兩個相對側。在一些實施例中,像素還包括分別電性耦接到第一開關和第二開關的一第一讀出電路(圖未示)和一第二讀出電路(圖未示),以處理收集的電荷。第一讀出電路電性耦接到讀出接觸層2008a。第二讀出電路電性耦接到讀出接觸層2008b。光偵測裝置2000a包括多個重複的像素。光偵測裝置2000a包括具有多個重複像素的像素陣列。在一些實施例中,像素陣列可以是一維或二維陣列的像素。 The pixel also includes a first switch (not labeled) and a second switch (not labeled) electrically coupled to the absorbing layer 2002. The first switch includes a control contact layer 2006a and a sense contact layer 2008a. The second switch includes a control contact layer 2006b and a sense contact layer 2008b. In some embodiments, sense contact layers 2008a, 2008b and control contact layers 2006a, 2006b are formed on the first surface 2050s of the carrier collection layer 2050. In some embodiments, the width of the absorption area AR is less than the distance between the readout contact layers 2008a, 2008b. In some embodiments, readout contact layers 2008a, 2008b are disposed on opposite sides of the absorption area AR. In some embodiments, the pixel further includes a first readout circuit (not shown) and a second readout circuit (not shown) electrically coupled to the first switch and the second switch respectively to process the collection. of charge. The first readout circuit is electrically coupled to the readout contact layer 2008a. The second readout circuit is electrically coupled to the readout contact layer 2008b. The light detection device 2000a includes a plurality of repeated pixels. The light detection device 2000a includes a pixel array having a plurality of repeating pixels. In some embodiments, the pixel array may be a one-dimensional or two-dimensional array of pixels.

在一些實施例中,載子收集層2050的材料不同於吸收層2002的材料。在一些實施例中,載子收集層2050的材料包括一半導體材料。在一些實施例中,吸收層2002的材料包括一半導體材料。在一些實施例中,吸收層2002的材料具有第一能隙,並且載子收集層2050的材料具有大於第一能隙的第二能隙。在一些實施例中,半導體材料包括III-V族半導體材料或IV族半導體材料。 在一些實施例中,載子收集層2050包括矽,且吸收層2002包括鍺。在一些實施例中,載子收集層2050包括非晶矽、多晶矽、結晶矽或其組合。 In some embodiments, the material of carrier collection layer 2050 is different from the material of absorber layer 2002 . In some embodiments, the material of carrier collection layer 2050 includes a semiconductor material. In some embodiments, the material of the absorber layer 2002 includes a semiconductor material. In some embodiments, the material of absorber layer 2002 has a first energy gap, and the material of carrier collection layer 2050 has a second energy gap that is greater than the first energy gap. In some embodiments, the semiconductor material includes III-V semiconductor material or Group IV semiconductor material. In some embodiments, carrier collection layer 2050 includes silicon and absorber layer 2002 includes germanium. In some embodiments, carrier collection layer 2050 includes amorphous silicon, polycrystalline silicon, crystalline silicon, or combinations thereof.

在一些實施例中,載子收集層2050的厚度小於吸收層2002的厚度。在一些實施例中,載子收集層2050的厚度不小於100nm且不大於500nm。在一些實施例中,載子收集層2050的厚度在200nm至500nm之間。 In some embodiments, the thickness of carrier collection layer 2050 is less than the thickness of absorber layer 2002. In some embodiments, the thickness of carrier collection layer 2050 is no less than 100 nm and no more than 500 nm. In some embodiments, the thickness of carrier collection layer 2050 is between 200 nm and 500 nm.

在一些實施例中,第一開關包括一第一摻雜區2001a,在讀出接觸層2008a之下和在載子收集層2050中。第二開關包括一第一摻雜區2001b,在讀出接觸層2008b之下和載子收集層2050中。在一些實施例中,第一摻雜區2001a,2001b各具有第一導電類型。在一些實施例中,第一摻雜區2001a,2001b包括一第一摻質。第一摻雜區2001a,2001b的峰值摻質濃度取決於讀出接觸層2008a,2008b的材料和載子收集層2050的材料,例如在5×1018cm-3至5×1020cm-3之間。在一些實施例中,第一摻雜區2001a,2001b的峰值摻質濃度位於載子收集層2050中。第一摻雜區2001a,2001b用於收集載子收集層2050中的載子,其中載子從吸收層2002中產生並流出,並基於兩個控制信號cs1,cs2的控制,分別由第一讀出電路(圖未示)和第二讀出電路(圖未示)處理。在一些實施例中,各個第一摻雜區2001a,2001b具有深度d2。各個第一摻雜區2001a,2001b的深度d2小於載子收集層2050的厚度。深度d2是從載子收集層2050的第一表面2050s測量到摻質分佈達到背景濃度,例如1×1015cm-3的位置。在一些實施例中,載子收集層2050與吸收層2002之間的界面以及在第一摻雜區2001a,2001b下的部分具有或小於背景濃度,例如1×1015cm-3In some embodiments, the first switch includes a first doped region 2001a, under the sense contact layer 2008a and in the carrier collection layer 2050. The second switch includes a first doped region 2001b below the readout contact layer 2008b and in the carrier collection layer 2050. In some embodiments, the first doped regions 2001a, 2001b each have a first conductivity type. In some embodiments, the first doped regions 2001a, 2001b include a first dopant. The peak dopant concentration of the first doped regions 2001a, 2001b depends on the material of the readout contact layer 2008a, 2008b and the material of the carrier collection layer 2050, for example, between 5×10 18 cm −3 and 5×10 20 cm −3 between. In some embodiments, the peak dopant concentration of the first doped regions 2001a, 2001b is located in the carrier collection layer 2050. The first doping regions 2001a, 2001b are used to collect carriers in the carrier collection layer 2050, where the carriers are generated and flow out from the absorption layer 2002, and are controlled by two control signals cs1, cs2 respectively by the first reading The output circuit (not shown) and the second readout circuit (not shown) are processed. In some embodiments, each first doped region 2001a, 2001b has a depth d2 . The depth d 2 of each first doped region 2001 a, 2001 b is smaller than the thickness of the carrier collection layer 2050 . Depth d 2 is measured from the first surface 2050s of the carrier collection layer 2050 to the position where the dopant profile reaches a background concentration, for example, 1×10 15 cm −3 . In some embodiments, the interface between the carrier collection layer 2050 and the absorption layer 2002 and the portion under the first doped regions 2001a, 2001b have a background concentration or less, such as 1×10 15 cm −3 .

在一些實施例中,第一開關還包括在控制接觸層2006a下的一第二摻雜區2003a。第二開關還包括在控制接觸層2006b下的一第二摻雜區2003b。第二摻雜區2003a,2003b在載子收集層2050中和在吸收層2002中。在一些實施例中,第二摻雜區2003a,2003b覆蓋載子收集層2050與吸收層2002之間的界面 的一部分。在一些實施例中,第二摻雜區2003a,2003b各具有與第一摻雜區2001b,2001a的導電類型不同的第二導電類型。在一些實施例中,各個第二摻雜區2003a,2003b包括一第二摻質。第二摻雜區2003a,2003b的峰值摻質濃度取決於控制接觸層2006b,2006a的材料和載子收集層2050的材料,例如在1×1017cm-3至5×1020cm-3之間。在一些實施例中,第二摻雜區2001a,2001b的峰值摻質濃度位於載子收集層2050中。第二摻雜區2003a,2003b與控制接觸層2006b,2006a形成蕭特基接觸、歐姆接觸或其組合。在一些實施例中,各個第二摻雜區2003a,2003b具有深度d1。各個第二摻雜區2003a,2003b的深度d1大於載子收集層2050的厚度。深度d1是從載子收集層2050的第一表面2050s測量到各個第二摻雜區2003a,2003b中的摻質分佈的達到背景濃度,例如1×1015cm-3的位置。在一些實施例中,在載子收集層2050與吸收層102’之間的界面並被第二摻雜區2003a,2003b覆蓋的第二摻雜區2003a,2003b的摻質濃度不小於1×1015cm-3,在一些實施例中,不小於1×1017cm-3。第二摻雜區2003a,2003b用於基於控制信號cs1,cs2的控制來對在吸收層2002中產生的載子進行解調。 In some embodiments, the first switch also includes a second doped region 2003a under the control contact layer 2006a. The second switch also includes a second doped region 2003b under the control contact layer 2006b. The second doped regions 2003a, 2003b are in the carrier collection layer 2050 and in the absorption layer 2002. In some embodiments, the second doped regions 2003a, 2003b cover a portion of the interface between the carrier collection layer 2050 and the absorber layer 2002. In some embodiments, the second doped regions 2003a, 2003b each have a second conductivity type that is different from the conductivity type of the first doped regions 2001b, 2001a. In some embodiments, each second doped region 2003a, 2003b includes a second dopant. The peak dopant concentration of the second doped regions 2003a, 2003b depends on the material of the control contact layer 2006b, 2006a and the material of the carrier collection layer 2050, for example, between 1×10 17 cm −3 and 5×10 20 cm −3 between. In some embodiments, the peak dopant concentration of the second doped regions 2001a, 2001b is located in the carrier collection layer 2050. The second doped regions 2003a, 2003b and the control contact layers 2006b, 2006a form a Schottky contact, an ohmic contact or a combination thereof. In some embodiments, each second doped region 2003a, 2003b has a depth d1 . The depth d 1 of each second doped region 2003 a, 2003 b is greater than the thickness of the carrier collection layer 2050 . The depth d 1 is measured from the first surface 2050s of the carrier collection layer 2050 to the position where the dopant distribution in each second doped region 2003a, 2003b reaches a background concentration, for example, 1×10 15 cm −3 . In some embodiments, the doping concentration of the second doped regions 2003a, 2003b at the interface between the carrier collection layer 2050 and the absorbing layer 102' and covered by the second doped regions 2003a, 2003b is not less than 1×10 15 cm -3 , in some embodiments, no less than 1×10 17 cm -3 . The second doped regions 2003a, 2003b are used to demodulate carriers generated in the absorption layer 2002 based on control of the control signals cs1, cs2.

在一些實施例中,吸收功能和載子解調功能在吸收層2002中操作,而載子收集在載子收集層2050中操作。 In some embodiments, the absorption function and the carrier demodulation function operate in the absorption layer 2002, while the carrier collection operates in the carrier collection layer 2050.

在一些實施例中,由於在載子收集層2050與吸收層2002之間的界面處並被第二摻雜區2003a,2003b覆蓋的第二摻質的摻質濃度不小於1×1016cm-3,因此界面造成的暗電流可以被抑制。此外,第二摻雜區2003a,2003b之間的橫向場可以同時更強。結果是,可以改善光偵測裝置2000a的解調對比度,並且可以同時降低光偵測裝置2000a的暗電流。 In some embodiments, since the dopant concentration of the second dopant at the interface between the carrier collection layer 2050 and the absorption layer 2002 and covered by the second doped regions 2003a, 2003b is not less than 1×10 16 cm - 3 , so the dark current caused by the interface can be suppressed. In addition, the lateral field between the second doped regions 2003a, 2003b can be stronger at the same time. As a result, the demodulation contrast of the light detection device 2000a can be improved, and the dark current of the light detection device 2000a can be reduced at the same time.

圖20B繪示根據一些實施例的光偵測裝置的剖視圖。圖20B中的光偵測裝置2000b類似於圖20A中的光偵測裝置2000a,其中差異描述於下。在一些實施例中,第一開關還包括在第二摻雜區2003a和控制接觸層2006a之間的一 第一介電層2033a。第二開關可以進一步包括在第二摻雜區2003b和控制接觸層2006b之間的一第二介電層2033b。 Figure 20B illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 2000b in FIG. 20B is similar to the light detection device 2000a in FIG. 20A, with the differences described below. In some embodiments, the first switch further includes a gap between the second doped region 2003a and the control contact layer 2006a. First dielectric layer 2033a. The second switch may further include a second dielectric layer 2033b between the second doped region 2003b and the control contact layer 2006b.

第一介電層2033a防止從控制接觸層2006a到載子收集層2050的直接電流傳導,但允許在載子收集層2050和吸收層2002內建立電場,以響應施加於控制接觸層2006a的一電壓。第二介電層2033b防止從控制接觸層2006b到吸收層2002的直接電流傳導,但允許在載子收集層2050和吸收層2002內建立電場,以響應施加於控制接觸層2006b的一電壓。建立的電場可以吸引或排斥吸收層2002內的電荷載子。 First dielectric layer 2033a prevents direct current conduction from control contact layer 2006a to carrier collection layer 2050, but allows an electric field to be established within carrier collection layer 2050 and absorber layer 2002 in response to a voltage applied to control contact layer 2006a . Second dielectric layer 2033b prevents direct current conduction from control contact layer 2006b to absorber layer 2002, but allows an electric field to be established within carrier collection layer 2050 and absorber layer 2002 in response to a voltage applied to control contact layer 2006b. The established electric field can attract or repel charge carriers within the absorber layer 2002.

圖20C繪示根據一些實施例的光偵測裝置的剖視圖。圖20C中的光偵測裝置2000c類似於圖20A中的光偵測裝置2000a,其中差異描述於下。在一些實施例中,光偵測裝置2000c還包括圍繞吸收層2002的一阻擋層2019。阻擋層2019類似於前述的阻擋層,例如圖15A和圖15C中的阻擋層1519。光偵測裝置2000c還包括電性耦接至阻擋層2019的一導電層2009。在一些實施例中,可以通過導電層2009以一偏壓電壓偏壓阻擋層2019,以釋放未被第一摻雜區2001a,2001b收集的載子。 Figure 20C illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 2000c in Figure 20C is similar to the light detection device 2000a in Figure 20A, with the differences described below. In some embodiments, the light detection device 2000c further includes a blocking layer 2019 surrounding the absorbing layer 2002. Barrier layer 2019 is similar to the aforementioned barrier layers, such as barrier layer 1519 in Figures 15A and 15C. The light detection device 2000c also includes a conductive layer 2009 electrically coupled to the blocking layer 2019. In some embodiments, the barrier layer 2019 can be biased with a bias voltage through the conductive layer 2009 to release carriers that are not collected by the first doped regions 2001a, 2001b.

圖20D繪示根據一些實施例的光偵測裝置的剖視圖。圖20D中的光偵測裝置2000d類似於圖20C中的光偵測裝置2000c,其中差異描述於下。在一些實施例中,第一開關還包括在第二摻雜區2003a和控制接觸層2006a之間的一第一介電層2033a。第二開關可以進一步包括在第二摻雜區2003b和控制接觸層2006b之間的一第二介電層2033b。第一介電層2033a和第二介電層2033b類似於如上所述的第一介電層和第二介電層,例如圖20B中的第一介電層2033a和第二介電層2033b。 Figure 20D illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 2000d in Figure 20D is similar to the light detection device 2000c in Figure 20C, with the differences described below. In some embodiments, the first switch further includes a first dielectric layer 2033a between the second doped region 2003a and the control contact layer 2006a. The second switch may further include a second dielectric layer 2033b between the second doped region 2003b and the control contact layer 2006b. The first dielectric layer 2033a and the second dielectric layer 2033b are similar to the first dielectric layer and the second dielectric layer described above, such as the first dielectric layer 2033a and the second dielectric layer 2033b in FIG. 20B.

圖20E繪示根據一些實施例的光偵測裝置的剖視圖。圖20E中的光偵測裝置2000e類似於圖20C中的光偵測裝置2000c,其中差異描述於下。在一些 實施例中,光偵測裝置2000e的像素還包括在吸收層2002中的一通道區2030。通道區2030類似於前述的通道區,例如圖16A中描述的通道區1630。由於通道區2030和阻擋層2019共同形成一垂直光電二極體,因此在通道區2030和阻擋層2019之間建立了內置的垂直電場,這可以有助於分離由吸收層2002中吸收的光子產生的電子-電洞對,例如,當通道區2030為n型並且阻擋層2019為p型時,電子趨於向通道區2030移動,電洞趨於向阻擋層2019移動。通道區2030用於收集電子,而阻擋層2019用於收集電洞。通道區2030用作初步收集器。然後,基於控制信號cs1,cs2,存儲在通道區2030中的電子可以移動到第一摻雜區2001b或第一摻雜區2001a。 Figure 20E illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 2000e in Figure 20E is similar to the light detection device 2000c in Figure 20C, with the differences described below. in some In the embodiment, the pixel of the light detection device 2000e further includes a channel region 2030 in the absorption layer 2002. Channel area 2030 is similar to the previously described channel areas, such as channel area 1630 described in Figure 16A. Since the channel region 2030 and the blocking layer 2019 together form a vertical photodiode, a built-in vertical electric field is established between the channel region 2030 and the blocking layer 2019, which can help separate photons generated by absorption in the absorbing layer 2002 For example, when the channel region 2030 is n-type and the barrier layer 2019 is p-type, electrons tend to move toward the channel region 2030 and holes tend to move toward the barrier layer 2019 . The channel region 2030 is used to collect electrons, and the barrier layer 2019 is used to collect holes. Channel area 2030 serves as a preliminary collector. Then, based on the control signals cs1, cs2, the electrons stored in the channel region 2030 may move to the first doping region 2001b or the first doping region 2001a.

圖20F繪示根據一些實施例的光偵測裝置的剖視圖。圖20F中的光偵測裝置2000f類似於圖20C中的光偵測裝置2000c,其中差異描述於下。在一些實施例中,光偵測裝置2000f的像素還包括一第三摻雜區2017。第三摻雜區2017類似於前述的第三摻雜區,例如圖19B中的第三摻雜區1917。在一些實施例中,第三摻雜區1917的深度d8大於載子收集層2050的厚度。深度d8是從載子收集層2050的第一表面2050s測量到第三摻雜區1917的摻質分佈達到背景濃度,例如1 x 1015cm-3的位置。 Figure 20F illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 2000f in Figure 20F is similar to the light detection device 2000c in Figure 20C, with the differences described below. In some embodiments, the pixel of the light detection device 2000f further includes a third doped region 2017. The third doped region 2017 is similar to the aforementioned third doped region, such as the third doped region 1917 in FIG. 19B. In some embodiments, the depth d 8 of the third doped region 1917 is greater than the thickness of the carrier collection layer 2050 . Depth d 8 is measured from the first surface 2050 s of the carrier collection layer 2050 to the position where the dopant profile of the third doped region 1917 reaches a background concentration, for example, 1 x 10 15 cm −3 .

由於第三摻雜區2017和阻擋層2019共同形成一垂直光電二極體,因此在第三摻雜區2017和阻擋層2019之間建立了內置的垂直電場,這可以幫助分離由吸收的光子產生的電子-電洞對,例如,當第三摻雜區2017是n型並且阻擋層2019是p型時,電子會趨於向第三摻雜區2017移動,而電洞趨於向阻擋層2019移動。第三摻雜區2017用以收集電子,阻擋層2019用以收集電洞。第三摻雜區2017用作初步收集器。基於控制信號cs1,cs2,可以將存儲在阻擋層2019中的電子移動到第一摻雜區2001a或第一摻雜區2001b。因此,光偵測裝置2000f的量子效率更高,並且朝向第一摻雜區2001a或第一摻雜區2001b移動的載子的數量也更高。 Since the third doping region 2017 and the blocking layer 2019 together form a vertical photodiode, a built-in vertical electric field is established between the third doping region 2017 and the blocking layer 2019, which can help separate the photons generated by the absorption. electron-hole pairs, for example, when the third doping region 2017 is n-type and the blocking layer 2019 is p-type, the electrons will tend to move toward the third doping region 2017, and the holes will tend to move toward the blocking layer 2019 Move. The third doped region 2017 is used to collect electrons, and the blocking layer 2019 is used to collect holes. The third doped region 2017 serves as a preliminary collector. Based on the control signals cs1, cs2, the electrons stored in the barrier layer 2019 may be moved to the first doping region 2001a or the first doping region 2001b. Therefore, the quantum efficiency of the light detection device 2000f is higher, and the number of carriers moving toward the first doped region 2001a or the first doped region 2001b is also higher.

圖20G繪示根據一些實施例的光偵測裝置的剖視圖。圖20G中的光偵測裝置2000g類似於圖20F中的光偵測裝置2000f,其中差異描述於下。在一些實施例中,光偵測裝置2000g的像素的載子收集層2050還包括一阻礙區2040。阻礙區2040類似於前述的阻礙區,例如圖6L中所描述的阻礙區640。在一些實施例中,阻礙區2040的深度d9不大於載子收集層2050的厚度。深度d9是從載子收集層2050的第一表面2050s測量到阻礙區2040的摻質分佈達到背景濃度,例如1 x 1015cm-3的位置。 Figure 20G illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 2000g in Figure 20G is similar to the light detection device 2000f in Figure 20F, with the differences described below. In some embodiments, the carrier collection layer 2050 of the pixel of the light detection device 2000g further includes a barrier region 2040. Blocking area 2040 is similar to the blocking areas described previously, such as blocking area 640 depicted in Figure 6L. In some embodiments, the depth d 9 of the barrier region 2040 is no greater than the thickness of the carrier collection layer 2050 . Depth d 9 is measured from the first surface 2050 s of the carrier collection layer 2050 to the point where the dopant profile of the barrier region 2040 reaches a background concentration, for example, 1 x 10 15 cm −3 .

阻礙區2040可以阻止待收集的載子到達載子收集層2050的第一表面2050s,並且還可以將載子侷限在受限制的流動路徑中。結果是,降低了光偵測裝置2000g的兩個第二摻雜區2003a,2003b之間的表面漏電流。 The obstruction region 2040 may prevent carriers to be collected from reaching the first surface 2050s of the carrier collection layer 2050 and may also confine the carriers in a restricted flow path. As a result, the surface leakage current between the two second doping regions 2003a, 2003b of the light detection device 2000g is reduced.

圖20H繪示根據一些實施例的光偵測裝置的剖視圖。圖20H中的光偵測裝置2000h類似於圖20C中的光偵測裝置2000c,其中差異描述於下。在一些實施例中,光偵測裝置2000h的像素還包括在載子收集層2050和吸收層2002中的反摻雜區2051a,2051b。反摻雜區2051a,2051b類似於前述的反摻雜區,例如圖15D中描述的反摻雜區1551a,1551b。在一些實施例中,反摻雜區2051a,2051b的峰值摻質濃度位於載子收集層2050中。反摻雜區2051a,2051b覆蓋載子收集層2050與吸收層2002之間的界面的一部分。在一些實施例中,各個反摻雜區2051a,2051b具有深度d7。各個反摻雜區2051a,2051b的深度d7大於載子收集層2050的厚度。深度d7是從載子收集層2050的第一表面2050s測量到反摻雜區2051a,2051b的摻質分佈達到背景濃度,例如1 x 1015cm-3的位置。如前所述,在一些實施例中,反摻雜區2051a,2051b與第一摻雜區2001a,2001b的至少一部分重疊,以進一步降低光偵測裝置2000h的暗電流。 Figure 20H illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 2000h in Figure 20H is similar to the light detection device 2000c in Figure 20C, with the differences described below. In some embodiments, the pixels of the light detection device 2000h further include counter-doped regions 2051a, 2051b in the carrier collection layer 2050 and the absorption layer 2002. The counter-doped regions 2051a, 2051b are similar to the aforementioned counter-doped regions, such as the counter-doped regions 1551a, 1551b described in Figure 15D. In some embodiments, the peak dopant concentration of the counter-doped regions 2051a, 2051b is located in the carrier collection layer 2050. The counterdoped regions 2051a, 2051b cover a portion of the interface between the carrier collection layer 2050 and the absorber layer 2002. In some embodiments, each counter-doped region 2051a, 2051b has a depth d7 . The depth d7 of each counter-doped region 2051a, 2051b is greater than the thickness of the carrier collection layer 2050. Depth d 7 is measured from the first surface 2050 s of the carrier collection layer 2050 to the position where the dopant distribution of the counter-doped regions 2051 a, 2051 b reaches a background concentration, for example, 1 x 10 15 cm −3 . As mentioned above, in some embodiments, the counter-doping regions 2051a, 2051b overlap at least a portion of the first doping regions 2001a, 2001b to further reduce the dark current of the light detection device 2000h.

圖20I繪示根據一些實施例的光偵測裝置的剖視圖。圖20I中的光偵測裝置2000i類似於圖20E中的光偵測裝置2000e,其中差異描述於下。在一些 實施例中,光偵測裝置2000I的像素還包括在載子收集層2050和吸收層2002中的反摻雜區2051a,2051b。反摻雜區2051a,2051b類似於前述的反摻雜區,例如如圖20H所述的反摻雜區2051a,2051b。光偵測裝置2000i具有較低的暗電流。 Figure 20I illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 2000i in Figure 20I is similar to the light detection device 2000e in Figure 20E, with the differences described below. in some In an embodiment, the pixel of the light detection device 2000I further includes counter-doped regions 2051a, 2051b in the carrier collection layer 2050 and the absorption layer 2002. The counter-doping regions 2051a and 2051b are similar to the aforementioned counter-doping regions, such as the counter-doping regions 2051a and 2051b as shown in FIG. 20H. The light detection device 2000i has lower dark current.

圖20J繪示根據一些實施例的光偵測裝置的剖視圖。圖20J中的光偵測裝置2000j類似於圖20G中的光偵測裝置2000g,其中差異描述於下。在一些實施例中,光偵測裝置2000j的像素還包括在載子收集層2050和吸收層2002中的反摻雜區2051a,2051b。反摻雜區2051a,2051b類似於前述的反摻雜區,例如如圖20H所述的反摻雜區2051a,2051b。光偵測裝置2000j具有較低的暗電流。 Figure 20J illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 2000j in Figure 20J is similar to the light detection device 2000g in Figure 20G, with the differences described below. In some embodiments, the pixels of the light detection device 2000j further include counter-doping regions 2051a, 2051b in the carrier collection layer 2050 and the absorption layer 2002. The counter-doping regions 2051a and 2051b are similar to the aforementioned counter-doping regions, such as the counter-doping regions 2051a and 2051b as shown in FIG. 20H. The light detection device 2000j has lower dark current.

在一些實施例中,像素的載子收集層2050還包括在載子收集層2050中的阻礙區(圖未示)。阻礙區與前述的阻礙區類似,例如如圖20G中所述的障礙物區域2040,藉以將載子侷限在受限制的流動路徑中。 In some embodiments, the carrier collection layer 2050 of the pixel further includes a blocking region (not shown) in the carrier collection layer 2050 . The obstruction region is similar to the aforementioned obstruction region, such as obstacle region 2040 as shown in Figure 20G, thereby confining the carriers in a restricted flow path.

圖20K繪示根據一些實施例的光偵測裝置的剖視圖。圖20K中的光偵測裝置2000k類似於圖20C中的光偵測裝置2000c,其中差異描述於下。在一些實施例中,光偵測裝置2000k的像素還包括一第一緩衝區2061和一第二緩衝區2062。第一緩衝區2061和第二緩衝區2062類似於如圖16F中所描述的第一緩衝區1661和第二緩衝區1662,其中差異描述於下。在一些實施例中,第一緩衝區2061覆蓋載子收集層2050和吸收層2002之間的界面的一部分。在一些實施例中,第二緩衝區2062覆蓋載子收集層2050和吸收層2002之間的界面的一部分。在一些實施例中,載子收集層2050與吸收層2002之間的界面並被第一緩衝區2061和第二緩衝區2062覆蓋處的第五摻質的摻質濃度不小於1×1016cm-3Figure 20K illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 2000k in Figure 20K is similar to the light detection device 2000c in Figure 20C, with the differences described below. In some embodiments, the pixels of the light detection device 2000k further include a first buffer 2061 and a second buffer 2062. First buffer 2061 and second buffer 2062 are similar to first buffer 1661 and second buffer 1662 as depicted in Figure 16F, with differences described below. In some embodiments, first buffer zone 2061 covers a portion of the interface between carrier collection layer 2050 and absorber layer 2002. In some embodiments, second buffer zone 2062 covers a portion of the interface between carrier collection layer 2050 and absorber layer 2002. In some embodiments, the dopant concentration of the fifth dopant at the interface between the carrier collection layer 2050 and the absorption layer 2002 and covered by the first buffer zone 2061 and the second buffer zone 2062 is not less than 1×10 16 cm -3 .

在一些實施例中,第一緩衝區2061的深度d5大於載子收集層2050的厚度。第二緩衝區2062的深度d6大於載子收集層2050的厚度。深度d5是從載子收集層2050的第一表面2050s測量到第一緩衝區2061的摻質分佈達到背景濃度,例如1×1015cm-3的位置。深度d6是從載子收集層2050的第一表面2050s測量到第 二緩衝區2062的摻質分佈達到背景濃度,例如1×1015cm-3的位置。第一緩衝區2061和第二緩衝區2062可以進一步調整載子收集層2050中的空乏區,例如第一摻雜區1601a,1601b周圍的空乏區和載子收集層2050的第一表面2050s附近的空乏區。如前所述,第一緩衝區2061和第二緩衝區2062的導電類型可以與第一摻雜區2001a,2001b的第一導電類型相同或不同。如果第一緩衝區2061和第二緩衝區2062的導電類型與第一摻雜區2001a,2001b的第一導電類型相同,則由於在載子收集層2050和吸收層2002之間的界面且被第一緩衝區2061和第二緩衝區2062覆蓋處的第五摻質的摻質濃度為1×1015cm-3以上,可以降低載子在此界面的勢壘。結果是,第一緩衝區2061和第二緩衝區2062可以促進載子從吸收層2002流向第一摻雜區2001a,2001b。 In some embodiments, the depth d 5 of the first buffer zone 2061 is greater than the thickness of the carrier collection layer 2050 . The depth d 6 of the second buffer zone 2062 is greater than the thickness of the carrier collection layer 2050 . The depth d 5 is measured from the first surface 2050 s of the carrier collection layer 2050 to the position where the dopant distribution of the first buffer region 2061 reaches a background concentration, for example, 1×10 15 cm −3 . Depth d 6 is measured from the first surface 2050 s of the carrier collection layer 2050 to the position where the dopant profile of the second buffer region 2062 reaches a background concentration, for example, 1×10 15 cm −3 . The first buffer region 2061 and the second buffer region 2062 can further adjust the depletion region in the carrier collection layer 2050, such as the depletion region around the first doped regions 1601a, 1601b and near the first surface 2050s of the carrier collection layer 2050. empty area. As mentioned before, the conductivity type of the first buffer region 2061 and the second buffer region 2062 may be the same as or different from the first conductivity type of the first doped regions 2001a, 2001b. If the conductivity type of the first buffer region 2061 and the second buffer region 2062 is the same as the first conductivity type of the first doped regions 2001a, 2001b, then due to the interface between the carrier collection layer 2050 and the absorption layer 2002 and is The dopant concentration of the fifth dopant in the area covered by the first buffer zone 2061 and the second buffer zone 2062 is above 1×10 15 cm -3 , which can reduce the potential barrier of carriers at this interface. As a result, the first buffer region 2061 and the second buffer region 2062 can promote carrier flow from the absorption layer 2002 to the first doping regions 2001a, 2001b.

如果第一緩衝區2061和第二緩衝區2062的導電類型不同於第一摻雜區2001a,2001b的第一導電類型,則可以將載子的流動侷限在遠離第一緩衝區2061和第二緩衝區2062的路徑上。結果是,可以改善光偵測裝置2000k的解調對比度。 If the conductivity type of the first buffer region 2061 and the second buffer region 2062 is different from the first conductivity type of the first doping regions 2001a, 2001b, the flow of carriers can be limited away from the first buffer region 2061 and the second buffer region. On the path of area 2062. As a result, the demodulation contrast of the light detection device 2000k can be improved.

在一些實施例中,光偵測裝置2000k的像素可以進一步包括在載子收集層2050和吸收層2002中的反摻雜區2051a,2051b。反摻雜區2051a,2051b類似於前述的反摻雜區,例如圖20H中所述的反摻雜區2051a,2051b,以進一步降低光偵測裝置2000k的暗電流。 In some embodiments, the pixels of the light detection device 2000k may further include counter-doping regions 2051a, 2051b in the carrier collection layer 2050 and the absorption layer 2002. The counter-doping regions 2051a, 2051b are similar to the aforementioned counter-doping regions, such as the counter-doping regions 2051a, 2051b shown in FIG. 20H, to further reduce the dark current of the light detection device 2000k.

圖20L繪示根據一些實施例的光偵測裝置的剖視圖。圖20L中的光偵測裝置2000l類似於圖20K中的光偵測裝置2000k,其中差異描述於下。在一些實施例中,光偵測裝置2000l的像素還包括在吸收層2002中的一通道區2030。通道區2030類似於前述的通道區,例如圖20E中描述的通道區2030,以進一步改善光偵測裝置2000L的解調對比度。 Figure 20L illustrates a cross-sectional view of a light detection device according to some embodiments. The light detection device 2000l in Figure 20L is similar to the light detection device 2000k in Figure 20K, with the differences described below. In some embodiments, the pixel of the light detection device 2000l further includes a channel region 2030 in the absorbing layer 2002. The channel area 2030 is similar to the aforementioned channel area, such as the channel area 2030 described in FIG. 20E, to further improve the demodulation contrast of the light detection device 2000L.

圖20M繪示根據一些實施例的光偵測裝置的剖視圖。圖20M中的光 偵測裝置2000m類似於圖20K中的光偵測裝置2000k,其中差異描述於下。在一些實施例中,光偵測裝置2000l的像素還包括一第三摻雜區2017。第三摻雜區2017類似於前述的第三摻雜區,例如圖20G所述的第三摻雜區2017,以進一步改善光偵測裝置2000m的解調對比度。 Figure 20M illustrates a cross-sectional view of a light detection device according to some embodiments. The light in Figure 20M Detection device 2000m is similar to light detection device 2000k in FIG. 20K, with differences described below. In some embodiments, the pixel of the light detection device 2000l further includes a third doped region 2017. The third doped region 2017 is similar to the aforementioned third doped region, such as the third doped region 2017 shown in FIG. 20G, to further improve the demodulation contrast of the light detection device 2000m.

在一些實施例中,光偵測裝置2000m的像素的載子收集層2050還包括一阻礙區(圖未示)。阻礙區類似於前述的阻礙區,例如圖20G中描述的阻礙區2040,以將載子侷限在受限制的流動路徑中。 In some embodiments, the carrier collection layer 2050 of the pixel of the light detection device 2000m further includes a blocking area (not shown). The obstruction region is similar to the aforementioned obstruction regions, such as obstruction region 2040 depicted in Figure 20G, to confine carriers in a restricted flow path.

在一些實施例中,圖20A至20M中的光偵測裝置可以進一步包括在讀出接觸層2008a,2008b下方的兩個第一矽化物區。第一矽化物區在載子收集層2050中,並且可以類似於如圖5B中所描述的第一矽化物區513a’,513b’。在一些實施例中,圖20A、20C、20E至20M中的光偵測裝置可以進一步包括在控制接觸層2006a,2006b下方的兩個第二矽化物區。第二矽化物區在載子收集層2050中,並且可以類似於如圖5B中所描述的第二矽化物區515a’,515b’。 In some embodiments, the light detection device in Figures 20A-20M may further include two first silicone regions beneath the readout contact layers 2008a, 2008b. The first silicide region is in the carrier collection layer 2050 and may be similar to the first silicide regions 513a', 513b' as depicted in Figure 5B. In some embodiments, the light detection devices in Figures 20A, 20C, 20E to 20M may further include two second silicide regions beneath the control contact layers 2006a, 2006b. The second silicide region is in the carrier collection layer 2050 and may be similar to the second silicide regions 515a', 515b' as depicted in Figure 5B.

在一些實施例中,光偵測裝置2000e至2000m的第一開關可以進一步包括在第二摻雜區2003a和控制接觸層2006a之間的一第一介電層。光偵測裝置2000e至2000m的第二開關可以進一步包括在第二摻雜區2003b和控制接觸層2006b之間的一第二介電層。第一介電層和第二介電層類似於前述的第一介電層和第二介電層,例如圖20B中的第一介電層2033a和第二介電層2033b。 In some embodiments, the first switch of the photodetection devices 2000e to 2000m may further include a first dielectric layer between the second doped region 2003a and the control contact layer 2006a. The second switch of the photodetection devices 2000e to 2000m may further include a second dielectric layer between the second doped region 2003b and the control contact layer 2006b. The first dielectric layer and the second dielectric layer are similar to the aforementioned first dielectric layer and the second dielectric layer, such as the first dielectric layer 2033a and the second dielectric layer 2033b in FIG. 20B.

在一些實施例中,圖1A至1J,圖2A至圖2H,圖3A至3B,圖4A至4H,圖5A至5H,圖6A至6C,圖6H至6V,圖7A至7D,圖.8A至8B,圖15A在圖至15D,圖16A至16M,圖17A至17I,圖18A至18U,圖19A至19D和圖20A至20M中的光偵測裝置可進一步包含如前所述的隔離區,例如圖6D中的隔離區624或圖15E中的隔離區1524。 In some embodiments, Figures 1A to 1J, Figures 2A to 2H, Figures 3A to 3B, Figures 4A to 4H, Figures 5A to 5H, Figures 6A to 6C, Figures 6H to 6V, Figures 7A to 7D, Figure 8A 8B, 15A in FIGS. 15D, 16A to 16M, 17A to 17I, 18A to 18U, 19A to 19D and 20A to 20M may further include isolation regions as described above. , such as the isolation area 624 in Figure 6D or the isolation area 1524 in Figure 15E.

在一些實施例中,圖1A至圖1H中,圖2A至圖2H中,在圖1至圖3 中,圖3A至3B,圖4A至4H,圖6A至6H,圖6K至6M,圖6O,圖6Q至圖6V,圖9A至9E,圖15A至15L,圖16A至16B,圖16E至16K,圖19A至19B還包括如圖5A至5H任一所示的鈍化層514,只要本領域技術人員能夠產生,這些元素的組合就在本公開的範圍內。 In some embodiments, in Figures 1A to 1H, in Figures 2A to 2H, in Figures 1 to 3 , Figures 3A to 3B, Figures 4A to 4H, Figures 6A to 6H, Figures 6K to 6M, Figure 6O, Figures 6Q to 6V, Figures 9A to 9E, Figures 15A to 15L, Figures 16A to 16B, Figures 16E to 16K 19A to 19B also include a passivation layer 514 as shown in any one of FIGS. 5A to 5H. As long as those skilled in the art can produce it, combinations of these elements are within the scope of the present disclosure.

在一些實施例中,本公開中的光偵測裝置還包括位於像素上方的光學元件(未示出)。在一些實施例中,本公開中的光偵測裝置還包括在多個像素上方的多個光學元件(未示出)。光學元件會聚集入射的光信號以進入吸收區域。在一些實施例中,光學元件包括透鏡。 In some embodiments, the light detection device of the present disclosure further includes an optical element (not shown) located above the pixel. In some embodiments, the light detection device of the present disclosure further includes a plurality of optical elements (not shown) above the plurality of pixels. Optical elements focus the incident light signal into the absorbing region. In some embodiments, the optical element includes a lens.

在一些實施例中,p型摻雜物包括III族元素。在一些實施例中,p型摻雜物是硼。在一些實施例中,n型摻雜物包括V族元素。在一些實施例中,n型摻雜物是磷。 In some embodiments, the p-type dopant includes a Group III element. In some embodiments, the p-type dopant is boron. In some embodiments, the n-type dopant includes a Group V element. In some embodiments, the n-type dopant is phosphorus.

在本公開內容中,如果沒有特別指明,則吸收層完全嵌入基底中,部分嵌入基底中或完全位於基底的第一表面上。類似地,如果沒有特別指明,則鍺基光吸收材料完全嵌入在半導體基底中,部分嵌入在半導體基底中,或者完全位在半導體基底的第一表面上。 In this disclosure, if not specified otherwise, the absorbent layer is fully embedded in the substrate, partially embedded in the substrate, or completely on the first surface of the substrate. Similarly, if not specified otherwise, the germanium-based light absorbing material is fully embedded in the semiconductor substrate, partially embedded in the semiconductor substrate, or completely located on the first surface of the semiconductor substrate.

在一些實施例中,如果沒有特別指明,吸收層被設置為吸收峰值波長在不小於800奈米(nm)的不可見波長範圍內的光子,例如,850nm、940nm、1050nm、1064nm、1310nm、1350nm或1550nm。在一些實施例中,不可見波長範圍不大於2000nm。在一些實施例中,吸收層接收光訊號並將光訊號轉換成電訊號。 In some embodiments, if not specified otherwise, the absorbing layer is configured to absorb photons with a peak wavelength in an invisible wavelength range of not less than 800 nanometers (nm), for example, 850 nm, 940 nm, 1050 nm, 1064 nm, 1310 nm, 1350 nm or 1550nm. In some embodiments, the invisible wavelength range is no greater than 2000 nm. In some embodiments, the absorbing layer receives optical signals and converts the optical signals into electrical signals.

在本公開內容中,如果沒有特別指明,則基底由第一材料或第一材料複合物製成。吸收層由第二材料或第二材料複合物製成。第二材料或第二材料複合物不同於第一材料或第一材料複合物。在一些實施例中,吸收層包括半導體材料。在一些實施例中,吸收層包括多晶材料。在一些實施例中,基底包 括半導體材料。在一些實施例中,吸收層包括III-V族半導體材料。在一些實施例中,基底包括III-V族半導體材料。III-V族半導體材料可以包括但不限於GaAs/AlAs,InP/InGaAs,GaSb/InAs或InSb。在一些實施例中,吸收層包括包含IV族元素的半導體材料。例如,鍺(Ge)、矽(Si)或錫(Sn)。在一些實施例中,吸收層包括GexSi1-x,其中0<x<1。在一些實施例中,吸收層包括SixGeySn1-x-y,其中0

Figure 109120500-A0305-02-0121-1
x
Figure 109120500-A0305-02-0121-2
1,0
Figure 109120500-A0305-02-0121-3
y
Figure 109120500-A0305-02-0121-4
1。在一些實施例中,吸收層包括Ge1-aSna,其中0
Figure 109120500-A0305-02-0121-5
a
Figure 109120500-A0305-02-0121-6
0.1。在一些實施例中,基底包括Si。在一些實施例中,基底由矽組成。在一些實施例中,吸收層由GexSi1-x、Si或Ge組成。在一些實施例中,由於在形成吸收層102’的過程中所形成的材料缺陷,包含本質鍺的吸收層是p型的,其中缺陷密度介於1×1014cm-3至1×1016cm-3。 In this disclosure, if not specified otherwise, the substrate is made of a first material or a first material composite. The absorbent layer is made of the second material or second material composite. The second material or second material composite is different from the first material or first material composite. In some embodiments, the absorber layer includes a semiconductor material. In some embodiments, the absorber layer includes polycrystalline material. In some embodiments, the substrate includes a semiconductor material. In some embodiments, the absorber layer includes III-V semiconductor material. In some embodiments, the substrate includes III-V semiconductor material. Group III-V semiconductor materials may include, but are not limited to, GaAs/AlAs, InP/InGaAs, GaSb/InAs or InSb. In some embodiments, the absorber layer includes a semiconductor material including Group IV elements. For example, germanium (Ge), silicon (Si) or tin (Sn). In some embodiments, the absorbing layer includes Ge x Si 1-x , where 0<x<1. In some embodiments, the absorber layer includes Six Ge y Sn 1-xy , where 0
Figure 109120500-A0305-02-0121-1
x
Figure 109120500-A0305-02-0121-2
1,0
Figure 109120500-A0305-02-0121-3
y
Figure 109120500-A0305-02-0121-4
1. In some embodiments, the absorbing layer includes Ge 1-a Sn a , where 0
Figure 109120500-A0305-02-0121-5
a
Figure 109120500-A0305-02-0121-6
0.1. In some embodiments, the substrate includes Si. In some embodiments, the substrate is composed of silicon. In some embodiments, the absorber layer is composed of Ge x Si 1-x , Si, or Ge. In some embodiments, the absorber layer containing intrinsic germanium is p-type due to material defects formed during the formation of the absorber layer 102', with a defect density ranging from 1×10 14 cm -3 to 1×10 16 cm -3 .

在本公開內容中,如果沒有特別指明,吸收層包含一厚度,厚度取決於待檢測光子的波長和吸收層的材料。於一些實施例中,當吸收層包含鍺並且被設計為吸收具有波長不小於800nm的光子時,吸收層的厚度不小於0.1微米(μm)。於一些實施例中,吸收層包含鍺並且被設計為吸收波長在800nm和2000nm之間的光子時,吸收層的厚度介於0.1μm和2.5μm之間。於一些實施例中,為了獲得更高的量子效率,吸收層具有介於1μm至2.5μm之間的厚度。於一些實施例中,可以使用全區覆蓋磊晶、選擇性磊晶或其他適合技術來生長吸收層。 In this disclosure, if not specified otherwise, the absorbing layer includes a thickness that depends on the wavelength of the photons to be detected and the material of the absorbing layer. In some embodiments, when the absorbing layer includes germanium and is designed to absorb photons having a wavelength of no less than 800 nm, the thickness of the absorbing layer is no less than 0.1 microns (μm). In some embodiments, the thickness of the absorbing layer is between 0.1 μm and 2.5 μm when the absorbing layer includes germanium and is designed to absorb photons with wavelengths between 800 nm and 2000 nm. In some embodiments, in order to obtain higher quantum efficiency, the absorption layer has a thickness between 1 μm and 2.5 μm. In some embodiments, the absorber layer may be grown using full area coverage epitaxy, selective epitaxy, or other suitable techniques.

在本公開內容中,如果沒有特別指明,第一讀出電路和第二讀出電路可以為三個電晶體的配置,例如由重置(Reset)電晶體(圖未示)、源極隨耦器(source follower)(圖未示)以及一行列選擇(selection)電晶體(圖未示)組成,可以為包含四個或更多個電晶體(圖未示)的電路或任何用於處理載子的適合的電子元件(圖未示)。在一些實施例中,第一讀出電路和第二讀出電路可以被製造在基底上。在一些其他實施例中,第一讀出電路和第二讀出 電路可以被製造在另一基底上,並且可以通過晶粒/晶圓接合(bonding)或堆疊與吸收層整合/共同封裝。 In this disclosure, unless otherwise specified, the first readout circuit and the second readout circuit may be configured with three transistors, such as a reset transistor (not shown), a source follower It consists of a source follower (not shown) and a row and column selection transistor (not shown). It can be a circuit containing four or more transistors (not shown) or any circuit for processing carriers. suitable electronic components (not shown). In some embodiments, the first readout circuit and the second readout circuit may be fabricated on the substrate. In some other embodiments, the first readout circuit and the second readout The circuitry may be fabricated on another substrate and may be integrated/co-packaged with the absorber layer through die/wafer bonding or stacking.

在本公開內容中,如果沒有特別指明,第一讀出電路包含一第一電容。第一電容被設置為儲存由其中一第一摻雜區收集的光載子。於一些實施例中,第一電容電連接到第一讀出電路的重置電晶體。於一些實施例中,第一電容是位於第一讀出電路的源極隨耦器和第一讀出電路的重置電晶體之間。於一些實施例中,第二讀出電路包含第二電容。於一些實施例中,第二電容被設置為儲存由另一第一摻雜區收集的光載子。於一些實施例中,第二電容電連接到第二讀出電路的重置電晶體。於一些實施例中,第二電容位於第二讀出電路的源極隨耦器和第二讀出電路的重置電晶體之間。第一電容和第二電容的例子包含但不限於浮接擴散電容、金屬氧化物金屬(metal-oxide-metal,MOM)電容、金屬-絕緣體-金屬(metal-insulator-metal,MIM)電容和金屬氧化物半導體(metal-oxide-semiconductor,MOS)電容。 In this disclosure, unless otherwise specified, the first readout circuit includes a first capacitor. The first capacitor is configured to store photocarriers collected from one of the first doped regions. In some embodiments, the first capacitor is electrically connected to the reset transistor of the first readout circuit. In some embodiments, the first capacitor is located between the source follower of the first readout circuit and the reset transistor of the first readout circuit. In some embodiments, the second readout circuit includes a second capacitor. In some embodiments, the second capacitor is configured to store photocarriers collected by another first doped region. In some embodiments, the second capacitor is electrically connected to the reset transistor of the second readout circuit. In some embodiments, the second capacitor is located between the source follower of the second readout circuit and the reset transistor of the second readout circuit. Examples of the first capacitor and the second capacitor include, but are not limited to, floating diffusion capacitors, metal-oxide-metal (MOM) capacitors, metal-insulator-metal (MIM) capacitors, and metal capacitors. Oxide semiconductor (metal-oxide-semiconductor, MOS) capacitor.

在本公開內容中,如果沒有特別指明,遮光板具有用於定義吸收區域的位置的一光學窗口。換句話說,光學窗口用於使入射的光訊號進入吸收層以及定義吸收區域。在一些實施例中,當入射光從基底的第二表面進入吸收層時,遮光板在基底的第二表面上。於一些實施例中,從光學窗口的頂視圖看,光學窗口可以是橢圓形、圓形、矩形、正方形、菱形、八邊形或任何其他合適的形狀。 In this disclosure, if not specified otherwise, the light shield has an optical window for defining the location of the absorption area. In other words, the optical window is used to allow the incident light signal to enter the absorbing layer and define the absorbing area. In some embodiments, when incident light enters the absorbing layer from the second surface of the substrate, the light shield is on the second surface of the substrate. In some embodiments, the optical window may be oval, circular, rectangular, square, rhombus, octagon or any other suitable shape when viewed from a top view.

在本公開內容中,如果沒有特別指明,則像素的兩個開關對電荷的收集可以隨時間改變,使得應用於影像系統的光偵測裝置可以測定感測光的相位信息。影像系統可以使用相位信息來分析與三維物體相關聯的特性,包括深度信息或材料成分。影像系統還可以使用相位信息來分析與臉部辨識、眼睛追踪、手勢識別、三維模型掃描/視頻記錄、運動追踪和/或增強/虛擬現實應用相 關聯的特性。在一些實施例中,光偵測裝置被配置用於飛行時間感測。影像系統可以是行動裝置(例如,智能手機或平板電腦)、用於行動裝置的輔助裝置(例如,可穿戴裝置),車輛或固定設施(例如,工廠)中的計算系統、機器人系統或任何其他合適的裝置和/或系統。在一些實施例中,影像系統可以包括一個或多個光學模組。例如,光學模組可以包括與光偵測裝置整合在一起的一個或多個相機。作為另一示例,影像系統中的一個光學模組可以包括一個或多個照相機,並且影像系統的另一光學模組可以包括具有針對飛行時間感測的一維或二維像素陣列的光偵測裝置以取得飛行時間資訊。 In the present disclosure, unless otherwise specified, the charge collection by the two switches of the pixel can change over time, so that the light detection device applied to the imaging system can determine the phase information of the sensed light. Imaging systems can use phase information to analyze properties associated with three-dimensional objects, including depth information or material composition. Imaging systems may also use phase information for analysis related to facial recognition, eye tracking, gesture recognition, 3D model scanning/video recording, motion tracking, and/or augmented/virtual reality applications. associated properties. In some embodiments, the light detection device is configured for time-of-flight sensing. The imaging system may be a mobile device (e.g., a smartphone or tablet), an auxiliary device for a mobile device (e.g., a wearable device), a computing system in a vehicle or fixed installation (e.g., a factory), a robotic system, or any other Suitable devices and/or systems. In some embodiments, the imaging system may include one or more optical modules. For example, the optical module may include one or more cameras integrated with the light detection device. As another example, one optical module in the imaging system may include one or more cameras, and another optical module in the imaging system may include light detection with a one- or two-dimensional pixel array for time-of-flight sensing. device to obtain flight time information.

於一些實施例中,其中一控制訊號可以固定在一電壓值Vi,另一控制訊號在電壓值Vi±△V之間交替。在一些實施例中,兩個控制訊號可具有彼此不同的電壓值。在一些實施例中,其中一控制訊號為一固定電壓值(例如0.5伏特(v)),另一控制訊號是變化的電壓訊號(例如,正弦訊號(sinusoid signal)、時脈訊號(clock signal)或在0V至1V之間操作的脈衝訊號)。偏壓值的方向決定吸收層內產生的載子的移動方向。 In some embodiments, one of the control signals can be fixed at a voltage value Vi, and the other control signal alternates between voltage values Vi±ΔV. In some embodiments, the two control signals may have different voltage values from each other. In some embodiments, one of the control signals is a fixed voltage value (for example, 0.5 volts (v)), and the other control signal is a changing voltage signal (for example, a sinusoid signal, a clock signal) or a pulse signal operating between 0V and 1V). The direction of the bias value determines the movement direction of the carriers generated in the absorption layer.

在本公開內容中,如果沒有特別指明,在相同的光偵測裝置中,由其中一開關的第一摻雜區收集的載子的類型和由另一開關的第一摻雜區收集的載子的類型是相同的。例如,當光偵測裝置被設置為收集電子時,當第一開關被打開並且第二開關被關閉時,第一開關的第一摻雜區收集光載子中的電子,且當第二開關被打開且第一開關被關閉時,第二開關的第一摻雜區也收集光載子中的電子。 In this disclosure, if not specified otherwise, in the same photodetection device, the type of carriers collected by the first doped region of one switch and the type of carriers collected by the first doped region of the other switch are The subtypes are the same. For example, when the light detection device is configured to collect electrons, when the first switch is turned on and the second switch is turned off, the first doped region of the first switch collects electrons in the photocarriers, and when the second switch When the first switch is turned on and the first switch is turned off, the first doped region of the second switch also collects electrons from the photocarriers.

在本公開內容中,如果沒有特別指明,每個開關還包括吸收層的一部分和/或基底的一部分或載子控制層的一部分或載子收集層的一部分。在一些實施例中,每個開關的讀出接觸層電耦合到吸收層和/或基底或載子控制層或載子收集層的相應部分並佈置在吸收層和/或基底或載子控制層或載子收集層的相 應部分上。在一些實施例中,兩個開關的吸收層和/或基底或載子控制層或載子收集層的每個部分還包括佈置在相應的讀出接觸層之下的第一摻雜區域。 In this disclosure, if not specified otherwise, each switch also includes a portion of the absorption layer and/or a portion of the substrate or a portion of the carrier control layer or a portion of the carrier collection layer. In some embodiments, the sense contact layer of each switch is electrically coupled to and disposed in a corresponding portion of the absorber layer and/or substrate or carrier control layer or carrier collection layer. or the phase of the carrier collection layer Should be partially on. In some embodiments, each part of the absorption layer and/or the substrate or the carrier control layer or the carrier collection layer of the two switches also includes a first doped region arranged beneath the respective readout contact layer.

在本公開內容中,如果沒有特別指明,每個開關包括吸收層的另一部分和/或基底的另一部分或載子控制層的另一部分或載子收集層的另一部分。在一些實施例中,每個開關的控制接觸層電耦合到吸收層和/或基底或載子控制層或載子收集層的相應部分並佈置在吸收層和/或基底或載子控制層或載子收集層的的相應部分上。在一些實施例中,兩個開關的吸收層和/或基底或載子控制層或載子收集層的每個部分還包括佈置在相應的控制接觸層之下的第二摻雜區域。 In this disclosure, if not specified otherwise, each switch includes another portion of the absorber layer and/or another portion of the substrate or another portion of the carrier control layer or another portion of the carrier collection layer. In some embodiments, the control contact layer of each switch is electrically coupled to a corresponding portion of the absorber layer and/or the substrate or carrier control layer or carrier collection layer and is disposed in the absorber layer and/or substrate or carrier control layer or on the corresponding part of the carrier collection layer. In some embodiments, each part of the absorption layer and/or the substrate or the carrier control layer or the carrier collection layer of the two switches also includes a second doped region arranged beneath the respective control contact layer.

在本公開內容中,如果沒有特別指明,本公開中的第一介電層、第二介電層、第三介電層、第四介電層和第五介電層包括但不限於SiO2。在一些實施例中,第一介電層、第二介電層、第三介電層、第四介電層和第五介電層包括高k材料,該高k材料包括但不限於氮化矽(SixNy,例如Si3N4)、氮氧化矽(SiON)、氮化矽(SiNx)、氧化矽(SiOx)、氧化鍺(GeOx)、氧化鋁(Al2O3)、氧化釔(Y2O3)、氧化鈦(TiO2)、氧化鉿(HfO2)或氧化鋯(ZrO2)。在一些實施例中,本公開中的第一介電層、第二介電層、第三介電層、第四介電層和第五介電層包括半導體材料,但不限於非晶矽,多晶矽,結晶矽或它們的組合。 In the present disclosure, if not specified otherwise, the first dielectric layer, the second dielectric layer, the third dielectric layer, the fourth dielectric layer and the fifth dielectric layer in the present disclosure include but are not limited to SiO 2 . In some embodiments, the first, second, third, fourth, and fifth dielectric layers include high-k materials including, but not limited to, nitride Silicon (SixNy, such as Si3N4), silicon oxynitride (SiON), silicon nitride (SiNx), silicon oxide (SiOx), germanium oxide (GeOx), aluminum oxide (Al2O3), yttrium oxide (Y2O3), titanium oxide (TiO2 ), hafnium oxide (HfO 2 ) or zirconium oxide (ZrO 2 ). In some embodiments, the first, second, third, fourth and fifth dielectric layers in this disclosure include semiconductor materials, but are not limited to amorphous silicon, Polycrystalline silicon, crystalline silicon or combinations thereof.

在一些實施例中,如果沒有特別指明,控制金屬線、讀出金屬線、讀出接觸層、控制接觸層和導電層包括金屬或合金。控制金屬線、讀出金屬線、讀出接觸層、控制接觸層和導電層包含鋁(Al)、銅(Cu)、鎢(W)、鈦(Ti)、鉭-氮化鉭-銅(Ta-TaN-Cu)疊層或鈦-氮化鈦-鎢(Ti-TiN-W)疊層。 In some embodiments, the control metal lines, the sense metal lines, the sense contact layer, the control contact layer and the conductive layer include metals or alloys unless otherwise specified. The control metal line, readout metal line, readout contact layer, control contact layer and conductive layer include aluminum (Al), copper (Cu), tungsten (W), titanium (Ti), tantalum-tantalum nitride-copper (Ta -TaN-Cu) stack or titanium-titanium nitride-tungsten (Ti-TiN-W) stack.

在本公開內容中,如果沒有特別指明,則根據本公開的光偵測裝置 中的第三摻雜區和阻擋層可以通過電壓源或電流源例如偏置電壓ca1或ca2以浮接,開路,短路或偏置。 In the present disclosure, unless otherwise specified, the light detection device according to the present disclosure The third doped region and barrier layer in can be floated, open-circuited, short-circuited or biased by a voltage source or current source such as bias voltage ca1 or ca2.

在一些實施例中,如果沒有特別指明,則可以以類似於但不限於圖12A和圖12B中的像素陣列的方式來佈置像素陣列。 In some embodiments, if not specified otherwise, the pixel array may be arranged in a manner similar to, but not limited to, the pixel array in FIGS. 12A and 12B.

在一些實施例中,如果沒有特別指明,則本公開中示出的截面圖可以是沿著光偵測裝置的任何可能的剖面線的截面圖。 In some embodiments, if not specified otherwise, the cross-sectional views shown in this disclosure may be cross-sectional views along any possible cross-section line of the light detection device.

如文中所使用且未另外定義,用語「實質上」(substantially)和「約」(about)係用於說明和考慮小變化例。當與事件或狀況結合使用時,用語可涵蓋其中事件或狀況精確發生的實例以及其中事件或狀況非常近似發生的實例。舉例來說,當與數值結合使用時,用語可涵蓋小於或等於數值之±10%之變化範圍,例如小於或等於±5%、小於或等於±4%、小於或等於±3%、小於或等於±2%、小於或等於±1%、小於或等於±0.5%、小於或等於±0.1%、或小於或等於±0.05%。 As used herein and not otherwise defined, the terms "substantially" and "about" are used to describe and account for minor variations. When used in connection with an event or condition, the term may cover instances in which the event or condition occurs precisely as well as instances in which the event or condition closely approximates its occurrence. For example, when used in conjunction with a numerical value, the term may cover a range of less than or equal to ±10% of the numerical value, such as less than or equal to ±5%, less than or equal to ±4%, less than or equal to ±3%, less than or equal to Equal to ±2%, less than or equal to ±1%, less than or equal to ±0.5%, less than or equal to ±0.1%, or less than or equal to ±0.05%.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above are only preferred embodiments of the present invention, and all equivalent changes and modifications made in accordance with the patentable scope of the present invention shall fall within the scope of the present invention.

1000a:光偵測裝置 1000a: Light detection device

1001a、1001b:N型區域 1001a, 1001b: N-type area

1002:鍺基光吸收材料 1002: Germanium-based light absorbing material

1002s:表面 1002s: Surface

1003a、1003b:P型區域 1003a, 1003b: P-type area

1004:半導體基底 1004:Semiconductor substrate

1006a、1006b:控制金屬線 1006a, 1006b: Control metal wire

1008a、1008b:讀出金屬線 1008a, 1008b: Read metal lines

1010a、1010b:電容 1010a, 1010b: capacitor

1011a、1011b:N井 1011a, 1011b: N well

1013a、1013b、1015a、1015b:金屬矽化物 1013a, 1013b, 1015a, 1015b: metal silicide

1014:鈍化層 1014: Passivation layer

1019:井形P型區域 1019: Well-shaped P-shaped area

1021:金屬 1021:Metal

1024:隔離區 1024:Quarantine Zone

AR:吸收區域 AR: absorption area

cs1、cs2:控制信號 cs1, cs2: control signal

ca2、ca3:偏壓電壓 ca2, ca3: bias voltage

v1、v2:電壓 v1, v2: voltage

ILD:層間介電層 ILD: interlayer dielectric layer

Claims (20)

一種光偵測裝置,包括:由一第一材料或一第一材料複合物製成的一基底;由一第二材料或一第二材料複合物製成的一吸收層,該吸收層由該基底支撐,且該吸收層包括:一第一表面;一第二表面,佈置在該第一表面和該基底之間;以及一通道區,其具有一峰值摻質濃度等於或大於1x1015cm-3的一摻質分佈,其中該第一表面與具有該峰值摻質濃度的該通道區的位置之間的距離小於該第二表面與具有該峰值摻質濃度的該通道區的位置之間的距離,又其中該第一表面與具有該峰值摻質濃度的該通道區的位置之間的該距離不小於30nm。 A light detection device, including: a substrate made of a first material or a first material composite; an absorption layer made of a second material or a second material composite, the absorption layer being made of the The substrate is supported, and the absorption layer includes: a first surface; a second surface arranged between the first surface and the substrate; and a channel region having a peak dopant concentration equal to or greater than 1x10 15 cm - A dopant distribution of 3 , wherein the distance between the first surface and the position of the channel region with the peak dopant concentration is less than the distance between the second surface and the position of the channel region with the peak dopant concentration distance, and wherein the distance between the first surface and the location of the channel region having the peak dopant concentration is not less than 30 nm. 如請求項1所述的光偵測裝置,其更包括:兩個開關,各該開關包括該吸收層的一第一部分和一控制接觸層,各該控制接觸層電性耦接到該吸收層的相應第一部分並佈置在該吸收層的相應第一部分上。 The light detection device of claim 1, further comprising: two switches, each switch includes a first part of the absorption layer and a control contact layer, each control contact layer is electrically coupled to the absorption layer and disposed on the corresponding first portion of the absorbing layer. 如請求項2所述的光偵測裝置,其中該通道區沿著基本上垂直於該吸收層的該第一表面的方向佈置在該兩個開關與該第二表面之間。 The light detection device of claim 2, wherein the channel region is arranged between the two switches and the second surface along a direction substantially perpendicular to the first surface of the absorbing layer. 如請求項2所述的光偵測裝置,其中各該兩個開關另包括該吸收層的一第二部分和一讀出接觸層,各該讀出接觸層電性耦接到該吸收層的相應第二部分並佈置在該吸收層的相應第二部分上,其中該兩個開關的該吸收層的各該第二部分還包括具有一第一導電類型的一第一摻雜區,又其中各該第一摻 雜區電性耦接到相應的讀出接觸層。 The light detection device of claim 2, wherein each of the two switches further includes a second portion of the absorption layer and a readout contact layer, and each of the readout contact layers is electrically coupled to the absorption layer. Corresponding second portions are disposed on corresponding second portions of the absorption layer, wherein each second portion of the absorption layer of the two switches further includes a first doping region having a first conductivity type, and wherein Everyone should be mixed first The hybrid regions are electrically coupled to corresponding readout contact layers. 如請求項4所述的光偵測裝置,其中該通道區的一導電類型與該第一摻雜區的第一導電類型的導電類型相同。 The light detection device of claim 4, wherein a conductivity type of the channel region is the same as a conductivity type of the first conductivity type of the first doping region. 如請求項4所述的光偵測裝置,其中該吸收層另包括佈置在兩個第一摻雜區之間且佈置在該通道區與該第一表面之間的一阻礙區。 The light detection device of claim 4, wherein the absorption layer further includes a barrier region disposed between two first doping regions and between the channel region and the first surface. 如請求項6所述的光偵測裝置,其中該阻礙區具有一摻質分佈,該摻質分佈的一峰值摻質濃度不同於該通道區的峰值摻質濃度。 The light detection device of claim 6, wherein the barrier region has a dopant distribution, and a peak dopant concentration of the dopant distribution is different from a peak dopant concentration of the channel region. 如請求項6所述的光偵測裝置,其中該阻礙區的導電類型與該通道區的導電類型相同,並且該阻礙區的峰值摻質濃度低於該通道區的峰值摻質濃度。 The light detection device of claim 6, wherein the conductivity type of the barrier region is the same as the conductivity type of the channel region, and the peak dopant concentration of the barrier region is lower than the peak dopant concentration of the channel region. 如請求項6所述的光偵測裝置,其中該阻礙區的導電類型不同於該通道區的導電類型,並且該阻礙區的峰值摻質濃度高於該通道區的峰值摻質濃度。 The light detection device of claim 6, wherein the conductivity type of the barrier region is different from the conductivity type of the channel region, and the peak dopant concentration of the barrier region is higher than the peak dopant concentration of the channel region. 如請求項9所述的光偵測裝置,其中該阻礙區的峰值摻質濃度在1×1018cm-3和5×1020cm-3之間。 The light detection device of claim 9, wherein the peak dopant concentration of the barrier region is between 1×10 18 cm -3 and 5×10 20 cm -3 . 如請求項4所述的光偵測裝置,其中該通道區與該第一摻雜區重疊。 The light detection device of claim 4, wherein the channel region overlaps the first doping region. 如請求項4所述的光偵測裝置,其中該兩個開關的該吸收層的各該第二部分還包括一第二摻雜區,佈置在相應的控制接觸層和該吸收層的該第二表面之間,其中,各該第二摻雜區具有不同於該第一導電類型的一第二導電類型。 The light detection device of claim 4, wherein each second portion of the absorption layer of the two switches further includes a second doping region, which is arranged on the corresponding control contact layer and the third portion of the absorption layer. Between the two surfaces, each second doped region has a second conductivity type different from the first conductivity type. 如請求項4所述的光偵測裝置,其另包括兩個反摻雜區,其中各該兩個反摻雜區與該第一摻雜區的至少一部分重疊,並且該兩個反摻雜區具有與該第一摻雜區的該第一導電類型不同的一導電類型。 The light detection device of claim 4, further comprising two counter-doping regions, wherein each of the two counter-doping regions overlaps at least a part of the first doping region, and the two counter-doping regions overlap A region has a conductivity type different from the first conductivity type of the first doped region. 如請求項4所述的光偵測裝置,其另包括在兩個第一摻雜區之間的一第一緩衝區和一第二緩衝區。 The light detection device as claimed in claim 4, further comprising a first buffer area and a second buffer area between the two first doping areas. 如請求項14所述的光偵測裝置,其中該第一緩衝區和該第二緩衝區各自的深度小於各該第一摻雜區的深度。 The light detection device of claim 14, wherein each depth of the first buffer region and the second buffer region is smaller than a depth of each of the first doping regions. 如請求項2所述的光偵測裝置,其中該通道區的寬度大於該兩個控制接觸層之間的距離。 The light detection device of claim 2, wherein the width of the channel area is greater than the distance between the two control contact layers. 如請求項1所述的光偵測裝置,其中該通道區的寬度在10nm至500nm之間。 The light detection device as claimed in claim 1, wherein the width of the channel region is between 10nm and 500nm. 如請求項1所述的光偵測裝置,其中該吸收層的該第一表面與該通道區的該峰值摻質濃度的位置之間的距離在50nm至650nm之間。 The light detection device of claim 1, wherein the distance between the first surface of the absorption layer and the position of the peak dopant concentration of the channel region is between 50 nm and 650 nm. 如請求項1所述的光偵測裝置,其中該通道區的峰值摻質濃度在1×1015cm-3和5×1017cm-3之間。 The light detection device as claimed in claim 1, wherein the peak dopant concentration of the channel region is between 1×10 15 cm -3 and 5×10 17 cm -3 . 一種影像系統,包括:一或多個相機;以及一光偵測裝置,包括用於一飛行時間資訊的一像素陣列,該像素陣列的各像素包括:由一第一材料或一第一材料複合物製成的一基底;由一第二材料或一第二材料複合物製成的一吸收層,該吸收層由基底支撐,且該吸收層包括:一第一表面;一第二表面,佈置在該第一表面和該基底之間;以及一通道區,其具有一峰值摻質濃度等於或大於1x1015cm-3的一摻質分佈,其中該第一表面與具有該峰值摻質濃度的該通道區的位置之間的距離小於該第二表面與具有該峰值摻質濃度的該通道區的位置之間的距離,又其中該第一表面與具有該峰值摻質濃度的該通道區的位置之間的距離不小於30nm。 An imaging system, including: one or more cameras; and a light detection device, including a pixel array for a time-of-flight information, each pixel of the pixel array includes: a first material or a first material composite a substrate made of material; an absorbent layer made of a second material or a second material composite, the absorbent layer is supported by the substrate, and the absorbent layer includes: a first surface; a second surface, arranged between the first surface and the substrate; and a channel region having a dopant distribution with a peak dopant concentration equal to or greater than 1x10 15 cm -3 , wherein the first surface and the channel region having the peak dopant concentration The distance between the position of the channel region is less than the distance between the second surface and the position of the channel region having the peak dopant concentration, and wherein the distance between the first surface and the channel region having the peak dopant concentration The distance between positions is not less than 30nm.
TW109120500A 2019-06-18 2020-06-18 Light-sensing apparatus and imaging system TWI831982B (en)

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
US201962862687P 2019-06-18 2019-06-18
US62/862,687 2019-06-18
US201962865305P 2019-06-24 2019-06-24
US62/865,305 2019-06-24
US202063006696P 2020-04-07 2020-04-07
US63/006,696 2020-04-07
US202063008834P 2020-04-13 2020-04-13
US63/008,834 2020-04-13
US202063012249P 2020-04-19 2020-04-19
US63/012,249 2020-04-19
US202063012930P 2020-04-21 2020-04-21
US63/012,930 2020-04-21

Publications (2)

Publication Number Publication Date
TW202101752A TW202101752A (en) 2021-01-01
TWI831982B true TWI831982B (en) 2024-02-11

Family

ID=75237126

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109120500A TWI831982B (en) 2019-06-18 2020-06-18 Light-sensing apparatus and imaging system

Country Status (1)

Country Link
TW (1) TWI831982B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170141153A1 (en) * 2015-11-13 2017-05-18 Taiwan Semiconductor Manufacturing Co., Ltd. Complementary metal-oxide-semiconductor (cmos) image sensor with silicon and silicon germanium
TW201904034A (en) * 2017-04-13 2019-01-16 美商光程研創股份有限公司 Germanium-silicon light sensing apparatus
TW201904085A (en) * 2017-04-04 2019-01-16 美商光澄科技股份有限公司 High speed light detecting device
TW201917902A (en) * 2017-10-26 2019-05-01 大陸商上海耕岩智能科技有限公司 Light detector and light detection member capable of increasing the light incidence of the light detection member thereby improving the photoelectric conversion rate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170141153A1 (en) * 2015-11-13 2017-05-18 Taiwan Semiconductor Manufacturing Co., Ltd. Complementary metal-oxide-semiconductor (cmos) image sensor with silicon and silicon germanium
TW201904085A (en) * 2017-04-04 2019-01-16 美商光澄科技股份有限公司 High speed light detecting device
TW201904034A (en) * 2017-04-13 2019-01-16 美商光程研創股份有限公司 Germanium-silicon light sensing apparatus
TW201917902A (en) * 2017-10-26 2019-05-01 大陸商上海耕岩智能科技有限公司 Light detector and light detection member capable of increasing the light incidence of the light detection member thereby improving the photoelectric conversion rate

Also Published As

Publication number Publication date
TW202101752A (en) 2021-01-01

Similar Documents

Publication Publication Date Title
CN111868929B (en) Optical detection device and optical detection method thereof
US11105928B2 (en) Light-sensing apparatus and light-sensing method thereof
TWI836135B (en) Photo-detecting apparatus with low dark current
TWI780007B (en) Photo-detecting apparatus and system thereof
TWI740769B (en) Optical sensor
US11482553B2 (en) Photo-detecting apparatus with subpixels
US20220262974A1 (en) Photo-Detecting Apparatus With Low Dark Current
TW202038462A (en) Semiconductor device with low dark noise
TWI831982B (en) Light-sensing apparatus and imaging system
TW202418608A (en) Photo-detecting apparatus
TWI842945B (en) Photo-detecting apparatus with subpixels
TW202137525A (en) Photo-detecting apparatus with subpixels