TWI831514B - Imaging methods using bi-directional counters - Google Patents

Imaging methods using bi-directional counters Download PDF

Info

Publication number
TWI831514B
TWI831514B TW111147585A TW111147585A TWI831514B TW I831514 B TWI831514 B TW I831514B TW 111147585 A TW111147585 A TW 111147585A TW 111147585 A TW111147585 A TW 111147585A TW I831514 B TWI831514 B TW I831514B
Authority
TW
Taiwan
Prior art keywords
radiation
particles
image
imaging method
energy range
Prior art date
Application number
TW111147585A
Other languages
Chinese (zh)
Other versions
TW202328705A (en
Inventor
曹培炎
劉雨潤
Original Assignee
大陸商深圳幀觀德芯科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商深圳幀觀德芯科技有限公司 filed Critical 大陸商深圳幀觀德芯科技有限公司
Publication of TW202328705A publication Critical patent/TW202328705A/en
Application granted granted Critical
Publication of TWI831514B publication Critical patent/TWI831514B/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4233Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using matrix detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • A61B6/4241Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector using energy resolving detectors, e.g. photon counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/36Measuring spectral distribution of X-rays or of nuclear radiation spectrometry
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/502Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of breast, i.e. mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/504Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of blood vessels, e.g. by angiography
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • H04N25/773Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters comprising photon counting circuits, e.g. single photon detection [SPD] or single photon avalanche diodes [SPAD]

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Measurement Of Radiation (AREA)

Abstract

Disclosed herein is a method including: sending first radiation particles of a first energy range and second radiation particles of a second energy range toward an object, the first energy range and the second energy range being different, capturing with an image sensor an image of the object, the image sensor comprising (A) M sensing elements and (B) M radiation particle counters respectively corresponding to the M sensing elements, M being an integer greater than 1. Capturing the image of the object comprises, for each sensing element, causing the radiation particle counter of the M radiation particle counters corresponding to said each sensing element to (A) count up by 1 for each radiation particle of the first radiation particles that is incident on said each sensing element, and (B) count down by 1 for each radiation particle of the second radiation particles that is incident on said each sensing element.

Description

使用雙向計數器的成像方法Imaging method using bidirectional counter

本發明是有關於一種使用雙向計數器的成像方法。The present invention relates to an imaging method using a bidirectional counter.

輻射檢測器是測量輻射特性的裝置。該特性的示例可以包括輻射的強度、相位和偏振的空間分佈。由輻射檢測器測量的輻射可以是已經透過物體的輻射。輻射檢測器測量的輻射可以是電磁輻射,例如紅外光、可見光、紫外光、X射線或γ射線。輻射可以是其他類型的,例如α射線和β射線。成像系統可以包括一個或多個圖像感測器,每個圖像感測器可以具有一個或多個輻射檢測器。A radiation detector is a device that measures the characteristics of radiation. Examples of such properties may include the intensity, phase, and spatial distribution of polarization of the radiation. The radiation measured by the radiation detector may be radiation that has passed through the object. The radiation measured by the radiation detector may be electromagnetic radiation, such as infrared light, visible light, ultraviolet light, X-rays or gamma rays. Radiation can be of other types such as alpha rays and beta rays. An imaging system may include one or more image sensors, each of which may have one or more radiation detectors.

本文公開了一種方法,所述方法包括:向物體發送第一能量範圍的第一輻射粒子和第二能量範圍的第二輻射粒子,所述第一能量範圍和所述第二能量範圍不同;以及用圖像感測器捕獲所述物體的圖像,所述圖像感測器包括(A)M個感測元件和(B)分別對應於所述M個感測元件的M個輻射粒子計數器,M為大於1的整數。所述捕獲所述物體的所述圖像包括,對於所述M個感測元件中的每個感測元件,使所述M個輻射粒子計數器中的對應於所述每個感測元件的輻射粒子計數器(A)對於入射在所述每個感測元件上的所述第一輻射粒子中的每個輻射粒子計數加1,並且(B)對於入射在所述每個感測元件上的所述第二輻射粒子中的每個輻射粒子計數減1。Disclosed herein is a method comprising: sending first radiation particles of a first energy range and second radiation particles of a second energy range to an object, the first energy range and the second energy range being different; and An image of the object is captured with an image sensor, which includes (A) M sensing elements and (B) M radiation particle counters respectively corresponding to the M sensing elements. , M is an integer greater than 1. The capturing the image of the object includes, for each of the M sensing elements, causing the radiation in the M radiation particle counters corresponding to each sensing element to The particle counter (A) increments by one for each of the first radiated particles incident on each of the sensing elements, and (B) counts each of the first radiating particles incident on the sensing element by one. The count of each of the second radiation particles is decremented by one.

在一方面,所述第一輻射粒子和所述第二輻射粒子是X射線光子。In one aspect, the first radiating particles and the second radiating particles are X-ray photons.

在一方面,所述物體的所述圖像包括分別對應於所述M個輻射粒子計數器的M個圖像元素,並且所述捕獲所述物體的所述圖像包括基於所述M個輻射粒子計數器中的與所述M個圖像元素中的每個圖像元素相對應的所述輻射粒子計數器的計數確定所述每個圖像元素的內容。In one aspect, the image of the object includes M image elements respectively corresponding to the M radiation particle counters, and the capturing the image of the object includes based on the M radiation particle counters The count of the radiation particle counter in the counter corresponding to each of the M image elements determines the content of each image element.

在一方面,所述每個圖像元素的內容等於所述M個輻射粒子計數器中的對應於所述每個圖像元素的所述輻射粒子計數器的計數。In one aspect, the content of each image element is equal to the count of the radiation particle counter of the M radiation particle counters corresponding to each image element.

在一方面,所述方法還包括在捕獲所述物體的圖像之前將造影劑引入所述物體中。In one aspect, the method further includes introducing a contrast agent into the object prior to capturing an image of the object.

在一方面,所述造影劑包含碘。In one aspect, the contrast agent contains iodine.

在一方面,一次一組地發送作為第一組的所述第一輻射粒子和作為第二組的所述第二輻射粒子。In one aspect, said first radiation particles as a first group and said second radiation particles as a second group are sent one group at a time.

在一方面,所述M個輻射粒子計數器中的每個輻射粒子計數器處於遞增計數狀態或遞減計數狀態,在發送所述第一輻射粒子的同時,所述M個輻射粒子計數器處於遞增計數狀態,並且,在發送所述第二輻射粒子的同時,所述M個輻射粒子計數器處於遞減計數狀態。In one aspect, each of the M radiation particle counters is in an up-counting state or a down-counting state, and while the first radiation particles are being sent, the M radiation particle counters are in an up-counting state, Moreover, while the second radiation particles are being sent, the M radiation particle counters are in a down-counting state.

在一方面,所述捕獲所述物體的所述圖像包括,在發送所述第一組和所述第二組中的一組之後且在發送所述第一組和所述第二組中的剩餘組之前,將所述M個輻射粒子計數器從所述遞增計數狀態和所述遞減計數狀態中的一狀態切換為所述遞增計數狀態和所述遞減計數狀態中的剩餘狀態。In one aspect, said capturing said image of said object includes, after transmitting one of said first group and said second group and during transmitting said first group and said second group Before the remaining groups, the M radiation particle counters are switched from one of the up-counting state and the down-counting state to the remaining state of the up-counting state and the down-counting state.

在一方面,從包含第一材料的第一轟擊靶發送所述第一輻射粒子,從包含第二材料的第二轟擊靶發送所述第二輻射粒子,並且所述第一材料和所述第二材料不同。In one aspect, the first radiation particles are sent from a first bombardment target containing a first material, the second radiation particles are sent from a second bombardment target containing a second material, and the first material and the third The two materials are different.

在一方面,所述第一材料包括鎢,並且第二材料包括(A)鉬、(B)錫或(C)鑭錒合金。In one aspect, the first material includes tungsten and the second material includes (A) molybdenum, (B) tin, or (C) lanthanum-actinium alloy.

在一方面,所述發送所述第一輻射粒子和所述第二輻射粒子包括:將電子束引導至所述第一轟擊靶和所述第二轟擊靶中的一轟擊靶;然後將所述電子束引導至所述第一轟擊靶和所述第二轟擊靶在的剩餘轟擊靶。In one aspect, sending the first radiation particles and the second radiation particles includes directing an electron beam to one of the first bombardment target and the second bombardment target; and then directing the electron beam to one of the first bombardment target and the second bombardment target. The electron beam is directed to the remaining bombardment targets between the first bombardment target and the second bombardment target.

在一方面,所述第一能量範圍和所述第二能量範圍重疊。In one aspect, the first energy range and the second energy range overlap.

在一方面,同時向所述物體和所述圖像感測器發送所述第一輻射粒子和所述第二輻射粒子。In one aspect, the first radiation particles and the second radiation particles are sent to the object and the image sensor simultaneously.

在一方面,所述捕獲所述物體的所述圖像包括,對於所述M個感測元件中的每個感測元件:利用所述圖像感測器確定入射在所述每個感測元件上的所述第一輻射粒子和所述第二輻射粒子中的一輻射粒子屬於所述第一能量範圍,從而使所述M個輻射粒子計數器中的對應於所述每個感測元件的所述輻射粒子計數器計數加1。In one aspect, the capturing the image of the object includes, for each of the M sensing elements: using the image sensor to determine the incident on each of the sensing elements. One of the first radiation particles and the second radiation particles on the element belongs to the first energy range, so that one of the M radiation particle counters corresponding to each sensing element The radiation particle counter counts up by one.

在一方面,所述捕獲所述物體的所述圖像包括,對於所述M個感測元件中的每個感測元件:利用所述圖像感測器確定入射在所述每個感測元件上的所述第一輻射粒子和所述第二輻射粒子中的一輻射粒子屬於所述第二能量範圍,從而使所述M個輻射粒子計數器中的對應於所述每個感測元件的所述輻射粒子計數器計數減1。In one aspect, the capturing the image of the object includes, for each of the M sensing elements: using the image sensor to determine the incident on each of the sensing elements. One of the first radiation particles and the second radiation particles on the element belongs to the second energy range, so that one of the M radiation particle counters corresponding to each sensing element The radiation particle counter counts down by one.

在一方面,所述第一能量範圍和所述第二能量範圍不重疊。In one aspect, the first energy range and the second energy range do not overlap.

輻射檢測器:Radiation detector:

圖1示意性地示出了作為示例的輻射檢測器100。輻射檢測器100可以包括像素150(也稱為感測元件150)陣列。該陣列可以是矩形陣列(如圖1所示)、蜂窩陣列、六邊形陣列或任何其他合適的陣列。圖1的示例中的像素150陣列具有4行和7列;然而,一般來說,像素150陣列可以具有任意數量的行和任意數量的列。Figure 1 schematically shows a radiation detector 100 as an example. Radiation detector 100 may include an array of pixels 150 (also referred to as sensing elements 150). The array may be a rectangular array (as shown in Figure 1), a honeycomb array, a hexagonal array, or any other suitable array. The pixel 150 array in the example of Figure 1 has 4 rows and 7 columns; however, in general, the pixel 150 array can have any number of rows and any number of columns.

每個像素150可以被配置為檢測入射在其上的來自輻射源(未示出)的輻射,並且可以被配置為測量輻射的特性(例如,粒子的能量、波長和頻率)。輻射可以包括諸如光子(X射線、伽馬射線等)和亞原子粒子(α粒子、β粒子等)的輻射粒子。每個像素150可以被配置為在一段時間內對入射在其上的能量落入多個能量區間中的輻射粒子的數量進行計數。所有像素150可以被配置為在同一時間段內對多個能量區間內入射到其上的輻射粒子的數量進行計數。當入射的輻射粒子具有相似的能量時,像素150可以僅僅被配置為在一段時間內對入射在其上的輻射粒子的數量進行計數,而不測量單個輻射粒子的能量。Each pixel 150 may be configured to detect radiation incident thereon from a radiation source (not shown) and may be configured to measure characteristics of the radiation (eg, energy, wavelength, and frequency of the particles). Radiation may include radiation particles such as photons (X-rays, gamma rays, etc.) and subatomic particles (alpha particles, beta particles, etc.). Each pixel 150 may be configured to count, over a period of time, the number of radiation particles incident thereon whose energy falls within a plurality of energy bins. All pixels 150 may be configured to count the number of radiation particles incident thereon over a plurality of energy intervals during the same time period. When the incident radiation particles are of similar energy, the pixel 150 may be configured simply to count the number of radiation particles incident thereon over a period of time without measuring the energy of the individual radiation particles.

每個像素150可以具有其自己的類比數位轉換器(ADC),其被配置為將表示入射輻射粒子的能量的類比訊號數位化為數位訊號,或者將表示多個入射輻射粒子的總能量的類比訊號數位化為數位訊號。像素150可以被配置為平行作業。例如,當一個像素150測量入射輻射粒子時,另一個像素150可能正在等待輻射粒子的到達。像素150可以不必是可單獨定址(individually addressable)的。Each pixel 150 may have its own analog-to-digital converter (ADC) configured to digitize an analog signal representing the energy of an incident radiation particle to a digital signal, or to digitize an analog signal representing the total energy of multiple incident radiation particles. The signal is digitized into a digital signal. Pixels 150 may be configured for parallel operation. For example, while one pixel 150 is measuring incoming radiation particles, another pixel 150 may be waiting for the radiation particles to arrive. Pixels 150 may not necessarily be individually addressable.

這裡描述的輻射檢測器100可以具有諸如X射線望遠鏡、X射線***X線照相術、工業X射線缺陷檢測、X射線顯微鏡或顯微射線照相術、X射線鑄件檢查、X射線無損檢測、X射線焊接檢查、X射線數位減影血管造影等之類的應用。使用該輻射檢測器100代替照相板、照相膠片、PSP板、X射線圖像增強器、閃爍計數器或其他半導體X射線檢測器可能是合適的。The radiation detector 100 described herein may have a device such as an X-ray telescope, X-ray mammography, industrial X-ray defect detection, X-ray microscopy or microradiography, X-ray casting inspection, Applications such as welding inspection, X-ray digital subtraction angiography, etc. It may be suitable to use the radiation detector 100 in place of a photographic plate, photographic film, PSP plate, X-ray image intensifier, scintillation counter, or other semiconductor X-ray detector.

圖2示意性地示出了根據實施例的圖1的輻射檢測器100沿線2-2的簡化剖視圖。具體地,輻射檢測器100可以包括輻射吸收層110和用於處理或分析入射輻射在輻射吸收層110中產生的電訊號的電子元件層120(其可以包括一個或多個ASIC或專用積體電路)。輻射檢測器100可以包括或不包括閃爍計數器(未示出)。輻射吸收層110可以包括諸如矽、鍺、GaAs、CdTe、CdZnTe或其組合之類的半導體材料。半導體材料對於感興趣的輻射可以具有高質量衰減係數(high mass attenuation coefficient)。Figure 2 schematically shows a simplified cross-sectional view of the radiation detector 100 of Figure 1 along line 2-2, according to an embodiment. Specifically, the radiation detector 100 may include a radiation absorbing layer 110 and an electronic component layer 120 (which may include one or more ASICs or application specific integrated circuits) for processing or analyzing electrical signals generated by incident radiation in the radiation absorbing layer 110 ). Radiation detector 100 may or may not include a scintillation counter (not shown). Radiation absorbing layer 110 may include semiconductor materials such as silicon, germanium, GaAs, CdTe, CdZnTe, or combinations thereof. Semiconducting materials can have high mass attenuation coefficients for the radiation of interest.

作為示例,圖3示意性地示出了圖1的輻射檢測器100沿線2-2的詳細剖視圖。具體地,輻射吸收層110可以包括由第一摻雜區111、第二摻雜區113的一個或多個離散區114形成的一個或多個二極體(例如p-i-n或p-n)。第二摻雜區113可以通過可選的本徵區112與第一摻雜區111分開。離散區114可以通過第一摻雜區111或本徵區112彼此分開。第一摻雜區111和第二摻雜區113可以具有相反類型的摻雜(例如,第一摻雜區111是p型,第二摻雜區113是n型,或者,第一摻雜區111是n型,第二摻雜區113是p型)。在圖3的示例中,第二摻雜區113的每個離散區域114形成具有第一摻雜區111和可選的本徵區112的二極體。即,在圖3的示例中,輻射吸收層110具有多個二極體(更具體地,7個二極體對應於圖1的陣列中的一行的7個像素150,為簡單起見,圖3中僅標記了其中的2個像素150)。多個二極體可以具有電觸點119A作為共用(公共)電極。第一摻雜區111還可以具有離散部分。As an example, Figure 3 schematically shows a detailed cross-sectional view of the radiation detector 100 of Figure 1 along line 2-2. Specifically, the radiation absorbing layer 110 may include one or more diodes (eg, p-i-n or p-n) formed by one or more discrete regions 114 of the first doped region 111 , the second doped region 113 . The second doped region 113 may be separated from the first doped region 111 by an optional intrinsic region 112 . Discrete regions 114 may be separated from each other by first doped regions 111 or intrinsic regions 112 . The first doped region 111 and the second doped region 113 may have opposite types of doping (for example, the first doped region 111 is p-type and the second doped region 113 is n-type, or the first doped region 111 is p-type and the second doped region 113 is n-type. 111 is n-type, and the second doped region 113 is p-type). In the example of FIG. 3 , each discrete region 114 of the second doped region 113 forms a diode with a first doped region 111 and an optional intrinsic region 112 . That is, in the example of FIG. 3 , the radiation absorbing layer 110 has a plurality of diodes (more specifically, 7 diodes corresponding to 7 pixels 150 in a row of the array of FIG. 1 , for simplicity, FIG. Only 2 of these pixels are labeled in 3150). Multiple diodes may have electrical contact 119A as a common (common) electrode. The first doped region 111 may also have discrete portions.

電子元件層120可以包括適合於處理或解釋由入射在輻射吸收層110上的輻射產生的訊號的電子系統121。電子系統121可以包括諸如濾波器網路、放大器、積分器和比較器之類的類比電路,或者諸如微處理器和記憶體之類的數位電路。電子系統121可以包括一個或多個ADC(類比數位轉換器)。電子系統121可以包括由各像素150共用的元件或專用於單個像素150的元件。例如,電子系統121可以包括專用於每個像素150的放大器和在所有像素150之間共用的微處理器。電子系統121可以通過通孔131電連接到像素150。通孔之間的空間可以使用填充材料130填充,這可以增加電子元件層120與輻射吸收層110的連接的機械穩定性。其它接合技術可以在不使用通孔131的情況下將電子系統121連接到像素150。The electronic component layer 120 may include an electronic system 121 adapted to process or interpret signals generated by radiation incident on the radiation absorbing layer 110 . Electronic system 121 may include analog circuits such as filter networks, amplifiers, integrators, and comparators, or digital circuits such as microprocessors and memories. Electronic system 121 may include one or more ADCs (analog-to-digital converters). Electronic system 121 may include components that are common to each pixel 150 or components that are specific to a single pixel 150 . For example, electronic system 121 may include an amplifier dedicated to each pixel 150 and a microprocessor shared among all pixels 150 . Electronic system 121 may be electrically connected to pixel 150 through via 131 . The space between the vias may be filled with a filling material 130 , which may increase the mechanical stability of the connection of the electronic component layer 120 to the radiation absorbing layer 110 . Other bonding techniques may connect electronic system 121 to pixel 150 without using via 131 .

當來自輻射源(未示出)的輻射撞擊包括二極體的輻射吸收層110時,輻射粒子可以被吸收並且通過多種機制產生一個或多個電荷載流子(例如,電子、電洞)。電荷載流子可以在電場下漂移到二極體之一的電極。該電場可以是外部電場。電觸點119B可以包括離散部分,每個離散部分與離散區114電接觸。術語“電觸點”可以與詞語“電極”互換使用。在實施例中,電荷載流子可以在各方向上漂移,使得由單個輻射粒子產生的電荷載流子基本上不被兩個不同的離散區114共用(這裡“基本上不......共用”意指相比於其餘的電荷載流子,這些電荷載流子中的少於2%、少於0.5%、少於0.1%或少於0.01%的電荷載流子流向一個不同的離散區114)。由入射在這些離散區114之一的覆蓋區周圍的輻射粒子產生的電荷載流子基本上不與這些離散區114中的另一個共用。與離散區114相關聯的像素150可以是離散區114周圍的區域,其中由入射到其中的輻射粒子產生的基本上全部的(多於98%、多於99.5%、多於99.9%或者多於99.99%的)電荷載流子流向離散區114。即,這些電荷載流子中的少於2%、少於1%、少於0.1%或少於0.01%的電荷載流子流過該像素150。When radiation from a radiation source (not shown) strikes the radiation absorbing layer 110 including a diode, the radiation particles may be absorbed and generate one or more charge carriers (eg, electrons, holes) through a variety of mechanisms. Charge carriers can drift to one of the electrodes of the diode under an electric field. The electric field may be an external electric field. Electrical contact 119B may include discrete portions, each discrete portion being in electrical contact with discrete region 114 . The term "electrical contact" may be used interchangeably with the word "electrode". In embodiments, the charge carriers may drift in all directions such that the charge carriers generated by a single radiating particle are not substantially shared by two different discrete regions 114 (herein "substantially not. . . . "Shared" means that less than 2%, less than 0.5%, less than 0.1%, or less than 0.01% of these charge carriers flow to a different source than the remaining charge carriers. discrete area 114). Charge carriers generated by radiation particles incident around the footprint of one of the discrete regions 114 are substantially not shared with another of the discrete regions 114 . Pixels 150 associated with discrete regions 114 may be areas surrounding discrete regions 114 in which substantially all (more than 98%, more than 99.5%, more than 99.9%, or more than 99.99%) of the charge carriers flow to the discrete region 114. That is, less than 2%, less than 1%, less than 0.1%, or less than 0.01% of these charge carriers flow through the pixel 150 .

圖4示意性地示出了根據替代實施例的圖1的輻射檢測器100沿線2-2的詳細剖視圖。更具體地,輻射吸收層110可以包括諸如矽、鍺、GaAs、CdTe、CdZnTe或其組合之類的半導體材料的電阻器,但不包括二極體。半導體材料對於感興趣的輻射可以具有高質量衰減係數。在一個實施例中,圖4的電子元件層120在結構和功能方面類似於圖3的電子元件層120。Figure 4 schematically shows a detailed cross-sectional view along line 2-2 of the radiation detector 100 of Figure 1 according to an alternative embodiment. More specifically, radiation absorbing layer 110 may include resistors of semiconductor materials such as silicon, germanium, GaAs, CdTe, CdZnTe, or combinations thereof, but not diodes. Semiconducting materials can have high-quality attenuation coefficients for the radiation of interest. In one embodiment, the electronic component layer 120 of FIG. 4 is similar in structure and function to the electronic component layer 120 of FIG. 3 .

當輻射撞擊包括電阻器但不包括二極體的輻射吸收層110時,它可以被吸收並通過多種機制產生一個或多個電荷載流子。輻射粒子可以產生10到100000個電荷載流子。電荷載流子可以在電場下漂移到電觸點119A和119B。該電場可以是外部電場。電觸點119B可以包括離散部分。在實施例中,電荷載流子可以在各方向上漂移,使得由單個輻射粒子產生的電荷載流子基本上不被電觸點119B的兩個不同的離散部分共用(這裡“基本上不......共用”意指相比於其餘的電荷載流子,這些電荷載流子中的少於2%、少於0.5%、少於0.1%或少於0.01%的電荷載流子流向一個不同的離散部分)。由入射在電觸點119B的這些離散部分之一的覆蓋區周圍的輻射粒子產生的電荷載流子基本上不與電觸點119B的這些離散部分中的另一個共用。與電觸點119B的離散部分相關聯的像素150可以是離散部分周圍的區域,其中由入射到其中的輻射粒子產生的基本上全部的(多於98%、多於99.5%、多於99.9%或者多於99.99%的)電荷載流子流向電觸點119B的離散部分。即,這些電荷載流子中的少於2%、少於0.5%、少於0.1%或少於0.01%的電荷載流子流過與電觸點119B的一個離散部分相關聯的像素。When radiation strikes the radiation absorbing layer 110, which includes a resistor but not a diode, it can be absorbed and produce one or more charge carriers through a variety of mechanisms. Radiating particles can produce anywhere from 10 to 100,000 charge carriers. Charge carriers can drift to electrical contacts 119A and 119B under the electric field. The electric field may be an external electric field. Electrical contacts 119B may include discrete portions. In embodiments, the charge carriers may drift in all directions such that the charge carriers generated by a single radiating particle are not substantially shared by two different discrete portions of electrical contact 119B (herein "substantially not." .....shared means less than 2%, less than 0.5%, less than 0.1% or less than 0.01% of these charge carriers compared to the rest of the charge carriers flow to a different discrete part). Charge carriers generated by radiation particles incident around the footprint of one of the discrete portions of electrical contact 119B are substantially not shared with another of the discrete portions of electrical contact 119B. A pixel 150 associated with a discrete portion of electrical contact 119B may be an area surrounding the discrete portion in which substantially all (more than 98%, more than 99.5%, more than 99.9%) of the radiation produced by radiation particles incident therein or more than 99.99%) of the charge carriers flow to discrete portions of electrical contact 119B. That is, less than 2%, less than 0.5%, less than 0.1%, or less than 0.01% of these charge carriers flow through a pixel associated with a discrete portion of electrical contact 119B.

輻射檢測器封裝:Radiation Detector Package:

圖5示意性地示出了包括輻射檢測器100和印刷電路板(PCB)510的輻射檢測器封裝500的俯視圖。本文使用的術語“PCB”不限於特定材料。例如,PCB可以包括半導體。輻射檢測器100可以安裝到PCB 510。為了清楚起見,未示出輻射檢測器100和PCB 510之間的佈線。輻射檢測器封裝500可以具有一個或多個輻射檢測器100。PCB 510可以包括未被輻射檢測器100覆蓋的輸入/輸出(I/O)區域512(例如,用於容納接合線514)。輻射檢測器100可以具有有源區域190,其是像素150(圖1)所處的位置。輻射檢測器100可以在輻射檢測器100的邊緣附近具有周邊區195。周邊區195沒有像素150,並且輻射檢測器100不檢測入射在周邊區195上的輻射粒子。FIG. 5 schematically shows a top view of a radiation detector package 500 including the radiation detector 100 and a printed circuit board (PCB) 510 . The term "PCB" as used herein is not limited to a specific material. For example, a PCB may include semiconductors. Radiation detector 100 may be mounted to PCB 510. For clarity, the wiring between radiation detector 100 and PCB 510 is not shown. Radiation detector package 500 may have one or more radiation detectors 100 . PCB 510 may include input/output (I/O) area 512 not covered by radiation detector 100 (eg, to accommodate bond wires 514). Radiation detector 100 may have an active area 190, which is where pixel 150 (FIG. 1) is located. Radiation detector 100 may have a perimeter region 195 near an edge of radiation detector 100 . Peripheral region 195 has no pixels 150, and radiation detector 100 does not detect radiation particles incident on peripheral region 195.

圖像感測器:Image sensor:

圖6示意性地示出了根據實施例的圖像感測器600的剖視圖。圖像感測器600可以包括安裝到系統PCB 650的一個或多個圖5的輻射檢測器封裝500。PCB 510和系統PCB 650之間的電連接可以通過接合線514進行。為了容納PCB 510上的接合線514,PCB 510可以具有未被輻射檢測器100覆蓋的I/O區域512。為了容納系統PCB 650上的接合線514,輻射檢測器封裝500之間可以具有間隙。間隙可以是大約1 mm或更大。入射在周邊區195、I/O區域512或間隙上的輻射粒子不能被系統PCB 650上的輻射檢測器封裝500檢測到。輻射檢測器(例如,輻射檢測器100)的盲區是輻射檢測器的輻射接收表面的入射在其上的輻射粒子不能被輻射檢測器檢測到的區域。封裝(例如,輻射檢測器封裝500)的盲區是封裝的輻射接收表面的入射在其上的輻射粒子不能被封裝中的一個或多個輻射檢測器檢測到的區域。在圖5和圖6所示的這個示例中,輻射檢測器封裝500的盲區包括周邊區195和I/O區域512。具有一組封裝(例如,安裝在同一PCB上並佈置在同一層或不同層中的輻射檢測器封裝500)的圖像感測器(例如,圖像感測器600)的盲區(例如,盲區688)包括該組中的封裝的盲區和封裝之間的間隙的組合。Figure 6 schematically shows a cross-sectional view of an image sensor 600 according to an embodiment. Image sensor 600 may include one or more radiation detector packages 500 of FIG. 5 mounted to system PCB 650. The electrical connection between PCB 510 and system PCB 650 may be through bond wires 514 . To accommodate bond wires 514 on PCB 510 , PCB 510 may have I/O areas 512 that are not covered by radiation detector 100 . To accommodate the bond wires 514 on the system PCB 650, there may be gaps between the radiation detector packages 500. The gap can be about 1 mm or more. Radiation particles incident on perimeter area 195, I/O area 512, or gaps cannot be detected by radiation detector package 500 on system PCB 650. The blind zone of a radiation detector (eg, radiation detector 100) is an area of the radiation receiving surface of the radiation detector upon which radiation particles incident on it cannot be detected by the radiation detector. The dead zone of a package (eg, radiation detector package 500) is an area of the radiation receiving surface of the package upon which radiation particles incident on are not detectable by one or more radiation detectors in the package. In the example shown in FIGS. 5 and 6 , the dead area of radiation detector package 500 includes perimeter area 195 and I/O area 512 . Dead zones (e.g., dead zones) of an image sensor (e.g., image sensor 600) having a set of packages (e.g., radiation detector packages 500 mounted on the same PCB and arranged in the same layer or in different layers) 688) includes the combination of the dead zones of the packages in the group and the gaps between packages.

在實施例中,自行操作的輻射檢測器100(圖1)可以視為圖像感測器。在實施例中,自身操作的輻射檢測器封裝500(圖5)可以視為圖像感測器。In an embodiment, the self-operating radiation detector 100 (Fig. 1) may be considered an image sensor. In an embodiment, the self-operating radiation detector package 500 (FIG. 5) may be considered an image sensor.

包括輻射檢測器100的圖像感測器600可以在輻射檢測器100的有源區域190中具有盲區688。然而,圖像感測器600可以一張一張地捕獲物體或場景(未示出)的多個部分圖像,然後可以將這些捕獲的部分圖像進行拼接,形成整個物體或場景的拼接圖像。Image sensor 600 including radiation detector 100 may have a dead zone 688 in active area 190 of radiation detector 100 . However, the image sensor 600 can capture multiple partial images of an object or scene (not shown) one by one, and then these captured partial images can be spliced to form a mosaic of the entire object or scene. picture.

本申請(包括申請專利範圍)中的術語“圖像”不限於輻射的屬性(例如強度)的空間分佈。例如,術語“圖像”還可以包括物質或元素的密度的空間分佈。The term "image" in this application (including within the scope of the claims) is not limited to the spatial distribution of properties (eg intensity) of radiation. For example, the term "image" may also include a spatial distribution of the density of a substance or element.

成像系統:Imaging system:

圖7示意性地示出了根據實施例的成像系統700。在實施例中,成像系統700可以包括輻射源710和圖6的圖像感測器600。在實施例中,物體720可以位於輻射源710和圖像感測器600之間。Figure 7 schematically illustrates an imaging system 700 according to an embodiment. In an embodiment, imaging system 700 may include radiation source 710 and image sensor 600 of FIG. 6 . In embodiments, object 720 may be located between radiation source 710 and image sensor 600 .

在實施例中,輻射源710可以向物體720和圖像感測器600發送輻射束712。在實施例中,輻射束712可以包括第一輻射粒子和第二輻射粒子(未示出)。第一輻射粒子可以屬於第一能量範圍(即,第一輻射粒子中的每一個具有第一能量範圍內的能量);並且第二輻射粒子可以屬於第二能量範圍(即,第二輻射粒子中的每一個具有第二能量範圍內的能量)。例如,第一能量範圍可以是20 keV至60 keV;並且第二能量範圍可以是30 keV至80 keV。In embodiments, radiation source 710 may send radiation beam 712 to object 720 and image sensor 600 . In embodiments, radiation beam 712 may include first radiation particles and second radiation particles (not shown). The first radiation particles may belong to a first energy range (i.e., each of the first radiation particles has an energy within the first energy range); and the second radiation particles may belong to a second energy range (i.e., the second radiation particles Each of has an energy within the second energy range). For example, the first energy range may be 20 keV to 60 keV; and the second energy range may be 30 keV to 80 keV.

本專利申請(包括申請專利範圍)中的“第一”、“第二”等序號僅用於方便參考,並不意味著任何時間順序。The serial numbers such as "first" and "second" in this patent application (including the scope of the patent application) are only for convenience of reference and do not imply any chronological order.

在實施例中,第一能量範圍和第二能量範圍可以不同(即,至少一能級在一個範圍內而不在另一個範圍內)。例如,20 keV至60 keV的第一能量範圍和30 keV至80 keV的第二能量範圍不同,因為70 keV在第二能量範圍內而不在第一能量範圍內。In embodiments, the first energy range and the second energy range may be different (ie, at least one energy level is within one range but not the other). For example, a first energy range of 20 keV to 60 keV and a second energy range of 30 keV to 80 keV are different because 70 keV is in the second energy range but not in the first energy range.

在實施例中,第一輻射粒子和第二輻射粒子可以是X射線光子。In embodiments, the first radiation particles and the second radiation particles may be X-ray photons.

在實施例中,圖像感測器600可以包括(A)多個感測元件150和(B)用於多個感測元件150中的每一個的輻射粒子計數器(未示出)。例如,圖像感測器600可以包括圖1至圖4的輻射檢測器100。因此,圖像感測器600具有28個感測元件150和28個輻射粒子計數器。在實施例中,28個輻射粒子計數器可以是輻射探測器100的電子元件層120的一部分。In embodiments, image sensor 600 may include (A) a plurality of sensing elements 150 and (B) a radiation particle counter (not shown) for each of the plurality of sensing elements 150 . For example, image sensor 600 may include radiation detector 100 of FIGS. 1-4. Therefore, the image sensor 600 has 28 sensing elements 150 and 28 radiation particle counters. In an embodiment, the 28 radiation particle counters may be part of the electronics layer 120 of the radiation detector 100 .

成像系統的操作:Imaging system operation:

在實施例中,參考圖7,在輻射源710、圖像感測器600和物體720如圖7所示佈置的同時,圖像感測器600可以使用(尤其是)輻射束712中的已經透過物體720的輻射來捕獲物體720的圖像。In an embodiment, referring to FIG. 7 , while the radiation source 710 , the image sensor 600 and the object 720 are arranged as shown in FIG. 7 , the image sensor 600 may use, inter alia, already in the radiation beam 712 An image of object 720 is captured by radiation transmitted through object 720 .

在實施例中,在捕獲物體720的圖像的期間,可以一次一組地從輻射源710發送作為第一組的第一輻射粒子和作為第二組的第二輻射粒子。例如,可以在發送第一輻射粒子之後發送第二輻射粒子。或者,可以在發送第二輻射粒子之後發送第一輻射粒子。In an embodiment, a first set of first radiation particles and a second set of second radiation particles may be sent from radiation source 710 one set at a time during the capture of an image of object 720 . For example, the second radiation particles may be sent after the first radiation particles are sent. Alternatively, the first radiation particles may be sent after the second radiation particles are sent.

在實施例中,對於圖像感測器600的每個感測元件150,對應於所述每個感測元件150的輻射粒子計數器可以(A)對於入射在所述每個感測元件上的第一輻射粒子中的每個輻射粒子計數加1,並且 (B)對於入射在所述每個感測元件150上的第二輻射粒子中的每個輻射粒子計數減1。In an embodiment, for each sensing element 150 of the image sensor 600, a radiated particle counter corresponding to each sensing element 150 may (A) The count of each of the first radiation particles is increased by one, and (B) the count of each of the second radiation particles incident on each of the sensing elements 150 is decreased by one.

例如,假設首先發送第一輻射粒子(即,在發送第二輻射粒子之前發送)。進一步假設第一輻射粒子中的一個輻射粒子入射在圖像感測器600的特定感測元件150上。結果,對應於該特定感測元件150的輻射粒子計數器計數加1,從而將該輻射粒子計數器的計數從0增加到1。For example, assume that a first radiation particle is sent first (i.e., before a second radiation particle is sent). It is further assumed that one of the first radiation particles is incident on a specific sensing element 150 of the image sensor 600 . As a result, the radiated particle counter count corresponding to that particular sensing element 150 is incremented by 1, thereby increasing the radiated particle counter count from 0 to 1.

假設稍後第一輻射粒子中的另一個輻射粒子入射在圖像感測器600的該特定感測元件150上。結果,對應於該特定感測元件150的輻射粒子計數器計數加1,從而將該輻射粒子計數器的計數從1增加到2。Suppose that later another radiation particle among the first radiation particles is incident on the specific sensing element 150 of the image sensor 600 . As a result, the radiated particle counter count corresponding to that particular sensing element 150 is incremented by 1, thereby increasing the radiated particle counter count from 1 to 2.

假設稍後在正發送第二輻射粒子的同時,第二輻射粒子中的一個輻射粒子入射在圖像感測器600的該特定感測元件150上。結果,對應於該特定感測元件150的輻射粒子計數器計數減1,從而將輻射粒子計數器的計數從2減小到1。Suppose later that while the second radiation particles are being transmitted, one of the second radiation particles is incident on the specific sensing element 150 of the image sensor 600 . As a result, the radiated particle counter count corresponding to that particular sensing element 150 is decremented by 1, thereby reducing the radiated particle counter count from 2 to 1.

在實施例中,在圖像感測器600具有28個感測元件150和28個輻射粒子計數器的情況下,由該圖像感測器600捕獲的物體720的圖像可以具有分別對應於28個輻射粒子計數器的28個圖像元素(picture elements)。在實施例中,28個圖像元素中的每個圖像元素的內容可以基於對應於所述每個圖像元素的輻射粒子計數器的計數來確定。換言之,物體720的圖像的28個圖像元素的28個內容分別基於28個輻射粒子計數器的28個計數來確定。In an embodiment, in the case where the image sensor 600 has 28 sensing elements 150 and 28 radiated particle counters, the image of the object 720 captured by the image sensor 600 may have 28 sensing elements 150 , respectively. 28 picture elements for a radiation particle counter. In an embodiment, the content of each of the 28 image elements may be determined based on a count of a radiation particle counter corresponding to said each image element. In other words, the 28 contents of the 28 image elements of the image of object 720 are each determined based on 28 counts of 28 radiation particle counters.

在實施例中,所述每個圖像元素的內容可以等於對應於所述每個圖像元素的輻射粒子計數器的計數。例如,如果輻射粒子計數器的計數為5,則對應於該輻射粒子計數器的圖像元素的內容也是5。In an embodiment, the content of each image element may be equal to the count of a radiation particle counter corresponding to said each image element. For example, if the count of a radiation particle counter is 5, then the content of the image element corresponding to the radiation particle counter is also 5.

概括成像系統的操作的流程圖:Flowchart outlining the operation of the imaging system:

圖8示出概括成像系統700的操作的流程圖800。步驟810包括向物體發送第一能量範圍的第一輻射粒子和第二能量範圍的第二輻射粒子,其中第一能量範圍和第二能量範圍不同。例如,在上述實施例中,參考圖7,向物體720發送第一能量範圍(20 keV至60 keV)的第一輻射粒子和第二能量範圍(30 keV至80 keV)的第二輻射粒子,其中第一能量範圍和第二能量範圍不同(70 keV在第二能量範圍內且不在第一能量範圍內)。8 shows a flow diagram 800 summarizing the operation of imaging system 700. Step 810 includes sending first radiation particles of a first energy range and second radiation particles of a second energy range to the object, where the first energy range and the second energy range are different. For example, in the above embodiment, referring to FIG. 7, first radiation particles in a first energy range (20 keV to 60 keV) and second radiation particles in a second energy range (30 keV to 80 keV) are sent to the object 720, Where the first energy range and the second energy range are different (70 keV is in the second energy range and not in the first energy range).

步驟820包括用圖像感測器捕獲物體的圖像。例如,在上述實施例中,參考圖7,圖像感測器600捕獲物體720的圖像。Step 820 includes capturing an image of the object with an image sensor. For example, in the above-described embodiment, referring to FIG. 7 , the image sensor 600 captures an image of the object 720 .

此外,在步驟820中,圖像感測器包括(A)M個感測元件和(B)分別對應於M個感測元件的M個輻射粒子計數器,M為大於1的整數。例如,在上述實施例中,參考圖7,圖像感測器600包括(A) 28個感測元件150和(B)分別對應於28個感測元件150的28個輻射粒子計數器。In addition, in step 820, the image sensor includes (A) M sensing elements and (B) M radiation particle counters respectively corresponding to the M sensing elements, where M is an integer greater than 1. For example, in the above embodiment, referring to FIG. 7 , the image sensor 600 includes (A) 28 sensing elements 150 and (B) 28 radiation particle counters corresponding to the 28 sensing elements 150 respectively.

此外,在步驟820中,所述捕獲物體的圖像包括,對於所述M個感測元件中的每個感測元件,使所述M個輻射粒子計數器中的對應於所述每個感測元件的輻射粒子計數器(A)對於入射在所述每個感測元件上的所述第一輻射粒子中的每個輻射粒子計數加1,並且(B)對於入射在所述每個感測元件上的所述第二輻射粒子中的每個輻射粒子計數減1。Furthermore, in step 820, the capturing the image of the object includes, for each of the M sensing elements, making one of the M radiation particle counters corresponding to each of the sensing elements The element's radiated particle counter (A) increments by one for each of said first radiated particles incident on said each sensing element, and (B) for each of said first radiated particles incident on said sensing element The count of each radiation particle in the second radiation particle is decremented by one.

例如,在上述實施例中,參考圖7,對於上述特定感測元件150,對應於該特定感測元件150的輻射粒子計數器(A)對於入射在該特定感測元件150上的所述第一輻射粒子中的每個輻射粒子計數加1,並且(B)對於入射在該特定感測元件150上的所述第二輻射粒子中的每個輻射粒子計數減1。For example, in the above embodiment, referring to FIG. 7 , for the above-mentioned specific sensing element 150 , the radiation particle counter (A) corresponding to the specific sensing element 150 is sensitive to the first particle incident on the specific sensing element 150 . The count is incremented by 1 for each of the radiated particles, and (B) decremented by 1 for each of the second radiated particles incident on that particular sensing element 150 .

其它實施例:Other examples:

造影劑:Contrast agent:

在實施例中,參考圖8的步驟820,在捕獲物體的圖像之前,可以將造影劑(未示出)引入物體中。例如,參考圖7,可以在圖像感測器600捕獲物體720的圖像之前將造影劑引入物體720。在實施例中,造影劑可以包含碘。In embodiments, referring to step 820 of Figure 8, a contrast agent (not shown) may be introduced into the object prior to capturing an image of the object. For example, referring to FIG. 7 , contrast agent may be introduced into object 720 before image sensor 600 captures an image of object 720 . In embodiments, the contrast agent may contain iodine.

在改變組時切換計數器狀態:Toggle counter state when changing groups:

在實施例中,參考圖8的步驟820,M個輻射粒子計數器中的每個輻射粒子計數器可以處於遞增計數狀態或遞減計數狀態。如果輻射粒子計數器處於遞增計數狀態,則該輻射粒子計數器在輻射粒子入射在對應於該輻射粒子計數器的感測元件上時計數加1。如果輻射粒子計數器處於遞減計數狀態,則該輻射粒子計數器在輻射粒子入射在對應於該輻射粒子計數器的感測元件上時計數減1。In an embodiment, referring to step 820 of FIG. 8 , each of the M radiation particle counters may be in an up-counting state or a down-counting state. If the radiation particle counter is in an up-counting state, the radiation particle counter counts by one when the radiation particles are incident on the sensing element corresponding to the radiation particle counter. If the radiation particle counter is in a down-counting state, the radiation particle counter counts by 1 when the radiation particles are incident on the sensing element corresponding to the radiation particle counter.

在實施例中,在一次一組地發送第一輻射粒子(即,第一組)和第二輻射粒子(即,第二組)的情況下,(A)在正發送第一輻射粒子的同時,M輻射粒子計數器可以處於遞增計數狀態,並且(B)在正發送第二輻射粒子的同時,M個輻射粒子計數器可以處於遞減計數狀態。In an embodiment, where the first radiating particles (i.e., the first group) and the second radiating particles (i.e., the second group) are transmitted one set at a time, (A) while the first radiating particles are being transmitted , the M radiation particle counters may be in an up-counting state, and (B) while the second radiation particles are being transmitted, the M radiation particle counters may be in a down-counting state.

在實施例中,參考圖8的步驟820,所述捕獲物體的圖像可以包括:在發送第一組和第二組中的一組之後且在發送第一組和第二組中的剩餘組之前,將M個輻射粒子計數器從遞增計數狀態和遞減計數狀態中的一狀態切換為遞增計數狀態和遞減計數狀態中的剩餘狀態。In an embodiment, referring to step 820 of FIG. 8 , the capturing the image of the object may include: after transmitting one of the first group and the second group and after transmitting the remaining groups of the first group and the second group. Previously, the M radiation particle counters were switched from one of the up-counting state and the down-counting state to the remaining states of the up-counting state and the down-counting state.

例如,假設首先發送第一組(即,第一輻射粒子)。在正發送第一組的同時,圖像感測器600的28個輻射粒子計數器處於遞增計數狀態。然後,在發送第一組之後且在發送第二組(即,第二輻射粒子)之前,圖像感測器600的28個輻射粒子計數器從遞增計數狀態切換到遞減計數狀態。然後,在正發送第二組的同時,圖像感測器600的28個輻射粒子計數器處於遞減計數狀態。For example, assume that the first group (i.e., the first radiating particles) is sent first. While the first group is being transmitted, the 28 radiation particle counters of image sensor 600 are in an incrementing state. Then, after sending the first group and before sending the second group (ie, the second radiation particles), the 28 radiation particle counters of the image sensor 600 switch from the up-counting state to the down-counting state. Then, while the second group is being transmitted, the 28 radiation particle counters of image sensor 600 are in a count-down state.

針對不同組的不同轟擊靶:For different bombardment targets of different groups:

在實施例中,參考圖7,輻射源710可以包括(A)包含第一材料的第一轟擊靶(未示出)和(B)包含第二材料的第二轟擊靶(未示出)。在實施例中,可以從第一轟擊靶發送第一輻射粒子,並且可以從第二轟擊靶發送第二輻射粒子。在實施例中,第一材料和第二材料可以不同。例如,第一材料可以是鎢,並且第二材料可以是(A)鉬、(B)錫或(C)鑭錒合金。In embodiments, referring to Figure 7, radiation source 710 may include (A) a first bombardment target (not shown) including a first material and (B) a second bombardment target (not shown) including a second material. In embodiments, first radiation particles may be sent from a first bombardment target, and second radiation particles may be sent from a second bombardment target. In embodiments, the first material and the second material may be different. For example, the first material may be tungsten, and the second material may be (A) molybdenum, (B) tin, or (C) lanthanum-actinium alloy.

在實施例中,第一輻射粒子和第二輻射粒子可以通過以下方式發送:(A)將電子束(未示出)引導至第一轟擊靶和第二轟擊靶中的一轟擊靶;然後(B)將該電子束引導至第一轟擊靶和第二轟擊靶的剩餘轟擊靶。換言之,電子束一次被引導至一個轟擊靶,從而一次一組地從第一轟擊靶和第二轟擊靶分別產生和發送第一組和第二組。In embodiments, the first radiation particles and the second radiation particles may be sent by: (A) directing an electron beam (not shown) to one of the first bombardment target and the second bombardment target; and then (A) B) Direct the electron beam to the remaining bombardment targets of the first bombardment target and the second bombardment target. In other words, the electron beam is directed to one bombardment target at a time, thereby generating and transmitting the first and second groups, respectively, one group at a time from the first and second bombardment targets.

第一能量範圍和第二能量範圍重疊:The first energy range and the second energy range overlap:

在實施例中,第一輻射粒子的第一能量範圍和第二輻射粒子的第二能量範圍可以重疊。例如,上面提到的20 keV至60 keV的第一能量範圍和30 keV至80 keV的第二能量範圍重疊。In embodiments, the first energy range of the first radiation particles and the second energy range of the second radiation particles may overlap. For example, the first energy range of 20 keV to 60 keV mentioned above overlaps with the second energy range of 30 keV to 80 keV.

替代實施例:Alternative embodiment:

同時發送兩個組:Send two groups simultaneously:

在上述實施例中,參考圖7,在捕獲物體720的圖像的期間,一次一組地發送第一組(即,第一輻射粒子)和第二組(即,第二輻射粒子)。在替代實施例中,在捕獲物體720的圖像的期間,可以從輻射源710同時發送第一組和第二組。因此,在實施例中,第一能量範圍和第二能量範圍可以不重疊(即,沒有能級同時在這兩個能量範圍內)。例如,第一能量範圍可以是120 keV至140 keV,並且第二能量範圍可以是150 keV至180 keV。In the above embodiment, referring to FIG. 7 , the first group (ie, the first radiation particles) and the second group (ie, the second radiation particles) are transmitted one group at a time during the capture of the image of the object 720 . In an alternative embodiment, the first and second groups may be transmitted simultaneously from radiation source 710 during the capture of an image of object 720 . Thus, in embodiments, the first energy range and the second energy range may not overlap (ie, no energy level is in both energy ranges simultaneously). For example, the first energy range may be 120 keV to 140 keV, and the second energy range may be 150 keV to 180 keV.

因此,在實施例中,參考圖7,圖像感測器600可以按如下捕獲物體720的圖像。在捕獲物體720的圖像的期間,在同時發送第一組和第二組的情況下,對於圖像感測器600的每個感測元件150,當輻射粒子入射在所述每個感測元件150上時,(A)如果圖像感測器600確定入射輻射粒子屬於第一能量範圍,則對應於所述每個感測元件150的輻射粒子計數器計數可以加1,並且(B)如果圖像感測器600確定入射輻射粒子屬於第二能量範圍,則對應於所述每個感測元件150的輻射粒子計數器計數可以減1。Therefore, in an embodiment, referring to Figure 7, image sensor 600 may capture an image of object 720 as follows. During the capture of an image of the object 720 , in the case where the first group and the second group are transmitted simultaneously, for each sensing element 150 of the image sensor 600 , when a radiation particle is incident on each of the sensing elements 150 , When the element 150 is on, (A) if the image sensor 600 determines that the incident radiation particle belongs to the first energy range, the radiation particle counter count corresponding to each sensing element 150 may be increased by 1, and (B) if When the image sensor 600 determines that the incident radiation particles belong to the second energy range, the count of the radiation particle counter corresponding to each sensing element 150 may be decreased by one.

然後,在實施例中,物體720的圖像的圖像元素的內容可以基於圖像感測器600的輻射粒子計數器的計數來確定。例如,如果圖像感測器600具有28個感測元件並且28個輻射粒子計數器,則物體720的圖像的28個圖像元素的內容可以分別基於圖像感測器600的28個輻射粒子計數器的28個計數來確定。Then, in embodiments, the content of the image elements of the image of object 720 may be determined based on the counts of the radiation particle counter of image sensor 600 . For example, if the image sensor 600 has 28 sensing elements and 28 radiation particle counters, the contents of the 28 image elements of the image of the object 720 may be based on the 28 radiation particles of the image sensor 600 respectively. Counter 28 counts to determine.

儘管本文已經公開了各個方面和實施例,但其他方面和實施例對於本領域技術人員來說將是顯而易見的。本文所公開的各個方面和實施例是出於說明的目的而不旨在限制,真實範圍和精神由所附申請專利範圍指示。Although various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the appended claims.

100:輻射檢測器 110:輻射吸收層 111:第一摻雜區 112:本徵區 113:第二摻雜區 114:離散區 119A、119B:電觸點 120:電子元件層 121:電子系統 130:填充材料 131:通孔 150:像素 190:有源區域 195:周邊區 500:輻射檢測器封裝 510:印刷電路板 512:輸入/輸出區域 514:接合線 600:圖像感測器 650:系統PCB 688:盲區 700:成像系統 710:輻射源 712:輻射束 720:物體 800:流程圖 810、820:步驟 100: Radiation detector 110: Radiation absorbing layer 111: First doped region 112:Eigen region 113: Second doping region 114: Discrete area 119A, 119B: Electrical contacts 120: Electronic component layer 121: Electronic systems 130: Filling material 131:Through hole 150: pixels 190: Active area 195: Surrounding area 500: Radiation detector packaging 510:Printed circuit board 512:Input/output area 514:Joining wire 600:Image sensor 650:System PCB 688:Blind spot 700: Imaging system 710: Radiation source 712: Radiation Beam 720:Object 800:Flowchart 810, 820: steps

圖1示意性地示出了根據實施例的輻射檢測器。 圖2示意性地示出了根據實施例的輻射檢測器的簡化剖視圖。 圖3示意性地示出了根據實施例的輻射檢測器的詳細剖視圖。 圖4示意性地示出了根據替代實施例的輻射檢測器的詳細剖視圖。 圖5示意性地示出了根據實施例的包括輻射檢測器和印刷電路板(PCB)的輻射檢測器封裝的俯視圖。 圖6示意性地示出了根據實施例的包括安裝到系統PCB(印刷電路板)的圖5的封裝的圖像感測器的剖視圖。 圖7示意性地示出了根據實施例的成像系統。 圖8示出了根據實施例的概括成像系統的操作的流程圖。 Figure 1 schematically shows a radiation detector according to an embodiment. Figure 2 schematically shows a simplified cross-sectional view of a radiation detector according to an embodiment. Figure 3 schematically shows a detailed cross-sectional view of a radiation detector according to an embodiment. Figure 4 schematically shows a detailed cross-sectional view of a radiation detector according to an alternative embodiment. Figure 5 schematically shows a top view of a radiation detector package including a radiation detector and a printed circuit board (PCB) according to an embodiment. Figure 6 schematically shows a cross-sectional view of an image sensor including the package of Figure 5 mounted to a system PCB (Printed Circuit Board), according to an embodiment. Figure 7 schematically illustrates an imaging system according to an embodiment. Figure 8 shows a flowchart summarizing the operation of an imaging system in accordance with an embodiment.

800:流程圖 800:Flowchart

810、820:步驟 810, 820: steps

Claims (17)

一種使用雙向計數器的成像方法,包括:向物體發送第一能量範圍的第一輻射粒子和第二能量範圍的第二輻射粒子,其中所述第一能量範圍和所述第二能量範圍不同;以及用圖像感測器捕獲所述物體的圖像,其中,所述圖像感測器包括(A)M個感測元件和(B)分別對應於所述M個感測元件的M個輻射粒子計數器,M為大於1的整數,並且其中,所述捕獲所述物體的所述圖像包括,對於所述M個感測元件中的每個感測元件,使所述M個輻射粒子計數器中的對應於所述每個感測元件的輻射粒子計數器(A)對於入射在所述每個感測元件上的所述第一輻射粒子中的每個輻射粒子計數加1,並且(B)對於入射在所述每個感測元件上的所述第二輻射粒子中的每個輻射粒子計數減1。 An imaging method using a bidirectional counter, comprising: sending first radiation particles of a first energy range and second radiation particles of a second energy range to an object, wherein the first energy range and the second energy range are different; and An image of the object is captured with an image sensor, wherein the image sensor includes (A) M sensing elements and (B) M radiations respectively corresponding to the M sensing elements a particle counter, M being an integer greater than 1, and wherein said capturing the image of the object includes, for each of the M sensing elements, causing the M radiated particle counters The radiated particle counter corresponding to each of the sensing elements (A) increments one for each of the first radiating particles incident on the each sensing element, and (B) The count is decremented by one for each of the second radiation particles incident on each sensing element. 如請求項1所述的使用雙向計數器的成像方法,其中,所述第一輻射粒子和所述第二輻射粒子是X射線光子。 The imaging method using a bidirectional counter as claimed in claim 1, wherein the first radiation particles and the second radiation particles are X-ray photons. 如請求項1所述的使用雙向計數器的成像方法,其中所述物體的所述圖像包括分別對應於所述M個輻射粒子計數器的M個圖像元素,並且其中所述捕獲所述物體的所述圖像包括基於所述M個輻射粒子計數器中的與所述M個圖像元素中的每個圖像元素相對應的所 述輻射粒子計數器的計數確定所述每個圖像元素的內容。 The imaging method using a bidirectional counter as described in claim 1, wherein the image of the object includes M image elements respectively corresponding to the M radiation particle counters, and wherein the capturing of the object The image includes all of the M radiation particle counters corresponding to each of the M image elements. The count of the radiation particle counter determines the content of each image element. 如請求項3所述的使用雙向計數器的成像方法,其中,所述每個圖像元素的內容等於所述M個輻射粒子計數器中的對應於所述每個圖像元素的所述輻射粒子計數器的計數。 The imaging method using a bidirectional counter as claimed in claim 3, wherein the content of each image element is equal to the radiation particle counter corresponding to each image element among the M radiation particle counters. count. 如請求項1所述的使用雙向計數器的成像方法,還包括在捕獲所述物體的圖像之前將造影劑引入所述物體中。 The imaging method using a bidirectional counter as claimed in claim 1, further comprising introducing a contrast agent into the object before capturing an image of the object. 如請求項5所述的使用雙向計數器的成像方法,其中所述造影劑包含碘。 The imaging method using a bidirectional counter as claimed in claim 5, wherein the contrast agent contains iodine. 如請求項1所述的使用雙向計數器的成像方法,其中,一次一組地發送作為第一組的所述第一輻射粒子和作為第二組的所述第二輻射粒子。 The imaging method using a bidirectional counter as claimed in claim 1, wherein the first radiation particles as a first group and the second radiation particles as a second group are sent one group at a time. 如請求項7所述的使用雙向計數器的成像方法,其中所述M個輻射粒子計數器中的每個輻射粒子計數器處於遞增計數狀態或遞減計數狀態,其中,在發送所述第一輻射粒子的同時,所述M個輻射粒子計數器處於遞增計數狀態,並且,其中,在發送所述第二輻射粒子的同時,所述M個輻射粒子計數器處於遞減計數狀態。 The imaging method using a bidirectional counter as described in claim 7, wherein each of the M radiation particle counters is in an up-counting state or a down-counting state, wherein while sending the first radiation particle , the M radiation particle counters are in an up-counting state, and wherein, while the second radiation particles are being sent, the M radiation particle counters are in a down-counting state. 如請求項8所述的使用雙向計數器的成像方法,其中,所述捕獲所述物體的所述圖像包括,在發送所述第一組和所述第二組中的一組之後且在發送所述第一組和所述第二組中的剩餘組之前,將所述M個輻射粒子計數器從所述遞增計數狀態和所述 遞減計數狀態中的一狀態切換為所述遞增計數狀態和所述遞減計數狀態中的剩餘狀態。 The imaging method using a bidirectional counter as claimed in claim 8, wherein the capturing the image of the object includes, after sending one of the first group and the second group and after sending Before the remaining groups in the first group and the second group, the M radiation particle counters are moved from the incrementing counting state and the One of the down-counting states is switched to the up-counting state and the remaining states of the down-counting states. 如請求項7所述的使用雙向計數器的成像方法,其中從包含第一材料的第一轟擊靶發送所述第一輻射粒子,其中從包含第二材料的第二轟擊靶發送所述第二輻射粒子,並且其中所述第一材料和所述第二材料不同。 The imaging method using a bidirectional counter as claimed in claim 7, wherein the first radiation particles are sent from a first bombardment target containing a first material, and wherein the second radiation is sent from a second bombardment target containing a second material. particles, and wherein the first material and the second material are different. 如請求項10所述的使用雙向計數器的成像方法,其中,所述第一材料包括鎢,並且其中,所述第二材料包括(A)鉬、(B)錫或(C)鑭錒合金。 The imaging method using a bidirectional counter according to claim 10, wherein the first material includes tungsten, and wherein the second material includes (A) molybdenum, (B) tin, or (C) lanthanum-actinium alloy. 如請求項10所述的使用雙向計數器的成像方法,其中所述發送所述第一輻射粒子和所述第二輻射粒子包括:將電子束引導至所述第一轟擊靶和所述第二轟擊靶中的一轟擊靶;然後將所述電子束引導至所述第一轟擊靶和所述第二轟擊靶中的剩餘轟擊靶。 The imaging method using a bidirectional counter as claimed in claim 10, wherein sending the first radiation particles and the second radiation particles includes: guiding an electron beam to the first bombardment target and the second bombardment target. one of the targets; the electron beam is then directed to the remaining ones of the first and second bombardment targets. 如請求項7所述的使用雙向計數器的成像方法,其中所述第一能量範圍和所述第二能量範圍重疊。 The imaging method using a bidirectional counter as claimed in claim 7, wherein the first energy range and the second energy range overlap. 如請求項1所述的使用雙向計數器的成像方法,其中,同時向所述物體和所述圖像感測器發送所述第一輻射粒子和所述第二輻射粒子。 The imaging method using a bidirectional counter as claimed in claim 1, wherein the first radiation particles and the second radiation particles are sent to the object and the image sensor simultaneously. 如請求項14所述的使用雙向計數器的成像方法,其中所述捕獲所述物體的所述圖像包括,對於所述M個感測元件中的每個感測元件:利用所述圖像感測器確定入射在所述每個感測元件上的所述第一輻射粒子和所述第二輻射粒子中的一輻射粒子屬於所述第一能量範圍,從而使所述M個輻射粒子計數器中的對應於所述每個感測元件的所述輻射粒子計數器計數加1。 The imaging method using a bidirectional counter as claimed in claim 14, wherein the capturing the image of the object includes, for each of the M sensing elements: using the image sensor The detector determines that one of the first radiation particles and the second radiation particles incident on each sensing element belongs to the first energy range, thereby causing one of the M radiation particle counters to The radiated particle counter count corresponding to each of the sensing elements is incremented by one. 如請求項15所述的使用雙向計數器的成像方法,其中所述捕獲所述物體的所述圖像包括,對於所述M個感測元件中的每個感測元件:利用所述圖像感測器確定入射在所述每個感測元件上的所述第一輻射粒子和所述第二輻射粒子中的一輻射粒子屬於所述第二能量範圍,從而使所述M個輻射粒子計數器中的對應於所述每個感測元件的所述輻射粒子計數器計數減1。 The imaging method using a bidirectional counter as claimed in claim 15, wherein the capturing the image of the object includes, for each of the M sensing elements: using the image sensor The detector determines that one of the first radiation particles and the second radiation particles incident on each sensing element belongs to the second energy range, thereby causing one of the M radiation particle counters to The count of the radiated particle counter corresponding to each of the sensing elements is decremented by one. 如請求項1所述的使用雙向計數器的成像方法,其中所述第一能量範圍和所述第二能量範圍不重疊。The imaging method using a bidirectional counter as claimed in claim 1, wherein the first energy range and the second energy range do not overlap.
TW111147585A 2021-12-31 2022-12-12 Imaging methods using bi-directional counters TWI831514B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/143485 WO2023123302A1 (en) 2021-12-31 2021-12-31 Imaging methods using bi-directional counters
WOPCT/CN2021/143485 2021-12-31

Publications (2)

Publication Number Publication Date
TW202328705A TW202328705A (en) 2023-07-16
TWI831514B true TWI831514B (en) 2024-02-01

Family

ID=86997070

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111147585A TWI831514B (en) 2021-12-31 2022-12-12 Imaging methods using bi-directional counters

Country Status (2)

Country Link
TW (1) TWI831514B (en)
WO (1) WO2023123302A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069369A (en) * 1998-08-19 2000-03-03 Fuji Photo Film Co Ltd Energy subtraction image forming device
TW200849985A (en) * 2007-04-23 2008-12-16 Sony Corp Solid-state imaging device, signal processing method for the same, and imaging apparatus
WO2016088426A1 (en) * 2014-12-01 2016-06-09 ソニー株式会社 Radiation counting device and method for controlling radiation counting device
CN109936360A (en) * 2019-04-19 2019-06-25 苏州瑞迈斯医疗科技有限公司 Pulse counting equipment and radiation detecting system
CN111587084A (en) * 2018-02-03 2020-08-25 深圳帧观德芯科技有限公司 Endoscope with a detachable handle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4345153A (en) * 1980-07-30 1982-08-17 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Low intensity X-ray and gamma-ray spectrometer
US20010040214A1 (en) * 2000-03-13 2001-11-15 Friedman Jacob A. Method and apparatus for extending particle image velocimetry to determine particle size and three dimensional velocity
JP2004325183A (en) * 2003-04-23 2004-11-18 M & C:Kk Radiation detection method, radiation detector, and radiation imaging system with this detector loaded thereon
CN105282463B (en) * 2015-10-22 2018-08-31 天津大学 The digital pixel image sensor of single particle effect can be resisted
WO2018133085A1 (en) * 2017-01-23 2018-07-26 Shenzhen Xpectvision Technology Co., Ltd. A radiation detector with dynamically allocated memory for particle counting
EP3779403B1 (en) * 2018-03-29 2024-07-03 Hitachi High-Tech Corporation Charged particle beam device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000069369A (en) * 1998-08-19 2000-03-03 Fuji Photo Film Co Ltd Energy subtraction image forming device
TW200849985A (en) * 2007-04-23 2008-12-16 Sony Corp Solid-state imaging device, signal processing method for the same, and imaging apparatus
WO2016088426A1 (en) * 2014-12-01 2016-06-09 ソニー株式会社 Radiation counting device and method for controlling radiation counting device
CN111587084A (en) * 2018-02-03 2020-08-25 深圳帧观德芯科技有限公司 Endoscope with a detachable handle
CN109936360A (en) * 2019-04-19 2019-06-25 苏州瑞迈斯医疗科技有限公司 Pulse counting equipment and radiation detecting system

Also Published As

Publication number Publication date
TW202328705A (en) 2023-07-16
WO2023123302A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
TWI834847B (en) Image sensor, using method thereof and radiation computed tomography system
US20210327949A1 (en) Imaging systems and methods of operating the same
US20230281754A1 (en) Imaging methods using an image sensor with multiple radiation detectors
CN114930162A (en) Phase contrast imaging method
TWI831514B (en) Imaging methods using bi-directional counters
TWI782784B (en) Imaging systems and imaging methods
US11904187B2 (en) Imaging methods using multiple radiation beams
TWI813940B (en) Imaging system and operating method thereof
CN110892291B (en) X-ray detector
CN115023605A (en) Phase contrast imaging method
WO2024031301A1 (en) Imaging systems and corresponding operation methods
WO2023123301A1 (en) Imaging systems with rotating image sensors
TWI842236B (en) Methods of operation of image sensors
TWI842206B (en) Imaging systems with image sensors for side radiation incidence during imaging and method of using the same
WO2023173387A1 (en) Radiation detectors including perovskite
US11948285B2 (en) Imaging systems with multiple radiation sources
TWI822069B (en) Battery roll testing method with imaging systems
TWI762195B (en) Using methods for image sensor
TWI811466B (en) A radiation detector system and using method thereof
WO2023115516A1 (en) Imaging systems and methods of operation
US11882378B2 (en) Imaging methods using multiple radiation beams
TW202329481A (en) Methods of operation of image sensors
WO2024044925A1 (en) Side incidence image sensors with protruding integrated circuit chips
CN118401176A (en) Imaging system with rotating image sensor
TW202331301A (en) Method and system for performing diffractometry