TWI831093B - Optical sensing device - Google Patents

Optical sensing device Download PDF

Info

Publication number
TWI831093B
TWI831093B TW110144970A TW110144970A TWI831093B TW I831093 B TWI831093 B TW I831093B TW 110144970 A TW110144970 A TW 110144970A TW 110144970 A TW110144970 A TW 110144970A TW I831093 B TWI831093 B TW I831093B
Authority
TW
Taiwan
Prior art keywords
light source
source module
sensing device
lens
light beam
Prior art date
Application number
TW110144970A
Other languages
Chinese (zh)
Other versions
TW202323926A (en
Inventor
陳皇昌
涂智信
陳維倫
連崇傑
Original Assignee
一品光學工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一品光學工業股份有限公司 filed Critical 一品光學工業股份有限公司
Priority to TW110144970A priority Critical patent/TWI831093B/en
Publication of TW202323926A publication Critical patent/TW202323926A/en
Application granted granted Critical
Publication of TWI831093B publication Critical patent/TWI831093B/en

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

An optical sensing device including a light source module, a reflector module, a lens, and a sensor. The light source module is configured to emit a light beam. The reflector module is disposed downstream of the optical path of the light source module. The reflector module includes one or more rotatable mirrors. The one or more rotatable mirrors reflect the light beam from the light source module to an illumination area on the object. The lens is disposed downstream of the optical path of the object. The lens is configured to converge the light beam reflected from the illumination area on the object to an imaging plane of the lens. The sensor is disposed on the imaging plane of the lens.

Description

光學感測裝置Optical sensing device

本發明是有關於一種光學裝置,且特別是有關於一種光學感測裝置。The present invention relates to an optical device, and in particular to an optical sensing device.

光達(light detection and ranging,LiDAR)被使用在各種應用中的距離測量,且可被併入到日益增廣的裝置範圍。一般而言,光達系統通過使用脈衝雷射照射目標然後感測從目標反射的脈衝的飛行時間(ToF)來測量到目標的距離。進一步地,可以通過跨場景掃描雷射脈衝並根據角度及飛行時間來産生目標場景的三維地圖。然而,隨著攜帶式電子產品及各種相關智能應用的快速發展,多元使用以及小型化的需求為產品的開發帶來挑戰。Light detection and ranging (LiDAR) is used for distance measurement in a variety of applications and can be incorporated into an ever-increasing range of devices. Generally speaking, lidar systems measure the distance to a target by illuminating the target with a pulsed laser and then sensing the time of flight (ToF) of the pulse reflected from the target. Furthermore, a three-dimensional map of the target scene can be generated by scanning the laser pulse across the scene and based on the angle and flight time. However, with the rapid development of portable electronic products and various related smart applications, the demand for multiple uses and miniaturization has brought challenges to product development.

光達的主要架構有兩個部分:一為發射端(Transmitter, TX),另一為接收端(Receiver, RX),其光學基本特徵在於發射角度(emission angle)與接受角度(acceptance angle),也就是由所謂的視角(field angle或Field of View,FOV)來量化。為達有效能量最大化的運用,視角的達標往往需要借助掃描方式來達成。發射端的光形一般藉由掃描方式平面反射鏡可以達到擴增的方式。例如由點狀(point-like)藉由一個二維方式調變的平面反射鏡變成二維分佈(2-dimensional field distribution),或由線狀(line-like)藉由一個一維方式調變的平面反射鏡變成二維分佈(2-dimensional field distribution)。The main structure of LiDAR has two parts: one is the transmitter (TX) and the other is the receiver (RX). Its basic optical characteristics are the emission angle and the acceptance angle. It is quantified by the so-called field angle or Field of View (FOV). In order to maximize the effective use of energy, the standard viewing angle often needs to be achieved by scanning. The light shape at the emission end can generally be amplified by scanning a flat reflector. For example, from point-like to a 2-dimensional field distribution through a plane mirror that is modulated in a two-dimensional way, or from line-like to a one-dimensional field distribution. The plane reflector becomes a 2-dimensional field distribution.

現實面是依靠掃描方式平面反射鏡有其侷限性,如掃描方式與角度,另外通常需要一個動件(如馬達等等),對整體機構強度與穩定性均構成一定程度的要求。故如何有一個有效替代方案是一個重要課題。The reality is that plane mirrors that rely on scanning methods have their limitations, such as scanning methods and angles. In addition, they usually require a moving part (such as a motor, etc.), which imposes certain requirements on the strength and stability of the overall mechanism. Therefore, how to have an effective alternative is an important issue.

另外一方面由於對光源出來的光束的準直(collimating beam)特性要求,在現實上殊難實現故常以遠聚焦(focusing)的光束。但光源如雷射(laser)光束有光腰(waist)特性,故常見光斑(spot)的最小值未必落在可允許的範圍內。而平面反射鏡的公差如平整度與偏斜乃至離心更增加了設計上的困難度。故如何有一個有效解決方案是一個重要課題。On the other hand, due to the requirements for the collimating beam characteristics of the light beam coming out of the light source, it is actually very difficult to achieve a beam that is often focused at a distance. However, light sources such as laser beams have waist characteristics, so the minimum value of a common spot may not fall within the allowable range. The tolerances of plane reflectors such as flatness, deflection and even centrifugation add to the difficulty of design. Therefore, how to have an effective solution is an important issue.

本發明提供一種光學感測裝置,可以獲得物體的深度資訊以及物體的其他光學影像資料,特別是能針對上述課題提供解決方案。The present invention provides an optical sensing device that can obtain depth information of an object and other optical image data of the object, and in particular can provide solutions to the above problems.

本發明實施例的一種光學感測裝置,包括光源模組、反射鏡模組、鏡頭以及感測器。光源模組適於發出光束。反射鏡模組設置於光源模組的光路下游。反射鏡模組包含一個或多個可調控反射鏡。一個或多個可調控反射鏡將來自光源模組的光束反射至物體上的照明區域。鏡頭設置於物體的光路下游。鏡頭適於將自物體上的照明區域中反射的光束會聚在鏡頭的成像平面上。感測器設置於鏡頭的成像平面上。An optical sensing device according to an embodiment of the present invention includes a light source module, a mirror module, a lens and a sensor. The light source module is suitable for emitting light beams. The reflector module is arranged downstream of the optical path of the light source module. The reflector module contains one or more adjustable reflectors. One or more adjustable reflectors reflect the light beam from the light source module to the illuminated area on the object. The lens is placed downstream of the object's optical path. The lens is adapted to converge the light beam reflected from the illuminated area on the object onto the imaging plane of the lens. The sensor is arranged on the imaging plane of the lens.

基於上述,本發明實施例的光學感測裝置中,鏡頭設置於物體的光路下游,且適於將自物體上的照明區域中反射的光束會聚在鏡頭的成像平面上。因此,本發明實施例的光學感測裝置,除了可以獲得物體的深度資訊或深度影像,也可以獲得物體的其他影像資料或事件觸發訊號,例如物體的視覺影像、熱感應影像或訊號。Based on the above, in the optical sensing device according to the embodiment of the present invention, the lens is disposed downstream of the optical path of the object, and is adapted to converge the light beam reflected from the illumination area on the object onto the imaging plane of the lens. Therefore, in addition to obtaining the depth information or depth image of the object, the optical sensing device according to the embodiment of the present invention can also obtain other image data or event trigger signals of the object, such as the visual image, thermal sensing image or signal of the object.

圖1是依照本發明的一實施例的一種光學感測裝置的示意圖。請參照圖1。光學感測裝置1包括光源模組10、反射鏡模組22、鏡頭30以及感測器40。光源模組10適於發出光束I。光源模組10包括一個或多個光源,光源例如是發光二極體、有機發光半導體或高分子發光二極體等固態電子元件,或是雷射光源。在一些實施例中,光源模組10包括遠紅外光源或熱源,光束I可以主要是包括長波紅外光或其他波段的紅外光。需說明的是,本文中的用語「光」,是表示可見光、紅外和/或紫外範圍中的電磁波。FIG. 1 is a schematic diagram of an optical sensing device according to an embodiment of the present invention. Please refer to Figure 1. The optical sensing device 1 includes a light source module 10 , a mirror module 22 , a lens 30 and a sensor 40 . The light source module 10 is suitable for emitting the light beam I. The light source module 10 includes one or more light sources. The light sources are, for example, solid-state electronic components such as light-emitting diodes, organic light-emitting semiconductors, or polymer light-emitting diodes, or laser light sources. In some embodiments, the light source module 10 includes a far-infrared light source or heat source, and the light beam I may mainly include long-wave infrared light or infrared light in other wavelength bands. It should be noted that the term "light" in this article refers to electromagnetic waves in the visible, infrared and/or ultraviolet ranges.

反射鏡模組22設置於光源模組10的光路下游。反射鏡模組22包含一個或多個可調控反射鏡22a。可調控反射鏡22a可以是繞著兩個軸旋轉的微鏡(例如是使用微機電系統(microelectromechanical system,MEMS)技術製造的微鏡)或可改變光學相位反射鏡(例如光學相位陣列(Optical Phased Array,OPA)或光學液晶(liquid crystal,LC)或空間光調變器(spatial light modulator,SLM)),在OPA、LC或SLM的硬體外觀上並無需要兩個旋轉軸。因此,可將來自光源模組10的光束I反射至不同方向。在本實施例中,一個或多個可調控反射鏡22a將來自光源模組10的光束I反射至物體O上的照明區域LA。在本實施例中,也可針對應用需求,改變可調控反射鏡22a的相位調控方式,進而控制相對應的視角與最佳工作距離(等效對應到圖一中照明區域LA的大小,因此,可通過可調控反射鏡22a控制照明區域LA的大小)。The reflector module 22 is disposed downstream of the optical path of the light source module 10 . The mirror module 22 includes one or more adjustable mirrors 22a. The controllable mirror 22a may be a micromirror that rotates around two axes (for example, a micromirror manufactured using microelectromechanical system (MEMS) technology) or a changeable optical phase mirror (for example, an optical phased array). Array, OPA) or optical liquid crystal (liquid crystal, LC) or spatial light modulator (spatial light modulator, SLM)), there is no need for two rotation axes in the hardware appearance of OPA, LC or SLM. Therefore, the light beam I from the light source module 10 can be reflected to different directions. In this embodiment, one or more adjustable reflectors 22a reflect the light beam I from the light source module 10 to the illumination area LA on the object O. In this embodiment, the phase control method of the adjustable reflector 22a can also be changed according to the application requirements, thereby controlling the corresponding viewing angle and optimal working distance (equivalent to the size of the illumination area LA in Figure 1, therefore, The size of the illumination area LA can be controlled by the adjustable reflector 22a).

鏡頭30設置於物體O的光路下游。鏡頭30適於將自物體O上的照明區域LA中反射的光束I會聚在鏡頭30的成像平面IP上。感測器40設置於鏡頭30的成像平面IP上。詳細來說,請參照圖1,光束I經反射鏡模組22反射至物體O上的照明區域LA後,可在物體O上發生漫反射。鏡頭30可設置於照明區域LA的附近(例如,使鏡頭30的視場角θ可涵蓋物體O上的照明區域LA),自物體O接收漫反射光。因此,本實施例的鏡頭30不需藉由反射鏡模組22接收來自物體O的反射光。因此,在本實施例中,自物體O上的照明區域LA中反射的光束I不經由反射鏡模組22傳遞至鏡頭30。因此,可省略額外的光學元件(例如:分光元件),而有助於達成產品小型化的需求。此外,鏡頭30也可直接獲取物體O影像,而不需受限於額外的光學元件,使得光學感測裝置1可以在可獲得深度資訊的情況下,提升所獲取影像的範圍與品質。The lens 30 is disposed downstream of the optical path of the object O. The lens 30 is adapted to converge the light beam I reflected from the illumination area LA on the object O onto the imaging plane IP of the lens 30 . The sensor 40 is disposed on the imaging plane IP of the lens 30 . Specifically, please refer to FIG. 1 . After the light beam I is reflected by the reflector module 22 to the illumination area LA on the object O, diffuse reflection may occur on the object O. The lens 30 can be disposed near the illumination area LA (for example, so that the field of view angle θ of the lens 30 can cover the illumination area LA on the object O), and receives diffuse reflected light from the object O. Therefore, the lens 30 of this embodiment does not need to receive the reflected light from the object O through the mirror module 22 . Therefore, in this embodiment, the light beam I reflected from the illumination area LA on the object O is not transmitted to the lens 30 via the reflector module 22 . Therefore, additional optical components (such as spectroscopic components) can be omitted, which helps meet the need for product miniaturization. In addition, the lens 30 can also directly acquire the image of the object O without being limited by additional optical components, so that the optical sensing device 1 can improve the range and quality of the acquired image while obtaining depth information.

鏡頭30經設置以適於將來自物體O上的照明區域LA中的光會聚在鏡頭30的成像平面IP上,因此,物體O上的照明區域LA可在感測器40上形成影像,例如是物體O的熱感應影像或其他光學影像。在本實施例中,感測器40為紅外線感測器,以將所形成的熱感應影像轉換為電訊號,但本發明不以此為限。在本實施例中,鏡頭30可包括至少一片非球面透鏡,因此,可提升光學感測裝置1的影像品質,但本發明不以此為限。The lens 30 is configured to condense light from the illumination area LA on the object O onto the imaging plane IP of the lens 30, so that the illumination area LA on the object O can form an image on the sensor 40, for example Thermal induction image or other optical image of object O. In this embodiment, the sensor 40 is an infrared sensor to convert the formed thermal image into an electrical signal, but the invention is not limited thereto. In this embodiment, the lens 30 may include at least one aspherical lens. Therefore, the image quality of the optical sensing device 1 may be improved, but the invention is not limited thereto.

在本實施例中,自物體O上的照明區域LA中反射的光束I經由鏡頭30直接成像在感測器40上。也就是說,在鏡頭30與感測器40之間不存在其他光學元件。本文中所謂「不存在其他光學元件」,是指在光束傳遞的路徑上,從一光學元件到另一光學元件,其間的空間僅可存在氣體(例如:空氣)或其他環境介質。因此,本實施例的光學感測裝置1可具有較高的收光效率以及較佳的收光效果。In this embodiment, the light beam I reflected from the illumination area LA on the object O is directly imaged on the sensor 40 via the lens 30 . That is to say, there are no other optical elements between the lens 30 and the sensor 40 . The so-called "no other optical elements" in this article means that on the path of light beam transmission, from one optical element to another optical element, only gas (such as air) or other environmental media can exist in the space between them. Therefore, the optical sensing device 1 of this embodiment can have higher light collection efficiency and better light collection effect.

在本實施例中,光學感測裝置1還包括電耦接至感測器40的控制器50。其中控制器50被配置為具有第一模式及第二模式。在控制器50的第一模式中,控制器50測量光束I自光源模組10發出至到達感測器40的時間間隔(飛行時間),以得到物體O的深度資訊和/或照明區域LA內物體O的深度影像。其中,控制器50可同時電耦接至光源模組10以及反射鏡模組22。在一些實施例中,控制器50可被配置為控制光源模組10及反射鏡模組22的運作。在控制器50的第二模式中,控制器50將感測器40上所量測到的光強度分布轉化為影像資料或轉換成訊號,以得到物體O的影像或訊號,例如是物體O的視覺影像或熱感應影像。因此,本實施例的光學感測裝置1除了可以獲得物體O的深度影像,也可以獲得物體的其他影像資料或轉換成事件觸發訊號。In this embodiment, the optical sensing device 1 further includes a controller 50 electrically coupled to the sensor 40 . The controller 50 is configured to have a first mode and a second mode. In the first mode of the controller 50 , the controller 50 measures the time interval (flight time) from when the light beam I is emitted from the light source module 10 to when it reaches the sensor 40 to obtain the depth information of the object O and/or the illumination area LA. Depth image of object O. The controller 50 can be electrically coupled to the light source module 10 and the reflector module 22 at the same time. In some embodiments, the controller 50 may be configured to control the operations of the light source module 10 and the reflector module 22 . In the second mode of the controller 50 , the controller 50 converts the light intensity distribution measured on the sensor 40 into image data or into a signal to obtain an image or signal of the object O, for example, the object O Visual image or thermal image. Therefore, in addition to obtaining the depth image of the object O, the optical sensing device 1 of this embodiment can also obtain other image data of the object or convert it into an event trigger signal.

在一實施例中,控制器50例如為中央處理單元(central processing unit, CPU)、微處理器(microprocessor)、數位訊號處理器(digital signal processor,DSP)、可程式化控制器、可程式化邏輯裝置(programmable logic device,PLD)、特殊應用積體電路(application-specific integrated circuit,ASIC)或其他類似裝置或這些裝置的組合,本發明並不加以限制。此外,在一實施例中,控制器50的各功能可被實作為多個程式碼。這些程式碼會被儲存在一個記憶體中,由控制器50來執行這些程式碼。或者,在一實施例中,控制器50的各功能可被實作為一或多個電路。本發明並不限制用軟體或硬體的方式來實作控制器50的各功能。In one embodiment, the controller 50 is, for example, a central processing unit (CPU), a microprocessor, a digital signal processor (DSP), a programmable controller, a programmable The present invention is not limited to a logic device (programmable logic device, PLD), application-specific integrated circuit (application-specific integrated circuit, ASIC) or other similar devices or combinations of these devices. In addition, in one embodiment, each function of the controller 50 may be implemented as multiple program codes. These program codes will be stored in a memory, and the controller 50 will execute these program codes. Alternatively, in one embodiment, the functions of controller 50 may be implemented as one or more circuits. The present invention is not limited to using software or hardware to implement each function of the controller 50 .

圖2是依照本發明的一實施例的光源模組的示意圖。請參照圖2,光源模組10可例如是圖1的光學感測裝置1中的光源模組10。在本實施例中,光源模組10經設置以適於發出準直光束I,但本發明不以此為限。FIG. 2 is a schematic diagram of a light source module according to an embodiment of the present invention. Please refer to FIG. 2 . The light source module 10 may be, for example, the light source module 10 in the optical sensing device 1 of FIG. 1 . In this embodiment, the light source module 10 is configured to emit the collimated light beam I, but the invention is not limited thereto.

圖3是依照本發明的另一實施例的光源模組的示意圖。圖3的實施例的光源模組10A可作為圖1的光學感測裝置1中的光源模組使用(例如,取代光源模組10)。請同時參照圖1及圖3。圖3的實施例的光源模組10A與圖2的光源模組10類似,而差異如下所述。在本實施例中,光源模組10A經設置以適於發出發散光束I。在本實施例中,通過使光源模組10A發出發散光束I,本實施例的光源模組10A可具有較大範圍的照明區域LA,可增加光學感測裝置1的感測範圍,但本發明不限於此。FIG. 3 is a schematic diagram of a light source module according to another embodiment of the present invention. The light source module 10A of the embodiment of FIG. 3 can be used as the light source module in the optical sensing device 1 of FIG. 1 (for example, replacing the light source module 10). Please refer to both Figure 1 and Figure 3. The light source module 10A of the embodiment of FIG. 3 is similar to the light source module 10 of FIG. 2 , and the differences are as follows. In this embodiment, the light source module 10A is configured to emit the divergent light beam I. In this embodiment, by causing the light source module 10A to emit the divergent light beam I, the light source module 10A of this embodiment can have a larger illumination area LA, which can increase the sensing range of the optical sensing device 1. However, the present invention Not limited to this.

圖4是依照本發明的另一實施例的光源模組的示意圖。圖4的實施例的光源模組10B可作為圖1的光學感測裝置1中的光源模組使用(例如,取代光源模組10)。請同時參照圖1及圖4。圖4的實施例的光源模組10B與圖2的光源模組10類似,而差異如下所述。在本實施例中,光源模組10B適於發出會聚光束I。在本實施例中,通過使光源模組10B發出會聚光束I,可增加光束的能量密度,以提升在鏡頭30處的反射光強度,使得例如是在背景光較強的情況下,自物體O上的照明區域LA中漫反射的光束可具有足以與雜散光區別的光強度,但本發明不限於此。FIG. 4 is a schematic diagram of a light source module according to another embodiment of the present invention. The light source module 10B of the embodiment of FIG. 4 can be used as the light source module in the optical sensing device 1 of FIG. 1 (for example, replacing the light source module 10). Please refer to both Figure 1 and Figure 4. The light source module 10B of the embodiment of FIG. 4 is similar to the light source module 10 of FIG. 2 , and the differences are as follows. In this embodiment, the light source module 10B is suitable for emitting the convergent light beam I. In this embodiment, by causing the light source module 10B to emit the convergent beam I, the energy density of the beam can be increased to increase the intensity of reflected light at the lens 30, so that, for example, when the background light is strong, the light from the object O The diffusely reflected light beam in the illumination area LA may have a light intensity sufficient to be distinguished from stray light, but the present invention is not limited thereto.

圖5是依照本發明的一實施例的一種光源模組的示意圖。請參照圖5,圖5的實施例的光源模組10C可作為圖1的光學感測裝置1中的光源模組使用(例如,取代光源模組10)。在本實施例中,光源模組10C包括光源12及繞射光學元件(diffractive optical element,DOE)14。繞射光學元件14可以是繞射光柵或包含一個或多個狹縫和/或針孔的光學層;或是,繞射光學元件14具有間隔與週期經特別設計的表面結構。繞射光學元件14被配置為使來自光源12的初始光束I 0在穿透繞射光學元件14後,可成為具有特定的光場分布的光束I,例如使光束I轉變為如圖2所示的準直光束I、如圖3所示的發散光束I或如圖4所示的會聚光束I。 FIG. 5 is a schematic diagram of a light source module according to an embodiment of the present invention. Please refer to FIG. 5 . The light source module 10C of the embodiment of FIG. 5 can be used as the light source module in the optical sensing device 1 of FIG. 1 (for example, replacing the light source module 10 ). In this embodiment, the light source module 10C includes a light source 12 and a diffractive optical element (Diffractive optical element, DOE) 14 . The diffractive optical element 14 may be a diffraction grating or an optical layer containing one or more slits and/or pinholes; or the diffractive optical element 14 may have a surface structure with specially designed intervals and periods. The diffractive optical element 14 is configured such that the initial light beam I 0 from the light source 12 can become a light beam I with a specific light field distribution after penetrating the diffractive optical element 14 , for example, the light beam I can be transformed into a light beam I as shown in FIG. 2 The collimated beam I, the divergent beam I as shown in Figure 3 or the convergent beam I as shown in Figure 4.

綜上所述,本發明實施例的光學感測裝置中,鏡頭設置於物體的光路下游,且適於將自物體上的照明區域中反射的光束會聚在鏡頭的成像平面上。因此,本發明實施例的光學感測裝置,除了可以獲得物體的深度資訊、深度影像或轉換成事件觸發訊號,也可以獲得物體的其他影像資料或訊號,例如物體的視覺影像或熱感應影像。此外,在一些實施例中,光學感測裝置的鏡頭可設置以接收來自物體的漫反射光,鏡頭可不經額外的光學元件直接獲取物體影像,可提升所獲取影像的範圍與品質。To sum up, in the optical sensing device according to the embodiment of the present invention, the lens is disposed downstream of the optical path of the object, and is adapted to converge the light beam reflected from the illumination area on the object onto the imaging plane of the lens. Therefore, the optical sensing device according to the embodiment of the present invention can not only obtain the depth information and depth image of the object or convert it into an event trigger signal, but also obtain other image data or signals of the object, such as the visual image or thermal sensing image of the object. In addition, in some embodiments, the lens of the optical sensing device can be configured to receive diffusely reflected light from the object. The lens can directly acquire the object image without additional optical elements, which can improve the range and quality of the acquired image.

1:光學感測裝置 10、10A、10B、10C:光源模組 12:光源 14:繞射光學元件 22:反射鏡模組 22a:可調控反射鏡 30:鏡頭 40:感測器 50:控制器 I、I 0:光束 IP:成像平面 LA:照明區域 O:物體 θ:視場角 1: Optical sensing device 10, 10A, 10B, 10C: Light source module 12: Light source 14: Diffraction optical element 22: Mirror module 22a: Adjustable mirror 30: Lens 40: Sensor 50: Controller I, I 0 : Beam IP: Imaging plane LA: Illumination area O: Object θ: Field of view angle

圖1是依照本發明的一實施例的一種光學感測裝置的示意圖。 圖2至圖4是依照本發明的不同實施例的光源模組的示意圖。 圖5是依照本發明的一實施例的一種光源模組的示意圖。 FIG. 1 is a schematic diagram of an optical sensing device according to an embodiment of the present invention. 2 to 4 are schematic diagrams of light source modules according to different embodiments of the present invention. FIG. 5 is a schematic diagram of a light source module according to an embodiment of the present invention.

1:光學感測裝置 1: Optical sensing device

10:光源模組 10:Light source module

22:反射鏡模組 22:Reflector module

22a:可調控反射鏡 22a: Adjustable reflector

30:鏡頭 30: Lens

40:感測器 40: Sensor

50:控制器 50:Controller

I:光束 I: beam

IP:成像平面 IP: imaging plane

LA:照明區域 LA: lighting area

O:物體 O:object

θ:視場角 θ: field of view angle

Claims (9)

一種光學感測裝置,包括:光源模組,適於發出光束;反射鏡模組,設置於所述光源模組的光路下游,所述反射鏡模組包含一個或多個可調控反射鏡,所述一個或多個可調控反射鏡將來自所述光源模組的光束反射至物體上的照明區域;鏡頭,設置於所述物體的光路下游,所述鏡頭適於將自所述物體上的所述照明區域中反射的所述光束會聚在所述鏡頭的成像平面上;以及感測器,設置於所述鏡頭的所述成像平面上,其中自所述物體上的所述照明區域中反射的所述光束經由所述鏡頭直接成像在所述感測器上;其中所述光源模組包括遠紅外光源或熱源;以及其中所述可調控反射鏡包括微機電系統微鏡或可改變光學相位反射鏡。 An optical sensing device, including: a light source module, suitable for emitting a light beam; a reflector module, disposed downstream of the optical path of the light source module, the reflector module including one or more adjustable reflectors, so The one or more adjustable reflectors reflect the light beam from the light source module to the illumination area on the object; the lens is arranged downstream of the optical path of the object, and the lens is adapted to reflect all the light beams from the object. The light beam reflected in the illumination area converges on the imaging plane of the lens; and a sensor is disposed on the imaging plane of the lens, wherein the light beam reflected from the illumination area on the object The light beam is directly imaged on the sensor through the lens; wherein the light source module includes a far-infrared light source or heat source; and wherein the adjustable mirror includes a microelectromechanical system micromirror or a variable optical phase reflection mirror. 如請求項1所述的光學感測裝置,其中所述光源模組適於發出準直光束。 The optical sensing device according to claim 1, wherein the light source module is adapted to emit a collimated light beam. 如請求項1所述的光學感測裝置,其中所述光源模組適於發出會聚光束。 The optical sensing device of claim 1, wherein the light source module is adapted to emit a converged light beam. 如請求項1所述的光學感測裝置,其中所述光源模組適於發出發散光束。 The optical sensing device according to claim 1, wherein the light source module is adapted to emit a divergent light beam. 如請求項1所述的光學感測裝置,其中通過所述一個或多個可調控反射鏡控制所述照明區域的大小。 The optical sensing device according to claim 1, wherein the size of the illumination area is controlled by the one or more adjustable reflectors. 如請求項1所述的光學感測裝置,其中光源模組包括光源及繞射光學元件。 The optical sensing device according to claim 1, wherein the light source module includes a light source and a diffraction optical element. 如請求項1所述的光學感測裝置,其中自所述物體上的所述照明區域中反射的所述光束不經由所述反射鏡模組傳遞至所述鏡頭。 The optical sensing device according to claim 1, wherein the light beam reflected from the illumination area on the object is not transmitted to the lens via the reflector module. 如請求項1所述的光學感測裝置,還包括電耦接至所述感測器的控制器,其中所述控制器被配置為在所述控制器的第一模式中,所述控制器測量所述光束自所述光源模組發出至到達所述感測器的時間間隔,且在所述控制器的第二模式中,所述控制器將所述感測器上所量測到的光強度分布轉化為影像資料或事件觸發訊號。 The optical sensing device of claim 1, further comprising a controller electrically coupled to the sensor, wherein the controller is configured to, in a first mode of the controller, The time interval from when the light beam is emitted from the light source module to when it reaches the sensor is measured, and in the second mode of the controller, the controller converts the measured value on the sensor to The light intensity distribution is converted into image data or event trigger signal. 如請求項1所述的光學感測裝置,其中所述感測器為紅外線感測器。 The optical sensing device according to claim 1, wherein the sensor is an infrared sensor.
TW110144970A 2021-12-02 2021-12-02 Optical sensing device TWI831093B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110144970A TWI831093B (en) 2021-12-02 2021-12-02 Optical sensing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110144970A TWI831093B (en) 2021-12-02 2021-12-02 Optical sensing device

Publications (2)

Publication Number Publication Date
TW202323926A TW202323926A (en) 2023-06-16
TWI831093B true TWI831093B (en) 2024-02-01

Family

ID=87803575

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110144970A TWI831093B (en) 2021-12-02 2021-12-02 Optical sensing device

Country Status (1)

Country Link
TW (1) TWI831093B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI630431B (en) * 2016-08-26 2018-07-21 光寶電子(廣州)有限公司 Device and system for capturing 3-d images
CN108681726A (en) * 2018-06-26 2018-10-19 深圳阜时科技有限公司 3D chip modules, identity recognition device and electronic equipment
TW202041883A (en) * 2019-03-25 2020-11-16 美商賽頓科技股份有限公司 Mounting configurations for optoelectronic components in lidar systems
US20210199773A1 (en) * 2019-12-27 2021-07-01 Didi Research America, Llc Kinematic mount for active galvo mirror alignment with multi-degree-of-freedom

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI630431B (en) * 2016-08-26 2018-07-21 光寶電子(廣州)有限公司 Device and system for capturing 3-d images
CN108681726A (en) * 2018-06-26 2018-10-19 深圳阜时科技有限公司 3D chip modules, identity recognition device and electronic equipment
TW202041883A (en) * 2019-03-25 2020-11-16 美商賽頓科技股份有限公司 Mounting configurations for optoelectronic components in lidar systems
US20210199773A1 (en) * 2019-12-27 2021-07-01 Didi Research America, Llc Kinematic mount for active galvo mirror alignment with multi-degree-of-freedom

Also Published As

Publication number Publication date
TW202323926A (en) 2023-06-16

Similar Documents

Publication Publication Date Title
JP7149256B2 (en) Integrated illumination and detection for LIDAR-based 3D imaging
US9268012B2 (en) 2-D planar VCSEL source for 3-D imaging
JP2020526754A (en) Distance measuring device with electron scanning emitter array and synchronous sensor array
TWI742448B (en) Laser detection device
US11209634B2 (en) Optical system
JP6414349B1 (en) Light emitting device, object information detecting device, optical path adjusting method, object information detecting method, and light modulation unit
US11698441B2 (en) Time of flight-based three-dimensional sensing system
US20170059710A1 (en) Object recognition device
TW202041883A (en) Mounting configurations for optoelectronic components in lidar systems
US20180348344A1 (en) Resolution enhancement for scanning lidar/ladar
EP3371859B1 (en) Laser-based light source with light emission control
TW202232193A (en) Light projection apparatus
CN114127468A (en) Active illumination system for changing illumination wavelength with field angle
TWI831093B (en) Optical sensing device
WO2020062256A1 (en) Light beam scanning system, distance detection apparatus, and electronic device
JP2023509068A (en) TOF depth sensing module and image generation method
CN112945144A (en) Multi-MEMS galvanometer structured light three-dimensional scanning system
EP3156825B1 (en) Dimensioning system with multipath interference mitigation
US11579427B2 (en) Method and apparatus for filtering and filtered light detection
WO2019244701A1 (en) Light radiation device, object information detection device, light path adjustment method, and object information detection method
TWI831087B (en) Optical sensing device
US20220196811A1 (en) Wavefront correction for beam shaping
TWI691736B (en) Light emitting device and image capture device using same
TW202323851A (en) Optical sensing device
TWI838490B (en) Time of flight-based three-dimensional sensing system