TWI828463B - Control circuit for adaptive noise margin control for a constant on time converter - Google Patents

Control circuit for adaptive noise margin control for a constant on time converter Download PDF

Info

Publication number
TWI828463B
TWI828463B TW111147206A TW111147206A TWI828463B TW I828463 B TWI828463 B TW I828463B TW 111147206 A TW111147206 A TW 111147206A TW 111147206 A TW111147206 A TW 111147206A TW I828463 B TWI828463 B TW I828463B
Authority
TW
Taiwan
Prior art keywords
compensation
terminal
control circuit
coupled
circuit
Prior art date
Application number
TW111147206A
Other languages
Chinese (zh)
Other versions
TW202424678A (en
Inventor
張耀仁
Original Assignee
晶豪科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶豪科技股份有限公司 filed Critical 晶豪科技股份有限公司
Priority to TW111147206A priority Critical patent/TWI828463B/en
Application granted granted Critical
Publication of TWI828463B publication Critical patent/TWI828463B/en
Publication of TW202424678A publication Critical patent/TW202424678A/en

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

A control circuit for adaptive noise margin control for a constant on time (COT) converter comprises an input reference terminal, amplifier, first switch device, voltage divider, trigger circuit, and output reference terminal. The amplifier has an input terminal coupled to the input reference terminal receiving a reference voltage signal. The first switch device has a control terminal coupled to an output of the amplifier, a first conduction terminal for receiving a voltage source signal, and a second conduction terminal. The voltage divider is coupled to the second conduction terminal and another input terminal of the amplifier. The trigger circuit, coupled to the voltage divider, is for triggering voltage change of a modified reference voltage signal selectively according to a high-side control signal of the COT converter. The output reference terminal coupled to the second conduction terminal outputs the modified reference voltage signal.

Description

用於恆定導通時間轉換器之適應性雜訊容限控制的控制 電路 Control for adaptive noise margin control of constant on-time converters circuit

本發明係有關恆定導通時間轉換器,特別是關於一種具有適應性雜訊容限控制的恆定導通時間轉換器。 The present invention relates to constant on-time converters, and more particularly to a constant on-time converter with adaptive noise margin control.

近年來,隨著可攜式產品需求的不斷增加,針對可攜式產品提供系統電源之小尺寸與高效能的穩壓器變得越來越重要。 In recent years, as the demand for portable products continues to increase, it has become increasingly important to provide small-sized and high-performance voltage regulators for system power supply for portable products.

在實際應用中,時常採用恆定導通時間(constant on time,COT)控制的穩壓器,因為其具有諸如簡單系統結構、快速暫態響應、輕載高效率等數個優點。 In practical applications, constant on time (COT) controlled voltage regulators are often used because they have several advantages such as simple system structure, fast transient response, and high efficiency at light loads.

然而,習知的恆定導通時間轉換器可能會遇到關於負載變動或雜訊干擾的輸出不穩定問題,特別是對於配置為較高降壓(step-down)轉換比的習知恆定導通時間轉換器,例如,諸如在12V至1V的轉換應用或12V至1.8V的應用。此問題通常表示習知恆定導通時間轉換器的雜訊容限不夠。在這方面,設計人員需要調整習知恆定導通時間轉換器的電路以提高其輸出穩定性,特別是對於可運作於較高降壓轉換比的習知恆定導通時間轉換器。 However, conventional constant on-time converters may encounter output instability issues with respect to load variations or noise interference, especially for conventional constant on-time converters configured with higher step-down conversion ratios. converter, for example, such as in 12V to 1V conversion applications or 12V to 1.8V applications. This problem usually indicates insufficient noise tolerance of conventional constant on-time converters. In this regard, designers need to adjust the circuit of the conventional constant on-time converter to improve its output stability, especially for the conventional constant on-time converter that can operate at a higher buck conversion ratio.

本揭露的一目的在於提供一種用於恆定導通時間轉換器之適應性雜訊容限控制的控制電路,以適應性控制該恆定導通時間轉換器的雜訊容限,因此有利於輸出穩定性。 An object of the present disclosure is to provide a control circuit for adaptive noise margin control of a constant on-time converter to adaptively control the noise margin of the constant on-time converter, thereby benefiting output stability.

為了達成至少上述目的,本揭露提供一種用於恆定導通時間(constant on time,COT)轉換器之適應性雜訊容限控制的控制電路,其中該控制電路包含輸入參考端、放大器、第一開關裝置、分壓器、觸發電路以及輸出參考端。該控制電路的該輸入參考端用於接收參考電壓訊號。該放大器具有耦接至該輸入參考端的第一輸入端及具有第二輸入端。該第一開關裝置具有耦接至該放大器之輸出端的控制端、用於接收電壓源訊號的第一導電端、及第二導電端。該分壓器耦接至該第二導電端與該第二輸入端。該觸發電路耦接至該分壓器,用以根據該COT轉換器之高側開關的高側控制訊號而選擇性觸發修改後參考電壓訊號的電壓變化。該控制電路的該輸出參考端耦接至該第二導電端,用以輸出基於該參考電壓訊號的該修改後參考電壓訊號。該輸出參考端用以耦接至該COT轉換器之比較器的輸入。 In order to achieve at least the above objectives, the present disclosure provides a control circuit for adaptive noise margin control of a constant on time (COT) converter, wherein the control circuit includes an input reference terminal, an amplifier, and a first switch. device, voltage divider, trigger circuit, and output reference. The input reference terminal of the control circuit is used to receive a reference voltage signal. The amplifier has a first input terminal coupled to the input reference terminal and has a second input terminal. The first switching device has a control terminal coupled to the output terminal of the amplifier, a first conductive terminal for receiving a voltage source signal, and a second conductive terminal. The voltage divider is coupled to the second conductive terminal and the second input terminal. The trigger circuit is coupled to the voltage divider and used to selectively trigger the voltage change of the modified reference voltage signal according to the high-side control signal of the high-side switch of the COT converter. The output reference terminal of the control circuit is coupled to the second conductive terminal for outputting the modified reference voltage signal based on the reference voltage signal. The output reference terminal is coupled to the input of the comparator of the COT converter.

在該控制電路的一種實施例中,該觸發電路包含耦接至該分壓器的步階電阻器;及跨耦接於該步階電阻器的第二開關裝置,其中該第二開關裝置係根據該高側控制訊號而選擇性導通。 In one embodiment of the control circuit, the trigger circuit includes a step resistor coupled to the voltage divider; and a second switching device coupled across the step resistor, wherein the second switching device is It is selectively turned on according to the high-side control signal.

在該控制電路的一種實施例中,該輸出參考端係用於耦接至該COT轉換器之脈寬調變比較器的輸入端。 In one embodiment of the control circuit, the output reference terminal is coupled to an input terminal of a pulse width modulation comparator of the COT converter.

在該控制電路的一種實施例中,該控制電路更包含切換式補償電路,該切換式補償電路包括補償開關裝置及補償電流源。該補償開關裝置耦接至該分壓器,其中該補償開關裝置根據該高側控制訊號而選擇性導通。該補償電流源選擇性透過該補償開關裝置而耦接至該分壓器。 In an embodiment of the control circuit, the control circuit further includes a switching compensation circuit, and the switching compensation circuit includes a compensation switching device and a compensation current source. The compensation switching device is coupled to the voltage divider, wherein the compensation switching device is selectively turned on according to the high-side control signal. The compensation current source is selectively coupled to the voltage divider through the compensation switching device.

在該控制電路的一種實施例中,該補償電流源用於接收該高側控制訊號,並根據斷開(OFF)週期之測量值佔該高側控制訊號之總週期的百分比而輸出可變電流。 In one embodiment of the control circuit, the compensation current source is used to receive the high-side control signal and output a variable current according to the measured value of the OFF period as a percentage of the total period of the high-side control signal. .

在該控制電路的一種實施例中,當該高側控制訊號被設為作用狀態時,該補償開關裝置導通,使得該補償電流源所輸出的該可變電流流入該分壓器。 In one embodiment of the control circuit, when the high-side control signal is set to an active state, the compensation switching device is turned on, so that the variable current output by the compensation current source flows into the voltage divider.

在該控制電路的一種實施例中,該補償電流源包含:工作週期估算電路、分壓器電路以及補償控制器。該工作週期估算電路用以接收該高側控制訊號並產生表示該高側控制訊號之工作週期的電壓訊號。該分壓器電路耦接至該工作週期估算電路,並配置成根據該電壓訊號而輸出縮小的電壓訊號。該補償控制器耦接至該分壓器電路,並配置成根據該縮小的電壓訊號而輸出該可變電流。 In an embodiment of the control circuit, the compensation current source includes: a duty cycle estimation circuit, a voltage divider circuit and a compensation controller. The duty cycle estimation circuit is used to receive the high-side control signal and generate a voltage signal representing the duty cycle of the high-side control signal. The voltage divider circuit is coupled to the duty cycle estimation circuit and configured to output a reduced voltage signal based on the voltage signal. The compensation controller is coupled to the voltage divider circuit and configured to output the variable current based on the reduced voltage signal.

在該控制電路的一種實施例中,該工作週期估算電路包括低通濾波器,其用於接收該高側控制訊號並產生表示該高側控制訊號之該工作週期的該電壓訊號。 In one embodiment of the control circuit, the duty cycle estimation circuit includes a low-pass filter for receiving the high-side control signal and generating the voltage signal representing the duty cycle of the high-side control signal.

在該控制電路的一種實施例中,該補償控制器包括電壓對電流轉換器,用於根據該縮小的電壓訊號而輸出該可變電流。 In one embodiment of the control circuit, the compensation controller includes a voltage-to-current converter for outputting the variable current according to the reduced voltage signal.

為了達成至少上述目的,本發明還提供一種用於恆定導通時間(COT)轉換器之適應性雜訊容限控制的控制電路,其中該控制電路包含輸入參考端、放大器、第一開關裝置、分壓器、切換式補償電路以及輸出參考端。該控制電路的該輸入參考端用以接收參考電壓訊號。該放大器具有耦接至該輸入參考端的第一輸入子並具有第二輸入端。該第一開關裝置具有與該放大器的輸出端耦接的控制端、用以接收電壓源訊號的第一導電端、第二導電端。該分壓器耦接至該第二導電端與該第二輸入端。該控制電路的該輸出參考端透過一個電流路徑而耦接至該第二導電端,並用以輸出基於該參考電壓訊號的修改後參考電壓訊號。該切換式補償電路包括複數個補償開關裝置以及複數個補償電流源。該等補償開關裝置中的每一者係根據基於該高側控制訊號的對應的補償控制訊號而選擇性導通。該等補償電流源透過該等補償開關裝置而選擇性耦接至該電流路徑。 In order to achieve at least the above objects, the present invention also provides a control circuit for adaptive noise margin control of a constant on-time (COT) converter, wherein the control circuit includes an input reference end, an amplifier, a first switching device, a branch voltage regulator, switching compensation circuit and output reference terminal. The input reference terminal of the control circuit is used to receive a reference voltage signal. The amplifier has a first input coupled to the input reference terminal and has a second input terminal. The first switching device has a control terminal coupled to the output terminal of the amplifier, a first conductive terminal and a second conductive terminal for receiving a voltage source signal. The voltage divider is coupled to the second conductive terminal and the second input terminal. The output reference terminal of the control circuit is coupled to the second conductive terminal through a current path and is used to output a modified reference voltage signal based on the reference voltage signal. The switching compensation circuit includes a plurality of compensation switching devices and a plurality of compensation current sources. Each of the compensation switching devices is selectively turned on based on a corresponding compensation control signal based on the high-side control signal. The compensation current sources are selectively coupled to the current path through the compensation switching devices.

在該控制電路的一種實施例中,該觸發電路包含耦接至該分壓器的步階電阻器;耦接至該步階電阻器的兩端的第二開關裝置,其中該第二開關裝置根據該高側控制訊號而選擇性導通。 In one embodiment of the control circuit, the trigger circuit includes a step resistor coupled to the voltage divider; a second switching device coupled to both ends of the step resistor, wherein the second switching device is according to The high-side control signal is selectively turned on.

在該控制電路的一種實施例中,該輸出參考端用於耦接至該COT轉換器之一個比較器的一個輸入。 In one embodiment of the control circuit, the output reference terminal is coupled to an input of a comparator of the COT converter.

在該控制電路的一種實施例中,該等補償電流源之每一者用於輸出對應的恆定電流。 In one embodiment of the control circuit, each of the compensation current sources is used to output a corresponding constant current.

在該控制電路的一種實施例中,該控制電路更包含補償電阻器,其耦接在該第二導電端與該輸出參考端之間。 In an embodiment of the control circuit, the control circuit further includes a compensation resistor coupled between the second conductive terminal and the output reference terminal.

在該控制電路的一種實施例中,當該對應的補償控制訊號被設為作用狀態時,該對應的補償開關裝置導通,使得該對應的電流源從該電流路徑汲取電流。 In an embodiment of the control circuit, when the corresponding compensation control signal is set to the active state, the corresponding compensation switching device is turned on, so that the corresponding current source draws current from the current path.

在該控制電路的一種實施例中,該控制電路更包含工作週期估算電路、分壓器電路以及補償控制器。該工作週期估算電路用以接收該高側控制訊號並產生表示該高側控制訊號之工作週期的電壓訊號。該分壓器電路耦接至該工作週期估算電路,用以根據該電壓訊號而輸出縮小的電壓訊號。該補償控制器耦接至該分壓器電路,用以根據該縮小的電壓訊號而輸出該等補償控制訊號。 In an embodiment of the control circuit, the control circuit further includes a duty cycle estimation circuit, a voltage divider circuit and a compensation controller. The duty cycle estimation circuit is used to receive the high-side control signal and generate a voltage signal representing the duty cycle of the high-side control signal. The voltage divider circuit is coupled to the duty cycle estimation circuit and used to output a reduced voltage signal according to the voltage signal. The compensation controller is coupled to the voltage divider circuit for outputting the compensation control signals according to the reduced voltage signal.

在該控制電路的一種實施例中,該工作週期估算電路包括低通濾波器,其用於接收該高側控制訊號並產生表示該高側控制訊號之該工作週期的該電壓訊號。 In one embodiment of the control circuit, the duty cycle estimation circuit includes a low-pass filter for receiving the high-side control signal and generating the voltage signal representing the duty cycle of the high-side control signal.

在該控制電路的一種實施例中,該補償控制器包括複數個比較器,用於根據該縮小的電壓訊號以及對應的補償參考訊號而輸出該等補償控制訊號。 In an embodiment of the control circuit, the compensation controller includes a plurality of comparators for outputting the compensation control signals according to the reduced voltage signal and the corresponding compensation reference signal.

100:恆定導通時間(COT)轉換器 100:Constant On-Time (COT) Converter

105:比較器(cmp) 105: Comparator (cmp)

110:單穩態多諧振盪器(MMV) 110: Monostable Multivibrator (MMV)

115:非重疊模組 115: Non-overlapping modules

120:電壓位準偏移器 120: Voltage level shifter

125:緩衝器 125:Buffer

130:緩衝器 130:Buffer

135:電子開關 135: Electronic switch

140:電子開關 140: Electronic switch

145、Cboot:電容器 145. C boot : capacitor

150、L:電感器 150. L: Inductor

155、R1:電阻器 155. R 1 : Resistor

160、R2:電阻器 160. R 2 : Resistor

165、RESR:電阻器 165. R ESR : Resistor

170、CL:負載電容器 170. C L : load capacitor

175:負載 175:Load

180:第一步階產生器 180: First step generator

185:第二步階產生器 185: Second step generator

200:控制電路 200:Control circuit

200A:控制電路 200A:Control circuit

210:放大器(amp) 210: Amplifier (amp)

220:開關裝置 220:Switching device

230:分壓器 230: Voltage divider

240:步階電阻器 240: Step resistor

250:開關裝置 250:Switching device

300:控制電路 300:Control circuit

310:放大器 310:Amplifier

320:開關裝置 320:Switching device

330:分壓器 330: Voltage divider

340:步階電阻器 340: Step resistor

350:開關裝置 350:Switching device

360:補償開關裝置 360: Compensation switching device

370:補償電流源 370: Compensation current source

400:控制電路 400:Control circuit

410:工作週期估算電路 410:Duty cycle estimation circuit

420:分壓器電路 420: Voltage divider circuit

430:補償控制器 430: Compensation controller

500:控制電路 500:Control circuit

510:放大器 510:Amplifier

520:開關裝置 520: Switching device

530:分壓器 530:Voltage divider

540:步階電阻器 540: Step resistor

550:開關裝置 550:Switching device

561:補償開關裝置 561: Compensation switching device

563:補償開關裝置 563: Compensation switching device

570:切換式補償電路 570: Switching compensation circuit

571:補償電流源 571: Compensation current source

573:補償電流源 573: Compensation current source

600:控制電路 600:Control circuit

610:工作週期估算電路 610: Duty cycle estimation circuit

620:分壓器電路 620: Voltage divider circuit

630:補償控制器 630: Compensation controller

631:比較器 631: Comparator

633:比較器 633: Comparator

D:工作週期 D: work cycle

ICP1:恆定電流 I CP1 : constant current

ICP2:恆定電流 I CP2 : constant current

Ix:可變電流 Ix: variable current

N1:輸入參考端 N 1 : Input reference terminal

N1A:輸入參考端 N 1A : Input reference terminal

N2:控制端 N 2 :Control terminal

N2A:控制端 N 2A :Control terminal

N3:輸出參考端 N 3 : Output reference terminal

N3A:輸出參考端 N 3A : Output reference terminal

NC:節點 N C : Node

NC1:導電端 N C1 : conductive end

NC2:導電端 N C2 : conductive end

PH:電流路徑 PH: current path

PM:脈寬調變訊號 PM: pulse width modulation signal

RF1:電阻器 RF1: Resistor

RF2:電阻器 RF2: Resistor

RF3:步階電阻器 RF3: step resistor

RCP:補償電阻器 R CP : Compensation resistor

S1:補償控制訊號 S1: Compensation control signal

S2:補償控制訊號 S2: Compensation control signal

SCC:切換式補償電路 SCC: switched compensation circuit

SHS:高側控制訊號 S HS : high side control signal

SLS:低側控制訊號 S LS : low side control signal

TC:觸發電路 TC: trigger circuit

VFB:回授電壓訊號 V FB : feedback voltage signal

VD:電壓源訊號 V D : voltage source signal

VDC:電壓訊號 V DC : voltage signal

VDDP:輸入電壓訊號 V DDP : input voltage signal

VMREF:修改後參考電壓訊號 V MREF : Modified reference voltage signal

VIN:輸入電壓 V IN :Input voltage

VREF:參考電壓訊號 V REF : reference voltage signal

VREF0:參考電壓 V REF0 : reference voltage

VREF1:補償參考訊號 V REF1 : Compensation reference signal

VREF2:補償參考訊號 V REF2 : Compensation reference signal

Vstep_i:電壓 V step_i : voltage

Vstep:電壓 V step :voltage

Vstep_o:電壓 V step_o : voltage

Vstep_sw:電壓 V step_sw : voltage

VOUT:輸出電壓訊號 V OUT : Output voltage signal

圖1為例示根據本發明之一種實施例之具有控制電路之恆定導通時間(COT)轉換器的電路架構示意圖。 FIG. 1 is a schematic circuit diagram illustrating a constant on-time (COT) converter with a control circuit according to an embodiment of the present invention.

圖2A為例示根據本發明之一種實施例之第一步階產生器的電路架構示意圖。 FIG. 2A is a schematic circuit diagram illustrating a first-stage generator according to an embodiment of the present invention.

圖2B為例示根據本發明之一種實施例之第二步階產生器的電路架構示意圖。 FIG. 2B is a schematic circuit diagram illustrating a second step generator according to an embodiment of the present invention.

圖3A為顯示根據本發明之一種實施例之基於如圖2A所示第一步階產生器的架構的用於適應性雜訊容限控制之控制電路的電路架構示意圖。 FIG. 3A is a schematic circuit diagram showing a control circuit for adaptive noise margin control based on the architecture of the first-stage generator shown in FIG. 2A according to an embodiment of the present invention.

圖3B為例示根據本發明之一種實施例之可變電流與1-D之間的關係的曲線示意圖,其中D表示高側控制訊號的工作週期。 3B is a schematic diagram illustrating the relationship between the variable current and 1-D according to an embodiment of the present invention, where D represents the duty cycle of the high-side control signal.

圖4為例示根據本發明之一種實施例之用於實現圖3A之補償電流源的電路之示意圖。 FIG. 4 is a schematic diagram illustrating a circuit for implementing the compensation current source of FIG. 3A according to an embodiment of the present invention.

圖5為例示根據本發明之另一種實施例之基於圖2A所示第一步階產生器的架構之適應性雜訊容限控制的控制電路之示意圖。 FIG. 5 is a schematic diagram illustrating a control circuit for adaptive noise margin control based on the architecture of the first-stage generator shown in FIG. 2A according to another embodiment of the present invention.

圖6為例示根據本發明之一種實施例之用於實現控制圖5之補償電流源的電路之示意圖。 FIG. 6 is a schematic diagram illustrating a circuit for controlling the compensation current source of FIG. 5 according to an embodiment of the present invention.

為了便於理解本發明之目的、特徵及功效,提供詳細說明本發明的結合圖式之實施例。 In order to facilitate understanding of the purpose, features and effects of the present invention, embodiments combined with the drawings are provided to illustrate the present invention in detail.

本發明提供用於恆定導通時間(constant on time,COT)轉換器之適應性雜訊容限控制的控制電路的多種實施例,以適應性控制COT轉換器的雜訊容限,因此促進輸出穩定性,特別是對於可在較高降壓轉換比下工作的恆定導通時間轉換器。 The present invention provides various embodiments of a control circuit for adaptive noise margin control of a constant on time (COT) converter to adaptively control the noise margin of the COT converter, thereby promoting output stability. performance, especially for constant on-time converters that can operate at higher buck conversion ratios.

請參考圖1,其係例示根據本發明之一種實施例之具有控制電路之恆定導通時間(COT)轉換器的示意圖。 Please refer to FIG. 1 , which is a schematic diagram illustrating a constant on-time (COT) converter with a control circuit according to an embodiment of the present invention.

如圖1所示,恆定導通時間(COT)轉換器100根據輸入電壓VIN向負載(Load)175提供輸出電壓訊號VOUT。COT轉換器100包含COT轉換器電路 (如虛線所示)以及用於修改比較器105(由「cmp」表示)之多個輸入訊號的多個控制電路。例如,該等控制電路包括第一步階產生器180以及第二步階產生器185。第一步階產生器180為用以提供修改後參考訊號的一種控制電路,其用於根據參考電壓訊號VREF以及高側控制訊號SHS針對COT轉換器100的高側開關(諸如第一電子開關(QN1)135)提供修改後參考訊號。第二步階產生器185為用以提供修改後回授訊號的一種控制電路,其用於根據從COT轉換器電路內部所提供的回授電壓訊號VFB而提供修改後回授訊號。例如,COT轉換器電路包含比較器105、單穩態多諧振盪器(MMV)110、非重疊模組115、電壓位準偏移器120、複數個電子開關(例如,135、140)以及輸出級。 As shown in FIG. 1, a constant on-time (COT) converter 100 provides an output voltage signal V OUT to a load (Load) 175 according to the input voltage V IN . COT converter 100 includes COT converter circuitry (shown in dashed lines) and a plurality of control circuits for modifying a plurality of input signals of comparator 105 (denoted by "cmp"). For example, the control circuits include a first step generator 180 and a second step generator 185 . The first step generator 180 is a control circuit for providing a modified reference signal for the high-side switch (such as the first electronic switch) of the COT converter 100 according to the reference voltage signal VREF and the high-side control signal SHS . Switch (Q N1 ) 135) provides the modified reference signal. The second step generator 185 is a control circuit for providing a modified feedback signal based on the feedback voltage signal V FB provided from within the COT converter circuit. For example, the COT converter circuit includes a comparator 105, a monostable multivibrator (MMV) 110, a non-overlapping module 115, a voltage level shifter 120, a plurality of electronic switches (eg, 135, 140), and an output level.

在一種實施例中,又分別稱為高側開關以及低側開關之電子開關135與140包含N通道金屬氧化物半導體場效電晶體(MOSFET)。在其他實施例中,可使用其他類型的電晶體、MOSFET或其他電子開關。 In one embodiment, electronic switches 135 and 140, also referred to as high-side switches and low-side switches respectively, include N-channel metal oxide semiconductor field effect transistors (MOSFETs). In other embodiments, other types of transistors, MOSFETs, or other electronic switches may be used.

以下為描述圖1所示之本發明之一種實施例之恆定導通時間(COT)轉換器100的結構以及架構的細節。 The following is a description of the structure and architectural details of a constant on-time (COT) converter 100 according to an embodiment of the present invention shown in FIG. 1 .

如圖1所示,第一電子開關(QN1)135的汲極電性耦接至輸入電壓VIN。第二電子開關(QN2)140的源極連接至接地端。第一電子開關135的源極連接到第二電子開關140的汲極。 As shown in FIG. 1 , the drain terminal of the first electronic switch (Q N1 ) 135 is electrically coupled to the input voltage V IN . The source of the second electronic switch (Q N2 ) 140 is connected to the ground. The source of the first electronic switch 135 is connected to the drain of the second electronic switch 140 .

該輸出級包含電感器(L)150、第一電阻器(R1)155、第二電阻器(R2)160、第三電阻器(RESR)165以及負載電容器(CL)170。電感器150的第一端連接到在第一電子開關135與第二電子開關140之間所建立的節點。電感器150的第二端連接到第一電阻器155的第一端與第三電阻器165的第一端,並提供輸出電壓訊號VOUT給負載(Load)175。第一電阻器155的第二端連接到第二電 阻器160的第一端。第二電阻器160的第二端連接至接地。第三電阻器165的第二端連接到負載電容器170的第一端。負載電容器170的第二端連接至接地。 The output stage includes an inductor (L) 150, a first resistor (R 1 ) 155, a second resistor (R 2 ) 160, a third resistor (R ESR ) 165, and a load capacitor ( CL ) 170. A first end of inductor 150 is connected to the node established between first electronic switch 135 and second electronic switch 140 . The second terminal of the inductor 150 is connected to the first terminal of the first resistor 155 and the first terminal of the third resistor 165 and provides the output voltage signal V OUT to the load (Load) 175 . The second terminal of first resistor 155 is connected to the first terminal of second resistor 160 . The second end of the second resistor 160 is connected to ground. The second terminal of third resistor 165 is connected to the first terminal of load capacitor 170 . The second terminal of load capacitor 170 is connected to ground.

第一電阻器155與第二電阻器160之間的節點透過第二步階產生器185電性耦接至比較器(cmp)105的負輸入,並將回授電壓訊號VFB提供至第二步階產生器185,且第二步階產生器185向比較器105輸出修改後回授訊號。 The node between the first resistor 155 and the second resistor 160 is electrically coupled to the negative input of the comparator (cmp) 105 through the second step generator 185 and provides the feedback voltage signal V FB to the second The step generator 185 , and the second step generator 185 outputs the modified feedback signal to the comparator 105 .

比較器105的輸出電性連接到單穩態多諧振盪器(MMV)110的輸入,並將脈寬調變訊號(PM)提供至單穩態多諧振盪器110。 The output of the comparator 105 is electrically connected to the input of the monostable multivibrator (MMV) 110 and provides a pulse width modulation signal (PM) to the monostable multivibrator 110 .

例如,單穩態多諧振盪器110可基於例如含有一或兩個輸入的正反器而實現。比較器105的輸出可連接到單穩態多諧振盪器110的輸入。單穩態多諧振盪器110包含兩個輸出Q與

Figure 111147206-A0305-02-0011-1
Figure 111147206-A0305-02-0011-2
是Q的互補。這兩個輸出Q與
Figure 111147206-A0305-02-0011-4
電性連接到非重疊模組115的兩個輸入。 For example, the monostable multivibrator 110 may be implemented based on, for example, a flip-flop having one or two inputs. The output of comparator 105 may be connected to the input of monostable multivibrator 110 . Monostable multivibrator 110 contains two outputs Q and
Figure 111147206-A0305-02-0011-1
,
Figure 111147206-A0305-02-0011-2
It is the complement of Q. The two outputs Q and
Figure 111147206-A0305-02-0011-4
Electrically connected to the two inputs of the non-overlapping module 115 .

非重疊模組115的第一輸出連接到電壓位準偏移器120的輸入。非重疊模組115的第二輸出連接到第二緩衝器130的輸入。第二緩衝器130的輸出電性連接到第二電子開關140的閘極,並提供用於控制第二電子開關140(亦即低側開關)的低側控制訊號(SLS)。 The first output of the non-overlapping module 115 is connected to the input of the voltage level shifter 120 . The second output of the non-overlapping module 115 is connected to the input of the second buffer 130 . The output of the second buffer 130 is electrically connected to the gate of the second electronic switch 140 and provides a low-side control signal (S LS ) for controlling the second electronic switch 140 (ie, the low-side switch).

輸入電壓訊號VDDP連接到二極體的陽極並且該二極體的陰極連接到電壓位準偏移器120的第一端。電壓位準偏移器120的第二端連接到電感器(L)150的第一端。電壓位準偏移器120的輸出電性連接到第一緩衝器125的輸入。第一緩衝器125的第一端電性連接電壓位準偏移器120的第一端以及該二極體的陰極。第一緩衝器125的第二端電性連接到電感器150的第一端以及電壓位準偏移器120的第二端。第一緩衝器125的輸出電性連接到第一電子開關135的閘極,並提供用於控制第一電子開關135(亦即高側開關)的高側控制訊號(SHS)。 The input voltage signal V DDP is connected to the anode of the diode and the cathode of the diode is connected to the first terminal of the voltage level shifter 120 . The second terminal of voltage level shifter 120 is connected to the first terminal of inductor (L) 150 . The output of the voltage level shifter 120 is electrically connected to the input of the first buffer 125 . The first terminal of the first buffer 125 is electrically connected to the first terminal of the voltage level shifter 120 and the cathode of the diode. The second terminal of the first buffer 125 is electrically connected to the first terminal of the inductor 150 and the second terminal of the voltage level shifter 120 . The output of the first buffer 125 is electrically connected to the gate of the first electronic switch 135 and provides a high-side control signal (S HS ) for controlling the first electronic switch 135 (ie, the high-side switch).

高側控制訊號(SHS)亦被提供至第一步階產生器180的輸入。參考電壓訊號VREF被提供至第一步階產生器180的另一輸入。例如,第一步階產生器180的輸出電性連接到比較器105的正輸入。 A high-side control signal (S HS ) is also provided to the input of the first-stage generator 180. The reference voltage signal V REF is provided to the other input of the first step generator 180 . For example, the output of the first step generator 180 is electrically connected to the positive input of the comparator 105 .

電容器(Cboot)145連接在該二極體的陰極與電感器150的第一端之間。 Capacitor ( Cboot ) 145 is connected between the cathode of the diode and the first end of inductor 150.

藉由導通與斷開第一電子開關135與第二電子開關140來控制電子開關135與140以將輸入電壓VIN轉換成輸出電壓訊號VOUTThe electronic switches 135 and 140 are controlled by turning on and off the first electronic switch 135 and the second electronic switch 140 to convert the input voltage V IN into an output voltage signal V OUT .

電壓位準偏移器120的輸出訊號經由第一緩衝器125而控制第一電子開關135的導通與斷開。由非重疊模組115的第二輸出經由第二緩衝器130所輸出的輸出訊號而控制第二電子開關140的導通與斷開。 The output signal of the voltage level shifter 120 controls the on and off of the first electronic switch 135 through the first buffer 125 . The second output of the non-overlapping module 115 controls the on and off of the second electronic switch 140 through the output signal output by the second buffer 130 .

例如,第一步階產生器180利用COT轉換器100的高側開關(諸如第一電子開關(QN1)135)的高側控制訊號SHS的電壓位準以及參考電壓訊號VREF的電壓位準,並將結果(亦即修改後參考電壓訊號)輸出到比較器105的正輸入。例如,第二步階產生器185利用回授電壓訊號VFB的電壓位準並將結果(亦即修改後回授電壓訊號)輸出到比較器105的負輸入。比較器105係比較來自第一步階產生器180之修改後參考電壓訊號的電壓位準與修正回授電壓訊號的電壓位準,並將脈寬調變(PWM)訊號(在圖1中用「PM」表示)輸出到單穩態多諧振盪器110。比較器105亦可稱為COT轉換器100的脈寬調變(PWM)比較器。 For example, the first step generator 180 utilizes the voltage level of the high-side control signal S HS of the high-side switch of the COT converter 100 (such as the first electronic switch (Q N1 ) 135) and the voltage level of the reference voltage signal VREF . accurate, and the result (ie, the modified reference voltage signal) is output to the positive input of the comparator 105 . For example, the second step generator 185 utilizes the voltage level of the feedback voltage signal V FB and outputs the result (ie, the modified feedback voltage signal) to the negative input of the comparator 105 . The comparator 105 compares the voltage level of the modified reference voltage signal from the first step generator 180 with the voltage level of the modified feedback voltage signal, and converts the pulse width modulation (PWM) signal (used in FIG. 1 "PM" indicates) is output to the monostable multivibrator 110. The comparator 105 may also be called a pulse width modulation (PWM) comparator of the COT converter 100 .

單穩態多諧振盪器110利用從比較器105所接收的訊號並產生一個訊號及其補數的訊號,並將這兩訊號提供至非重疊模組115。 The monostable multivibrator 110 utilizes the signal received from the comparator 105 and generates a signal and its complement, and provides the two signals to the non-overlapping module 115 .

因此,來自非重疊模組115的第一輸出訊號控制電壓位準偏移器120以將第一電子開關135導通與斷開,以及來自非重疊模組115的第二輸出訊號將第二電子開關140導通與斷開。 Therefore, the first output signal from the non-overlapping module 115 controls the voltage level shifter 120 to turn the first electronic switch 135 on and off, and the second output signal from the non-overlapping module 115 turns the second electronic switch on and off. 140 on and off.

如圖1所示,COT轉換器100的架構具有用於適應性雜訊容限控制的控制電路。第一步階產生器180為用於COT轉換器100之適應性雜訊容限控制的控制電路。請參考圖2A,其例示根據本發明之一種實施例之用於實現第一步階產生器的控制電路200。控制電路200為第一步階產生器180的一種實施例,並包含輸入參考端N1、放大器210、第一開關裝置220、分壓器230、觸發電路TC以及輸出參考端N3。控制電路200的輸入參考端N1用於接收參考電壓訊號(VREF),故此示例中輸入參考端N1的電壓Vstep_i由參考電壓訊號VREF來決定。放大器210具有耦接至輸入參考端N1的第一輸入端,並具有第二輸入端。第一開關裝置220具有耦接至放大器210之輸出端的控制端、用於接收電壓源訊號(例如,圖2A中由VD表示)的第一導電端、第二導電端。分壓器230耦接該第二導電端與該第二輸入端。例如,如圖2A所示,分壓器230包括電阻器RF1以及電阻器RF2,該第二導電端連接到電阻器RF1,且該第二輸入端連接到電阻器RF1與電阻器RF2之間的節點。觸發電路TC耦接至分壓器230,並用於根據COT轉換器(例如,COT轉換器100)之高側開關(例如,第一電子開關13)的高側控制訊號(例如,SHS)而選擇性觸發修改後參考電壓訊號(由VMREF表示)的電壓變化。例如,觸發電路TC包括步階電阻器240以及第二開關裝置250。由RF3所表示的步階電阻器240耦接至分壓器230。例如,如圖2A所示,步階電阻器240連接在電阻器RF2與接地(或另一電壓源訊號)之間。第二開關裝置250耦接步階電阻器240的兩端,並具有控制端N2,其用以接收COT轉換器(例如,COT轉換器100)之高側開關(例如, 第一電子開關13)的高側控制訊號(例如,SHS)。例如,第二開關裝置250係根據高側控制訊號SHS而選擇性導通或斷開。例如,當高側控制訊號SHS處於導通狀態(或被設為作用狀態(asserted)或表示一啟用狀態)時,則第二開關裝置250導通;當高側控制訊號SHS關閉(或被設為非作用狀態(de-asserted)或表示非啟用狀態)時,則第二開關裝置250斷開。此外,控制電路200的輸出參考端N3耦接至該第二導電端,用以輸出基於參考電壓訊號VREF的修改後參考電壓訊號(由VMREF表示)。輸出參考端N3用於耦接至COT轉換器(例如,COT轉換器100)之脈寬調變(PWM)比較器(例如,比較器105)的一個輸入。 As shown in FIG. 1 , the architecture of the COT converter 100 has a control circuit for adaptive noise margin control. The first step generator 180 is a control circuit for adaptive noise margin control of the COT converter 100 . Please refer to FIG. 2A , which illustrates a control circuit 200 for implementing a first step generator according to an embodiment of the present invention. The control circuit 200 is an embodiment of the first step generator 180 and includes an input reference terminal N 1 , an amplifier 210 , a first switching device 220 , a voltage divider 230 , a trigger circuit TC and an output reference terminal N 3 . The input reference terminal N 1 of the control circuit 200 is used to receive the reference voltage signal (V REF ), so in this example, the voltage V step_i of the input reference terminal N 1 is determined by the reference voltage signal V REF . The amplifier 210 has a first input terminal coupled to the input reference terminal N 1 and has a second input terminal. The first switching device 220 has a control terminal coupled to the output terminal of the amplifier 210, a first conductive terminal and a second conductive terminal for receiving a voltage source signal (eg, represented by V D in FIG. 2A). The voltage divider 230 couples the second conductive terminal and the second input terminal. For example, as shown in FIG. 2A , the voltage divider 230 includes a resistor RF1 and a resistor RF2, the second conductive terminal is connected to the resistor RF1, and the second input terminal is connected to the resistor RF1 and the resistor RF2. node. The trigger circuit TC is coupled to the voltage divider 230 and is used to trigger a trigger according to a high-side control signal (eg, S HS ) of a high-side switch (eg, the first electronic switch 13 ) of the COT converter (eg, the COT converter 100 ). Selectively trigger the voltage change of the modified reference voltage signal (represented by V MREF ). For example, the trigger circuit TC includes a step resistor 240 and a second switching device 250 . Step resistor 240, represented by RF3, is coupled to voltage divider 230. For example, as shown in Figure 2A, step resistor 240 is connected between resistor RF2 and ground (or another voltage source signal). The second switching device 250 is coupled to both ends of the step resistor 240 and has a control terminal N 2 for receiving the high-side switch (eg, the first electronic switch 13 ) of the COT converter (eg, the COT converter 100 ). ) of the high-side control signal (e.g., S HS ). For example, the second switching device 250 is selectively turned on or off according to the high-side control signal S HS . For example, when the high-side control signal S HS is in a conductive state (or is asserted or represents an enabled state), the second switching device 250 is conductive; when the high-side control signal S HS is turned off (or is set to When it is in a de-asserted state (or represents a non-activated state), the second switching device 250 is turned off. In addition, the output reference terminal N 3 of the control circuit 200 is coupled to the second conductive terminal for outputting a modified reference voltage signal (represented by V MREF ) based on the reference voltage signal V REF . The output reference terminal N 3 is used as an input of a pulse width modulation (PWM) comparator (eg, comparator 105 ) coupled to a COT converter (eg, COT converter 100 ).

請參考圖2B,其例示根據本發明之一種實施例之用於實現第二步階產生器的控制電路200A。控制電路200A為第二步階產生器185的一種實施例,並包含輸入參考端N1A、放大器210、第一開關裝置220、分壓器230、步階電阻器240、第二開關裝置250以及輸出參考端N3A。相較於圖2A,控制電路200A與控制電路200幾乎相同。控制電路200A與控制電路200的不同之處在於,控制電路200A的輸入參考端N1A用於接收回授電壓訊號(VFB),諸如從COT轉換器100內部所獲得的回授電壓訊號VFB,如圖1所示,故此示例中輸入參考端N1A的電壓Vstep_i由回授電壓訊號VFB來決定。此外,控制電路200A的輸出參考端N3A用於輸出基於回授電壓訊號VFB的修改後回授電壓訊號(以VMFB表示)。輸出參考端N3用於耦接至COT轉換器(例如,COT轉換器100)之脈寬調變(PWM)比較器(例如,比較器105)的另一個輸入。特別地,耦接於步階電阻器240兩端的第二開關裝置250被設為開路或斷開。為此,第二開關裝置250的控制端N2A不需要接收任何控制訊號,或者可省略圖2B所示的第二開關裝置250。或者,控制電路200A的第二開關裝置250可以用任何適當的方式被設為處於斷開狀態。 Please refer to FIG. 2B , which illustrates a control circuit 200A for implementing a second step generator according to an embodiment of the present invention. The control circuit 200A is an embodiment of the second step generator 185 and includes an input reference terminal N 1A , an amplifier 210 , a first switching device 220 , a voltage divider 230 , a step resistor 240 , a second switching device 250 and Output reference terminal N 3A . Compared with FIG. 2A , the control circuit 200A is almost the same as the control circuit 200 . The difference between the control circuit 200A and the control circuit 200 is that the input reference terminal N 1A of the control circuit 200A is used to receive a feedback voltage signal (V FB ), such as the feedback voltage signal V FB obtained from inside the COT converter 100 , as shown in Figure 1, so in this example, the voltage V step_i of the input reference terminal N 1A is determined by the feedback voltage signal V FB . In addition, the output reference terminal N 3A of the control circuit 200A is used to output a modified feedback voltage signal (expressed as V MFB ) based on the feedback voltage signal V FB . The output reference terminal N 3 is used to be coupled to the other input of a pulse width modulation (PWM) comparator (eg, comparator 105 ) of the COT converter (eg, COT converter 100 ). In particular, the second switching device 250 coupled across the step resistor 240 is set to open circuit or disconnected. For this reason, the control terminal N 2A of the second switching device 250 does not need to receive any control signal, or the second switching device 250 shown in FIG. 2B can be omitted. Alternatively, the second switching device 250 of the control circuit 200A may be set in the off state in any suitable manner.

如前述,圖1中之COT轉換器100的架構具有用於適應性雜訊容限控制的控制電路。如前述,習知的恆定導通時間轉換器可能會遇到輸出不穩定的問題,尤其是以更高降壓轉換比配置的習知恆定導通時間轉換器,例如,諸如在12V至1V或12V至1.8V轉換應用中。對此,對於習知的COT轉換器,在沒有任何控制電路(例如,圖1中的180與185)的情況下,降壓轉換率越高,工作週期越小。較小的工作週期可能會導致雜訊容限不足,因而導致輸出不穩定。相反地,降壓轉換比越低(例如,12V至5V、12V至3.3V),則工作週期越大,因而使輸出更穩定。 As mentioned above, the architecture of the COT converter 100 in FIG. 1 has a control circuit for adaptive noise margin control. As mentioned above, the conventional constant on-time converter may encounter the problem of output instability, especially the conventional constant on-time converter configured with a higher buck conversion ratio, for example, such as 12V to 1V or 12V to 1V. 1.8V conversion application. In this regard, for a conventional COT converter without any control circuit (for example, 180 and 185 in Figure 1), the higher the buck conversion rate, the smaller the duty cycle. Smaller duty cycles may result in insufficient noise margin, resulting in unstable output. On the contrary, the lower the buck conversion ratio (for example, 12V to 5V, 12V to 3.3V), the longer the duty cycle, thus making the output more stable.

恆定導通時間轉換器的輸出不穩定的問題,特別是對於以更高降壓轉換比配置的恆定導通時間轉換器而言,是可以藉由針對COT轉換器(例如,COT轉換器100)的PWM比較器(例如,比較器105)利用根據COT轉換器的高側控制訊號以切換方式產生漣波(ripple)的步階產生器(例如,第一步階產生器180)來產生可變參考訊號,從而獲得改善。請參考圖2A,在第一步階產生器180的實施例中,觸發電路TC經配置以根據COT轉換器之高側控制訊號SHS的切換而觸發第一步階產生器180之輸出參考端N3的電壓Vstep_o的電壓變化。例如,當控制端N2的電壓Vstep_sw(例如,高側控制訊號SHS)處於導通狀態時,觸發電路TC的第二開關裝置250導通,電壓Vstep幾乎降低到接地電位。當控制端N2的電壓vstep_sw(例如,高側控制訊號SHS)由導通狀態變為斷開狀態時,觸發電路TC的第二開關裝置250斷開,電壓Vstep增加。如此一來,觸發電路TC之電壓Vstep的增加導致輸出參考端N3處之電壓Vstep_o的減少。亦即,修改後參考電壓訊號VMREF的電壓位準會降低。在此情況下,PWM比較器(例如,比較器105)能夠因此產生漣波訊號。因此,COT轉換器100的雜訊容限得以增加。 The problem of unstable output of constant on-time converters, especially for constant on-time converters configured with higher buck conversion ratios, can be solved by PWM for COT converters (eg, COT converter 100 ) The comparator (eg, comparator 105 ) generates a variable reference signal using a step generator (eg, first step generator 180 ) that generates ripples in a switching manner according to the high-side control signal of the COT converter. , thereby improving. Please refer to FIG. 2A. In the embodiment of the first step generator 180, the trigger circuit TC is configured to trigger the output reference terminal of the first step generator 180 according to the switching of the high-side control signal S HS of the COT converter. The voltage V step_o of N 3 changes. For example, when the voltage V step_sw of the control terminal N 2 (eg, the high-side control signal S HS ) is in a conductive state, the second switching device 250 of the trigger circuit TC is turned on, and the voltage V step is almost reduced to the ground potential. When the voltage v step_sw of the control terminal N 2 (for example, the high-side control signal S HS ) changes from the on state to the off state, the second switching device 250 of the trigger circuit TC is turned off and the voltage V step increases. As a result, the increase in the voltage V step of the trigger circuit TC leads to a decrease in the voltage V step_o at the output reference terminal N 3 . That is, the voltage level of the modified reference voltage signal V MREF will decrease. In this case, the PWM comparator (eg, comparator 105) can therefore generate a ripple signal. Therefore, the noise margin of the COT converter 100 is increased.

當然,在第一步階產生器(例如,圖2A的200)中所使用之觸發電路TC的實現並不受限於該等實例,又觸發電路TC或其功能可以藉由使用任何適合的電路來實現,以根據COT轉換器之高側控制訊號SHS的切換來觸發第一步階產生器之輸出電壓(例如,Vstep_o)的電壓變化。 Of course, the implementation of the trigger circuit TC used in the first step generator (for example, 200 in Figure 2A) is not limited to these examples, and the trigger circuit TC or its function can be implemented by using any suitable circuit. To achieve, the voltage change of the output voltage of the first step generator (for example, V step_o ) is triggered according to the switching of the high-side control signal S HS of the COT converter.

為了改善如前述實施例所示的使用步階產生器來增加雜訊容限的COT轉換器的暫態響應(例如,負載電流以步階方式變化),可以進一步實現根據高側控制訊號以切換方式適應性修改COT轉換器之PWM比較器的參考電壓訊號VREF。下面提供關於這方面的第一步階產生器的多種實施例。 In order to improve the transient response of the COT converter that uses a step generator to increase the noise margin as shown in the previous embodiment (for example, the load current changes in a step manner), it can be further implemented to switch according to the high-side control signal The method adaptively modifies the reference voltage signal V REF of the PWM comparator of the COT converter. Various embodiments of first-stage generators in this regard are provided below.

請參考圖3A,其例示根據本發明之一種實施例之基於圖2A所示之第一步階產生器架構的適應性雜訊容限控制的控制電路300。如圖3A所示,其提供用於COT轉換器之適應性雜訊容限控制的控制電路300。控制電路300是第一步階產生器180的一種實施例,並包含輸入參考端N1、放大器310、第一開關裝置320、分壓器330、觸發電路TC、切換式補償電路SCC以及輸出參考端N3。控制電路300的輸入參考端N1用以接收參考電壓訊號VREF。放大器310具有耦接輸入參考端N1的第一輸入端,並具有第二輸入端。第一開關裝置320具有耦接至放大器310之輸出端的控制端、用於接收電壓源訊號的第一導電端、第二導電端。分壓器330耦接至該第二導電端與該第二輸入端。觸發電路TC包括步階電阻器340以及第二開關裝置350。步階電阻器340耦接至分壓器330。第二開關裝置350耦接至步階電阻器340的兩端,其中第二開關裝置350係根據COT轉換器(例如,COT轉換器100)的高側開關的高側控制訊號(例如,SHS)選擇性導通。切換式補償電路SCC包括補償開關裝置360以及補償電流源370。補償開關裝置360耦接至分壓器330,其中補償開關裝置360係根據高側控制訊號(例如,SHS)選擇性導通。 補償電流源370經由補償開關裝置360選擇性耦接至分壓器330。例如,補償開關裝置360連接在補償電流源370與分壓器330的節點NC之間,其中節點NC在分壓器330的電阻器RF1、RF2之間,並連接到放大器310的第二輸入端。控制電路300的輸出參考端N3耦接至該第二導電端,用以輸出基於參考電壓訊號VREF的修改後參考電壓訊號。例如,輸出參考端N3用於耦接至COT轉換器之脈寬調變比較器(例如,比較器105)的一個輸入。 Please refer to FIG. 3A , which illustrates a control circuit 300 for adaptive noise margin control based on the first-stage generator architecture shown in FIG. 2A according to an embodiment of the present invention. As shown in FIG. 3A , a control circuit 300 for adaptive noise margin control of a COT converter is provided. The control circuit 300 is an embodiment of the first step generator 180 and includes an input reference terminal N 1 , an amplifier 310 , a first switching device 320 , a voltage divider 330 , a trigger circuit TC, a switching compensation circuit SCC and an output reference Terminal N 3 . The input reference terminal N 1 of the control circuit 300 is used to receive the reference voltage signal V REF . The amplifier 310 has a first input terminal coupled to the input reference terminal N 1 and has a second input terminal. The first switching device 320 has a control terminal coupled to the output terminal of the amplifier 310, a first conductive terminal, and a second conductive terminal for receiving a voltage source signal. The voltage divider 330 is coupled to the second conductive terminal and the second input terminal. The trigger circuit TC includes a step resistor 340 and a second switching device 350 . Step resistor 340 is coupled to voltage divider 330 . The second switching device 350 is coupled to both ends of the step resistor 340 , wherein the second switching device 350 is configured according to a high-side control signal (eg, S HS ) of a high-side switch of the COT converter (eg, COT converter 100 ). ) selective conduction. The switching compensation circuit SCC includes a compensation switching device 360 and a compensation current source 370 . The compensation switching device 360 is coupled to the voltage divider 330, wherein the compensation switching device 360 is selectively turned on according to a high-side control signal (eg, S HS ). Compensation current source 370 is selectively coupled to voltage divider 330 via compensation switching device 360 . For example, the compensation switching device 360 is connected between the compensation current source 370 and the node NC of the voltage divider 330, where the node N input terminal. The output reference terminal N 3 of the control circuit 300 is coupled to the second conductive terminal for outputting a modified reference voltage signal based on the reference voltage signal V REF . For example, the output reference terminal N 3 is used to be coupled to an input of a pulse width modulation comparator (eg, comparator 105 ) of the COT converter.

當第二開關裝置350與補償開關裝置360根據高側控制訊號SHS的斷開狀態而斷開時,圖3A中的控制電路300以與圖2A中之控制電路200相似的方式操作。當第二開關裝置350與補償開關裝置360係根據高側控制訊號SHS的導通狀態而導通時,圖3A中的控制電路300根據參考電壓訊號VREF以及由補償電流源370所提供的電流來輸出修改後參考電壓訊號。切換式補償電路SCC經配置以適應性提供電流以改善使用第一步階產生器來增加雜訊容限的COT轉換器(例如,COT轉換器100)的暫態響應(例如,負載電流以步階方式變化)。 When the second switching device 350 and the compensation switching device 360 are turned off according to the off state of the high-side control signal S HS , the control circuit 300 in FIG. 3A operates in a similar manner to the control circuit 200 in FIG. 2A. When the second switching device 350 and the compensation switching device 360 are turned on according to the conduction state of the high-side control signal S HS , the control circuit 300 in FIG. 3A switches based on the reference voltage signal VREF and the current provided by the compensation current source 370. Output the modified reference voltage signal. Switched compensation circuit SCC is configured to adaptively provide current to improve the transient response of a COT converter (e.g., COT converter 100 ) that uses a first-step generator to increase noise margin (e.g., the load current increases in steps). step mode changes).

在控制電路300的一種實施例中,補償電流源370用於接收高側控制訊號並根據斷開(OFF)週期的測量值佔高側控制訊號之總週期的百分比而輸出可變電流(例如,由Ix表示)。亦即,可變電流Ix根據1-D而輸出,其中D表示高側控制訊號的工作週期,該工作週期等於導通(ON)週期TON加上OFF週期TOFF,亦即D=TON+TOFF。例如,可變電流Ix可實現為與1-D成正比(或與D成反比)。請參考圖3B,圖3B為本發明之一種實施例之可變電流Ix與1-D的關係圖。在一種實施例中,補償電流源370可根據以下公式(1)實現成輸出可變電流Ix:Ix=(TOFF/TP)*(VREF/(RRF2+RRF3))*(1/K)。 在公式(1)中,TOFF表示高側控制訊號的總週期TP(亦即工作週期D)的OFF週期,VREF表示參考電壓訊號VREF的電壓位準,RRF2與RRF3表示分壓器330之電阻器RF2、RF3的電阻值,且K表示一參數。例如,K可設定為5至10之間的數值,亦可在適當的時候使用其他數值。當K設定為較小的數值時,可變電流Ix可以增大,並因而輸出參考端N3處的修改後參考電壓訊號減小。當K設定為較大的數值時,可變電流Ix可減小,並因而輸出參考端N3處的修改後參考電壓訊號增加。 In one embodiment of the control circuit 300, the compensation current source 370 is configured to receive the high-side control signal and output a variable current based on a measured value of the OFF period as a percentage of the total period of the high-side control signal (eg, Represented by Ix). That is, the variable current Ix is output according to 1-D, where D represents the duty cycle of the high-side control signal, which is equal to the ON period T ON plus the OFF period T OFF , that is, D=T ON + TO OFF . For example, the variable current Ix can be implemented to be proportional to 1-D (or inversely proportional to D). Please refer to FIG. 3B. FIG. 3B is a diagram showing the relationship between the variable current Ix and 1-D according to an embodiment of the present invention. In one embodiment, the compensation current source 370 can be implemented to output a variable current Ix according to the following formula (1): Ix=(T OFF /T P )*(VREF/(R RF2 +R RF3 ))*(1/ K). In formula (1), T OFF represents the OFF period of the total period of the high-side control signal T P (that is, the duty cycle D), VREF represents the voltage level of the reference voltage signal V REF , and R RF2 and R RF3 represent the divided voltage. The resistance values of the resistors RF2 and RF3 of the device 330, and K represents a parameter. For example, K can be set to a value between 5 and 10, and other values can be used when appropriate. When K is set to a smaller value, the variable current Ix can increase, and thus the modified reference voltage signal at the output reference terminal N3 decreases. When K is set to a larger value, the variable current Ix can be reduced, and thus the modified reference voltage signal at the output reference terminal N3 increases.

當高側控制訊號SHS處於ON狀態(或被設為作用狀態(asserted)或表示啟用狀態)時,補償開關裝置360導通,使得補償電流源370輸出的可變電流Ix流入分壓器330的節點NC。因此,圖3A之控制電路300所輸出的修改後參考電壓訊號係小於圖2A之控制電路200所輸出的修改後參考電壓訊號。此外,在一種實施例中,由於可變電流Ix能夠實現為與1-D成正比,因此控制電路300能夠輸出修改後參考電壓訊號以適應性控制使用控制電路300作為第一步階產生器180的COT轉換器100的雜訊容限。當工作週期D較大時(例如,對於較低的降壓轉換比),雜訊容限能夠作較小程度的增加,而當工作週期D較小時(例如,對於較高的降壓轉換比),雜訊容限能夠作較大程度的增加。如此,補償電流源370可被實現為以步階方式適應性提供與1-D成正比的可變電流Ix,從而改善使用第一步階產生器(例如,控制電路300)來適應性增加雜訊容限的COT轉換器(例如,COT轉換器100)的暫態響應(例如,負載電流以步階方式變化)。 When the high-side control signal S HS is in the ON state (or is asserted or indicates an enabled state), the compensation switching device 360 is turned on, so that the variable current Ix output by the compensation current source 370 flows into the voltage divider 330 Node N C . Therefore, the modified reference voltage signal output by the control circuit 300 of FIG. 3A is smaller than the modified reference voltage signal output by the control circuit 200 of FIG. 2A . In addition, in one embodiment, since the variable current Ix can be implemented as being proportional to 1-D, the control circuit 300 can output a modified reference voltage signal for adaptive control using the control circuit 300 as the first step generator 180 Noise margin of COT converter 100. When the duty cycle D is larger (e.g., for lower buck conversion ratios), the noise margin can be increased to a smaller extent, while when the duty cycle D is smaller (e.g., for higher buck conversion ratios) (Compared to), the noise tolerance can be increased to a greater extent. As such, the compensation current source 370 can be implemented to adaptively provide a variable current Ix proportional to 1-D in a step manner, thereby improving the ability to adaptively increase complexity using a first step generator (eg, the control circuit 300). The transient response (eg, the load current changes in a step manner) of a signal-tolerant COT converter (eg, COT converter 100 ).

請參考圖4,其例示根據本發明之一種實施例之用於實現圖3A之切換式補償電路SCC的補償電流源370的電路400。 Please refer to FIG. 4 , which illustrates a circuit 400 for implementing the compensation current source 370 of the switching compensation circuit SCC of FIG. 3A according to an embodiment of the present invention.

如圖4所示,在一種實施例中,可使用或基於電路400來實現補償電流源370。電路400包括工作週期估算電路410、分壓器電路420以及補償控制器 430。工作週期估算電路410用以接收高側控制訊號SHS並產生表示高側控制訊號之工作週期的電壓訊號(VDC)。分壓器電路420耦接至工作週期估算電路410,用以根據電壓訊號VDC而輸出縮小的電壓訊號(例如,以VDC/K表示)。補償控制器430耦接至分壓器電路420,用以根據該縮小的電壓訊號而輸出可變電流Ix。 As shown in FIG. 4 , in one embodiment, compensation current source 370 may be implemented using or based on circuit 400 . Circuit 400 includes duty cycle estimation circuit 410, voltage divider circuit 420, and compensation controller 430. The duty cycle estimation circuit 410 is used to receive the high-side control signal S HS and generate a voltage signal (V DC ) representing the duty cycle of the high-side control signal. The voltage divider circuit 420 is coupled to the duty cycle estimation circuit 410 for outputting a reduced voltage signal (eg, expressed as V DC /K) according to the voltage signal V DC . The compensation controller 430 is coupled to the voltage divider circuit 420 for outputting a variable current Ix according to the reduced voltage signal.

在一種實施例中,工作週期估算電路410包括低通濾波器,其用於接收高側控制訊號SHS並產生表示高側控制訊號之工作週期的電壓訊號VDC。例如,電壓訊號VDC是直流(DC)訊號。 In one embodiment, the duty cycle estimation circuit 410 includes a low-pass filter for receiving the high-side control signal S HS and generating a voltage signal V DC representing the duty cycle of the high-side control signal. For example, the voltage signal V DC is a direct current (DC) signal.

在一種實施例中,補償控制器430包括用於根據該縮小的電壓訊號以輸出可變電流的電壓對電流轉換器(例如,跨導放大器或壓控電流源)。例如,該電壓對電流轉換器可基於具有用於接收電壓訊號VDC與參考電壓VREF0的多個輸入並且具有對應可變電流Ix之輸出的一放大器來實現。 In one embodiment, the compensation controller 430 includes a voltage-to-current converter (eg, a transconductance amplifier or a voltage-controlled current source) for outputting a variable current based on the reduced voltage signal. For example, the voltage-to-current converter may be implemented based on an amplifier having multiple inputs for receiving the voltage signal V DC and the reference voltage V REF0 and having an output corresponding to the variable current Ix.

請參考圖5,其例示根據本發明之另一種實施例之基於圖2A所示之第一步階產生器架構之用於適應性雜訊容限控制的控制電路500。如圖5所示,其提供用於COT轉換器之適應性雜訊容限控制的控制電路500。控制電路500是第一步階產生器180的一種實施例,並包含輸入參考端N1、放大器510、第一開關裝置520、分壓器530、觸發電路TC、切換式補償電路570以及輸出參考端N3。控制電路500的輸入參考端N1用於接收參考電壓訊號VREF。放大器510具有耦接至輸入參考端N1的第一輸入端,並具有第二輸入端。第一開關裝置520具有耦接至放大器510之輸出端的控制端、用於接收電壓源訊號的第一導電端NC1以及第二導電端NC2。分壓器530耦接至第二導電端NC2與該第二輸入端。觸發電路TC包括步階電阻器540以及第二開關裝置550。步階電阻器540耦接至分壓器530。第二開關裝置550耦接步階電阻器540的兩端,其中第二開關裝置550係根據COT轉換器 (例如,COT轉換器100)之高側開關的高側控制訊號(例如,SHS)而選擇性導通。控制電路500的輸出參考端N3透過一個電流路徑(例如,由PH表示)而耦接至第二導電端NC2,並用於輸出基於參考電壓訊號VREF的修改後參考電壓訊號。切換式補償電路570包括複數個補償開關裝置(例如,由561、563表示)以及複數個補償電流源(例如,由571、573表示)。該等補償開關裝置(例如,561、563)中的每一者係根據基於高側控制訊號(SHS)的對應的補償控制訊號(例如,由S1、S2表示)而選擇性導通。該等補償電流源(例如,571、573)透過複數個補償開關裝置而選擇性耦接至該電流路徑(例如,PH)。例如,可藉由使用一或多個控制訊號(例如,S1、S2)來實現對應的補償控制訊號,以表示多種開關組態。 Please refer to FIG. 5 , which illustrates a control circuit 500 for adaptive noise margin control based on the first-stage generator architecture shown in FIG. 2A according to another embodiment of the present invention. As shown in Figure 5, a control circuit 500 for adaptive noise margin control of a COT converter is provided. The control circuit 500 is an embodiment of the first step generator 180 and includes an input reference terminal N 1 , an amplifier 510 , a first switching device 520 , a voltage divider 530 , a trigger circuit TC, a switching compensation circuit 570 and an output reference Terminal N 3 . The input reference terminal N 1 of the control circuit 500 is used to receive the reference voltage signal V REF . The amplifier 510 has a first input terminal coupled to the input reference terminal N 1 and has a second input terminal. The first switching device 520 has a control terminal coupled to the output terminal of the amplifier 510, a first conductive terminal N C1 and a second conductive terminal N C2 for receiving a voltage source signal. The voltage divider 530 is coupled to the second conductive terminal N C2 and the second input terminal. The trigger circuit TC includes a step resistor 540 and a second switching device 550 . Step resistor 540 is coupled to voltage divider 530 . The second switching device 550 is coupled to both ends of the step resistor 540, wherein the second switching device 550 is based on the high-side control signal (eg, S HS ) of the high-side switch of the COT converter (eg, the COT converter 100 ). And selective conduction. The output reference terminal N 3 of the control circuit 500 is coupled to the second conductive terminal N C2 through a current path (eg, represented by PH), and is used to output a modified reference voltage signal based on the reference voltage signal VREF . The switching compensation circuit 570 includes a plurality of compensation switching devices (eg, represented by 561, 563) and a plurality of compensation current sources (eg, represented by 571, 573). Each of the compensation switching devices (eg, 561, 563) is selectively turned on according to a corresponding compensation control signal (eg, represented by S1, S2) based on the high-side control signal (S HS ). The compensation current sources (eg, 571, 573) are selectively coupled to the current path (eg, PH) through a plurality of compensation switching devices. For example, corresponding compensation control signals can be implemented by using one or more control signals (eg, S1, S2) to represent multiple switch configurations.

在一種實施例中,輸出參考端N3係用於耦接至COT轉換器(例如,COT轉換器100)之脈寬調變比較器(例如,比較器105)的一個輸入。 In one embodiment, the output reference terminal N 3 is used as an input of a pulse width modulation comparator (eg, comparator 105 ) coupled to a COT converter (eg, COT converter 100 ).

在一種實施例中,該等補償電流源(例如,571、573)中的每一者用於輸出對應的恆定電流。例如,補償電流源571、573係分別輸出ICP1與ICP2的恆定電流。ICP1與ICP2的電流大小可設定為相同或不同。 In one embodiment, each of the compensation current sources (eg, 571, 573) is used to output a corresponding constant current. For example, the compensation current sources 571 and 573 output constant currents of I CP1 and I CP2 respectively. The current magnitudes of I CP1 and I CP2 can be set to be the same or different.

在一種實施例中,控制電路500更包含耦接在第二導電端NC2與輸出參考端N3之間的補償電阻器(例如,由RCP表示)。 In one embodiment, the control circuit 500 further includes a compensation resistor (eg, represented by R CP ) coupled between the second conductive terminal N C2 and the output reference terminal N 3 .

在控制電路的一種實施例中,當對應的補償控制訊號(例如,S1、S2)被設為作用狀態(或表示啟用狀態)時,對應的補償開關裝置(例如,561、563)導通,使得對應的電流源(例如,571、573)係從電流路徑PH汲取電流。如此,包含補償開關裝置(例如,561、563)以及對應的電流源(例如,571、573)的切換式補償電路570係可同等被視為根據補償控制訊號而輸出或汲取可 變電流的一種可變電流源。例如,當S1被設為作用狀態且S2被設為非作用狀態時,則該可變電流為ICP1。當S1被設為非作用狀態且S2被設為作用狀態時,則該可變電流為ICP2,其中ICP2=2*ICP1。此外,當S1與S2都被設為作用狀態時,則該可變電流是ICP1加上ICP2,亦即3*ICP1。因此,切換式補償電路570可實現為根據補償控制訊號(例如,S1、S2)以步階方式汲取電流的一種可變電流源。 In one embodiment of the control circuit, when the corresponding compensation control signal (for example, S1, S2) is set to the active state (or represents the enabled state), the corresponding compensation switching device (for example, 561, 563) is turned on, so that Corresponding current sources (eg, 571, 573) draw current from current path PH. In this way, the switching compensation circuit 570 including the compensation switching devices (eg, 561, 563) and the corresponding current sources (eg, 571, 573) can be equally regarded as a type of outputting or sinking variable current according to the compensation control signal. Variable current source. For example, when S1 is set to the active state and S2 is set to the inactive state, then the variable current is I CP1 . When S1 is set to the inactive state and S2 is set to the active state, the variable current is I CP2 , where I CP2 =2*I CP1 . In addition, when both S1 and S2 are set to the active state, the variable current is I CP1 plus I CP2 , that is, 3*I CP1 . Therefore, the switching compensation circuit 570 can be implemented as a variable current source that draws current in a stepwise manner according to the compensation control signal (eg, S1, S2).

請參考圖6,其例示根據本發明之一種實施例之用於實現控制圖5之補償電流源的電路600。如圖6所示,在一種實施例中,可使用或基於電路600來實現控制圖5的補償電流源。電路600包含工作週期估算電路610、分壓器電路620以及補償控制器630。工作週期估算電路610用於接收高側控制訊號(例如,SHS)並產生表示高側控制訊號(例如,SHS)之工作週期的電壓訊號(例如,用VDC表示)。分壓器電路620耦接至工作週期估算電路610,用以根據電壓訊號(例如,VDC)而輸出縮小的電壓訊號(例如,VDC/K,K表示一比例值)。補償控制器630耦接至分壓器電路620,並配置成根據該縮小的電壓訊號而輸出複數個補償控制訊號(例如,S1、S2)。 Please refer to FIG. 6 , which illustrates a circuit 600 for controlling the compensation current source of FIG. 5 according to an embodiment of the present invention. As shown in FIG. 6, in one embodiment, control of the compensation current source of FIG. 5 may be implemented using or based on circuit 600. Circuit 600 includes duty cycle estimation circuit 610, voltage divider circuit 620, and compensation controller 630. The duty cycle estimation circuit 610 is configured to receive a high-side control signal (eg, S HS ) and generate a voltage signal (eg, represented by V DC ) representing the duty cycle of the high-side control signal (eg, S HS ). The voltage divider circuit 620 is coupled to the duty cycle estimation circuit 610 for outputting a reduced voltage signal (eg, V DC /K, where K represents a ratio value) according to the voltage signal (eg, V DC ). The compensation controller 630 is coupled to the voltage divider circuit 620 and configured to output a plurality of compensation control signals (eg, S1, S2) according to the reduced voltage signal.

在控制電路的一種實施例中,工作週期估算電路610包括低通濾波器,其用於接收高側控制訊號(例如,SHS)並產生表示高側控制訊號之工作週期的電壓訊號(例如,VDC)。 In one embodiment of the control circuit, the duty cycle estimation circuit 610 includes a low-pass filter for receiving a high-side control signal (e.g., S HS ) and generating a voltage signal representative of the duty cycle of the high-side control signal (e.g., V DC ).

在控制電路的一種實施例中,補償控制器630包括複數個比較器(例如,由631、633表示),用於根據該縮小的電壓訊號(例如,VDC/K)以及對應的多個補償參考訊號(例如,由VREF1、VREF2表示)而輸出多個補償控制訊號(例如,S1、S2)。 In one embodiment of the control circuit, the compensation controller 630 includes a plurality of comparators (e.g., represented by 631, 633) for performing compensation according to the reduced voltage signal (e.g., V DC /K) and the corresponding plurality of comparators. A plurality of compensation control signals (eg, S1, S2) are output based on reference signals (eg, represented by V REF1 and V REF2 ).

例如,VREF1小於VREF2。當該縮小的電壓訊號(例如,VDC/K)小於VREF1時,則比較器631、633分別將補償控制訊號S1、S2輸出為處於非作用狀態(例如,處於關斷(OFF)狀態)。當該縮小的電壓訊號(例如,VDC/K)大於或等於VREF1且小於VREF2時,則比較器631、633分別將補償控制訊號S1、S2輸出為處於作用狀態及非作用狀態(例如,處於導通(ON)狀態與關斷(OFF)狀態)。當該縮小的電壓訊號(例如,VDC/K)大於或等於VREF2時,則比較器631、633分別輸出處於作用狀態的補償控制訊號S1、S2(例如,處於導通(ON)狀態)。 For example, V REF1 is less than V REF2 . When the reduced voltage signal (for example, V DC /K) is less than V REF1 , the comparators 631 and 633 respectively output the compensation control signals S1 and S2 to be in the inactive state (for example, in the off (OFF) state) . When the reduced voltage signal (for example, V DC /K) is greater than or equal to V REF1 and less than V REF2 , the comparators 631 and 633 respectively output the compensation control signals S1 and S2 to the active state and the inactive state (eg, , in the conduction (ON) state and the shutdown (OFF) state). When the reduced voltage signal (for example, V DC /K) is greater than or equal to V REF2 , the comparators 631 and 633 respectively output the compensation control signals S1 and S2 in the active state (for example, in the conduction (ON) state).

當然,補償控制器630的實現方式並不受限於這些實例,並可利用其他產生補償控制訊號的方式作為實施例。 Of course, the implementation of the compensation controller 630 is not limited to these examples, and other methods of generating compensation control signals may be used as embodiments.

在一些實施例中,切換式補償電路570還可包括三個或更多個恆定電流源以及三個或更多個補償開關裝置,而補償控制器630可包括三個或更多個比較器以產生三個或更多個補償控制訊號。 In some embodiments, the switched compensation circuit 570 may also include three or more constant current sources and three or more compensation switching devices, and the compensation controller 630 may include three or more comparators to Generate three or more compensation control signals.

例如,請參考圖5及圖6,當高側控制訊號SHS處於導通(ON)狀態(或處於作用狀態或表示啟用狀態)時,電路600產生複數個補償控制訊號(例如,S1、S2)以選擇性導通複數個補償開關裝置(例如,由561、563表示)以例如透過補償電阻器RCP而從電流路徑PH汲取電流。因此,圖5之控制電路500所輸出的修改後參考電壓訊號係小於圖2A之控制電路200所輸出的修改後參考電壓訊號。此外,在一種實施例中,由於切換式補償電路570的可變電流能夠以步階方式被實現為與1-D而正成比,因此控制電路500能夠輸出修改後參考電壓訊號,以適應性控制使用控制電路500作為第一步階產生器180的COT轉換器100的雜訊容限。當工作週期D較大時(例如,對於較低的降壓轉換比),則該雜訊容限能夠作較小程度的增加,而當工作週期D較小時(例如,對於較高的降壓轉換比), 則該雜訊容限能夠作較大程度的增加。整體而言,切換式補償電路570可實現為以步階方式適應性提供與1-D成正比的可變電流,以適應性改善使用第一步階產生器(例如,控制電路500)來適應性增加雜訊容限的COT轉換器(例如,COT轉換器100)的暫態響應(例如,負載電流以步階方式變化)。 For example, please refer to Figures 5 and 6. When the high-side control signal S HS is in the ON state (or in the active state or indicates the enabled state), the circuit 600 generates a plurality of compensation control signals (for example, S1, S2) A plurality of compensation switching devices (e.g., represented by 561, 563) are selectively turned on to draw current from the current path PH, for example, through the compensation resistor RCP . Therefore, the modified reference voltage signal output by the control circuit 500 of FIG. 5 is smaller than the modified reference voltage signal output by the control circuit 200 of FIG. 2A. In addition, in one embodiment, since the variable current of the switching compensation circuit 570 can be implemented in a stepwise manner to be proportional to 1-D, the control circuit 500 can output a modified reference voltage signal for adaptive control. Noise margin of COT converter 100 using control circuit 500 as first stage generator 180 . When the duty cycle D is larger (for example, for a lower buck conversion ratio), the noise margin can be increased to a smaller extent, and when the duty cycle D is smaller (for example, for a higher buck conversion ratio), the noise margin can be increased to a smaller extent. (voltage conversion ratio), the noise margin can be increased to a greater extent. Overall, the switched compensation circuit 570 may be implemented to adaptively provide a variable current proportional to 1-D in a step manner to adapt using a first step generator (e.g., the control circuit 500). The transient response (eg, the load current changes in a step manner) of a COT converter (eg, COT converter 100 ) that has a higher noise margin.

因此,該雜訊容限被適應性增加且暫態響應效能亦得到改善,因此導致COT轉換器之更穩定的輸出。 Therefore, the noise margin is adaptively increased and the transient response performance is improved, thus resulting in a more stable output of the COT converter.

切換式補償電路570能夠提供觸發裝置TC的功能以觸發控制電路500之輸出電壓(亦即Vstep_o)的電壓變化,其原因為切換式補償電路570可實現為如前述的根據補償控制訊號(例如,S1,S2)以步階方式汲取電流的一種可變電流源。此外,切換式補償電路570可實現為以步階方式提供與1-D成正比的可變電流,以改善暫態響應。由於這些原因,在一些實施例中,可在不使用步階電阻器540與第二開關裝置550的情況下可替代地實現圖5中所示的控制電路。換言之,在控制電路500的一些實現方式中,在圖5中的第二開關裝置550或步階電阻器540與第二開關裝置550兩者可為可選的(或被省略)。 The switching compensation circuit 570 can provide the function of the triggering device TC to trigger the voltage change of the output voltage of the control circuit 500 (ie, V step_o ). The reason is that the switching compensation circuit 570 can be implemented according to the compensation control signal (such as , S1, S2) A variable current source that draws current in a stepwise manner. In addition, the switching compensation circuit 570 can be implemented to provide a variable current proportional to 1-D in a stepwise manner to improve transient response. For these reasons, in some embodiments, the control circuit shown in Figure 5 may alternatively be implemented without the use of step resistor 540 and second switching device 550. In other words, in some implementations of the control circuit 500, the second switching device 550 or both the step resistor 540 and the second switching device 550 in FIG. 5 may be optional (or omitted).

雖然已藉由特定多個實施例描述本發明,但是所屬領域技術中具有通常知識者可對其進行許多改良與變化而不悖離在申請專利範圍請求項中所闡述之本發明的範疇與精神。 Although the present invention has been described through specific embodiments, those skilled in the art can make many modifications and changes without departing from the scope and spirit of the invention as set forth in the claims. .

200:控制電路 200:Control circuit

210:放大器(amp) 210: Amplifier (amp)

220:開關裝置 220:Switching device

230:分壓器 230: Voltage divider

240:步階電阻器 240: Step resistor

250:開關裝置 250:Switching device

TC:觸發電路 TC: trigger circuit

RF1:電阻器 RF1: Resistor

RF2:電阻器 RF2: Resistor

RF3:步階電阻器 RF3: step resistor

N1:輸入參考端 N 1 : Input reference terminal

N2:控制端 N 2 :Control terminal

N3:輸出參考端 N 3 : Output reference terminal

Vstep:電壓 V step :voltage

Vstep_i:電壓 V step_i : voltage

VREF:參考電壓訊號 V REF : reference voltage signal

Vstep_o:電壓 V step_o : voltage

VMREF:修改後參考電壓訊號 V MREF : Modified reference voltage signal

Vstep_sw:電壓 V step_sw : voltage

SHS:高側控制訊號 S HS : high side control signal

VD:電壓源訊號 V D : voltage source signal

Claims (17)

一種用於恆定導通時間(constant on time,COT)轉換器之適應性雜訊容限控制的控制電路,該控制電路包含:該控制電路的一輸入參考端,用於接收一參考電壓訊號;一放大器,其具有耦接至該輸入參考端的一第一輸入端並具有一第二輸入端;一第一開關裝置,其具有耦接至該放大器之一輸出端的一控制端,具有用於接收一電壓源訊號的一第一導電端、及具有一第二導電端;一分壓器,其耦接至該第二導電端與該第二輸入端;一觸發電路,其耦接至該分壓器,用以根據該COT轉換器之一高側開關的一高側控制訊號來選擇性觸發一修改後參考電壓訊號的電壓變化;以及該控制電路的一輸出參考端,其耦接至該第二導電端並用於輸出基於該參考電壓訊號的該修改後參考電壓訊號,其中該輸出參考端用於耦接至該COT轉換器之一比較器的一輸入。 A control circuit for adaptive noise margin control of a constant on time (COT) converter. The control circuit includes: an input reference terminal of the control circuit for receiving a reference voltage signal; An amplifier having a first input terminal coupled to the input reference terminal and a second input terminal; a first switching device having a control terminal coupled to an output terminal of the amplifier and having a control terminal for receiving a a first conductive end of the voltage source signal and a second conductive end; a voltage divider coupled to the second conductive end and the second input end; a trigger circuit coupled to the voltage divider a converter for selectively triggering a voltage change of a modified reference voltage signal according to a high-side control signal of a high-side switch of the COT converter; and an output reference terminal of the control circuit, which is coupled to the first The two conductive terminals are used to output the modified reference voltage signal based on the reference voltage signal, wherein the output reference terminal is used to be coupled to an input of a comparator of the COT converter. 如請求項1所述之控制電路,其中該觸發電路包含:一步階電阻器,其耦接至該分壓器;以及一第二開關裝置,其跨接於該步階電阻器,其中該第二開關裝置根據該高側控制訊號而選擇性導通。 The control circuit of claim 1, wherein the trigger circuit includes: a first-step resistor coupled to the voltage divider; and a second switching device connected across the step resistor, wherein the first-step resistor is coupled to the voltage divider; The two switching devices are selectively turned on according to the high-side control signal. 如請求項1所述之控制電路,其中該控制電路更包含:一切換式補償電路,其包括: 一補償開關裝置,其耦接至該分壓器,其中該補償開關裝置根據該高側控制訊號而選擇性導通;以及一補償電流源,其透過該補償開關裝置而選擇性耦接至該分壓器。 The control circuit as claimed in claim 1, wherein the control circuit further includes: a switching compensation circuit, which includes: a compensation switching device coupled to the voltage divider, wherein the compensation switching device is selectively conductive according to the high-side control signal; and a compensation current source selectively coupled to the voltage divider through the compensation switching device Pressure regulator. 如請求項3所述之控制電路,其中該補償電流源係用於接收該高側控制訊號並根據一斷開週期的測量值佔該高側控制訊號之總週期的百分比而輸出一可變電流。 The control circuit as described in claim 3, wherein the compensation current source is used to receive the high-side control signal and output a variable current according to the measured value of an off period as a percentage of the total period of the high-side control signal. . 如請求項4所述之控制電路,其中當該高側控制訊號被設為作用狀態時,則該補償開關裝置導通,使得該補償電流源所輸出的該可變電流流入該分壓器。 The control circuit of claim 4, wherein when the high-side control signal is set to an active state, the compensation switching device is turned on, so that the variable current output by the compensation current source flows into the voltage divider. 如請求項4所述之控制電路,其中該補償電流源包含:一工作週期估算電路,用於接收該高側控制訊號並產生表示該高側控制訊號之工作週期的一電壓訊號;一分壓器電路,其耦接至該工作週期估算電路,並配置成根據該電壓訊號而輸出一縮小的電壓訊號;及一補償控制器,其耦接至該分壓器電路,並配置成根據該縮小的電壓訊信號而輸出該可變電流。 The control circuit of claim 4, wherein the compensation current source includes: a duty cycle estimation circuit for receiving the high-side control signal and generating a voltage signal representing the duty cycle of the high-side control signal; a voltage divider a voltage divider circuit coupled to the duty cycle estimation circuit and configured to output a reduced voltage signal based on the voltage signal; and a compensation controller coupled to the voltage divider circuit and configured to output a reduced voltage signal based on the reduced voltage signal. voltage signal to output the variable current. 如請求項6所述之控制電路,其中該工作週期估算電路包括一低通濾波器,其用於接收該高側控制訊號並產生表示該高側控制訊號之該工作週期的該電壓訊號。 The control circuit of claim 6, wherein the duty cycle estimation circuit includes a low-pass filter for receiving the high-side control signal and generating the voltage signal representing the duty cycle of the high-side control signal. 如請求項6所述之控制電路,其中該補償控制器包括一電壓對電流轉換器,其用於根據該縮小的電壓訊號而輸出該可變電流。 The control circuit of claim 6, wherein the compensation controller includes a voltage-to-current converter for outputting the variable current according to the reduced voltage signal. 一種用於恆定導通時間(COT)轉換器之適應性雜訊容限控制的控制電路,該控制電路包含:該控制電路的一輸入參考端,用於接收一參考電壓訊號;一放大器,其具有耦接至該輸入參考端的一第一輸入端,並具有一第二輸入端;一第一開關裝置,其具有耦接至該放大器之一輸出端的一控制端,其具有用於接收電壓源訊號的一第一導電端及具有一第二導電端;一分壓器,其耦接至該第二導電端與該第二輸入端;該控制電路的一輸出參考端,其透過一電流路徑而耦接至該第二導電端,並用於輸出基於該參考電壓訊號的一修改後參考電壓訊號;以及一切換式補償電路,其包括:複數個補償開關裝置,其中該等補償開關裝置中的每一者根據基於該COT轉換器之一高側開關之一高側控制訊號的一對應的補償控制訊號而選擇性導通;及複數個補償電流源,其透過該等補償開關裝置而選擇性耦接至該電流路徑。 A control circuit for adaptive noise margin control of a constant on-time (COT) converter. The control circuit includes: an input reference terminal of the control circuit for receiving a reference voltage signal; an amplifier having a first input terminal coupled to the input reference terminal and having a second input terminal; a first switching device having a control terminal coupled to an output terminal of the amplifier and having a voltage source signal a first conductive terminal and a second conductive terminal; a voltage divider coupled to the second conductive terminal and the second input terminal; an output reference terminal of the control circuit through a current path Coupled to the second conductive terminal and used to output a modified reference voltage signal based on the reference voltage signal; and a switching compensation circuit including: a plurality of compensation switching devices, wherein each of the compensation switching devices one selectively conductive according to a corresponding compensation control signal based on a high-side control signal of a high-side switch of the COT converter; and a plurality of compensation current sources selectively coupled through the compensation switching devices to this current path. 如請求項9所述之控制電路,其中該控制電路更包含:一觸發電路,其包括:一步階電阻器,其耦接至該分壓器;及一第二開關裝置,其耦接於該步階電阻器的兩端,其中該第二開關裝置係根據該高側控制訊號而選擇性導通。 The control circuit of claim 9, wherein the control circuit further includes: a trigger circuit including: a one-step resistor coupled to the voltage divider; and a second switching device coupled to the voltage divider. Both ends of the step resistor, wherein the second switching device is selectively turned on according to the high-side control signal. 如請求項9所述之控制電路,其中該輸出參考端係用於耦接至該COT轉換器之一比較器的一輸入。 The control circuit of claim 9, wherein the output reference terminal is used to be coupled to an input of a comparator of the COT converter. 如請求項9所述之控制電路,其中該等補償電流源中的每一者係用於輸出一對應的恆定電流。 The control circuit of claim 9, wherein each of the compensation current sources is used to output a corresponding constant current. 如請求項9所述之控制電路,其中該控制電路更包含一補償電阻器,其係耦接在該第二導電端與該輸出參考端之間。 The control circuit of claim 9, wherein the control circuit further includes a compensation resistor coupled between the second conductive terminal and the output reference terminal. 如請求項9所述之控制電路,其中當該對應的補償控制訊號被設為作用狀態時,則該對應的補償開關裝置導通,使得該對應的電流源從該電流路徑汲取電流。 The control circuit of claim 9, wherein when the corresponding compensation control signal is set to an active state, the corresponding compensation switch device is turned on, so that the corresponding current source draws current from the current path. 如請求項9所述之控制電路,其中該控制電路更包含:一工作週期估算電路,用於接收該高側控制訊號並產生表示該高側控制訊號之一工作週期的一電壓訊號;一分壓器電路,其耦接至該工作週期估算電路,並配置成根據該電壓訊號而輸出一縮小的電壓訊號;及一補償控制器,其耦接至該分壓器電路,並配置成根據該縮小的電壓訊號而輸出該等補償控制訊號。 The control circuit as claimed in claim 9, wherein the control circuit further includes: a duty cycle estimation circuit for receiving the high-side control signal and generating a voltage signal representing one duty cycle of the high-side control signal; a voltage regulator circuit coupled to the duty cycle estimation circuit and configured to output a reduced voltage signal based on the voltage signal; and a compensation controller coupled to the voltage divider circuit and configured to output a reduced voltage signal based on the voltage signal. The reduced voltage signal is used to output the compensation control signals. 如請求項15所述之控制電路,其中該工作週期估算電路包括一低通濾波器,其用於接收該高側控制訊號並產生表示該高側控制訊號之該工作週期的該電壓訊號。 The control circuit of claim 15, wherein the duty cycle estimation circuit includes a low-pass filter for receiving the high-side control signal and generating the voltage signal representing the duty cycle of the high-side control signal. 如請求項15所述之控制電路,其中該補償控制器包括複數個比較器,其用於根據該縮小的電壓訊號以及對應的補償參考訊號而輸出該等補償控制訊號。 The control circuit of claim 15, wherein the compensation controller includes a plurality of comparators for outputting the compensation control signals according to the reduced voltage signal and the corresponding compensation reference signal.
TW111147206A 2022-12-08 2022-12-08 Control circuit for adaptive noise margin control for a constant on time converter TWI828463B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111147206A TWI828463B (en) 2022-12-08 2022-12-08 Control circuit for adaptive noise margin control for a constant on time converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111147206A TWI828463B (en) 2022-12-08 2022-12-08 Control circuit for adaptive noise margin control for a constant on time converter

Publications (2)

Publication Number Publication Date
TWI828463B true TWI828463B (en) 2024-01-01
TW202424678A TW202424678A (en) 2024-06-16

Family

ID=90459046

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111147206A TWI828463B (en) 2022-12-08 2022-12-08 Control circuit for adaptive noise margin control for a constant on time converter

Country Status (1)

Country Link
TW (1) TWI828463B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190207528A1 (en) * 2014-09-12 2019-07-04 Alpha And Omega Semiconductor (Cayman) Ltd. Constant on-time (cot) control in isolated converter
TW202119157A (en) * 2019-11-01 2021-05-16 大陸商龍迅半導體(合肥)股份有限公司 Circuit for generating differential reference voltages, circuit for detecing signal peak, and electronic device
TW202207602A (en) * 2020-08-03 2022-02-16 茂達電子股份有限公司 Converter having fast transient response

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190207528A1 (en) * 2014-09-12 2019-07-04 Alpha And Omega Semiconductor (Cayman) Ltd. Constant on-time (cot) control in isolated converter
TW202119157A (en) * 2019-11-01 2021-05-16 大陸商龍迅半導體(合肥)股份有限公司 Circuit for generating differential reference voltages, circuit for detecing signal peak, and electronic device
TW202207602A (en) * 2020-08-03 2022-02-16 茂達電子股份有限公司 Converter having fast transient response

Similar Documents

Publication Publication Date Title
US7199563B2 (en) DC-DC converter
US7276886B2 (en) Dual buck-boost converter with single inductor
US9356510B2 (en) Constant on-time switching converter and control method thereof
US9143033B2 (en) Hysteretic power converter with calibration circuit
US7570033B1 (en) Apparatus and method for PWM buck-or-boost converter with smooth transition between modes
US10110124B2 (en) Control circuit and control method for switching regulator and switching regulator with the same
US7336057B2 (en) DC/DC converter
US20090153114A1 (en) DC-DC converters with transient response control
JP2013537033A (en) Switching method for switched mode power converter using bridge topology
TWI634728B (en) Control circuit operating in pulse skip mode (psm) and voltage converter having the same
US20210203230A1 (en) Switching converter with voltage and current dual-loop control and control method thereof
US11038423B2 (en) Frequency control circuit, control method and switching converter
US20220216785A1 (en) Control circuit and switching converter
US7023191B2 (en) Voltage regulator with adjustable output impedance
US10153695B2 (en) Feedback scheme for non-isolated power supply
CN109217671B (en) Floating ground voltage-stabilizing power supply circuit
TWI828463B (en) Control circuit for adaptive noise margin control for a constant on time converter
US10243464B2 (en) Power regulator with prevention of inductor current reversal
US11777405B2 (en) Boost off time adaptive adjustment unit and power converter comprising the same
US12015348B2 (en) Control circuit for adaptive noise margin control for a constant on time converter
JP2006166613A (en) Switching power supply
TWI802319B (en) Constant on time converter control circuit and constant on time converter
WO2021134745A1 (en) Adjustable power save mode threshold for switching converter
CN114389452A (en) Switch converter and control circuit and control method thereof
US11764678B2 (en) Constant on time converter control circuit and constant on time converter