TWI824636B - Solid-state electrolyte film and solid-state battery - Google Patents

Solid-state electrolyte film and solid-state battery Download PDF

Info

Publication number
TWI824636B
TWI824636B TW111128350A TW111128350A TWI824636B TW I824636 B TWI824636 B TW I824636B TW 111128350 A TW111128350 A TW 111128350A TW 111128350 A TW111128350 A TW 111128350A TW I824636 B TWI824636 B TW I824636B
Authority
TW
Taiwan
Prior art keywords
solid electrolyte
polymer
electrolyte film
solid
lithium
Prior art date
Application number
TW111128350A
Other languages
Chinese (zh)
Other versions
TW202312549A (en
Inventor
賴鴻政
張曾隆
Original Assignee
鴻海精密工業股份有限公司
芯量科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鴻海精密工業股份有限公司, 芯量科技股份有限公司 filed Critical 鴻海精密工業股份有限公司
Priority to CN202210974028.XA priority Critical patent/CN115763962A/en
Priority to US17/896,610 priority patent/US20230163354A1/en
Priority to EP22192605.8A priority patent/EP4145578A1/en
Publication of TW202312549A publication Critical patent/TW202312549A/en
Application granted granted Critical
Publication of TWI824636B publication Critical patent/TWI824636B/en

Links

Images

Landscapes

  • Conductive Materials (AREA)
  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

A solid-state electrolyte film includes a first lithium salt, a first polymer, a second polymer, and a solid-state electrolyte. The first polymer has a weight average molecular weight of between 60,000 g/mol and 1,800,000 g/mol. The second polymer has a granular shape. The solid-state electrolyte has a granular shape and a particle size (D50) of between 50 nm and 2 μm.

Description

固態電解質薄膜及固態電池 Solid electrolyte films and solid-state batteries

本揭露內容是有關於一種固態電解質薄膜及包括所述固態電解質薄膜的固態電池。The present disclosure relates to a solid electrolyte film and a solid-state battery including the solid electrolyte film.

隨著科技的日新月異,各式各樣的可攜式電池逐漸問世,人們對於可攜式電池的高性能及輕量化等需求亦越來越高。隨著這些需求日益強烈,鋰離子型電池基於其能量密度高且能夠迅速充電等特點而得到人們的高度關注及廣泛使用。對於鋰離子型電池而言,常使用液態電解質來作為電池的導電材料,但液態電解質具有液漏的危險或者缺少長時間的穩定性的缺點以及易腐蝕、易燃燒、安全性差與可靠性低等問題,無法滿足安全性方面的要求。With the rapid development of technology, various portable batteries have gradually come out, and people's demand for high performance and lightweight of portable batteries is also increasing. As these demands become increasingly strong, lithium-ion batteries have attracted great attention and are widely used due to their high energy density and rapid charging capabilities. For lithium-ion batteries, liquid electrolytes are often used as the conductive material of the battery. However, liquid electrolytes have the disadvantages of leakage or lack of long-term stability, and are prone to corrosion, combustion, poor safety and low reliability. problem and cannot meet security requirements.

有鑑於此,固態電解質逐漸取代較為危險的液態電解質。然而,固態電解質仍存在著許多問題,例如,固態電解質在室溫條件下的離子電導率不高、固態電解質與正負電極之間介面阻抗較大等問題。因此,如何有效改善固態電解質的上述缺點,實為目前業界研發的重點。In view of this, solid electrolytes are gradually replacing more dangerous liquid electrolytes. However, there are still many problems with solid electrolytes, such as low ionic conductivity of solid electrolytes at room temperature and large interfacial impedance between solid electrolytes and positive and negative electrodes. Therefore, how to effectively improve the above-mentioned shortcomings of solid electrolytes is currently the focus of research and development in the industry.

根據本揭露的一些實施方式,一種固態電解質薄膜包括第一鋰鹽、第一高分子、第二高分子及固態電解質。第一高分子的重量平均分子量介於60000g/mol至1800000g/mol之間。第二高分子具有顆粒狀。固態電解質具有顆粒狀,且固態電解質的粒徑(D50)介於50奈米至2微米之間。 According to some embodiments of the present disclosure, a solid electrolyte film includes a first lithium salt, a first polymer, a second polymer and a solid electrolyte. The weight average molecular weight of the first polymer is between 60,000g/mol and 1,800,000g/mol. The second polymer has a granular shape. The solid electrolyte has a granular shape, and the particle size (D50) of the solid electrolyte is between 50 nanometers and 2 microns.

在本揭露的一些實施方式中,第一鋰鹽、第一高分子、第二高分子以及固態電解質的重量比為16至25:26至34:5至20:10至40。 In some embodiments of the present disclosure, the weight ratio of the first lithium salt, the first polymer, the second polymer and the solid electrolyte is 16 to 25: 26 to 34: 5 to 20: 10 to 40.

在本揭露的一些實施方式中,第一高分子為含氟高分子。 In some embodiments of the present disclosure, the first polymer is a fluorine-containing polymer.

在本揭露的一些實施方式中,第一高分子的熔點介於160℃至175℃之間,且第一高分子的熱穩定溫度介於300℃至400℃之間。 In some embodiments of the present disclosure, the melting point of the first polymer is between 160°C and 175°C, and the thermal stability temperature of the first polymer is between 300°C and 400°C.

在本揭露的一些實施方式中,第一鋰鹽包括氟化鋰、雙氟磺醯亞胺鋰、雙三氟甲烷磺醯亞胺鋰、雙(全氟乙基磺醯亞胺)鋰、二草酸硼酸鋰或其組合。 In some embodiments of the present disclosure, the first lithium salt includes lithium fluoride, lithium bisfluorosulfonimide, lithium bistrifluoromethanesulfonimide, lithium bis(perfluoroethylsulfonimide), lithium bis(perfluoroethylsulfonimide), Lithium oxalate borate or combinations thereof.

在本揭露的一些實施方式中,第一高分子包括聚偏二氟乙烯、聚偏氟乙烯-六氟丙烯共聚物或其組合,且第二高分子包括聚丙烯酸、聚甲基丙烯酸甲酯、三氟化硼-***錯合物、聚乙二醇、聚乙二醇二縮水甘油醚或其組合。 In some embodiments of the present disclosure, the first polymer includes polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, or a combination thereof, and the second polymer includes polyacrylic acid, polymethylmethacrylate, Boron trifluoride-diethyl ether complex, polyethylene glycol, polyethylene glycol diglycidyl ether or combinations thereof.

在本揭露的一些實施方式中,固態電解質包括鋰鑭鋯氧、鋰鑭鋯鉭氧、鋰鑭鈦氧、鋰鑭鉭氧、磷酸鈦鋰鋁或其組合。In some embodiments of the present disclosure, the solid electrolyte includes lithium lanthanum zirconium oxide, lithium lanthanum zirconium tantalum oxide, lithium lanthanum titanium oxide, lithium lanthanum tantalum oxide, lithium aluminum titanium phosphate, or combinations thereof.

在本揭露的一些實施方式中,第一高分子具有第一重量平均分子量、第二重量平均分子量及第三重量平均分子量,第一重量平均分子量介於800000 g/mol至1000000 g/mol之間,第二重量平均分子量介於1300000 g/mol至1500000 g/mol之間,且第三重量平均分子量介於60000 g/mol至200000 g/mol之間。In some embodiments of the present disclosure, the first polymer has a first weight average molecular weight, a second weight average molecular weight, and a third weight average molecular weight, and the first weight average molecular weight is between 800,000 g/mol and 1,000,000 g/mol. , the second weight average molecular weight is between 1,300,000 g/mol and 1,500,000 g/mol, and the third weight average molecular weight is between 60,000 g/mol and 200,000 g/mol.

在本揭露的一些實施方式中,具有第一重量平均分子量的第一高分子、具有第二重量平均分子量的第一高分子及具有第三重量平均分子量的第一高分子的重量比為6~10:1.5~3:1。In some embodiments of the present disclosure, the weight ratio of the first polymer with the first weight average molecular weight, the first polymer with the second weight average molecular weight, and the first polymer with the third weight average molecular weight is 6~ 10:1.5~3:1.

在本揭露的一些實施方式中,固態電解質具有第一粒徑(D50)、第二粒徑(D50)以及第三粒徑(D50),第一粒徑(D50)介於0.8微米至1.4微米之間,第二粒徑(D50)介於0.25微米至0.5微米之間,且第三粒徑(D50)介於80奈米至150奈米之間。In some embodiments of the present disclosure, the solid electrolyte has a first particle size (D50), a second particle size (D50), and a third particle size (D50). The first particle size (D50) is between 0.8 microns and 1.4 microns. between, the second particle size (D50) is between 0.25 microns and 0.5 microns, and the third particle size (D50) is between 80 nanometers and 150 nanometers.

在本揭露的一些實施方式中,具有第一粒徑(D50)的固態電解質、具有第二粒徑(D50)的固態電解質以及具有第三粒徑(D50)的固態電解質的重量比為10~20:30~45:35~50。In some embodiments of the present disclosure, the weight ratio of the solid electrolyte with the first particle diameter (D50), the solid electrolyte with the second particle diameter (D50), and the solid electrolyte with the third particle diameter (D50) is 10~ 20:30~45:35~50.

根據本揭露的一些實施方式,一種固態電池包括前述固態電解質薄膜、正極及負極。固態電解質薄膜的厚度介於20微米至70微米之間。正極及負極分別設置於固態電解質薄膜的相對兩表面。According to some embodiments of the present disclosure, a solid-state battery includes the aforementioned solid electrolyte film, a positive electrode, and a negative electrode. The thickness of the solid electrolyte film ranges from 20 microns to 70 microns. The positive electrode and the negative electrode are respectively disposed on opposite surfaces of the solid electrolyte film.

在本揭露的一些實施方式中,固態電池更包括凝膠結構以及緩衝結構。凝膠結構設置於正極與固態電解質薄膜之間,且包括第二鋰鹽、第一高分子以及結晶抑制添加劑。緩衝結構設置於負極與固態電解質薄膜之間,其中緩衝結構係凝膠結構或者離子液體。In some embodiments of the present disclosure, the solid-state battery further includes a gel structure and a buffer structure. The gel structure is disposed between the positive electrode and the solid electrolyte film, and includes a second lithium salt, a first polymer and a crystallization inhibitor additive. The buffer structure is arranged between the negative electrode and the solid electrolyte film, wherein the buffer structure is a gel structure or an ionic liquid.

在本揭露的一些實施方式中,凝膠結構的厚度介於1微米至10微米之間,且離子液體在1平方公分之固態電解質薄膜上的體積介於10微升至40微升之間。In some embodiments of the present disclosure, the thickness of the gel structure ranges from 1 micron to 10 microns, and the volume of the ionic liquid on 1 square centimeter of the solid electrolyte film ranges from 10 microliters to 40 microliters.

根據本揭露上述實施方式,由於本揭露的固態電解質薄膜包括第一鋰鹽、第一高分子、第二高分子以及具有特定粒徑的固態電解質,因此固態電解質薄膜在室溫條件下可具有較高的離子電導率,進而提升固態電池整體的效能。另一方面,由於本揭露是直接將第一鋰鹽、第一高分子、第二高分子及固態電解質整合於單一膜片中以形成固態電解質薄膜,因此可大幅提升製程的便利性。According to the above embodiments of the present disclosure, since the solid electrolyte film of the present disclosure includes a first lithium salt, a first polymer, a second polymer and a solid electrolyte with a specific particle size, the solid electrolyte film can have a relatively high performance under room temperature conditions. High ionic conductivity, thereby improving the overall performance of solid-state batteries. On the other hand, since the present disclosure directly integrates the first lithium salt, the first polymer, the second polymer and the solid electrolyte into a single diaphragm to form a solid electrolyte film, the convenience of the manufacturing process can be greatly improved.

以下將以圖式揭露本揭露之複數個實施方式,為明確地說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本揭露。也就是說,在本揭露部分實施方式中,這些實務上的細節是非必要的,因此不應用以限制本揭露。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。另外,為了便於讀者觀看,圖式中各元件的尺寸並非依實際比例繪示。A plurality of implementation manners of the present disclosure will be disclosed below in figures. For the purpose of clear explanation, many practical details will be explained together in the following description. However, it should be understood that these practical details should not be used to limit the disclosure. That is to say, in some implementations of the disclosure, these practical details are not necessary and therefore should not be used to limit the disclosure. In addition, for the sake of simplifying the drawings, some commonly used structures and components will be illustrated in a simple schematic manner in the drawings. In addition, for the convenience of readers, the dimensions of each element in the drawings are not drawn according to actual proportions.

應當理解,諸如「下」或「底部」和「上」或「頂部」的相對術語可在本文中用於描述一個元件與另一元件的關係,如圖式中所示。應當理解,相對術語旨在包括除了圖中所示的方位之外的裝置的不同方位。舉例而言,若一附圖中的裝置翻轉,則被描述為在其他元件的「下」側的元件將被定向在其他元件的「上」側。因此,示例性術語「下」可以包括「下」和「上」的取向,取決於附圖的特定取向。類似地,若一個附圖中的裝置翻轉,則被描述為在其它元件「下」或「下方」的元件將被定向為在其它元件「上方」。因此,示例性術語「下」或「下面」可以包括上方和下方的取向。It will be understood that relative terms, such as "lower" or "bottom" and "upper" or "top" may be used herein to describe one element's relationship to another element as illustrated in the drawings. It will be understood that relative terms are intended to encompass different orientations of the device in addition to the orientation illustrated in the figures. For example, if the device in the figures is turned over, elements described as "below" other elements would then be oriented "above" the other elements. Thus, the exemplary term "lower" may include both "lower" and "upper" orientations, depending on the particular orientation of the drawing. Similarly, if the device in the figures is turned over, elements described as "below" or "beneath" other elements would then be oriented "above" the other elements. Thus, the exemplary terms "lower" or "lower" may include both upper and lower orientations.

本揭露內容提供一種固態電解質薄膜及包括所述固態電解質薄膜的固態電池。由於本揭露的固態電解質薄膜包括鋰鹽、兩種類型的高分子及具有特定粒徑的固態電解質,因此固態電解質薄膜可具有較高的離子電導率。此外,藉由使用離子電導能力與固態電解質薄膜相近的凝膠結構將電極(正/負極)與固態電解質薄膜緊密地結合,可使固態電解質薄膜與電極之間具有較低的介面阻抗,有利於離子在介面的傳導。如此一來,即便在室溫(例如,介於20℃至60℃之間的溫度範圍)的條件下,固態電解池仍可具有良好的效能。The present disclosure provides a solid electrolyte film and a solid-state battery including the solid electrolyte film. Since the solid electrolyte film of the present disclosure includes a lithium salt, two types of polymers and a solid electrolyte with a specific particle size, the solid electrolyte film can have high ionic conductivity. In addition, by using a gel structure with ionic conductivity similar to that of the solid electrolyte film to tightly combine the electrode (positive/negative electrode) with the solid electrolyte film, the interface impedance between the solid electrolyte film and the electrode can be lowered, which is beneficial to Ion conduction at the interface. In this way, the solid-state electrolytic cell can still have good performance even at room temperature (for example, a temperature range between 20°C and 60°C).

請參閱第1圖,其繪示根據本揭露一些實施方式的固態電池100的截面示意圖。本揭露的固態電池100包括負極、正極以及固態電解質薄膜130,其中負極可例如包含負極材料層110以及負極集電體140,而正極可例如包含正極材料層120以及正極集電體150。在一些實施方式中,負極可包括例如是石墨、介相碳微球、矽碳、矽氧碳、鋰金屬、鋰合金、鈦酸鋰(簡稱LTO)或其組合之負極材料S1的負極材料層110以及例如是銅箔的負極集電體140,而正極可包括例如是鎳鈷錳(簡稱NCM)、鎳鈷錳鋁(簡稱NCMA)、鈷酸鋰(簡稱LCO)、鋰鎳錳氧 (簡稱LNMO)、錳酸鋰(簡稱LMO)、鎳鈷鋁(簡稱NCA)、磷酸鐵鋰(LiFePO 4,簡稱LFP)、磷酸錳鐵鋰(簡稱LMFP)或其組合之正極材料S2的正極材料層120以及例如是鋁箔的正極集電體150。在一些實施方式中,負極及正極分別設置於固態電解質薄膜130的相對兩表面(例如,第一表面131及第二表面133),詳細而言,負極材料層110及正極材料層120將固態電解質薄膜130夾置於其間,且負極集電體140及正極集電體150將負極材料層110、正極材料層120及固態電解質薄膜130夾置於其間。 Please refer to FIG. 1 , which illustrates a schematic cross-sectional view of a solid-state battery 100 according to some embodiments of the present disclosure. The solid-state battery 100 of the present disclosure includes a negative electrode, a positive electrode, and a solid electrolyte film 130. The negative electrode may include, for example, a negative electrode material layer 110 and a negative electrode current collector 140, and the positive electrode may, for example, include a positive electrode material layer 120 and a positive electrode current collector 150. In some embodiments, the negative electrode may include a negative electrode material layer S1 such as graphite, mesocarbon microspheres, silicon carbon, silicon oxycarbon, lithium metal, lithium alloy, lithium titanate (LTO for short) or a combination thereof. 110 and a negative electrode current collector 140 such as copper foil, and the positive electrode may include, for example, nickel cobalt manganese (NCM), nickel cobalt manganese aluminum (NCMA), lithium cobalt oxide (LCO), lithium nickel manganese oxide (NCMA) The positive electrode material layer 120 of the positive electrode material S2 is LNMO), lithium manganate (LMO for short), nickel cobalt aluminum (NCA for short), lithium iron phosphate (LiFePO 4 , LFP for short), lithium iron manganese phosphate (LMFP for short) or a combination thereof. And the positive electrode current collector 150 is, for example, aluminum foil. In some embodiments, the negative electrode and the positive electrode are respectively disposed on two opposite surfaces (for example, the first surface 131 and the second surface 133) of the solid electrolyte film 130. Specifically, the negative electrode material layer 110 and the positive electrode material layer 120 combine the solid electrolyte The thin film 130 is sandwiched therebetween, and the negative electrode current collector 140 and the positive electrode current collector 150 sandwich the negative electrode material layer 110 , the positive electrode material layer 120 and the solid electrolyte film 130 therebetween.

在一些實施方式中,固態電池100可進一步包括凝膠結構160以及緩衝結構170。凝膠結構160可設置於正極材料層120與固態電解質薄膜130之間,並且緩衝結構170可設置於負極材料層110與固態電解質薄膜130之間。在一些實施方式中,緩衝結構170係等同於凝膠結構160,亦即,凝膠結構160不僅可設置於正極材料層120與固態電解質薄膜130之間,還可設置於負極材料層110與固態電解質薄膜130之間。在其他實施方式中,緩衝結構170係離子液體(將於下文中進一步說明)。本揭露的固態電池100大致上的結構如前文及第1圖所示,在以下敘述中,將進一步針對固態電池100中固態電解質薄膜130、凝膠結構160及緩衝結構170的細節進行更詳細的說明。需說明的是,為清楚起見,第1圖將固態電池100繪示中的部分元件繪示成彼此分離,但在實際的固態電池100結構中,各元件為彼此緊密結合的。 In some embodiments, the solid-state battery 100 may further include a gel structure 160 and a buffer structure 170 . The gel structure 160 may be disposed between the cathode material layer 120 and the solid electrolyte film 130 , and the buffer structure 170 may be disposed between the anode material layer 110 and the solid electrolyte film 130 . In some embodiments, the buffer structure 170 is equivalent to the gel structure 160 , that is, the gel structure 160 can not only be disposed between the cathode material layer 120 and the solid electrolyte film 130 , but can also be disposed between the anode material layer 110 and the solid electrolyte film 130 . between electrolyte films 130 . In other embodiments, the buffer structure 170 is an ionic liquid (further described below). The general structure of the solid-state battery 100 of the present disclosure is as shown above and in Figure 1 . In the following description, the details of the solid-state electrolyte film 130 , the gel structure 160 and the buffer structure 170 in the solid-state battery 100 will be further described in more detail. instruction. It should be noted that, for the sake of clarity, FIG. 1 shows some components of the solid-state battery 100 as being separated from each other, but in the actual structure of the solid-state battery 100, the components are closely integrated with each other.

在一些實施方式中,固態電解質薄膜130包括第一鋰鹽、第一高分子、第二高分子以及固態電解質,且第一鋰鹽、第一高分子、第二高分子及固態電解質彼此均勻地混合。具體而言,第一鋰鹽可例如是氟化鋰(LiF)、雙氟磺醯亞胺鋰(LiO4NS2F2,簡稱LiFSI)、雙三氟甲烷磺醯亞胺鋰(LiN(CF3SO2)2,簡稱LiTFSI)、雙(全氟乙基磺醯亞胺)鋰(Li(C2F5SO2)2N,簡稱LiBETI)、二草酸硼酸鋰(LiB(C2O4)2),簡稱LiBOB)或其組合;第 一高分子可例如是聚偏二氟乙烯(polyvinylidene difluoride,簡稱PVDF)、聚偏氟乙烯-六氟丙烯共聚物(polyvinylidene fluoride-hexafluoropropylene copolymer,簡稱PVDF-HFP)或其組合;第二高分子例如是聚丙烯酸(poly(acrylic acid),簡稱PAA)、聚甲基丙烯酸甲酯(poly(methyl methacrylate,簡稱PMMA)、三氟化硼-***錯合物(BF3.OEt2)、聚乙二醇二縮水甘油醚(diepoxy-poly(ethylene glycol),簡稱DIEPEG)、聚乙二醇(polyethylene glycol,簡稱PEG)或其組合;而固態電解質可例如是鋰鑭鋯氧(例如Li7La3Zr2O12,簡稱LLZO)、鋰鑭鋯鉭氧(例如Li5.5La3Zr1.75Ta0.25O12,簡稱LLZTO)、鋰鑭鈦氧(例如La0.57Li0.29TiO3,簡稱LLTO)、鋰鑭鉭氧(例如Li0.35La0.57Ta0.8O3,簡稱LLTaO)、磷酸鈦鋰鋁(例如Li1.3Al0.3Ti1.7(PO4)3,簡稱LATP)或其組合。 In some embodiments, the solid electrolyte film 130 includes a first lithium salt, a first polymer, a second polymer, and a solid electrolyte, and the first lithium salt, the first polymer, the second polymer, and the solid electrolyte are uniformly distributed with each other. mix. Specifically, the first lithium salt may be, for example, lithium fluoride (LiF), lithium bisfluorosulfonyl imide (LiO 4 NS 2 F 2 , LiFSI for short), lithium bistrifluoromethanesulfonyl imide (LiN(CF 3 SO 2 ) 2 , referred to as LiTFSI), lithium bis(perfluoroethylsulfonimide) (Li(C 2 F 5 SO 2 ) 2 N, referred to as LiBETI), lithium dioxalatoborate (LiB(C 2 O 4 ) 2 ), LiBOB for short) or a combination thereof; the first polymer can be, for example, polyvinylidene difluoride (PVDF for short), polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF for short) -HFP) or a combination thereof; the second polymer is, for example, poly(acrylic acid), PAA for short, poly(methyl methacrylate, PMMA for short), boron trifluoride-ether complex (BF 3 . OEt 2 ), diepoxy-poly(ethylene glycol), DIEPEG for short, polyethylene glycol (PEG for short), or combinations thereof; and the solid electrolyte can be, for example, They are lithium lanthanum zirconium oxide (such as Li 7 La 3 Zr 2 O 12 , referred to as LLZO), lithium lanthanum zirconium tantalum oxide (such as Li 5.5 La 3 Zr 1.75 Ta 0.25 O 12 , referred to as LLZTO), lithium lanthanum titanium oxide (such as La 0.57 Li 0.29 TiO 3 , referred to as LLTO), lithium lanthanum tantalum oxide (such as Li 0.35 La 0.57 Ta 0.8 O 3 , referred to as LLTaO), lithium aluminum titanium phosphate (such as Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 , referred to as LATP) or its combination.

在一些實施方式中,可透過將第一高分子的重量平均分子量控制在一定的範圍內,以使固態電解質薄膜130具有較佳的韌性及抗機械性。具體而言,由於在固態電池100的工作期間,負極材料層110及正極材料層120會不斷地對固態電解質薄膜130進行擠壓,因此透過控制第一高分子的重量平均分子量,可使固態電解質薄膜130具有良好的韌性及抗機械性,進而避免因負極材料層110及正極材料層120的膨脹擠壓而影響固態電池100的循環及造成固態電池100短路。在一些實施方式中,第一高分子的重量平均分子量介於60000g/mole至1800000g/mole之間。詳細而言,若第一高分子的重量平均分子量小於60000g/mole,第一高分子的鏈結度差,導致其無法提供固態電解質薄膜130良好的韌性以及抗機械性;若第一高分子的重量平均分子量大於1800000g/mole,第一高分子黏度過高,不利於製程期間膠體(膠體可視為固態電解質薄膜130的前驅物)的塗佈,進而影響固態電解質薄膜130的良率。在較佳的實施方式中,第一高分子的重量平均分子量可介於80000g/mole至1300000g/mole之間,以較佳地實現上述功效。In some embodiments, the solid electrolyte film 130 can have better toughness and mechanical resistance by controlling the weight average molecular weight of the first polymer within a certain range. Specifically, during operation of the solid-state battery 100, the negative electrode material layer 110 and the positive electrode material layer 120 will continuously squeeze the solid electrolyte film 130. Therefore, by controlling the weight average molecular weight of the first polymer, the solid electrolyte can be The film 130 has good toughness and mechanical resistance, thereby preventing the expansion and extrusion of the negative electrode material layer 110 and the positive electrode material layer 120 from affecting the cycle of the solid state battery 100 and causing a short circuit of the solid state battery 100 . In some embodiments, the weight average molecular weight of the first polymer is between 60,000 g/mole and 1,800,000 g/mole. Specifically, if the weight average molecular weight of the first polymer is less than 60,000 g/mole, the linkage degree of the first polymer is poor, resulting in the inability to provide the solid electrolyte film 130 with good toughness and mechanical resistance; if the first polymer has If the weight average molecular weight is greater than 1,800,000 g/mole, the viscosity of the first polymer is too high, which is not conducive to the coating of colloids (colloids can be regarded as precursors of the solid electrolyte film 130) during the manufacturing process, thereby affecting the yield of the solid electrolyte film 130. In a preferred embodiment, the weight average molecular weight of the first polymer can be between 80,000 g/mole and 1,300,000 g/mole to better achieve the above effects.

在一些實施方式中,第一高分子包括三種不同分子量的高分子。詳細而言,第一高分子具有第一重量平均分子量、第二重量平均分子量以及第三重量平均分子量,其中第一重量平均分子量介於800000 g/mol至1000000 g/mol之間,第二重量平均分子量介於1300000 g/mol至1500000 g/mol之間,而第三重量平均分子量介於60000 g/mol至200000 g/mol之間。具有第一重量平均分子量的第一高分子可用於作為成膜的主要試劑,在成型後可成為固態電解質薄膜130的主架構,其在膠體狀態下的黏度適合塗膜製程,有利於固態電解質薄膜130成型。具有第二重量平均分子量的第一高分子可助於提升固態電解質薄膜130的機械強度(例如,延伸性及應力)。具有第三重量平均分子量的第一高分子可作為固態電解質的分散劑和保護劑,使固態電解質完整且均勻地分散於固態電解質薄膜130中。若欲提高固態電解質薄膜130的機械強度,比起僅使用小於等於1000000 g/mol之重量平均分子量的高分子作為第一高分子,同時使用具有第二重量平均分子量的第一高分子可以得到較佳的機械強度;僅使用1300000 g/mol至1500000 g/mol之重量平均分子量的高分子作為第一高分子,則膠體塗佈較為困難,成膜厚度與狀況不易控制。整體而言,透過使第一高分子包括三種不同分子量的高分子,可使固態電解質薄膜130利於成膜並且具有穩定的主架構,並可使固態電解質薄膜130具有優異的機械強度,又同時使固態電解質完整且均勻地分散於固態電解質薄膜130中。在一些具體實例中,具有第一重量平均分子量範圍的第一高分子、第二重量平均分子量的第一高分子以及具有第三重量平均分子量的第一高分子的重量比為6~10:1.5~3:1,以利於實現上述功效。In some embodiments, the first polymer includes three polymers of different molecular weights. In detail, the first polymer has a first weight average molecular weight, a second weight average molecular weight and a third weight average molecular weight, wherein the first weight average molecular weight is between 800000 g/mol and 1000000 g/mol, and the second weight average molecular weight is between 800000 g/mol and 1000000 g/mol. The average molecular weight ranges from 1,300,000 g/mol to 1,500,000 g/mol, while the third weight average molecular weight ranges from 60,000 g/mol to 200,000 g/mol. The first polymer with the first weight average molecular weight can be used as the main reagent for film formation, and can become the main structure of the solid electrolyte film 130 after molding. Its viscosity in the colloidal state is suitable for the coating process, which is beneficial to the solid electrolyte film. 130 molding. The first polymer having the second weight average molecular weight can help improve the mechanical strength (eg, stretchability and stress) of the solid electrolyte film 130 . The first polymer with the third weight average molecular weight can serve as a dispersant and protective agent for the solid electrolyte, so that the solid electrolyte is completely and evenly dispersed in the solid electrolyte film 130 . If you want to improve the mechanical strength of the solid electrolyte film 130, compared to using only a polymer with a weight average molecular weight of less than or equal to 1,000,000 g/mol as the first polymer, and using a first polymer with a second weight average molecular weight at the same time, you can get a better result. Excellent mechanical strength; if only a polymer with a weight average molecular weight of 1,300,000 g/mol to 1,500,000 g/mol is used as the first polymer, colloid coating is more difficult, and the film thickness and condition are difficult to control. Overall, by making the first polymer include three types of polymers with different molecular weights, the solid electrolyte film 130 can be facilitated in film formation and have a stable main structure, and the solid electrolyte film 130 can have excellent mechanical strength while simultaneously using The solid electrolyte is completely and evenly dispersed in the solid electrolyte film 130 . In some specific examples, the weight ratio of the first polymer with the first weight average molecular weight range, the first polymer with the second weight average molecular weight, and the first polymer with the third weight average molecular weight is 6~10:1.5 ~3:1, in order to achieve the above effects.

在一些實施方式中,可透過將第一高分子的熔點控制在一定的範圍內,以使固態電解質薄膜130具有較佳的性能。具體而言,在固態電解質薄膜130成型期間,溶劑(溶劑可例如是4-二甲氨基吡啶、二甲基甲醯胺、二甲基甲醯胺或其組合,必要時可摻雜少量甲苯以提升揮發性)可透過烘烤製程離開膠體,使得膠體逐漸成膜,為避免溶劑蒸散後所形成的微小孔洞或缺陷對固態電解質薄膜130的性能產生不利的影響(例如,產生縱向貫穿固態電解質薄膜130的孔洞或缺陷,使得固態電池100發生微短路),在烘烤製程期間可先將位於膠體之表面的溶劑完全地去除(此步驟為第一階段)後,再逐漸升溫以使膠體中的高分子(例如,第一高分子)接近其玻璃轉換溫度(glass transition temperature,Tg)而達到部分熔融的狀態(此步驟為第二階段),進而開始流動以填補因溶劑蒸散所產生的孔洞或缺陷。基於上述,透過控制第一高分子的熔點,可使第一高分子在第一階段維持固態,並在第二階段達到部分熔融的狀態,以避免成膜後的固態電解質薄膜130發生微短路等的電性問題,進而提升固態電解質薄膜130的電性功能。在一些實施方式中,第一高分子的熔點可介於160℃至175℃之間。詳細而言,若第一高分子的熔點小於160℃,第一高分子可能在第一階段即達到熔融的狀態,進而干擾溶劑的去除;而若第一高分子的熔點大於175℃,第一高分子則可能無法在第二階段順利地達到熔融的狀態,導致固態電解質薄膜130中的孔洞或缺陷過多,進而影響固態電池100的電性功能。在較佳的實施方式中,第一高分子的熔點可介於160℃至165℃之間,以較佳地實現上述功效。另一方面,由於在固態電池100的工作期間會產生一定的熱能,因此將第一高分子的熔點控制在上述範圍可避免第一高分子在固態電池100的工作期間熔化以造成短路。在一些實施方式中,第一高分子的熱穩定溫度(例如,對第一高分子進行熱重分析時所得到的熱分解溫度)可介於300℃至400℃之間,以具有良好的穩定度,進而使得固態電池100在工作期間具有良好的熱穩定性。在一些實施方式中,第一高分子的的結晶點(crystallizing point)介於120℃至140℃之間(較佳為介於120℃至130℃之間),以具備良好的成膜性。In some embodiments, the solid electrolyte film 130 can have better performance by controlling the melting point of the first polymer within a certain range. Specifically, during the formation of the solid electrolyte film 130, the solvent (the solvent may be, for example, 4-dimethylaminopyridine, dimethylformamide, dimethylformamide or a combination thereof, may be doped with a small amount of toluene if necessary. Increase the volatility) can leave the colloid through the baking process, causing the colloid to gradually form a film. In order to avoid the tiny holes or defects formed after the solvent evaporates from adversely affecting the performance of the solid electrolyte film 130 (for example, vertically penetrating the solid electrolyte film) 130 holes or defects, causing micro-short circuits in the solid-state battery 100), during the baking process, the solvent on the surface of the colloid can be completely removed (this step is the first stage), and then the temperature can be gradually raised to make the solvent in the colloid The polymer (for example, the first polymer) approaches its glass transition temperature (Tg) and reaches a partially molten state (this step is the second stage), and then begins to flow to fill the holes caused by the evaporation of the solvent or defect. Based on the above, by controlling the melting point of the first polymer, the first polymer can be maintained in a solid state in the first stage and reach a partially molten state in the second stage to avoid micro short circuits in the solid electrolyte film 130 after the film is formed. electrical problems, thereby improving the electrical performance of the solid electrolyte film 130. In some embodiments, the melting point of the first polymer may be between 160°C and 175°C. Specifically, if the melting point of the first polymer is less than 160°C, the first polymer may reach a molten state in the first stage, thereby interfering with the removal of the solvent; and if the melting point of the first polymer is greater than 175°C, the first polymer The polymer may not smoothly reach the molten state in the second stage, resulting in too many holes or defects in the solid electrolyte film 130 , thereby affecting the electrical function of the solid state battery 100 . In a preferred embodiment, the melting point of the first polymer can be between 160°C and 165°C to better achieve the above effects. On the other hand, since a certain amount of heat energy is generated during the operation of the solid-state battery 100, controlling the melting point of the first polymer within the above range can prevent the first polymer from melting and causing a short circuit during the operation of the solid-state battery 100. In some embodiments, the thermal stability temperature of the first polymer (for example, the thermal decomposition temperature obtained when performing thermogravimetric analysis on the first polymer) may be between 300°C and 400°C to have good stability. degree, thereby enabling the solid-state battery 100 to have good thermal stability during operation. In some embodiments, the crystallizing point of the first polymer is between 120°C and 140°C (preferably between 120°C and 130°C), so as to have good film-forming properties.

在一些實施方式中,第二高分子具有顆粒狀,以適度地破壞第一高分子所形成之薄膜的連續延伸狀態。具體而言,由於第一高分子為成膜性佳的微小非顆粒材料,因此當第一高分子單獨地存在時,其容易形成連續延伸的薄膜,而當將第二高分子摻雜於第一高分子中時,基於顆粒狀的第二高分子可適度地破壞(調整)第一高分子之間的連結,使固態電解質薄膜130產生適量的孔紋,進而提升離子的穿透性,使得離子的電導率提升。在一些實施方式中,可進一步透過第一高分子及第二高分子的比例關係來較佳地實現上述功效。具體而言,第一高分子以及第二高分子的重量比可控制在16~25:26~34的範圍內。In some embodiments, the second polymer has a granular shape to moderately disrupt the continuous extension state of the film formed by the first polymer. Specifically, since the first polymer is a tiny non-granular material with good film-forming properties, when the first polymer exists alone, it can easily form a continuously extending film, and when the second polymer is doped with the third When contained in a polymer, the granular second polymer can moderately destroy (adjust) the connections between the first polymers, causing the solid electrolyte film 130 to produce an appropriate amount of pores, thus improving the penetrability of ions, so that The conductivity of ions increases. In some embodiments, the above effects can be better achieved through the proportional relationship between the first polymer and the second polymer. Specifically, the weight ratio of the first polymer and the second polymer can be controlled within the range of 16~25:26~34.

在一些實施方式中,固態電解質具有顆粒狀,且固態電解質的粒徑(D50)介於50奈米至2微米之間,以提升固態電解質薄膜130的電性功能。更具體而言,當固態電解質的粒徑落在上述範圍中時,其顆粒尺寸小且尺寸均一,如此可避免大尺寸之固態電解質所造成之固態電解質薄膜130表面凹凸不平的情形發生,進而使固態電解質薄膜130與其相鄰的層別(例如,凝膠結構160及緩衝結構170)緊密且充分地咬合,以避免空氣存在於固態電解質薄膜130與相鄰的層別之間,進而避免短路或性能不良的情況發生。此外,固態電解質的顆粒尺寸小且尺寸均一還可促使固態電解質均勻地分散於固態電解質薄膜130中,以避免固態電解質薄膜130表面凹凸不平的情形發生。基於上述,由於固態電解質薄膜130表面凹凸不平的情形不會發生,因此可避免固態電解質薄膜130因應力不均而導致性能較不佳。另一方面,由於在相同的質量下,顆粒小之固態電解質的數目總和大於顆粒大之固態電解質的數目總和,因此小顆粒之固態電解質所形成的可穿梭通道多於大顆粒之固態電解質所造成的可穿梭通道,故顆粒小的固態電解質可提供較優異的傳導能力,進而提升固態電池100的離子的電導率。值得說明的是,一般而言,當固態電解質的粒徑越小,其所能夠產生的晶界表面積及接觸面積會越大,但粒徑小之固態電解質亦容易在塗佈過程中反應過於劇烈,導致不必要的副反應發生,因此在較佳的實施方式中,固態電解質的粒徑可小於500奈米(例如,介於50奈米至300奈米之間),以較佳地兼顧塗佈時的勻漿性及塗佈後的導電性需求。In some embodiments, the solid electrolyte has a granular shape, and the particle size (D50) of the solid electrolyte is between 50 nanometers and 2 microns to improve the electrical function of the solid electrolyte film 130 . More specifically, when the particle size of the solid electrolyte falls within the above range, the particle size is small and uniform, which can avoid the uneven surface of the solid electrolyte film 130 caused by the large-sized solid electrolyte, thereby making the solid electrolyte film 130 uneven. The solid electrolyte film 130 is tightly and fully engaged with its adjacent layers (for example, the gel structure 160 and the buffer structure 170 ) to prevent air from existing between the solid electrolyte film 130 and the adjacent layers, thereby preventing short circuit or Poor performance occurs. In addition, the small and uniform particle size of the solid electrolyte can also promote the solid electrolyte to be evenly dispersed in the solid electrolyte film 130 to avoid unevenness on the surface of the solid electrolyte film 130 . Based on the above, since the uneven surface of the solid electrolyte film 130 will not occur, poor performance of the solid electrolyte film 130 due to uneven stress can be avoided. On the other hand, since under the same mass, the sum of the number of solid electrolytes with small particles is greater than the sum of the number of solid electrolytes with large particles, the number of shuttle channels formed by solid electrolytes with small particles is more than that caused by solid electrolytes with large particles. The shuttleable channel allows the solid electrolyte with small particles to provide better conductivity, thus improving the ion conductivity of the solid-state battery 100 . It is worth mentioning that, generally speaking, when the particle size of a solid electrolyte is smaller, the grain boundary surface area and contact area it can produce will be larger. However, a solid electrolyte with a small particle size is also prone to react too violently during the coating process. , leading to unnecessary side reactions. Therefore, in a preferred embodiment, the particle size of the solid electrolyte can be less than 500 nanometers (for example, between 50 nanometers and 300 nanometers) to better meet the requirements of coating. Homogenization during cloth application and electrical conductivity requirements after coating.

在一些實施方式中,固態電解質包括三種不同的粒徑(D50)範圍。詳細而言,固態電解質具有第一粒徑(D50)、第二粒徑(D50)及第三粒徑(D50),其中第一粒徑介於0.8微米至1.4微米之間,第二粒徑介於0.25微米至0.5微米之間,而第三粒徑介於80奈米至150奈米之間。具體而言,如前所述,當粒徑小之固態電解質的數量越多,代表單位體積內的可穿梭通道數目較多,然而粒徑小之固態電解質亦容易在塗佈過程中反應過於劇烈而鋰氟化,導致膠體難以塗佈成膜,進而影響固態電解質薄膜130的厚度。因此,在考量上述反應性問題後,可以選擇以粒徑較大(即,具有第一、第二粒徑)的固態電解質來取代部分粒徑較小(即,具有第三粒徑)的固態電解質,來使固態電解質薄膜130的成膜性更為順利,並且透過混合不同粒徑的固態電解質,可使最終形成的固態電解質薄膜130具有較強的結構強度。整體而言,藉由上述三種不同粒徑之固態電解質的配置,固態電解質薄膜130可具有較佳的成膜性以及較強的結構強度。在一些實施方式中,具有第一粒徑的固態電解質、具有第二粒徑的固態電解質及具有第三粒徑的固態電解質的重量比為10~20:30~45:35~50,以利於實現上述功效。In some embodiments, the solid electrolyte includes three different particle size (D50) ranges. In detail, the solid electrolyte has a first particle size (D50), a second particle size (D50) and a third particle size (D50), wherein the first particle size is between 0.8 microns and 1.4 microns, and the second particle size is between 0.8 microns and 1.4 microns. Between 0.25 microns and 0.5 microns, and the third particle size ranges between 80 nanometers and 150 nanometers. Specifically, as mentioned above, when the number of solid electrolytes with small particle sizes is greater, it means that the number of shuttle channels per unit volume is larger. However, solid electrolytes with small particle sizes are also prone to react too violently during the coating process. However, lithium fluorination makes it difficult for the colloid to be coated and formed into a film, thereby affecting the thickness of the solid electrolyte film 130 . Therefore, after considering the above reactivity issues, you can choose to replace part of the solid electrolyte with a smaller particle size (ie, having a third particle size) with a solid electrolyte with a larger particle size (ie, having the first and second particle sizes). The electrolyte is used to make the film formation of the solid electrolyte film 130 smoother, and by mixing solid electrolytes of different particle sizes, the finally formed solid electrolyte film 130 can have strong structural strength. Overall, through the configuration of the above three solid electrolytes with different particle sizes, the solid electrolyte film 130 can have better film-forming properties and stronger structural strength. In some embodiments, the weight ratio of the solid electrolyte with the first particle size, the solid electrolyte with the second particle size, and the solid electrolyte with the third particle size is 10~20:30~45:35~50, in order to facilitate achieve the above effects.

基於上述,本揭露的固態電解質薄膜130可包括第一鋰鹽、第一高分子、第二高分子及固態電解質,且第一鋰鹽、第一高分子、第二高分子及固態電解質的重量比為16~25:26~34:5~20:10~40,以使固態電解質薄膜130具有較佳的均勻度,進而具有較佳的離子穿透率及電導率。在一些實施方式中,固態電解質薄膜130的厚度H1可介於10微米至100微米之間,以兼具良好的耐受性與韌性以及合適的能量密度。詳細而言,當固態電解質薄膜130的厚度H1小於10微米時,易導致固態電解質薄膜130受撕裂或刺穿;當固態電解質薄膜130的厚度H1大於100微米時,易導致固態電解質薄膜130的能量密度不足。在較佳的實施方式中,固態電解質薄膜130的厚度H1可介於20微米至70微米之間,以較佳地實現上述功效。Based on the above, the solid electrolyte film 130 of the present disclosure may include a first lithium salt, a first polymer, a second polymer and a solid electrolyte, and the weight of the first lithium salt, the first polymer, the second polymer and the solid electrolyte The ratio is 16~25:26~34:5~20:10~40, so that the solid electrolyte film 130 has better uniformity, and thus has better ion penetration rate and conductivity. In some embodiments, the thickness H1 of the solid electrolyte film 130 may range from 10 microns to 100 microns to achieve both good tolerance and toughness as well as suitable energy density. Specifically, when the thickness H1 of the solid electrolyte film 130 is less than 10 microns, it is easy to cause the solid electrolyte film 130 to be torn or punctured; when the thickness H1 of the solid electrolyte film 130 is greater than 100 microns, it is easy to cause the solid electrolyte film 130 to be damaged. Insufficient energy density. In a preferred embodiment, the thickness H1 of the solid electrolyte film 130 can be between 20 microns and 70 microns to better achieve the above effects.

在一些實施方式中,凝膠結構160可包括第二鋰鹽、前文所述的第一高分子以及結晶抑制添加劑。具體而言,第二鋰鹽可例如是雙氟磺醯亞胺鋰(LiO4NS2F2,簡稱LiFSI)、雙三氟甲烷磺醯亞胺鋰(LiN(CF3SO2)2,簡稱LiTFSI)、lithium(fluorosulfonyl)((3-(1-methyl-1H-imidazol-3-ium-3-yl)propyl)sulfonyl)imide)(簡稱LiFSMIPTFSI)、N,N-Bis(trifluoromethylsulfony aniline)或其組合;第一高分子可例如是前文所述的聚偏二氟乙烯、聚偏氟乙烯-六氟丙烯共聚物或其組合;合適的結晶抑制添加劑可例如是丙烯酸酯類聚合物,諸如聚丙烯酸丁酯、聚丙烯酸乙基己酯或聚甲基丙烯酸甲酯;三氧化二鋁;二氧化矽或其組合。凝膠結構160中存在結晶抑制添加劑可以調整第一高分子之結晶狀況,提高離子電導率。由於凝膠結構160可設置於電極(正極/負極)與固態電解質薄膜130之間,因此可避免電極與固態電解質薄膜130之間因空氣的存在而影響固態電池100的離子電導率,並可降低電極與固態電解質薄膜130之間的介面阻抗。此外,當固態電解質薄膜130仍存在少量的凹凸點時,凝膠結構160還可配置以與具有凹凸不平之表面的固態電解質薄膜130緊密地咬合,以使固態電解質薄膜130能夠透過凝膠結構160緊密地與電極結合。另一方面,由於凝膠結構160的配方與 固態電解質薄膜130的配方相近(例如,凝膠結構160與固態電解質薄膜130皆包括鋰鹽以及第一高分子),因此凝膠結構160與固態電解質薄膜130的相容性高,有助於提升固態電池100的電性功能。在一些實施方式中,第二鋰鹽、第一高分子以及結晶抑制添加劑的重量比落在15~30:30~40:5~15的範圍內,進而確保凝膠結構160的固含量低於固態電解質薄膜130的固含量。在一些實施方式中,凝膠結構160的厚度H2介於1微米至10微米之間,以兼具良好的耐受性與韌性及合適的能量密度。詳細而言,當凝膠結構160的厚度H2小於1微米時,易導致凝膠結構160受撕裂或刺穿;當凝膠結構160的厚度H2大於10微米時,則易導致凝膠結構160的能量密度不足。在較佳的實施方式中,凝膠結構160的厚度H2可介於3微米至5微米之間,以較佳地實現上述功效。 In some embodiments, the gel structure 160 may include a second lithium salt, the first polymer described above, and a crystallization inhibiting additive. Specifically, the second lithium salt can be, for example, lithium bisfluorosulfonyl imide (LiO 4 NS 2 F 2 , LiFSI for short), lithium bistrifluoromethanesulfonyl imide (LiN(CF 3 SO 2 ) 2 , abbreviated as LiFSI) LiTFSI), lithium(fluorosulfonyl)((3-(1-methyl-1H-imidazol-3-ium-3-yl)propyl)sulfonyl)imide) (referred to as LiFSMIPTFSI), N,N-Bis(trifluoromethylsulfony aniline) or other Combination; the first polymer can be, for example, the polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer or a combination thereof as mentioned above; the suitable crystallization inhibitor additive can be, for example, an acrylate polymer, such as polyacrylic acid Butyl ester, polyethylhexyl acrylate or polymethyl methacrylate; aluminum oxide; silicon dioxide or combinations thereof. The presence of a crystallization inhibitor additive in the gel structure 160 can adjust the crystallization state of the first polymer and improve the ionic conductivity. Since the gel structure 160 can be disposed between the electrode (positive electrode/negative electrode) and the solid electrolyte film 130, it can avoid the presence of air between the electrode and the solid electrolyte film 130 from affecting the ionic conductivity of the solid state battery 100, and can reduce the The interface impedance between the electrode and the solid electrolyte film 130. In addition, when the solid electrolyte film 130 still has a small amount of uneven spots, the gel structure 160 can also be configured to tightly engage with the solid electrolyte film 130 having an uneven surface, so that the solid electrolyte film 130 can penetrate the gel structure 160 Tightly bonded to the electrode. On the other hand, since the formula of the gel structure 160 is similar to the formula of the solid electrolyte film 130 (for example, the gel structure 160 and the solid electrolyte film 130 both include lithium salt and the first polymer), therefore the gel structure 160 and the solid electrolyte film 130 are similar. The thin film 130 has high compatibility and helps improve the electrical performance of the solid-state battery 100 . In some embodiments, the weight ratio of the second lithium salt, the first polymer and the crystallization inhibitor additive falls within the range of 15~30:30~40:5~15, thereby ensuring that the solid content of the gel structure 160 is less than The solid content of the solid electrolyte film 130. In some embodiments, the thickness H2 of the gel structure 160 is between 1 micron and 10 microns to achieve both good tolerance and toughness and appropriate energy density. Specifically, when the thickness H2 of the gel structure 160 is less than 1 micron, it is easy to cause the gel structure 160 to be torn or punctured; when the thickness H2 of the gel structure 160 is greater than 10 microns, it is easy to cause the gel structure 160 to be torn or punctured. The energy density is insufficient. In a preferred embodiment, the thickness H2 of the gel structure 160 can be between 3 microns and 5 microns to better achieve the above effects.

在一些實施方式中,當緩衝結構170係離子液體時,離子液體可例如是N-甲基-N-丙基吡咯啶雙(三氟甲烷磺醯)亞胺鹽(N-methyl-N-propylpyrrolidiniumbis(trifluoromethanesulfonyl)imide,簡稱[pyr13][Ntf2])、溶於二乙基吡咯啶雙(氟磺醯)亞胺鹽的雙氟磺醯亞胺鋰(LiO4NS2F2 dissolved in diethylpyrrolidiniumbis(fluorosulfonyl)imide,簡稱Li[FSI]in[C2epyr][FSI])、二氟草酸硼酸鋰(C2BF2LiO4,簡稱LiDFOB)、雙氟磺醯亞胺鋰/N-甲基-N-丙基吡咯啶雙氟磺醯亞胺鹽(LiO 4NS 2F 2/C 8H 18F 2N 2O 4S 2,簡稱LiFSI/PMPFSI)、雙三氟甲烷磺醯亞胺鋰/N-甲基-N-丙基吡咯啶雙氟磺醯亞胺鹽(LiN(CF 3SO 2) 2/C 8H 18F 2N 2O 4S 2,簡稱LiTFSI/PMPFSI)或上述任意的組合。離子液體可有效提升離子的電導率,且僅需少量的離子液體便可達到良好的離子傳導效益,並可降低負極材料層110與固態電解質薄膜130之間的介面阻抗。在一些實施方式中,離子液體在1平方公分之固態電解質薄膜130上的體積介於10微升至40微升之間。詳細而言,若離子液體的體積小於10微升,可能導致離子傳遞效率過低或導致低溫性能衰敗;若離子液體的體積大於40微升,可能導致能量密度過低。另一方面,由於離子液體耐低/高溫(例如,可承受-95℃至400℃的溫度),因此可維持固態電池100在工作期間的安全性。 In some embodiments, when the buffer structure 170 is an ionic liquid, the ionic liquid may be, for example, N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonate)imide salt (N-methyl-N-propylpyrrolidiniumbis (trifluoromethanesulfonyl)imide, abbreviated as [pyr 13 ][Ntf 2 ]), lithium bisfluorosulfonyl imide (LiO 4 NS 2 F 2 dissolved in diethylpyrrolidiniumbis (fluorosulfonyl)imide, referred to as Li[FSI]in[C 2 epyr][FSI]), lithium difluorosulfonyl borate (C 2 BF 2 LiO 4 , referred to as LiDFOB), lithium bisfluorosulfonyl imide/N-methyl -N-propylpyrrolidine bisfluorosulfonimide salt (LiO 4 NS 2 F 2 /C 8 H 18 F 2 N 2 O 4 S 2 , referred to as LiFSI/PMPFSI), lithium bistrifluoromethanesulfonimide /N-Methyl-N-propylpyrrolidine bisfluorosulfonimide salt (LiN(CF 3 SO 2 ) 2 /C 8 H 18 F 2 N 2 O 4 S 2 , referred to as LiTFSI/PMPFSI) or any of the above combination. Ionic liquid can effectively increase the conductivity of ions, and only a small amount of ionic liquid can achieve good ion conduction efficiency, and can reduce the interface impedance between the negative electrode material layer 110 and the solid electrolyte film 130 . In some embodiments, the volume of the ionic liquid on 1 cm2 of the solid electrolyte membrane 130 is between 10 microliters and 40 microliters. Specifically, if the volume of the ionic liquid is less than 10 microliters, the ion transfer efficiency may be too low or the low-temperature performance may deteriorate; if the volume of the ionic liquid is greater than 40 microliters, the energy density may be too low. On the other hand, since the ionic liquid is resistant to low/high temperatures (for example, can withstand temperatures from -95°C to 400°C), the safety of the solid-state battery 100 during operation can be maintained.

應瞭解到,已敘述過的元件連接關係與功效將不再重複贅述,合先敘明。在以下敘述中,將簡單說明固態電池100的製備方法。It should be understood that the connection relationships and functions of the components that have been described will not be repeated and will be explained first. In the following description, the method of manufacturing the solid-state battery 100 will be briefly explained.

首先,將溶劑(溶劑可例如是4-二甲氨基吡啶、二甲基甲醯胺、二甲基甲醯胺或其組合,必要時可摻雜少量甲苯)、第一高分子、第二高分子、第一鋰鹽及固態電解質依序置入行星式攪拌器中進行攪拌混合以形成混合物,並以黏度計監測攪拌期間混合物的黏度變化,以將混合物的黏度控制在介於3000cps至5000cps之間,進而確保後續所形成的膠體是利於塗佈的。詳細而言,當上述混合物的黏度小於3000cps時,易導致膠體因流動性過高而不利於塗佈;當上述混合物的黏度大於5000cps時,易導致膠體因流動性過低而難以分散成膜。在一些實施方式中,公轉速度可例如是60rpm±50%,自轉速度可例如是3500rpm±10%,並且攪拌時間可介於2小時至5小時之間。在充分地攪拌混合之後,便可得到膠體,且第一高分子、第二高分子、第一鋰鹽、固態電解質溶劑均勻地分佈於膠體中。First, the solvent (the solvent can be, for example, 4-dimethylaminopyridine, dimethylformamide, dimethylformamide or a combination thereof, and a small amount of toluene can be added if necessary), the first polymer, the second high molecular weight The molecules, the first lithium salt and the solid electrolyte are sequentially placed in a planetary stirrer for stirring and mixing to form a mixture, and a viscometer is used to monitor the viscosity change of the mixture during the stirring to control the viscosity of the mixture between 3000cps and 5000cps. time to ensure that the subsequent colloid formed is conducive to coating. Specifically, when the viscosity of the above mixture is less than 3000 cps, the colloid may have too high fluidity and is not conducive to coating; when the viscosity of the above mixture is greater than 5000 cps, the colloid may have too low fluidity and is difficult to disperse into a film. In some embodiments, the revolution speed may be, for example, 60 rpm ± 50%, the rotation speed may be, for example, 3500 rpm ± 10%, and the stirring time may be between 2 hours and 5 hours. After sufficient stirring and mixing, a colloid can be obtained, and the first polymer, the second polymer, the first lithium salt, and the solid electrolyte solvent are evenly distributed in the colloid.

隨後,將膠體脫泡,並將脫泡後的膠體導入間歇式塗佈設備進行塗佈。在一些實施方式中,塗佈期間所使用的刮刀為間隔(gap)式刮刀。在一些實施方式中,塗佈設備先以0.4公尺/分鐘至0.8公尺/分鐘的速度進行30秒至90秒的塗佈,以確認刮刀內側多餘膠體已往回溢流,再以0.2公尺/分鐘至0.4公尺/分鐘的速度進行塗佈至膠體耗盡。接著,以5公尺至15公尺的烘烤距離及100℃至130℃的溫度在例如是烤箱的設備中對塗佈後的膠體進行表面乾處理,隨後再以125℃至135℃的溫度在例如是加熱板的單方向加熱之烘烤設備中對塗佈後的膠體進行歷時0.5小時至1小時的深層乾處理。在進行上述步驟後,便完成第一道烘烤製程。Subsequently, the colloid is degassed, and the degassed colloid is introduced into intermittent coating equipment for coating. In some embodiments, the doctor blade used during coating is a gap doctor blade. In some embodiments, the coating equipment first performs coating at a speed of 0.4 m/min to 0.8 m/min for 30 seconds to 90 seconds to confirm that the excess colloid on the inside of the scraper has overflowed back, and then at a speed of 0.2 m/min. /min to 0.4 m/min until the colloid is exhausted. Then, the coated colloid is surface-dried in a device such as an oven with a baking distance of 5 meters to 15 meters and a temperature of 100°C to 130°C, and then the surface is dried at a temperature of 125°C to 135°C. The coated colloid is subjected to deep drying treatment for 0.5 to 1 hour in a baking device with unidirectional heating such as a heating plate. After performing the above steps, the first baking process is completed.

隨後,將完成第一道烘烤製程後的膜片置入例如是烘箱的設備中,以進行第二道烘烤製程。在一些實施方式中,第二道烘烤製程可包括第一階段以及第二階段,其中第一階段的烘烤溫度介於80℃至100℃之間,且烘烤時間介於0.5小時至1小時之間,而第二階段的烘烤溫度介於160℃至180℃之間,且烘烤時間介於0.5小時至1小時之間。如前文所述,第一階段的烘烤可先將位於膜片之表面的溶劑完全地去除,而第二階段的烘烤可使膜片中的高分子接近其玻璃轉換溫度而達到部分熔融的狀態,進而開始流動以填補因溶劑蒸散所產生的孔洞或缺陷,以藉此提升固態電解質薄膜130的結構完整性。在進行上述步驟之後,便可得到本揭露的固態電解質薄膜130。Subsequently, the diaphragm that has completed the first baking process is placed in a device such as an oven to perform the second baking process. In some embodiments, the second baking process may include a first stage and a second stage, wherein the baking temperature in the first stage is between 80°C and 100°C, and the baking time is between 0.5 hours and 1 hour. hours, while the baking temperature in the second stage is between 160°C and 180°C, and the baking time is between 0.5 hours and 1 hour. As mentioned above, the first stage of baking can completely remove the solvent on the surface of the diaphragm, while the second stage of baking can bring the polymer in the diaphragm close to its glass transition temperature and reach a partially molten state. state, and then begins to flow to fill the holes or defects caused by the evaporation of the solvent, thereby improving the structural integrity of the solid electrolyte film 130 . After performing the above steps, the solid electrolyte film 130 of the present disclosure can be obtained.

接著,以塗佈的方式在正極材料層120背對於正極集電體150的表面形成凝膠結構160,並接著將固態電解質薄膜130黏附於凝膠結構160背對於正極材料層120的表面,再接著於室溫的條件下靜置0.5小時至1.5小時後,置入真空乾燥箱進行烘乾,以得到半極片(半極片包括正極材料層120、正極集電體150以及固態電解質薄膜130)。隨後,將緩衝結構170形成於固態電解質薄膜130背對於凝膠結構160的表面。詳細而言,若緩衝結構170為凝膠結構160,是以塗佈的方式形成;若緩衝結構170為離子液體,則是以滴液的方式形成,並待離子液體充分滲入至固態電解質薄膜130之後,再將已設置於負極集電體140上的負極材料層110透過緩衝結構170(凝膠結構160或離子液體)壓合於固態電解質薄膜130上,並再置入真空乾燥箱進行烘乾,進而得到本揭露的固態電池100。Next, a gel structure 160 is formed on the surface of the cathode material layer 120 facing away from the cathode current collector 150 by coating, and then the solid electrolyte film 130 is adhered to the surface of the gel structure 160 facing away from the cathode material layer 120 , and then Then, it is left to stand at room temperature for 0.5 to 1.5 hours, and then placed in a vacuum drying oven for drying to obtain a semi-pole sheet (the semi-pole sheet includes a positive electrode material layer 120, a positive electrode current collector 150, and a solid electrolyte film 130 ). Subsequently, the buffer structure 170 is formed on the surface of the solid electrolyte film 130 facing away from the gel structure 160 . Specifically, if the buffer structure 170 is a gel structure 160, it is formed by coating; if the buffer structure 170 is an ionic liquid, it is formed by dropping, and the ionic liquid is allowed to fully penetrate into the solid electrolyte film 130. After that, the negative electrode material layer 110 that has been disposed on the negative electrode current collector 140 is pressed onto the solid electrolyte film 130 through the buffer structure 170 (gel structure 160 or ionic liquid), and then placed in a vacuum drying oven for drying. , and then obtain the solid-state battery 100 of the present disclosure.

根據本揭露上述實施方式,由於本揭露的固態電解質薄膜包括第一鋰鹽、第一高分子、第二高分子以及具有特定粒徑的固態電解質,因此固態電解質薄膜在室溫條件下可具有較高的離子電導率,進而提升固態電池整體的效能。此外,緩衝結構及凝膠結構的配置可有助於降低固態電解質薄膜與正極材料層及負極材料層之間的介面阻抗並且提升離子電導率,進而提升固態電池整體的效能。另一方面,由於第一高分子可進一步包括三種不同分子量的高分子,且固態電解質可進一步具有三種不同的粒徑(D50),因此可有利於固態電解質薄膜成膜並且具有穩定的主架構,並可使固態電解質薄膜具有優異的機械強度,同時使固態電解質可完整且均勻地分散於固態電解質薄膜中。此外,由於本揭露是直接將第一鋰鹽、第一高分子、第二高分子及固態電解質整合於單一膜片中以形成固態電解質薄膜,因此可大幅提升製程的便利性。According to the above embodiments of the present disclosure, since the solid electrolyte film of the present disclosure includes a first lithium salt, a first polymer, a second polymer and a solid electrolyte with a specific particle size, the solid electrolyte film can have a relatively high performance under room temperature conditions. High ionic conductivity, thereby improving the overall performance of solid-state batteries. In addition, the configuration of the buffer structure and the gel structure can help reduce the interface resistance between the solid electrolyte film and the positive and negative electrode material layers and increase the ionic conductivity, thereby improving the overall performance of the solid-state battery. On the other hand, since the first polymer may further include polymers with three different molecular weights, and the solid electrolyte may further have three different particle sizes (D50), it may be beneficial to film formation of the solid electrolyte film and have a stable main structure, The solid electrolyte film can have excellent mechanical strength, and at the same time, the solid electrolyte can be completely and evenly dispersed in the solid electrolyte film. In addition, since the present disclosure directly integrates the first lithium salt, the first polymer, the second polymer and the solid electrolyte into a single diaphragm to form a solid electrolyte film, the convenience of the manufacturing process can be greatly improved.

雖然本揭露已以實施方式揭露如上,然其並非用以限定本揭露,任何熟習此技藝者,在不脫離本揭露之精神和範圍內,當可作各種之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。Although the disclosure has been disclosed in the above embodiments, it is not intended to limit the disclosure. Anyone skilled in the art can make various changes and modifications without departing from the spirit and scope of the disclosure. Therefore, the protection of the disclosure The scope shall be determined by the appended patent application scope.

100:固態電池 110:負極材料層100:Solid state battery 110: Negative material layer

111:表面 111:Surface

120:正極材料層 120: positive electrode material layer

121:表面 121:Surface

130:固態電解質薄膜 130:Solid electrolyte film

131:第一表面 131: First surface

133:第二表面 133: Second surface

140:負極集電體 140: Negative current collector

150:正極集電體 150:Positive current collector

160:凝膠結構 160: Gel structure

170:緩衝結構 170:Buffer structure

H1,H2:厚度 H1, H2: Thickness

S1:負極材料 S1: negative electrode material

S2:正極材料 S2: positive electrode material

為讓本揭露之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下: 第1圖繪示根據本揭露一些實施方式的固態電池的截面示意圖。 In order to make the above and other objects, features, advantages and embodiments of the present disclosure more obvious and understandable, the accompanying drawings are described as follows: Figure 1 illustrates a schematic cross-sectional view of a solid-state battery according to some embodiments of the present disclosure.

100:固態電池 100:Solid state battery

110:負極材料層 110: Negative material layer

111:表面 111:Surface

120:正極材料層 120: positive electrode material layer

121:表面 121:Surface

130:固態電解質薄膜 130:Solid electrolyte film

131:第一表面 131: First surface

133:第二表面 133: Second surface

140:負極集電體 140: Negative current collector

150:正極集電體 150:Positive current collector

160:凝膠結構 160:Gel structure

170:緩衝結構 170:Buffer structure

H1,H2:厚度 H1, H2: Thickness

S1:負極材料 S1: negative electrode material

S2:正極材料 S2: positive electrode material

Claims (13)

一種固態電解質薄膜,包括:一第一鋰鹽;一第一高分子,其中該第一高分子的重量平均分子量介於60000g/mol至1800000g/mol之間;一第二高分子,其中該第二高分子具有顆粒狀;以及一固態電解質,其中該固態電解質具有顆粒狀,該固態電解質的粒徑(D50)介於50奈米至2微米之間,且該第一鋰鹽、該第一高分子、該第二高分子及該固態電解質的重量比為16~25:26~34:5~20:10~40。 A solid electrolyte film, including: a first lithium salt; a first polymer, wherein the weight average molecular weight of the first polymer is between 60000g/mol and 1800000g/mol; a second polymer, wherein the first polymer The two polymers have a granular shape; and a solid electrolyte, wherein the solid electrolyte has a granular shape, the particle size (D50) of the solid electrolyte is between 50 nanometers and 2 microns, and the first lithium salt, the first The weight ratio of the polymer, the second polymer and the solid electrolyte is 16~25:26~34:5~20:10~40. 如請求項1所述的固態電解質薄膜,其中該第一高分子為含氟高分子。 The solid electrolyte film of claim 1, wherein the first polymer is a fluorine-containing polymer. 如請求項1所述的固態電解質薄膜,其中該第一高分子的熔點介於160℃至175℃之間,且該第一高分子的熱分解溫度介於300℃至400℃之間。 The solid electrolyte film of claim 1, wherein the melting point of the first polymer is between 160°C and 175°C, and the thermal decomposition temperature of the first polymer is between 300°C and 400°C. 如請求項1所述的固態電解質薄膜,其中該第一鋰鹽包括氟化鋰、雙氟磺醯亞胺鋰、雙三氟甲烷磺醯亞胺鋰、雙(全氟乙基磺醯亞胺)鋰、二草酸硼酸鋰或其組合。 The solid electrolyte film of claim 1, wherein the first lithium salt includes lithium fluoride, lithium bisfluorosulfonimide, lithium bistrifluoromethanesulfonimide, and bis(perfluoroethylsulfonimide) ) lithium, lithium dioxalatoborate or combinations thereof. 如請求項1所述的固態電解質薄膜,其中 該第一高分子包括聚偏二氟乙烯、聚偏氟乙烯-六氟丙烯共聚物或其組合,且該第二高分子包括聚丙烯酸、聚甲基丙烯酸甲酯、三氟化硼-***錯合物、聚乙二醇、聚乙二醇二縮水甘油醚或其組合。 The solid electrolyte film according to claim 1, wherein The first polymer includes polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer, or a combination thereof, and the second polymer includes polyacrylic acid, polymethyl methacrylate, boron trifluoride-ethyl etherate. compounds, polyethylene glycol, polyethylene glycol diglycidyl ether or combinations thereof. 如請求項1所述的固態電解質薄膜,其中該固態電解質包括鋰鑭鋯氧、鋰鑭鋯鉭氧、鋰鑭鈦氧、鋰鑭鉭氧、磷酸鈦鋰鋁或其組合。 The solid electrolyte film of claim 1, wherein the solid electrolyte includes lithium lanthanum zirconium oxide, lithium lanthanum zirconium tantalum oxide, lithium lanthanum titanium oxide, lithium lanthanum tantalum oxide, lithium aluminum titanium phosphate, or combinations thereof. 如請求項1所述的固態電解質薄膜,其中該第一高分子包括具有一第一重量平均分子量的一第三高分子、具有一第二重量平均分子量的一第四高分子及具有一第三重量平均分子量的一第五高分子,該第一重量平均分子量介於800000g/mol至1000000g/mol之間,該第二重量平均分子量介於1300000g/mol至1500000g/mol之間,且該第三重量平均分子量介於60000g/mol至200000g/mol之間。 The solid electrolyte film of claim 1, wherein the first polymer includes a third polymer having a first weight average molecular weight, a fourth polymer having a second weight average molecular weight, and a third polymer having a second weight average molecular weight. A fifth polymer with a weight average molecular weight, the first weight average molecular weight is between 800000g/mol and 1000000g/mol, the second weight average molecular weight is between 1300000g/mol and 1500000g/mol, and the third weight average molecular weight is between 1300000g/mol and 1500000g/mol. The weight average molecular weight ranges from 60,000g/mol to 200,000g/mol. 如請求項7所述的固態電解質薄膜,其中該第三高分子、該第四高分子及該第五高分子的重量比為6~10:1.5~3:1。 The solid electrolyte film according to claim 7, wherein the weight ratio of the third polymer, the fourth polymer and the fifth polymer is 6~10:1.5~3:1. 如請求項1所述的固態電解質薄膜,其中該固態電解質包括具有一第一粒徑(D50)的一第一固態電 解質、具有一第二粒徑(D50)的一第二固態電解質以及具有一第三粒徑(D50)的一第三固態電解質,該第一粒徑(D50)介於0.8微米至1.4微米之間,該第二粒徑(D50)介於0.25微米至0.5微米之間,且該第三粒徑(D50)介於80奈米至150奈米之間。 The solid electrolyte film of claim 1, wherein the solid electrolyte includes a first solid electrolyte with a first particle size (D50). Lyte, a second solid electrolyte having a second particle size (D50) and a third solid electrolyte having a third particle size (D50), the first particle size (D50) being between 0.8 microns and 1.4 microns , the second particle size (D50) is between 0.25 microns and 0.5 microns, and the third particle size (D50) is between 80 nanometers and 150 nanometers. 如請求項9所述的固態電解質薄膜,其中該第一固態電解質、該第二固態電解質以及該第三固態電解質的重量比為10~20:30~45:35~50。 The solid electrolyte film according to claim 9, wherein the weight ratio of the first solid electrolyte, the second solid electrolyte and the third solid electrolyte is 10~20:30~45:35~50. 一種固態電池,包括:如請求項1至10中任一項所述的固態電解質薄膜,其中該固態電解質薄膜的厚度介於20微米至70微米之間;以及一正極及一負極,分別設置於該固態電解質薄膜的相對兩表面。 A solid-state battery, including: the solid electrolyte film as described in any one of claims 1 to 10, wherein the thickness of the solid electrolyte film is between 20 microns and 70 microns; and a positive electrode and a negative electrode, respectively disposed on Opposite surfaces of the solid electrolyte film. 如請求項11所述的固態電池,更包括:一凝膠結構,設置於該正極與該固態電解質薄膜之間,其中該凝膠結構包括:一第二鋰鹽;該第一高分子;以及一結晶抑制添加劑;以及一緩衝結構,設置於該負極與該固態電解質薄膜之間, 其中該緩衝結構係該凝膠結構或者係一離子液體。 The solid-state battery of claim 11, further comprising: a gel structure disposed between the positive electrode and the solid electrolyte film, wherein the gel structure includes: a second lithium salt; the first polymer; and a crystallization inhibitor additive; and a buffer structure disposed between the negative electrode and the solid electrolyte film, The buffer structure is the gel structure or an ionic liquid. 如請求項12所述的固態電池,其中該凝膠結構的厚度介於1微米至10微米之間,且該離子液體在1平方公分之該固態電解質薄膜上的體積介於10微升至40微升之間。 The solid-state battery of claim 12, wherein the thickness of the gel structure is between 1 micron and 10 microns, and the volume of the ionic liquid on 1 square centimeter of the solid electrolyte film is between 10 microliters and 40 microliters. between microliters.
TW111128350A 2021-09-03 2022-07-28 Solid-state electrolyte film and solid-state battery TWI824636B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202210974028.XA CN115763962A (en) 2021-09-03 2022-08-15 Solid electrolyte film and solid battery
US17/896,610 US20230163354A1 (en) 2021-09-03 2022-08-26 Solid-state electrolyte film and solid-state battery
EP22192605.8A EP4145578A1 (en) 2021-09-03 2022-08-29 Solid-state electrolyte film and solid-state battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW110132901 2021-09-03
TW110132901 2021-09-03

Publications (2)

Publication Number Publication Date
TW202312549A TW202312549A (en) 2023-03-16
TWI824636B true TWI824636B (en) 2023-12-01

Family

ID=86690634

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111128350A TWI824636B (en) 2021-09-03 2022-07-28 Solid-state electrolyte film and solid-state battery

Country Status (1)

Country Link
TW (1) TWI824636B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105098234A (en) * 2015-09-22 2015-11-25 中国科学院物理研究所 Solid electrolyte material, and electrolyte layer and lithium ion battery comprising solid electrolyte material
CN111234240A (en) * 2020-01-15 2020-06-05 南方科技大学 Polycaprolactone-based hyperbranched polymer all-solid-state electrolyte and lithium ion battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105098234A (en) * 2015-09-22 2015-11-25 中国科学院物理研究所 Solid electrolyte material, and electrolyte layer and lithium ion battery comprising solid electrolyte material
CN111234240A (en) * 2020-01-15 2020-06-05 南方科技大学 Polycaprolactone-based hyperbranched polymer all-solid-state electrolyte and lithium ion battery

Also Published As

Publication number Publication date
TW202312549A (en) 2023-03-16

Similar Documents

Publication Publication Date Title
CN109065945A (en) A kind of solid electrolyte membrane and its preparation method and application
CN113130895B (en) Solid-state lithium ion battery and preparation method thereof
CN102709597B (en) Composite all solid-state polymer electrolyte lithium ion battery and preparation method of composite all solid-state polymer electrolyte lithium ion battery
CN110323493B (en) Combined sheet of positive pole piece and polymer electrolyte membrane and preparation method thereof
CN104916802B (en) A kind of composite diaphragm and its application
CN111933998B (en) Composite electrolyte, preparation method thereof, composite electrode plate containing composite electrolyte and battery
CN108232286B (en) Preparation method of composite positive electrode added with polymer and application of composite positive electrode in solid-state battery
CN106654365A (en) Solid polymer electrolyte-based composite gel polymer electrolyte and preparation method and application thereof
CN111864181A (en) Pre-lithiated silicon negative electrode and preparation method and application thereof
CN110534795A (en) The preparation method and solid state battery of solid state battery
CN109904514A (en) Two-layer compound solid electrolyte and its preparation method and application
CN111430674B (en) Electrode pole piece, manufacturing method thereof and semi-solid battery
CN112151859B (en) Composite solid electrolyte with two surfaces and preparation method thereof
WO2022135151A1 (en) Battery, electronic device, and mobile apparatus
CN111653828A (en) Solid electrolyte film, preparation method thereof and assembly method of solid battery
CN115441048B (en) Composite electrolyte with stable gradient distribution structure, battery and preparation method
CN112615111A (en) High-liquid-retention self-repairing diaphragm, preparation method thereof and lithium ion battery
CN111653819A (en) Solid-state battery and preparation method thereof
Zhao et al. Constructing mutual-philic electrode/non-liquid electrolyte interfaces in electrochemical energy storage systems: Reasons, progress, and perspectives
CN114335700A (en) Solid electrolyte membrane and preparation method thereof, secondary battery and preparation method
CN114512708A (en) Preparation method and application of lithium ion composite solid electrolyte
WO2023028900A1 (en) Inorganic-organic composite electrolyte membrane, preparation method therefor, and application thereof
TWI620370B (en) Lithium battery, solid electrolyte membrane and their manufacturing methods thereof
TWI824636B (en) Solid-state electrolyte film and solid-state battery
CN114566702B (en) Sandwich integrated all-solid-state polymer electrolyte membrane, preparation method and application thereof