TWI821700B - Projection apparatus and fabrication method thereof - Google Patents

Projection apparatus and fabrication method thereof Download PDF

Info

Publication number
TWI821700B
TWI821700B TW110124376A TW110124376A TWI821700B TW I821700 B TWI821700 B TW I821700B TW 110124376 A TW110124376 A TW 110124376A TW 110124376 A TW110124376 A TW 110124376A TW I821700 B TWI821700 B TW I821700B
Authority
TW
Taiwan
Prior art keywords
light
lens
visible light
coating
projection
Prior art date
Application number
TW110124376A
Other languages
Chinese (zh)
Other versions
TW202303254A (en
Inventor
江辰安
陳時偉
Original Assignee
揚明光學股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 揚明光學股份有限公司 filed Critical 揚明光學股份有限公司
Priority to TW110124376A priority Critical patent/TWI821700B/en
Publication of TW202303254A publication Critical patent/TW202303254A/en
Application granted granted Critical
Publication of TWI821700B publication Critical patent/TWI821700B/en

Links

Images

Landscapes

  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Projection Apparatus (AREA)

Abstract

A projection apparatus includes a light source, a dichroic mirror, a light valve, a projection lens, and a fluorescent excitation layer. The light source is capable of providing an invisible beam and a first visible beam that are transmitted onto the dichroic mirror. The light valve is disposed downstream from the dichroic mirror and respectively modulates the invisible beam and the first visible beam, the projection lens is disposed downstream from the light valve, and the fluorescent excitation layer is disposed downstream from the projection lens in a light path. The fluorescent excitation layer converts the invisible beam and the first visible beam into a second visible beam and a third visible beam respectively. The first visible beam, the second visible beam and the third visible beam have mutually different wavelength bands.

Description

投影裝置及其製造方法Projection device and manufacturing method thereof

本發明關於一種投影裝置及投影裝置製造方法。The invention relates to a projection device and a manufacturing method of the projection device.

目前利用紫外光投影機顯示單色或多色投影影像的設計,因螢光薄膜的激發效率並非百分之百,故部分紫外光可能會直接穿透螢光薄膜對人體造成危害。因此,亟須一種可避免不可見光(例如紫外光)對人體造成危害且可減少光損失的投影裝置設計。Currently, ultraviolet projectors are designed to display single-color or multi-color projection images. Since the excitation efficiency of the fluorescent film is not 100%, some ultraviolet light may directly penetrate the fluorescent film and cause harm to the human body. Therefore, there is an urgent need for a projection device design that can avoid invisible light (such as ultraviolet light) from causing harm to the human body and reduce light loss.

根據本發明的一個觀點,提供一種投影裝置,包含光源、分色鏡、光閥、投影鏡頭、及螢光激發層。光源適於提供不可見光及第一可見光,分色鏡接收不可見光及第一可見光,分色鏡可反射不可見光並讓第一可見光穿透,或者反射第一可見光並讓不可見光穿透。光閥設於分色鏡的光路下游且分別調變不可見光及第一可見光。投影鏡頭設於光閥的光路下游,投影鏡頭包含沿一方向排列的第一透鏡組與第二透鏡組,且第二透鏡組包含非球面透鏡。投影鏡頭的所有透鏡之中,於光閥的光路上最靠近光閥的透鏡為非球面透鏡。螢光激發層設於投影鏡頭的光路下游,螢光激發層可分別將不可見光及第一可見光轉換為第二可見光及第三可見光,且第一可見光、第二可見光及第三可見光具有各自不同的波段範圍。再者,非球面透鏡例如可形成有多層鍍膜結構。According to one aspect of the present invention, a projection device is provided, including a light source, a dichroic mirror, a light valve, a projection lens, and a fluorescent excitation layer. The light source is suitable for providing invisible light and the first visible light. The dichroic mirror receives the invisible light and the first visible light. The dichroic mirror can reflect the invisible light and allow the first visible light to penetrate, or reflect the first visible light and allow the invisible light to penetrate. The light valve is disposed downstream of the light path of the dichroic mirror and modulates the invisible light and the first visible light respectively. The projection lens is located downstream of the light path of the light valve. The projection lens includes a first lens group and a second lens group arranged in one direction, and the second lens group includes an aspherical lens. Among all the lenses of the projection lens, the lens closest to the light valve on the light path of the light valve is an aspherical lens. The fluorescent excitation layer is provided downstream of the light path of the projection lens. The fluorescent excitation layer can convert invisible light and first visible light into second visible light and third visible light respectively, and the first visible light, the second visible light and the third visible light have different characteristics. band range. Furthermore, the aspherical lens may be formed into a multi-layer coating structure, for example.

根據本發明的上述觀點,使用不同波長的複數光通道分別激發出不同色光,例如使用一不可見光光通道和一可見光光通道分別激發出不同色光,因峰值波長彼此相距較遠故可減少分色鏡鍍膜的反射和穿透光損失。再者,藉由非球面透鏡的多層鍍膜結構,可讓非球面透鏡於350nm-420nm 的波段範圍也具有良好的光穿透率。According to the above point of view of the present invention, multiple optical channels of different wavelengths are used to respectively excite different colored lights. For example, an invisible light optical channel and a visible light optical channel are used to respectively excite different colored lights. Since the peak wavelengths are far apart from each other, color separation can be reduced. Reflected and transmitted light losses from mirror coatings. Furthermore, through the multi-layer coating structure of the aspherical lens, the aspherical lens can also have good light transmittance in the wavelength range of 350nm-420nm.

為讓本發明更明顯易懂,以下用實施例,並配合所附圖式作詳細說明如下。In order to make the present invention more obvious and understandable, the following examples are used to describe the invention in detail with reference to the accompanying drawings.

有關本發明前述及其他技術內容、特點與功效,在以下配合參考圖式的多個實施例的詳細說明中,將可清楚的呈現。另外,下列實施例中所使用的用語「第一」、「第二」是為了辨識相同或相似的元件而使用,且方向用語例如「前」、「後」等,僅是參考附加圖式的方向,並非用以限定所述元件。The foregoing and other technical contents, features and effects of the present invention will be clearly presented in the following detailed description of multiple embodiments with reference to the drawings. In addition, the terms "first" and "second" used in the following embodiments are used to identify the same or similar components, and directional terms such as "front" and "rear" are only for reference to the attached drawings. Directions are not intended to limit the elements described.

圖1為本發明一實施例的投影裝置的概要示意圖。如圖1所示,於本實施例的投影裝置1中,不可見光光源10發出不可見光(例如紫外光UV),且沿紫外光UV的行進路徑可依序包括光閥12、投影鏡頭14、螢光激發層16及不可見光反射層18。再者,準直透鏡(collimator lens)22可設於不可見光光源10的光路下游以準直不可見光光源10發出的光線,轉向鏡23可設於光源10與光閥12之間的光路,且轉向鏡25可設於投影鏡頭14與螢光激發層16之間的光路。FIG. 1 is a schematic diagram of a projection device according to an embodiment of the present invention. As shown in FIG. 1 , in the projection device 1 of this embodiment, the invisible light source 10 emits invisible light (such as ultraviolet light UV), and the traveling path of the ultraviolet light UV may include a light valve 12 , a projection lens 14 , and Fluorescence excitation layer 16 and invisible light reflection layer 18 . Furthermore, a collimator lens 22 can be disposed downstream of the optical path of the invisible light source 10 to collimate the light emitted by the invisible light source 10, and the turning mirror 23 can be disposed in the optical path between the light source 10 and the light valve 12, and The turning mirror 25 can be disposed in the optical path between the projection lens 14 and the fluorescent excitation layer 16 .

於本實施例中,不可見光光源10可包含一晶片10a和一封裝體(package)10b且例如可為發光二極體或雷射發光二極體。不可見光光源10例如可發出紫外光UV,如圖1所示,紫外光UV可由光閥12調變為影像光,經由全反射稜鏡28反射至投影鏡頭14成像再入射至螢光激發層16。如圖1所示,當紫外光UV入射至螢光激發層16可激發螢光激發層16中的螢光材料而產生可見光IV,然而受限於螢光激發層16的激發效率無法達到100%,部分紫外光UV不會被轉換為可見光IV且會直接穿透螢光激發層16,導致可見光IV顯像亮度降低且漏出的紫外光UV對人體有害。因此,於本實施例中,不可見光反射層18可設於螢光激發層16的光路下游,不可見光反射層18可反射紫外光UV並讓可見光IV穿透,穿透螢光激發層16的部分紫外光UV可被不可見光反射層18反射回螢光激發層16,亦即螢光激發層16可設於不可見光反射層18的反射光路的下游,如此被反射的紫外光UV不會照射到人體且可被反射回螢光激發層16再次激發出可見光IV,以提高可見光顯像亮度且可避免紫外光對人體造成危害。In this embodiment, the invisible light source 10 may include a chip 10a and a package 10b and may be, for example, a light emitting diode or a laser light emitting diode. For example, the invisible light source 10 can emit ultraviolet light UV. As shown in FIG. 1 , the ultraviolet light UV can be modulated by the light valve 12 into image light, reflected to the projection lens 14 for imaging through the total reflection lens 28 and then incident on the fluorescent excitation layer 16 . As shown in FIG. 1 , when ultraviolet light UV is incident on the fluorescent excitation layer 16 , the fluorescent material in the fluorescent excitation layer 16 can be excited to generate visible light IV. However, due to the limitation, the excitation efficiency of the fluorescent excitation layer 16 cannot reach 100%. , part of the ultraviolet light UV will not be converted into visible light IV and will directly penetrate the fluorescent excitation layer 16 , resulting in a decrease in the brightness of the visible light IV display and the leaked ultraviolet light UV being harmful to the human body. Therefore, in this embodiment, the invisible light reflective layer 18 can be disposed downstream of the light path of the fluorescent excitation layer 16 . The invisible light reflective layer 18 can reflect ultraviolet light UV and allow visible light IV to penetrate through the fluorescent excitation layer 16 . Part of the ultraviolet light UV can be reflected back to the fluorescent excitation layer 16 by the invisible light reflective layer 18. That is, the fluorescent excitation layer 16 can be disposed downstream of the reflection light path of the invisible light reflective layer 18, so that the reflected ultraviolet light UV will not be irradiated. to the human body and can be reflected back to the fluorescent excitation layer 16 to excite visible light IV again, so as to improve the brightness of the visible light display and avoid the harm of ultraviolet light to the human body.

須注意上述發出紫外光的光源僅為例示,其他足以提供激發螢光材料產生可見光頻譜的激發光源亦可,且不可見光反射層18可依據對人體的危害性或其他目的反射預定波段範圍的入射光而不限定為紫外光。It should be noted that the above-mentioned light source emitting ultraviolet light is only an example. Other excitation light sources that are sufficient to excite the fluorescent material to produce visible light spectrum can also be used, and the invisible light reflective layer 18 can reflect incident light in a predetermined wavelength range based on the hazard to the human body or other purposes. light but not limited to ultraviolet light.

於本實施例中,不可見光反射層18可作為用以反射預定光波段的不可見光(例如紫外光UV)的分光元件,且不可見光反射層18可直接鍍於透明基板上或形成為一反射片均可。再者,不可見光反射層18於空間中相對不可見光光源10的配置位置及面積並不限定,且不可見光反射層18於不同區域的反射率亦可加以變化,以進一步提高畫面亮度均勻性。In this embodiment, the invisible light reflective layer 18 can be used as a spectroscopic element for reflecting invisible light (such as ultraviolet light UV) in a predetermined light band, and the invisible light reflective layer 18 can be directly plated on a transparent substrate or formed as a reflective Films are available. Furthermore, the arrangement position and area of the invisible light reflective layer 18 relative to the invisible light source 10 in space are not limited, and the reflectivity of the invisible light reflective layer 18 in different areas can also be changed to further improve the brightness uniformity of the image.

圖2及圖3顯示不可見光反射層18與螢光激發層16的不同配置實施例。如圖2所示,螢光激發層16可配置於第一透明基板24與第二透明基板26之間,不可見光反射層18位於螢光激發層16的光路下游且可貼附於第二透明基板26的背向螢光激發層16的一側。於另一實施例中,如圖3所示,不可見光反射層18位於螢光激發層16的光路下游且可設置於螢光激發層16與第二透明基板26之間。亦即,上述實施例的不可見光反射層18與螢光激發層16的配置方式及位置完全不限定,可夾設於兩透明基板之間或外側,或者可設於單一透明基板的兩側等均可。再者,透明基板24、26 的材料例如可為玻璃、石英、藍寶石等而不限定,且螢光激發層16可視需求激發出單色或多色可見光。2 and 3 show different configuration embodiments of the invisible light reflective layer 18 and the fluorescent excitation layer 16 . As shown in FIG. 2 , the fluorescent excitation layer 16 can be disposed between the first transparent substrate 24 and the second transparent substrate 26 , and the invisible light reflective layer 18 is located downstream of the light path of the fluorescent excitation layer 16 and can be attached to the second transparent substrate 24 . The side of the substrate 26 facing away from the fluorescent excitation layer 16 . In another embodiment, as shown in FIG. 3 , the invisible light reflective layer 18 is located downstream of the optical path of the fluorescent excitation layer 16 and may be disposed between the fluorescent excitation layer 16 and the second transparent substrate 26 . That is to say, the arrangement and position of the invisible light reflective layer 18 and the fluorescent excitation layer 16 in the above embodiment are not limited at all. They can be sandwiched between or outside two transparent substrates, or can be provided on both sides of a single transparent substrate, etc. Both are available. Furthermore, the material of the transparent substrates 24 and 26 can be, for example, glass, quartz, sapphire, etc. without limitation, and the fluorescent excitation layer 16 can excite single-color or multi-color visible light as required.

本發明所指的「光閥」一詞已為業界所廣泛使用,一般來說,係指數位微鏡元件(Digital Micro-mirror Device;DMD)、矽基液晶面板(liquid-crystal-on-silicon panel;LCOS Panel)或是穿透式液晶面板等空間光調變器之任一者。於本實施例中,光閥為數位微鏡元件。光閥為空間光調變器(Spatial Light Modulator;SLM)的一種,空間光調變器含有許多獨立單元,這些獨立單元在空間上排列成一維或二維陣列。每個單元都可獨立地接受光學信號或電學信號的控制,利用各種物理效應(泡克爾斯效應、克爾效應、聲光效應、磁光效應、半導體的自電光效應、光折變效應等)改變自身的光學特性,從而對照明在該複數個獨立單元的照明光束進行調製,並輸出影像光束。獨立單元為微型反射鏡或液晶單元等光學元件。The term "light valve" referred to in the present invention has been widely used in the industry. Generally speaking, it refers to digital micro-mirror device (DMD), silicon-based liquid crystal panel (liquid-crystal-on-silicon). panel; LCOS Panel) or any spatial light modulator such as a transmissive LCD panel. In this embodiment, the light valve is a digital micromirror device. The light valve is a type of spatial light modulator (Spatial Light Modulator; SLM). The spatial light modulator contains many independent units, and these independent units are arranged in a one-dimensional or two-dimensional array in space. Each unit can be independently controlled by optical signals or electrical signals, and use various physical effects (Pockels effect, Kerr effect, acousto-optic effect, magneto-optical effect, semiconductor self-electro-optical effect, photorefractive effect, etc.) to change itself The optical characteristics of the unit are used to modulate the illumination beams illuminating the plurality of independent units and output image beams. Independent units are optical components such as micro-mirrors or liquid crystal units.

圖4及圖5為顯示本發明一實施例的不可見光反射層於不同波長下的穿透率及反射率曲線圖。由圖4及圖5可清楚看出,上述實施例的不可見光反射層18對紫外光有極低的穿透率及極高的反射率,因此可有效避免紫外光照射到人體。4 and 5 are graphs showing the transmittance and reflectivity of the invisible light reflective layer at different wavelengths according to an embodiment of the present invention. It can be clearly seen from FIG. 4 and FIG. 5 that the invisible light reflective layer 18 of the above embodiment has extremely low transmittance and extremely high reflectivity for ultraviolet light, so it can effectively prevent ultraviolet light from irradiating the human body.

圖6為本發明另一實施例的投影裝置的概要示意圖。如圖6所示,於本實施例的投影裝置2中,不可見光光源10發出的紫外光UV 可通過靜態投影片32,靜態投影片32例如為具有灰階明暗及/或輪廓的人眼可識別的圖案投影片,或者為具有繞射結構的全像片、繞射片等等而不限定,通過靜態投影片32的紫外光UV可經由投影鏡頭14成像再入射至螢光激發層16,再由螢光激發層16激發出單色或多色的可見影像光。於本實施例中,不可見光反射層18同樣可設於螢光激發層16的光路下游,不可見光反射層18可反射紫外光UV並讓可見光IV穿透,因此被反射的紫外光UV不會照射到觀察者且可被反射回螢光激發層16再次激發出可見光IV。再者,於本實施例或圖1的實施例中,螢光激發層16與投影鏡頭14間的光路亦可設置一可見光反射層34,舉例而言,若觀察者(未圖示)位於螢光激發層16的右側,因螢光激發層16激發出的可見光IV會向各個方向發出,因此往螢光激發層16的左側發出的可見光IV可被可見光反射層34反射至觀察者的方向以進一步提高影像顯示亮度。FIG. 6 is a schematic diagram of a projection device according to another embodiment of the present invention. As shown in FIG. 6 , in the projection device 2 of this embodiment, the ultraviolet light UV emitted by the invisible light source 10 can pass through the static projection film 32 . The static projection film 32 is, for example, a human eye with grayscale shading and/or contours. The identified pattern projection film may be, without limitation, a holographic film, a diffraction film, etc. with a diffraction structure. The ultraviolet light UV passing through the static projection film 32 can be imaged through the projection lens 14 and then incident on the fluorescent excitation layer 16. The fluorescent excitation layer 16 then excites single-color or multi-color visible image light. In this embodiment, the invisible light reflective layer 18 can also be disposed downstream of the light path of the fluorescent excitation layer 16. The invisible light reflective layer 18 can reflect ultraviolet light UV and allow visible light IV to penetrate, so the reflected ultraviolet light UV will not The visible light IV is illuminated to the observer and can be reflected back to the fluorescent excitation layer 16 to excite visible light IV again. Furthermore, in this embodiment or the embodiment of FIG. 1 , a visible light reflection layer 34 may also be provided in the light path between the fluorescent excitation layer 16 and the projection lens 14. For example, if an observer (not shown) is located at the fluorescent On the right side of the photo-excitation layer 16, since the visible light IV excited by the fluorescent excitation layer 16 will be emitted in various directions, the visible light IV emitted to the left side of the fluorescent excitation layer 16 can be reflected by the visible light reflection layer 34 toward the direction of the observer. Further improve image display brightness.

圖7為本發明另一實施例的投影裝置的概要示意圖。如圖7所示,投影裝置3包含由不可見光光源10及可見光光源20構成的雙光源通道。於本實施例中,不可見光光源10可發出紫外光UV,可見光光源20可發出藍光IB,紫外光UV可被分色鏡36反射且藍光IB可直接穿透分色鏡36,形成兩個分離的不同光路,紫外光UV及藍光IB可經由光閥12調變及全反射稜鏡28反射後再經由投影鏡頭14成像並投射至螢光激發層16。請參考圖8,舉例而言,紫外光UV(例如405nm)入射至螢光激發層16可激發出紅光(例如620nm),藍光IB(例如459nm) 入射至螢光激發層16可激發出綠光(例如555nm),因此可顯示出紅光及綠光構成的雙色影像。FIG. 7 is a schematic diagram of a projection device according to another embodiment of the present invention. As shown in FIG. 7 , the projection device 3 includes a dual light source channel composed of an invisible light source 10 and a visible light source 20 . In this embodiment, the invisible light source 10 can emit ultraviolet light UV, and the visible light source 20 can emit blue light IB. The ultraviolet light UV can be reflected by the dichroic mirror 36 and the blue light IB can directly penetrate the dichroic mirror 36 to form two separations. Different light paths, ultraviolet light UV and blue light IB can be modulated by the light valve 12 and reflected by the total reflection lens 28, and then imaged through the projection lens 14 and projected to the fluorescent excitation layer 16. Please refer to FIG. 8 . For example, ultraviolet light UV (for example, 405 nm) can be incident on the fluorescent excitation layer 16 to excite red light (for example, 620 nm). Blue light IB (for example, 459 nm) can be incident on the fluorescent excitation layer 16 to excite green light. light (such as 555nm), so it can display a two-color image composed of red light and green light.

藉由上述實施例的設計,可使用不同波長的複數光通道分別激發出不同色光,例如上述包含一不可見光光通道(峰值波長405nm)和一可見光光通道(峰值波長459nm),因此可使用峰值波長相距較遠的光線以減少分色鏡鍍膜的反射和穿透光損失。再者,使用大於400nm的紫外光波長,可避免UV法規內的長波紫外光(UVA)危害並提高數位微鏡裝置(DMD)的可靠度。Through the design of the above embodiment, multiple optical channels of different wavelengths can be used to respectively excite different colors of light. For example, the above includes an invisible light optical channel (peak wavelength 405nm) and a visible light optical channel (peak wavelength 459nm), so the peak wavelength can be used The wavelengths are far apart to reduce the reflection and transmitted light loss of the dichroic mirror coating. Furthermore, using ultraviolet wavelengths greater than 400nm can avoid long-wave ultraviolet (UVA) hazards within UV regulations and improve the reliability of digital micromirror devices (DMD).

圖9及圖10分別顯示未鍍膜的玻璃與鍍膜分色鏡36相對藍光的穿透率,比較圖9及圖10可知,鍍膜分色鏡36相對藍光的穿透率明顯較高。再者,由圖11可看出鍍膜分色鏡36相對紫外光有極高的反射率,因此鍍膜分色鏡36可提供針對紫外光及藍光的良好分光效率。再者,於一實施例中,如圖7所示,分色鏡36的紫外光入射面的背側表面可設一抗反射層36a以提高藍光穿透率,抗反射層36a於不同波長下的光穿透率的一例可如圖12所示。Figures 9 and 10 respectively show the transmittance of uncoated glass and the coated dichroic mirror 36 relative to blue light. Comparing Figures 9 and 10, it can be seen that the transmittance of the coated dichroic mirror 36 relative to blue light is significantly higher. Furthermore, it can be seen from FIG. 11 that the coated dichroic mirror 36 has extremely high reflectivity with respect to ultraviolet light, so the coated dichroic mirror 36 can provide good light splitting efficiency for ultraviolet light and blue light. Furthermore, in one embodiment, as shown in FIG. 7 , an anti-reflective layer 36a can be provided on the back surface of the ultraviolet light incident surface of the dichroic mirror 36 to increase the blue light transmittance. The anti-reflective layer 36a can be used at different wavelengths. An example of the light transmittance is shown in Figure 12.

圖13為本發明一實施例的投影鏡頭的示意圖。如圖13所示,投影鏡頭14包含一第一透鏡群110及一第二透鏡群120,第一透鏡群110包括沿光軸102從放大側OS往縮小側IS依序排列的第一透鏡L1以及第二透鏡L2,且第二透鏡群120包括從放大側OS往縮小側IS依序排列的第三透鏡L3、第四透鏡L4、第五透鏡L5、第六透鏡L6、第七透鏡L7、第七透鏡L8以及第九透鏡L9。第一透鏡L1至第九透鏡L9的屈光度分別為負、正、正、正、正、負、負、正、正。於本實施例中,第九透鏡L9為非球面透鏡,第五透鏡L5及第六透鏡L6可構成膠合透鏡,且光圈104可位於第二透鏡群120內的第三透鏡L3與第四透鏡L4之間。於本實施例中,投影鏡頭14的所有透鏡之中,於光閥106的光路上最靠近光閥106的透鏡為非球面透鏡(第九透鏡L9)。光閥106可將入射光調變成影像光,影像光依序通過玻璃蓋108及全反射稜鏡112、第二透鏡群120及第一透鏡群110。鏡頭14的透鏡及其周邊元件的設計參數如表一所示FIG. 13 is a schematic diagram of a projection lens according to an embodiment of the present invention. As shown in FIG. 13 , the projection lens 14 includes a first lens group 110 and a second lens group 120 . The first lens group 110 includes first lenses L1 sequentially arranged along the optical axis 102 from the magnification side OS to the reduction side IS. and the second lens L2, and the second lens group 120 includes a third lens L3, a fourth lens L4, a fifth lens L5, a sixth lens L6, a seventh lens L7, arranged in order from the magnification side OS to the reduction side IS. The seventh lens L8 and the ninth lens L9. The refractive powers of the first lens L1 to the ninth lens L9 are negative, positive, positive, positive, positive, negative, negative, positive and positive respectively. In this embodiment, the ninth lens L9 is an aspherical lens, the fifth lens L5 and the sixth lens L6 can form a cemented lens, and the aperture 104 can be located at the third lens L3 and the fourth lens L4 in the second lens group 120 between. In this embodiment, among all the lenses of the projection lens 14 , the lens closest to the light valve 106 on the optical path of the light valve 106 is an aspherical lens (the ninth lens L9 ). The light valve 106 can modulate the incident light into image light, and the image light passes through the glass cover 108, the total reflection lens 112, the second lens group 120 and the first lens group 110 in sequence. The design parameters of the lens 14 and its surrounding components are shown in Table 1

表一 表面 曲率半徑 (mm) 間距(mm) 折射率 阿貝數   表面外形 S1 444.281 3.80 1.55 45.80 S2 17.495 19.90     S3 37.652 3.62 1.74 52.60 S4 -104.735 6.27     S5 68.171 2.32 1.74 52.60 S6 -94.965 0.00     S7(stop) INF 4.94       S8 31.467 2.03 1.50 81.60 S9 102.715 0.56     S10 24.415 4.14 1.50 81.60 S11 -44.318 0.80 1.63 35.70 S12 15.460 3.48     S13 -10.904 0.80 1.63 35.70 S14 79.930 1.46     S15 -29.862 4.98 1.74 52.60 S16 -14.871 0.10     S17 25.045 6.95 1.50 81.50 S18 -20.498 6.26     S19 INF 12.00 1.52 64.20   S20 INF 2.00       S21 INF 1.10 1.52 64.20   Table I surface Radius of curvature (mm) Spacing(mm) refractive index Abbe number surface profile S1 444.281 3.80 1.55 45.80 convex S2 17.495 19.90 concave S3 37.652 3.62 1.74 52.60 convex S4 -104.735 6.27 convex S5 68.171 2.32 1.74 52.60 convex S6 -94.965 0.00 convex S7(stop) INF 4.94 S8 31.467 2.03 1.50 81.60 convex S9 102.715 0.56 concave S10 24.415 4.14 1.50 81.60 convex S11 -44.318 0.80 1.63 35.70 concave S12 15.460 3.48 concave S13 -10.904 0.80 1.63 35.70 concave S14 79.930 1.46 concave S15 -29.862 4.98 1.74 52.60 concave S16 -14.871 0.10 convex S17 25.045 6.95 1.50 81.50 convex S18 -20.498 6.26 convex S19 INF 12.00 1.52 64.20 S20 INF 2.00 S21 INF 1.10 1.52 64.20

表二列出本發明的鏡頭實施例中,非球面透鏡(第九透鏡L9)表面的各階非球面係數及二次曲面係數值。Table 2 lists the aspherical coefficients and quadratic coefficient values of each order on the surface of the aspherical lens (ninth lens L9) in the lens embodiment of the present invention.

表二 表面 S17 S18 K 1.10071 -2.97277 A -3.88383E-05 -3.03061E-05 B -4.06842E-08 -1.30204E-07 C -6.76742E-09 -1.88563E-09 D 2.56796E-10 1.39610E-10 E -4.56285E-12 -2.77246E-12 F 3.80755E-14 2.33529E-14 G -1.24546E-16 -7.51743E-17 Table II surface S17 S18 K 1.10071 -2.97277 A -3.88383E-05 -3.03061E-05 B -4.06842E-08 -1.30204E-07 C -6.76742E-09 -1.88563E-09 D 2.56796E-10 1.39610E-10 E -4.56285E-12 -2.77246E-12 F 3.80755E-14 2.33529E-14 G -1.24546E-16 -7.51743E-17

於本實施例中,投影鏡頭14的第九透鏡L9為具有鍍膜的玻璃模鑄透鏡,鍍膜例如可包含6層,下表三顯示依本發明一實施例的6層鍍膜的材料及個別厚度。In this embodiment, the ninth lens L9 of the projection lens 14 is a glass molded lens with a coating. The coating may include, for example, 6 layers. Table 3 below shows the materials and individual thicknesses of the 6-layer coating according to an embodiment of the present invention.

表 三 鍍層 材料 鍍層厚度(單位:10^-7m) 1 H4 0.138 2 MgF2 0.195 3 H4 0.446 4 MgF2 0.127 5 H4 0.315 6 MgF2 0.879 Table 3 plating Material Coating thickness (unit: 10^-7m) 1 H4 0.138 2 MgF2 0.195 3 H4 0.446 4 MgF2 0.127 5 H4 0.315 6 MgF2 0.879

由上表可知,鍍膜材料為H4的鍍層厚度範圍為0.0138-0.0446微米(µm),且鍍膜材料為MgF2的鍍層厚度範圍為0.0127-0.0879微米(µm),且H4鍍層與MgF2鍍層可交替設置於最靠近縮小側IS的透鏡(例如第九透鏡L9)。As can be seen from the above table, the coating thickness range of H4 coating material is 0.0138-0.0446 microns (µm), and the coating thickness range of MgF2 coating material is 0.0127-0.0879 microns (µm), and H4 coating and MgF2 coating can be set alternately in The lens closest to the reduction side IS (for example, the ninth lens L9).

於本實施例中,具有表三的鍍膜結構的第九透鏡L9(非球面透鏡)於350nm-380nm 的波段的平均穿透率大於95.1%,於370nm-400nm的波段的平均穿透率大於98.3%,且於390nm-420nm 的波段平均穿透率大於98.6%。In this embodiment, the average transmittance of the ninth lens L9 (aspherical lens) with the coating structure in Table 3 is greater than 95.1% in the 350nm-380nm band, and the average transmittance in the 370nm-400nm band is greater than 98.3 %, and the average penetration rate in the 390nm-420nm band is greater than 98.6%.

再者,於一實施例中,投影鏡頭14的第一至第八透鏡L1-L8的表面可鍍有抗反射層,抗反射層可包含4層鍍膜材料或者5層鍍膜材料。4層鍍膜材料實施例的各層材料及膜厚如下表四所示,且不同波長下的反射率曲線如圖14所示,5層鍍膜材料實施例的各層材料及膜厚如下表5所示,且不同波長下的反射率曲線如圖15所示。由圖14及圖15可看出表四及表五界定的抗反射層實施例的反射率極低。Furthermore, in one embodiment, the surfaces of the first to eighth lenses L1 - L8 of the projection lens 14 may be coated with an anti-reflective layer, and the anti-reflective layer may include 4 layers of coating materials or 5 layers of coating materials. The materials and film thickness of each layer of the 4-layer coating material embodiment are shown in Table 4 below, and the reflectance curves at different wavelengths are shown in Figure 14. The materials and film thickness of each layer of the 5-layer coating material embodiment are shown in Table 5 below. And the reflectance curves at different wavelengths are shown in Figure 15. It can be seen from Figures 14 and 15 that the reflectivity of the anti-reflective layer embodiments defined in Tables 4 and 5 is extremely low.

表 四 鍍層 材料 鍍層厚度(單位:10^-7m) 1 H4 0.110 2 MgF2 0.301 3 H4 1.144 4 MgF2 0.863 Table 4 plating Material Coating thickness (unit: 10^-7m) 1 H4 0.110 2 MgF2 0.301 3 H4 1.144 4 MgF2 0.863

表 五 鍍層 材料 鍍層厚度(單位:10^-7m) 1 MgF2 0.291 2 H4 0.199 3 MgF2 0.341 4 H4 1.177 5 MgF2 0.879 Table 5 plating Material Coating thickness (unit: 10^-7m) 1 MgF2 0.291 2 H4 0.199 3 MgF2 0.341 4 H4 1.177 5 MgF2 0.879

由表四及表五可知,鍍膜材料為H4的鍍層厚度範圍為0.011-0.1177微米(µm),且鍍膜材料為MgF2的鍍層厚度範圍為0.0291-0.0879微米(µm)。It can be seen from Table 4 and Table 5 that the coating thickness range of H4 is 0.011-0.1177 microns (µm), and the coating thickness range of MgF2 is 0.0291-0.0879 microns (µm).

圖16及圖17顯示本發明的投影裝置的一應用實例的示意圖。於本實施例中,投影裝置1例如可設置於車內並投射影像至車窗讓人觀看,且不可見光反射層18可貼附於車窗外側以確保避免紫外光危害周遭的行人38。投影裝置1於車內的設置位置並不限定,例如可如圖16所示搭配穿透式螢光激發層16設於車內的頂部,或如圖17所示搭配反射式螢光激發層16設於車內的底部。16 and 17 show schematic diagrams of an application example of the projection device of the present invention. In this embodiment, for example, the projection device 1 can be installed in a car and project images to the car window for people to watch, and the invisible light reflective layer 18 can be attached to the outside of the car window to ensure that ultraviolet light does not harm surrounding pedestrians 38 . The location of the projection device 1 in the car is not limited. For example, it can be installed on the top of the car with a transmissive fluorescent excitation layer 16 as shown in Figure 16 , or it can be equipped with a reflective fluorescent excitation layer 16 as shown in Figure 17 Located at the bottom of the car.

再者,於一實施例中,亦可藉由投影裝置的光路偏移(offset)設計,加大紫外光與螢光激發層16間的入射角度,使得未被吸收的紫外光穿透螢光激發層16或被螢光激發層16反射後,遠離人眼42的視角,達到保護效果。舉例而言,圖18、圖19及圖20分別顯示投影裝置的穿透光路未偏移、偏移100%、及偏移200%的設計,於此偏移量百分比例如可藉由改變數位微鏡裝置的微鏡傾斜角度來設定。如圖18至圖20所示,經投影鏡頭14成像的影像光直接穿透螢光激發層16,藉由調整光閥12(例如數位微鏡裝置)相對光軸的位置,可使穿透螢光激發層16的光路從圖18的未偏移至產生不同程度的偏移,當光路偏移程度大於如圖19所示的100%時,已可提供減少紫外光進入人眼42可能性的效果,當光路偏移程度達到如圖20所示的200%時,幾乎可完全避免紫外光進入人眼42。於一實施例中,穿透光路偏移100%例如可代表成像頂點與光軸的垂直距離為100%像高(圖19),穿透光路偏移200%例如可代表成像頂點與光軸的垂直距離為200%像高(圖20)。圖21、圖22及圖23為依本發明另一實施例,分別顯示投影裝置的反射光路未偏移、偏移100%、及偏移200%的設計。如圖21至圖23所示,經投影鏡頭14成像的影像光被螢光激發層16反射,藉由調整光閥12(例如DMD)相對光軸的位置,可使被螢光激發層16的反射光的光路從圖21的未偏移至產生不同程度的偏移,於本實施例中,當光路偏移程度如圖23所示的200%時,可幾乎完全避免紫外光進入人眼42。因此,可藉由投影裝置的光路偏移設計省略不可見光反射層18,且投影裝置的光路偏移(offset)程度可視實際應用環境調整而不限定。另外,上述光路的偏移設計可運用於本發明的不同實施例而不限定。Furthermore, in one embodiment, the incident angle between the ultraviolet light and the fluorescent excitation layer 16 can also be increased through the optical path offset design of the projection device, so that the unabsorbed ultraviolet light can penetrate the fluorescent light. After the excitation layer 16 or is reflected by the fluorescent excitation layer 16, it is away from the viewing angle of the human eye 42 to achieve a protective effect. For example, Figures 18, 19 and 20 respectively show designs in which the transmitted light path of the projection device is not offset, offset by 100%, and offset by 200%. The offset percentage can be changed, for example, by changing the digital micrometer. The tilt angle of the micromirror of the mirror device is set. As shown in FIGS. 18 to 20 , the image light imaged by the projection lens 14 directly penetrates the fluorescent excitation layer 16 . By adjusting the position of the light valve 12 (such as a digital micromirror device) relative to the optical axis, the image light can pass through the fluorescent layer 16 . The optical path of the light excitation layer 16 varies from not deflected in Figure 18 to varying degrees. When the degree of optical path deflection is greater than 100% as shown in Figure 19, it can already provide a way to reduce the possibility of ultraviolet light entering the human eye 42 As a result, when the optical path deviation reaches 200% as shown in Figure 20, ultraviolet light can almost be completely prevented from entering the human eye42. In one embodiment, a 100% offset of the transmitted light path may represent, for example, that the vertical distance between the imaging vertex and the optical axis is 100% of the image height (Fig. 19), and a 200% offset of the transmitted light path may represent, for example, the vertical distance between the imaging vertex and the optical axis. The vertical distance is 200% of the image height (Figure 20). Figures 21, 22, and 23 show designs in which the reflected light path of the projection device is not shifted, shifted by 100%, and shifted by 200%, respectively, according to another embodiment of the present invention. As shown in FIGS. 21 to 23 , the image light imaged by the projection lens 14 is reflected by the fluorescent excitation layer 16 . By adjusting the position of the light valve 12 (such as a DMD) relative to the optical axis, the light of the fluorescent excitation layer 16 can be adjusted. The optical path of the reflected light varies from not deflected in Figure 21 to deflected to varying degrees. In this embodiment, when the optical path deflection is 200% as shown in Figure 23, ultraviolet light can be almost completely prevented from entering the human eye 42 . Therefore, the invisible light reflective layer 18 can be omitted through the optical path offset design of the projection device, and the degree of the optical path offset of the projection device can be adjusted according to the actual application environment and is not limited. In addition, the above-mentioned offset design of the optical path can be applied to different embodiments of the present invention without limitation.

雖然本發明已以較佳實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。Although the present invention has been disclosed above in terms of preferred embodiments, they are not intended to limit the present invention. Anyone skilled in the art may make some modifications and modifications without departing from the spirit and scope of the present invention. Therefore, the present invention The scope of protection shall be subject to the scope of the patent application attached.

1、2、3:投影裝置 10:不可見光光源 10a:晶片 10b:封裝體 12:光閥 14:投影鏡頭 16:螢光激發層 18:不可見光反射層 20:可見光光源 22:準直透鏡 23、25:轉向鏡 24、26:透明基板 28:全反射稜鏡 32:靜態投影片 34:可見光反射層 36:分色鏡 36a:抗反射層 38:行人 42:人眼 102:光軸 104:光圈 106:光閥 108:玻璃蓋 110:第一透鏡群 112:全反射稜鏡 120:第二透鏡群 IB:藍光 IV:可見光 UV:紫外光 L1-L9:透鏡 IS:縮小側 OS:放大側 S1-S21:表面 1, 2, 3: Projection device 10:Invisible light source 10a:wafer 10b:Package 12:Light valve 14:Projection lens 16: Fluorescent excitation layer 18: Invisible light reflective layer 20: Visible light source 22:Collimating lens 23, 25: Steering mirror 24, 26: Transparent substrate 28:Total Reflection 32:Static slideshow 34: Visible light reflective layer 36:Dichroic mirror 36a: anti-reflective layer 38:Pedestrian 42:Human eye 102:Optical axis 104:Aperture 106:Light valve 108:Glass cover 110: First lens group 112:Total Reflection 120: Second lens group IB: Blu-ray IV: visible light UV: ultraviolet light L1-L9: Lens IS: zoom side OS: magnification side S1-S21: Surface

圖1為本發明一實施例的投影裝置的概要示意圖。FIG. 1 is a schematic diagram of a projection device according to an embodiment of the present invention.

圖2及圖3顯示不可見光反射層與螢光激發層的不同配置實施例。Figures 2 and 3 show different configuration embodiments of the invisible light reflective layer and the fluorescent excitation layer.

圖4及圖5為顯示本發明一實施例的不可見光反射層於不同波長下的穿透率及反射率曲線圖。4 and 5 are graphs showing the transmittance and reflectivity of the invisible light reflective layer at different wavelengths according to an embodiment of the present invention.

圖6為本發明另一實施例的投影裝置的概要示意圖。FIG. 6 is a schematic diagram of a projection device according to another embodiment of the present invention.

圖7為本發明另一實施例的投影裝置的概要示意圖。FIG. 7 is a schematic diagram of a projection device according to another embodiment of the present invention.

圖8為本發明一實施例的紫外光通道及藍光通道的激發光譜示意圖。Figure 8 is a schematic diagram of the excitation spectra of the ultraviolet light channel and the blue light channel according to an embodiment of the present invention.

圖9顯示未鍍膜的玻璃相對藍光的穿透率曲線圖,圖10顯示鍍膜分色鏡相對藍光的穿透率曲線圖,圖11顯示鍍膜分色鏡相對紫外光的反射率曲線圖,圖12顯示抗反射層於不同波長下的光穿透率的一例。Figure 9 shows the transmittance curve of uncoated glass relative to blue light, Figure 10 shows the transmittance curve of coated dichroic mirror relative to blue light, Figure 11 shows the reflectivity curve of coated dichroic mirror relative to ultraviolet light, Figure 12 An example showing the light transmittance of the anti-reflection layer at different wavelengths.

圖13為本發明一實施例的投影鏡頭的示意圖。FIG. 13 is a schematic diagram of a projection lens according to an embodiment of the present invention.

圖14為本發明一實施例的透鏡抗反射層的反射率曲線圖。Figure 14 is a reflectivity curve of the anti-reflective layer of a lens according to an embodiment of the present invention.

圖15為本發明另一實施例的透鏡抗反射層的反射率曲線圖。FIG. 15 is a reflectance curve of a lens anti-reflection layer according to another embodiment of the present invention.

圖16及圖17顯示投影裝置的應用例的示意圖。16 and 17 show schematic diagrams of application examples of the projection device.

圖18、19及20分別顯示投影裝置的穿透光路未偏移、偏移100%、及偏移200%的設計實施例的示意圖。Figures 18, 19 and 20 respectively show schematic diagrams of design embodiments in which the transmitted light path of the projection device is not shifted, shifted by 100%, and shifted by 200%.

圖21、22及23分別顯示投影裝置的反射光路未偏移、偏移100%、及偏移200%的設計實施例的示意圖。Figures 21, 22 and 23 respectively show schematic diagrams of design embodiments in which the reflected light path of the projection device is not shifted, shifted by 100%, and shifted by 200%.

3:投影裝置 3: Projection device

10:不可見光光源 10:Invisible light source

12:光閥 12:Light valve

14:投影鏡頭 14:Projection lens

16:螢光激發層 16: Fluorescent excitation layer

20:可見光光源 20: Visible light source

22:準直透鏡 22:Collimating lens

23、25:轉向鏡 23, 25: Steering mirror

28:全反射稜鏡 28:Total Reflection

36:分色鏡 36:Dichroic mirror

36a:抗反射層 36a: anti-reflective layer

IB:藍光 IB: Blu-ray

UV:紫外光 UV: ultraviolet light

Claims (9)

一種投影裝置,包含:至少一光源,適於提供一不可見光及一第一可見光;一分色鏡,接收該不可見光及該第一可見光,該分色鏡可反射該不可見光並讓該第一可見光穿透,或者反射該第一可見光並讓該不可見光穿透;一光閥,設於該分色鏡的光路下游,且分別調變該不可見光及該第一可見光;一投影鏡頭,設於該光閥的光路下游,該投影鏡頭包含沿一方向排列的一第一透鏡組與一第二透鏡組,且該第二透鏡組包含一非球面透鏡,其中該投影鏡頭的所有透鏡之中,於該光閥的光路上最靠近該光閥的透鏡為該非球面透鏡;以及一螢光激發層,設於該投影鏡頭的光路下游,該螢光激發層可將該不可見光及該第一可見光分別轉換為一第二可見光及一第三可見光,且該第一可見光、該第二可見光及該第三可見光具有各自不同的波段範圍。 A projection device, including: at least one light source, suitable for providing an invisible light and a first visible light; a dichroic mirror, receiving the invisible light and the first visible light, the dichroic mirror can reflect the invisible light and allow the third A visible light penetrates, or reflects the first visible light and allows the invisible light to penetrate; a light valve, located downstream of the light path of the dichroic mirror, and modulates the invisible light and the first visible light respectively; a projection lens, Located downstream of the optical path of the light valve, the projection lens includes a first lens group and a second lens group arranged in one direction, and the second lens group includes an aspherical lens, wherein all lenses of the projection lens , the lens closest to the light valve on the optical path of the light valve is an aspherical lens; and a fluorescent excitation layer is provided downstream of the optical path of the projection lens. The fluorescent excitation layer can combine the invisible light and the third A visible light is converted into a second visible light and a third visible light respectively, and the first visible light, the second visible light and the third visible light have different wavelength ranges. 如請求項1所述的投影裝置,其中該投影鏡頭的該非球面透鏡為具有鍍膜的一玻璃透鏡。 The projection device of claim 1, wherein the aspherical lens of the projection lens is a glass lens with a coating. 如請求項2所述的投影裝置,其中該鍍膜係由交替設置於該玻璃透鏡的H4鍍層及MgF2鍍層所構成,該H4鍍層的厚度範圍為0.0138-0.0446微米,且該MgF2的厚度範圍為0.0127-0.0879微米。 The projection device of claim 2, wherein the coating is composed of H4 coating and MgF2 coating alternately provided on the glass lens, the thickness of the H4 coating ranges from 0.0138 to 0.0446 microns, and the thickness of the MgF2 ranges from 0.0127 -0.0879 micron. 如請求項1所述的投影裝置,其中該投影鏡頭的該非球面透鏡滿足下列條件的其中之一: a.於350nm-380nm的波段的穿透率大於95.1%:b.於370nm-400nm的波段的穿透率大於98.3%:c.於390nm-420nm的波段的穿透率大於98.6%。 The projection device as claimed in claim 1, wherein the aspherical lens of the projection lens meets one of the following conditions: a. The penetration rate in the 350nm-380nm band is greater than 95.1%: b. The penetration rate in the 370nm-400nm band is greater than 98.3%: c. The penetration rate in the 390nm-420nm band is greater than 98.6%. 如請求項2所述的投影裝置,其中除該非球面透鏡外的其餘透鏡的至少其中之一具有鍍膜。 The projection device of claim 2, wherein at least one of the remaining lenses except the aspherical lens has a coating. 如請求項5所述的投影裝置,其中該鍍膜係由交替設置的H4鍍層及MgF2鍍層所構成,該H4鍍層的厚度範圍為0.0138-0.0446微米,且該MgF2的厚度範圍為0.0127-0.0879微米。 The projection device of claim 5, wherein the coating is composed of alternately arranged H4 coating and MgF2 coating, the thickness of the H4 coating ranges from 0.0138 to 0.0446 microns, and the thickness of the MgF2 ranges from 0.0127 to 0.0879 microns. 如請求項1所述的投影裝置,其中該投影鏡頭更包含一光圈,該光圈設於第二透鏡組內,且該第二透鏡組包含一膠合透鏡。 The projection device of claim 1, wherein the projection lens further includes an aperture, the aperture is provided in the second lens group, and the second lens group includes a cemented lens. 如請求項1所述的投影裝置,其中該不可見光為紫外光,該第一可見光為藍光,該第二可見光為紅光,且該第三可見光為綠光。 The projection device of claim 1, wherein the invisible light is ultraviolet light, the first visible light is blue light, the second visible light is red light, and the third visible light is green light. 如請求項1所述的投影裝置,其中該不可見光的峰值波長與該第一可見光的峰值波長的差值大於50nm。 The projection device of claim 1, wherein the difference between the peak wavelength of the invisible light and the peak wavelength of the first visible light is greater than 50 nm.
TW110124376A 2021-07-02 2021-07-02 Projection apparatus and fabrication method thereof TWI821700B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110124376A TWI821700B (en) 2021-07-02 2021-07-02 Projection apparatus and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110124376A TWI821700B (en) 2021-07-02 2021-07-02 Projection apparatus and fabrication method thereof

Publications (2)

Publication Number Publication Date
TW202303254A TW202303254A (en) 2023-01-16
TWI821700B true TWI821700B (en) 2023-11-11

Family

ID=86657929

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110124376A TWI821700B (en) 2021-07-02 2021-07-02 Projection apparatus and fabrication method thereof

Country Status (1)

Country Link
TW (1) TWI821700B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103034035A (en) * 2011-09-30 2013-04-10 中强光电股份有限公司 Illuminating system and projecting apparatus
US8628199B2 (en) * 2010-07-06 2014-01-14 Seiko Epson Corporation Light source device with a plurality of light sources and a collimating lens
TWI438490B (en) * 2010-05-14 2014-05-21 Delta Electronics Inc Light source system and projection apparatus using the same
TWM552112U (en) * 2016-08-12 2017-11-21 Appotronics China Corp Light source device and projection system
WO2021132061A1 (en) * 2019-12-27 2021-07-01 ソニーグループ株式会社 Light source device and projection-type display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI438490B (en) * 2010-05-14 2014-05-21 Delta Electronics Inc Light source system and projection apparatus using the same
US8628199B2 (en) * 2010-07-06 2014-01-14 Seiko Epson Corporation Light source device with a plurality of light sources and a collimating lens
CN103034035A (en) * 2011-09-30 2013-04-10 中强光电股份有限公司 Illuminating system and projecting apparatus
TWM552112U (en) * 2016-08-12 2017-11-21 Appotronics China Corp Light source device and projection system
WO2021132061A1 (en) * 2019-12-27 2021-07-01 ソニーグループ株式会社 Light source device and projection-type display device

Also Published As

Publication number Publication date
TW202303254A (en) 2023-01-16

Similar Documents

Publication Publication Date Title
JP5990666B2 (en) Display screen
US10386710B2 (en) Projector and illumination system thereof
US8810752B2 (en) Thin backlight system and liquid crystal display device using the same
JP4111011B2 (en) Projection screen
US10324302B2 (en) Optical element and display apparatus
JP2009133998A (en) Image display device
CN105911739B (en) Silicon-based liquid crystal panel
US9890919B2 (en) Lamp lens with reduced chromatic aberration and lamp for vehicle using the same
JP2021534452A (en) Optical system
JP2015011345A (en) Display module
US11570410B2 (en) Laser device, projection type image display device and sensing device
US20070091270A1 (en) Projector
TWI821700B (en) Projection apparatus and fabrication method thereof
US9116352B2 (en) Optical element, display apparatus, and method for manufacturing optical element
TWI815139B (en) Projection apparatus and fabrication method thereof
US10775689B2 (en) Illumination system and projection apparatus
JP2012237832A (en) Optical device
JPH09138369A (en) Optical device, optical correcting method and projection type display device
US20240152039A1 (en) Projection system
US20230140825A1 (en) Beam splitter/combiner and projection apparatus
JP2022176665A (en) Projection type display device
US20230102400A1 (en) Wavefront control element, lighting device, and projector
US11249320B2 (en) Diffractive optical element and virtual image display device
US20240142766A1 (en) Composite color wheel module and projection device
TWI826508B (en) Projection module and transportation including the same