TWI821069B - 電源轉換器及其操作方法 - Google Patents

電源轉換器及其操作方法 Download PDF

Info

Publication number
TWI821069B
TWI821069B TW111147716A TW111147716A TWI821069B TW I821069 B TWI821069 B TW I821069B TW 111147716 A TW111147716 A TW 111147716A TW 111147716 A TW111147716 A TW 111147716A TW I821069 B TWI821069 B TW I821069B
Authority
TW
Taiwan
Prior art keywords
frequency
lower limit
limit frequency
effective value
controller
Prior art date
Application number
TW111147716A
Other languages
English (en)
Other versions
TW202425508A (zh
Inventor
楊上凱
王賢凱
林彥瑋
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW111147716A priority Critical patent/TWI821069B/zh
Application granted granted Critical
Publication of TWI821069B publication Critical patent/TWI821069B/zh
Publication of TW202425508A publication Critical patent/TW202425508A/zh

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

一種電源轉換器,係接收輸入電壓,且提供輸出電壓對負載供電。電源轉換器包括功率因數校正電路與控制器,控制器基於輸入電壓的瞬時值取得切換頻率,且基於輸入電流的有效值取得上限頻率與下限頻率。當控制器判斷有效值高於中載閾值時,基於切換頻率低於下限頻率而將功率因數校正電路的操作模式由臨界導通模式或三角形電流模式切換至連續導通模式,且將切換頻率限制於下限頻率。而且,控制器基於有效值的增減而將下限頻率於第一下限頻率與第二下限頻率之間進行調整。

Description

電源轉換器及其操作方法
本發明係有關一種電源轉換器及其操作方法,尤指一種基於負載大小調整切換頻率的電源轉換器及其操作方法。
資訊產業近年來快速發展,電源供應器扮演重要角色,網通和伺服器產業的資訊電源設備在一固定體積不變下,其功率密度以及轉換效率皆漸漸被要求提高。為了獲得較高效率以及高功率密度,電源供應器前級的交流/直流電源轉換器(AC/DC power converter)使用功率因數校正器的架構也漸漸的被普遍使用,尤其是使用臨界導通模式 (CRM;Critical-Conduction-Mode)或三角形電流模式(TCM;Triangular-Current-Mode)的輸入電流控制技術,可以將切換頻率提高,相對可縮小功率因數校正器的電感鐵芯的體積。
一般輸入電流控制方式常見的為: TCM、CRM 、非連續導通模式(DCM;Discontinuous-Conduction-Mode)及連續導通模式(CCM;Continuous-Conduction-Mode)。其中,如圖1A所示習知的電源轉換器操作於臨界導通模式之功率因數校正波形圖,如圖1B所示習知的電源轉換器操作於三角形電流模式之功率因數校正波形圖。TCM 和 CRM 輸入電流控制方式,同樣操作在高頻切換頻率下,跟CCM輸入電流控制方式相比較,其導通損失(Turn on loss)有較小的優點。然而,在實際大功率應用中,此兩項控制方式的功率因數校正器的電感電流峰值(即最大值電流),約為CCM輸入電流控制方式的兩倍大,相對的功率開關也必須承受兩倍大的電流應力。為此,習知的技術通常會設定功率因數校正器的硬體最高固定頻率與最低固定頻率。然而,由於電源供應器在特殊應用的場合中會有超載的需求,容易導致功率因數校正器的電感電流長期操作在一固定最低頻率而造成電感飽和現象。
所以,如何設計出一種電源轉換器及其操作方法,以避免功率因數校正器操作於TCM與CRM時,因超載需求而造成電感易飽和的現象,乃為本案創作人所欲行研究的一大課題。
為了解決上述問題,本發明係提供一種電源轉換器,以克服習知技術的問題。因此,本發明的電源轉換器係接收輸入電壓,且提供輸出電壓對負載供電。電源轉換器包括功率因數校正電路與控制器,功率因數校正電路接收輸入電壓,且包括至少一功率開關。控制器耦接功率開關,且控制功率開關的切換,以控制功率因數校正電路轉換輸入電壓為輸出電壓,且控制功率因數校正電路的輸入電流追隨該輸入電壓。其中,控制器基於輸入電壓的瞬時值與輸入電流的有效值取得切換頻率及頻率範圍,頻率範圍包括上限頻率與下限頻率;當控制器判斷有效值高於中載閾值時,基於切換頻率低於下限頻率而將功率因數校正電路的操作模式由臨界導通模式切換至連續導通模式,且將切換頻率限制於下限頻率,或者將操作模式由三角形電流模式切換至連續導通模式,且將切換頻率限制於下限頻率。其中,當控制器判斷有效值高於中載閾值時,控制器基於有效值的增減而將下限頻率於第一下限頻率與第二下限頻率之間進行調整。
為了解決上述問題,本發明係提供一種電源轉換器的操作方法,以克服習知技術的問題。因此,電源轉換器係接收輸入電壓,且提供輸出電壓對負載供電;電源轉換器包括功率因數校正電路,且功率因數校正電路包括至少一功率開關。電源轉換器的操作方法係包括下列步驟:基於輸入電壓的瞬時值與功率因數校正電路的輸入電流的有效值取得切換頻率及頻率範圍,頻率範圍包括上限頻率與下限頻率。基於該有效值高於中載閾值而判斷切換頻率。(a)基於切換頻率低於下限頻率而將功率因數校正電路的操作模式由臨界導通模式切換至連續導通模式,且將切換頻率限制於下限頻率。或(b)基於切換頻率低於下限頻率而將操作模式由三角形電流模式至連續導通模式,且將切換頻率限制於下限頻率。基於有效值的增加而將下限頻率由第一下限頻率調升至第二下限頻率。基於有效值的減少而將下限頻率由第二下限頻率調降至第一下限頻率。
本發明之主要目的及功效在於,本發明提出一種功率因數校正電路的操作方式,當控制器判斷有效值高於中載閾值時,基於切換頻率低於下限頻率而將功率因數校正電路的操作模式由CRM或TCM調整至CCM,且將切換頻率限制於下限頻率。並且,控制器還基於有效值的增加而將下限頻率由第一下限頻率提升至第二下限頻率。如此,即可使操作的區間(負載範圍)可以變更廣,且避免電感電流長期操作在一固定最低頻率而造成電感飽和現象,實現ZVS負載範圍變更廣的功效。
為了能更進一步瞭解本發明為達成預定目的所採取之技術、手段及功效,請參閱以下有關本發明之詳細說明與附圖,相信本發明之目的、特徵與特點,當可由此得一深入且具體之瞭解,然而所附圖式僅提供參考與說明用,並非用來對本發明加以限制者。
茲有關本發明之技術內容及詳細說明,配合圖式說明如下:
請參閱圖2A為本發明具有降低功率消耗的電源轉換器之電路方塊圖,復配合參閱圖1。電源轉換器100係接收輸入電壓Vin,且提供輸出電壓Vout對負載200供電。電源轉換器100包括功率因數校正電路1、驅動電路2及控制器3,且功率因數校正電路1包括至少一電感L、至少一功率開關(SH、SL、S1、S2)及輸出電容Cout。以圖2A的電路結構為例,電感L配置於功率因數校正電路1的輸入端,且接收輸入電壓Vin。輸出電容Cout配置於功率因數校正電路1的輸出端,且耦接負載200,以提供輸出電壓Vout對負載200供電。功率開關(SH、SL、S1、S2)耦接電感L與輸出電容Cout之間,且驅動電路2耦接控制器3與功率開關(SH、SL、S1、S2)之間。
電源轉換器100更包括輸出偵測電路4與輸入偵測電路5,輸出偵測電路4耦接輸出電容Cout與控制器3之間,且輸入偵測電路5耦接功率因數校正電路1的輸入端與控制器3之間。輸出偵測電路偵測輸出電壓Vout,以提供相應於輸出電壓Vout的回授電壓V_fb至控制器3。輸入偵測電路5偵測功率因數校正電路1輸入端的輸入電壓Vin與輸入電流Iin,以提供相應於輸入電壓Vin與輸入電流Iin的輸入訊號S_in至控制器3。控制器3基於回授電壓V_fb與輸入訊號S_in調製脈寬調變訊號PWM,以提供脈寬調變訊號PWM至驅動電路2。
驅動電路2接收脈寬調變訊號PWM,且基於脈寬調變訊號PWM驅動功率開關(SH、SL、S1、S2)切換導通/關斷。因此,驅動電路2可基於脈寬調變訊號PWM操作功率開關(SH、SL、S1、S2)的切換,以控制功率因數校正電路1轉換輸入電壓Vin為輸出電壓Vout,且控制功率因數校正電路1的輸入電流Iin追隨輸入電壓Vin。值得一提,於本發明之一實施例中,圖2A所出示的功率因數校正電路1的電路結構僅為示意性的範例。功率因數校正電路1可以依據電源轉換器100的需求,使用不同的電路結構。因此舉凡可作為功率因數校正電路1的交流/直流轉換電路,皆應包含在本實施例之範疇當中,在此不再加以贅述。
請參閱圖2B為本發明控制器之電路方塊圖,復配合參閱圖2A。控制器3包括誤差放大器32與控制模組30,且控制模組30包括電壓控制器34及電流控制器36。誤差放大器32通過輸出偵測電路4耦接輸出電容Cout,以接收相應於輸出電壓Vout的回授電壓V_fb。誤差放大器32基於回授電壓V_fb與參考電壓Vref產生誤差訊號Ver,且控制模組30耦接誤差放大器32,以接收誤差訊號Ver。控制模組30基於誤差訊號Ver與輸入訊號S_in產生脈寬調變訊號PWM,且主要是通過電壓控制器34與電流控制器36來計算功率開關(SH1、SL1、SN、SP)的切換頻率,以及切換頻率的限制/調整機制,並據以相應的產生脈寬調變訊號PWM。
進一步而言,由於臨界導通模式(Critical-Conduction-Mode;CRM)與三角形電流模式(Triangular-Current-Mode;TCM)的輸入電流控制方式的切換頻率皆屬於變頻控制,輸入電壓Vin和輸入電流Iin皆為一個輸入電壓Vin瞬時值的時間函數vac(ωt)和一個輸入電流Iin瞬時值的時間函數iac(ωt)。意即,在一固定負載下(相應於固定輸入電流Iin的有效值),在不同市電電壓角度的輸入電壓Vin瞬時值,所需的功率開關(SH、SL、S1、S2)的切換頻率皆不相同。切換頻率具體的數值可以將輸入電壓Vin的瞬時值、輸出電壓Vout、電感L的感量以及輸入電流Iin的瞬時值等相關數值(TCM 則需額外需考慮功率開關(SH、SL、S1、S2)的Coss),通過電壓控制器34與電流控制器36的計算而獲得。例如在一固定負載條件下,輸入電壓Vin的角度為90度與45度,切換頻率並不相同。其中,CRM和TCM的控制方法的切換頻率範圍可從數kHz至數MHz(例如但不限於, 30KHz~3MHz)。
配合參閱圖3A為本發明的電源轉換器操作於臨界導通模式的切換頻率曲線示意圖、圖3B為本發明的電源轉換器操作於三角形電流模式的切換頻率曲線示意圖,復配合參閱圖2。控制器3主要可將功率因數校正電路1操作於CRM與TCM,其原因在於CRM和TCM的輸入電流控制方式,同樣操作在高頻切換頻率下,與連續導通模式(Continuous-Conduction-Mode;CCM)的輸入電流控制方式相比較,其具有較小導通損失(Turn on loss)的優點。
因CRM的輸入電流控制方式在輸入電壓小於1/2的輸出電壓時,通過快速臂的功率開關(SH、SL、S1、S2)的切換,能夠將功率開關(SH、SL、S1、S2)操作在零電壓切換(Zero-Voltage Switching)。在輸入電壓高於1/2的輸出電壓時,則能夠在功率開關(SH、SL、S1、S2)的漏源極電壓Vds處於谷底時被導通。因此能夠降低導通損失。此外,TCM 的輸入電流控制方式,能在任意輸入電壓的相位角,讓快速臂的功率開關(SH、SL、S1、S2)操作在ZVS 。
進一步而言,在圖3A中,電源轉換器100操作於CRM的切換頻率Fsw為微笑曲線。在輸入電壓Vin的半波中,當負載較輕時(即對應輸入電流Iin的有效值越低時,例如但不限於1A),微笑曲線越高,反之則越低。這意味著在輸入電流Iin的有效值越低時,切換頻率Fsw會越高,反之則越低。其中,切換頻率Fsw在輸入電壓Vin的角度接近零交越點時較高,且在輸入電壓Vin的角度接近90度時較低。因此,操作於CRM切換頻率Fsw是通過控制器3依照輸入電壓Vin的瞬時值以及輸入電流Iin的瞬時值來決定,且每個點位的切換頻率Fsw是不相同的。
另外一方面,在圖3A中,控制器3還可設定了一個最高頻率Fup_lim,且最高頻率Fup_lim通常指的是電源轉換器100的硬體設計上限。具體地,每個電源轉換器100依照內部元件設計(例如但不限於電感L的感值等),以及控制器3的規格,必須要設定最高頻率Fup_lim。當超過最高頻率Fup_lim時,通常已超出控制器3所能控制的上限,導致電源轉換器100失控而異常。尤其是在輸入電壓Vin的角度接近零交越點,且負載較輕時(例如但不限於1A時),切換頻率Fsw已高達400KHz,勢必超出控制器3所能控制的上限,或是會造成控制器3規格選用的障礙。
在圖3B中,電源轉換器100操作於TCM的切換頻率Fsw為M形曲線。同樣地,在輸入電壓Vin的半波中,當負載較輕時(即對應輸入電流Iin有效值越低時,例如但不限於1A),M形曲線越高,反之則越低。然而,在輸入電壓Vin的角度接近零交越點時,切換頻率Fsw極低。隨著輸入電壓Vin的角度逐漸脫離零交越點,切換頻率Fsw會陡然地上升,待輸入電壓Vin的角度接近90度時,切換頻率Fsw逐漸地降低。同樣地,操作於TCM的切換頻率Fsw是通過控制器3依照輸入電壓Vin的瞬時值以及輸入電流Iin的瞬時值來決定,且每個點位的切換頻率Fsw是不相同的。
另外一方面,在圖3B中,控制器3除了設定最高頻率Fup_lim,還額外設定了一個最低頻率Flow_lim,且最低頻率Flow_lim通常指的是電源轉換器100可操作的頻率下限。具體地,由於在TCM的操作中,在輸入電壓Vin的角度接近零交越點時,所計算出來的切換頻率Fsw極低(例如但不限於低於1KHz)。過低的切換頻率Fsw恐會導致控制功率開關(SH、SL、S1、S2)的切換速度過慢,導致輸入電壓Vin的角度已脫離零交越點,但切換速度反應不及而導致電源轉換器100失控而異常的狀況。
請參閱圖4A為本發明的電源轉換器操作於臨界導通模式的切換頻率操作區間圖,復配合參閱圖2A~3A。控制器3基於輸入電流Iin的有效值Iin_rms取得頻率範圍,頻率範圍Fr包括上限頻率Fup與下限頻率Flow。其中,上限頻率Fup與下限頻率Flow主要是由圖3A的微笑曲線來構成,輸入電流Iin的大小(以有效值表示)可對應圖4A中的各個區間(區間I~V),且輸入電流Iin的大小也相應於負載200的大小。當負載200為無載或輕載時,輸入電流Iin的有效值Iin_rms較低(例如但不限於區間I),反之(重載)則較高(例如但不限於區間V)。控制器3也基於輸入電壓Vin的瞬時值取得切換頻率Fsw,並確認切換頻率Fsw是否落入頻率範圍Fr。其中,輸入電壓Vin的瞬時值與輸入電流Iin的有效值Iin_rms可通過控制器3接收由輸入偵測電路5所提供的輸入訊號S_in而獲得。
當負載為無載或輕載時,控制器3將電源轉換器100操作於區間I。由於CRM的特性會在一固定負載下,所計算出的切換頻率Fsw可能會超出硬體頻寬的最高頻率Fup_lim限制,因此控制器3可將上限頻率Fup設定為最高頻率Fup_lim。當所計算的切換頻率Fsw超出預先設定好的上限頻率Fup時,則操作於固定頻率(即等同於最高頻率Fup_lim的上限頻率Fup),且將功率因數校正電路1的操作模式由CRM切換至CCM。因此,當操作於區間I時,且控制器3所計算出的切換頻率Fsw超出預先設定好的上限頻率Fup時,控制器3將功率因數校正電路1的操作模式切換至CCM,且切換頻率Fsw設定為固定頻率。
反之,若所計算出的切換頻率Fsw未超出預先設定好的上限頻率Fup時,則控制器3將功率因數校正電路1的操作模式切換至CRM模式,且切換頻率Fsw依照控制器3所計算的結果進行切換的動作(即變頻操作)。值得一提,由於電源轉換器100操作於CRM的切換頻率Fsw為微笑曲線,且於區間I時的切換頻率Fsw即便再低,也不至於低於硬體頻寬的最低頻率Flow_lim,因此區間I的下限頻率Flow並非為最低頻率Flow_lim。
當負載逐漸增加而使得輸入電流Iin的有效值Iin_rms脫離區間Ⅰ後,代表負載200加重而進入區間II。控制器3所計算出的切換頻率Fsw已不會再高於最高頻率Fup_lim,且微笑曲線的底部(即下限頻率Flow)也不會碰觸到最低頻率Flow_lim。因此控制器3將功率因數校正電路1的操作模式操設定在CRM,且切換頻率Fsw依控制器3的計算而調變(即變頻)。直到輸入電流Iin的有效值Iin_rms到達中載閾值Tm前,控制器3皆將功率因數校正電路1操作於變頻的CRM。由於在區間I~II中,有效值Iin_rms越高,則上限頻率Fup與下限頻率Flow越低,因此有效值Iin_rms與上限頻率Fup、下限頻率Flow為負相關。
當控制器3判斷負載逐漸增加而使得有效值Iin_rms提升至中載閾值Tm時,進入區間III。在區間III中,控制器3通過輸入電壓Vin的瞬時值所計算的切換頻率Fsw,若低於下限頻率Flow時,控制器3將功率因數校正電路1的操作模式由CRM切換至CCM,且將切換頻率Fsw限制於固定頻率(即下限頻率Flow)。其中,下限頻率Flow可以是當下有效值Iin_rms所計算出的頻率(即最低的下限頻率Flow),也可以是控制器3所設定的硬體頻寬的最低頻率Flow_lim,或為控制器3預設的一個頻率值。當然的,區間I的最高頻率Fup_lim也可以為控制器3預設的一個頻率值。
當控制器3判斷負載由中載閾值Tm逐漸增加時,控制器3會基於有效值Iin_rms的增加而將下限頻率由第一下限頻率Flow_1調升至第二下限頻率Flow_2。反之,則控制器3基於有效值Iin_rms的減少而將下限頻率由第二下限頻率Flow_2調降至第一下限頻率Flow_1。如此,基於有效值Iin_rms的增加,功率因數校正電路1進入CCM的頻率也會逐漸由第一下限頻率Flow_1提升至第二下限頻率Flow_2。因此,隨著負載的增加,切換頻率Fsw的下限值也會隨著負載的增加而提升。當控制器3所計算出的切換頻率Fsw皆落於頻率範圍Fr內時,控制器3會將功率因數校正電路1的操作模式切換為CRM,反之則切換為CCM。
當控制器3判斷負載由中載閾值Tm逐漸增加,且上限頻率Fup的下降與下限頻率Flow的上升致使上限頻率Fup等於下限頻率Flow(即第二下限頻率Flow_2)時,進入區間IV。由於上限頻率Fup的下降與下限頻率Flow的上升勢必會使得二曲線碰觸,使得在區間IV時的頻率範圍Fr不復存在。因此,在區間IV之後,切換頻率Fsw將完全脫離 CRM,進入固定頻率(固定於第二下限頻率Flow_2)的CCM,直到有效值Iin_rms上升至重載閾值Th。
當控制器3判斷有效值Iin_rms高於重載閾值Th時,進入區間V。控制器3仍將切換頻率Fsw固定在第二下限頻率Flow_2,但控制器3基於有效值Iin_rms的大小調整第二下限頻率Flow_2。具體而言,當進入區間V時,控制器基於有效值Iin_rms的上升而調升第二下限頻率Flow_2,反之則調降第二下限頻率Flow_2。因此在區間V中,有效值Iin_rms的大小與第二下限頻率Flow_2為正相關,且隨著負載的增加,第二下限頻率Flow_2也會隨著負載的增加而提升。值得一提,於本發明之一實施例中,中載閾值Tm與重載閾值Th可以依照功率因數校正電路1的電路參數(例如但不限於輸入電壓Vin、電感L的感值等)來進行設計,且可以依照使用者需求而進行閾值的調整。
另外一方面,由於此定頻操作,且第二下限頻率Flow_2隨有效值Iin_rms的大小而調整的作法,在一固定負載下操作時,輸入電壓Vin的調整會致使有效值Iin_rms與切換頻率Fsw隨之改變,主要是因為輸入電壓Vin的變化會影響到輸入電流Iin,產生控制器3會基於輸入電壓Vin調整有效值Iin_rms,進而改變切換頻率Fsw的狀況。具體而言,當輸入電壓Vin增加時,控制器3會降低有效值Iin_rms,導致切換頻率Fsw也隨之降低。反之,則有效值Iin_rms隨之提升,導致切換頻率Fsw也隨之提升,因此輸入電壓Vin與切換頻率Fsw、有效值Iin_rms為負相關。
請參閱圖4B為本發明的電源轉換器操作於三角形電流模式的切換頻率操作區間圖,復配合參閱圖2A~4A。圖4B的TCM操作區間與圖4A的差異在於,當有效值Iin_rms低於中載閾值Tm時,控制器3將下限頻率Flow皆設定在固定頻率。復參閱圖3B,由於TCM在輸入電壓Vin的角度接近零交越點時,所計算出來的切換頻率Fsw極低(例如但不限於低於1KHz),因此必須要預設一個固定值的下限頻率Flow。相似於圖4A,下限頻率Flow可以是當下有效值Iin_rms所計算出的頻率(即最低的下限頻率Flow),也可以是控制器3所設定的硬體頻寬的最低頻率Flow_lim,或由控制器3預設的一個頻率值。
簡而言之,當控制器3所計算出的切換頻率Fsw皆落於頻率範圍Fr內時,控制器3會將功率因數校正電路1的操作模式切換為TCM,反之則切換為CCM。因此,在區間I之中,當控制器3所計算出的切換頻率Fsw超出預先設定好的最高頻率Fup_lim或下限頻率Flow時,控制器3將功率因數校正電路1的操作模式切換至CCM,且切換頻率Fsw設定為固定頻率(即最高頻率Fup_lim或下限頻率Flow)。在區間II之中,當控制器3所計算出的切換頻率Fsw超出預先設定好的下限頻率Flow時,控制器3將功率因數校正電路1的操作模式切換至CCM,且切換頻率Fsw設定為固定頻率(即下限頻率Flow)。
在區間III之中,當控制器3判斷負載逐漸增加而使得有效值Iin_rms提升至中載閾值Tm之後,且控制器3通過輸入電壓Vin的瞬時值所計算的切換頻率Fsw低於下限頻率Flow時,控制器3將功率因數校正電路1的操作模式由TCM切換至CCM,且將切換頻率Fsw限制於固定頻率(即下限頻率Flow)。並且,控制器3會基於有效值Iin_rms的增加而將下限頻率由第一下限頻率Flow_1提升至第二下限頻率Flow_2。如此,基於有效值Iin_rms的增加,功率因數校正電路1進入CCM的頻率也會逐漸由第一下限頻率Flow_1提升至第二下限頻率Flow_2。值得一提,於本發明之一實施例中,圖4B未提及之控制器3的操作方式皆與圖4A相同,在此不再加以贅述。
進一步而言,本發明使用TCM或CRM 輸入電流控制的方式係為了解決大功率應用的功率開關(SH、SL、S1、S2)需承受較大電流應力問題。通常當操作在輕載條件時,切換頻率較高,因受硬體頻寬限制等因素,會限制一個最高固定的操作頻率。反之,當操作於重載條件下,切換頻率較低,為了防止功率因數校正電路1的電感L飽和或減小功率開關(SH、SL、S1、S2)的電流應力,會限制一個最低固定的操作頻率。因此,在實際應用上,當選定好電感L的鐵心(Ae值),接著就可決定電感L所需的電感量/圈數。為了獲得較高的電路效率,通常會將最低操作頻率限制較低,其原因在於1. 讓前述兩控制方式可實現ZVS負載範圍變更廣、2. 負載較重時工作在CCM可以減少電感L的鐵心損失。
除此之外,近幾年來資訊產業設備性能的快速提升,衍生了一些更為極端的應用。例如,1.2倍的額定功率不能保護,或是瞬間輸出要承受接近兩倍大的功率。如此,功率因數校正電路1的輸入電流Iin在這些特殊應用中,穩態電流與暫態電流將會變得更大。這些條件將容易造成電感電流Il長期操作在一固定最低頻率,容易造成電感L飽和的現象。
本發明之主要目的及功效在於,為了保留前述所提到的增加單位體積之功率密度和高效率的優點,以及應用在負載為1.2倍的額定功率不能保護,或是瞬間輸出能承受快兩倍大的功率的特殊環境,且避免電感L發生飽和的現象,本發明提出一種能讓前述兩控制方式可操作的區間(負載範圍)可以變更廣技術, 實現ZVS負載範圍變更廣的功效。
其主要的操作方式,如前述圖4A~4B的區間III所述,當控制器判斷有效值Iin_rms高於中載閾值Tm時,基於切換頻率Fsw低於下限頻率Flow而將功率因數校正電路1的操作模式由CRM或TCM調整至CCM,且將切換頻率Fsw限制於下限頻率Flow。並且,控制器3還基於有效值Iin_rms的增加而將下限頻率Flow由第一下限頻率Flow_1提升至第二下限頻率Flow_2。如此,即可使操作的區間(負載範圍)可以變更廣,且避免電感電流長期操作在一固定最低頻率而造成電感飽和現象,實現ZVS負載範圍變更廣的功效。
請參閱圖5為本發明電源轉換器的操作方法流程圖,復配合參閱圖2A~4B。本發明主要係使用一種如前述圖4A~4B的的操作方法來控制功率因數校正電路1,主要是當控制器3所計算出的切換頻率Fsw皆落於頻率範圍Fr內時,控制器3會將功率因數校正電路1的操作模式切換為CRM或TCM,反之則切換為CCM。並且依據有效值Iin_rms所落入的區間,設定CCM為定頻或是隨有效值Iin_rms的變動而調整切換頻率Fsw。因此電源轉換器100的操作方法下包括,判斷有效值是否高於重載閾值(S100)。若是,則將功率因數校正電路1的操作模式切換為CCM,並將切換頻率固定在第二下限頻率,且基於有效值的大小調整第二下限頻率(S120)。反之,則判斷是否具有頻率範圍(S200)。若否,則將功率因數校正電路1的操作模式切換為CCM,且將切換頻率固定在第二下限頻率(S220)。
當步驟(S200)的判斷為是時,則判斷是否在頻率範圍(S300)。若是,則將功率因數校正電路1的操作模式切換為CRM或TCM(S320),使切換頻率Fsw通過控制器3的計算而調整。反之,則將功率因數校正電路1的操作模式切換至CCM(S400),且判斷有效值是否高於中載閾值(S420)。若否,則將切換頻率限制於固定頻率(S440,即上限頻率Fup或下限頻率Flow)。反之,則將切換頻率固定在下限頻率,且基於有效值的增減而將下限頻率於第一下限頻率與第二下限頻率之間進行調整(S460)。值得一提,於本發明之一實施例中,圖5未描述的流程步驟,可配合參閱圖4A~4B,在此不再加以贅述。
惟,以上所述,僅為本發明較佳具體實施例之詳細說明與圖式,惟本發明之特徵並不侷限於此,並非用以限制本發明,本發明之所有範圍應以下述之申請專利範圍為準,凡合於本發明申請專利範圍之精神與其類似變化之實施例,皆應包括於本發明之範疇中,任何熟悉該項技藝者在本發明之領域內,可輕易思及之變化或修飾皆可涵蓋在以下本案之專利範圍。
100:電源轉換器
1:功率因數校正電路
L:電感
SH、SL、S1、S2:功率開關
Cout:輸出電容
2:驅動電路
3:控制器
32:誤差放大器
30:控制模組
34:電壓控制器
36:電流控制器
4:輸出偵測電路
5:輸入偵測電路
200:負載
Vin:輸入電壓
Vout:輸出電壓
V_fb:回授電壓
Vref:參考電壓
Iin:輸入電流
Iin_rms:有效值
S_in:輸入訊號
Ver:誤差訊號
PWM:脈寬調變訊號
Fsw:切換頻率
Fup_lim:最高頻率
Flow_lim:最低頻率
Fr:頻率範圍
Fup:上限頻率
Flow:下限頻率
Flow_1:第一下限頻率
Flow_2:第二下限頻率
I~V:區間
Tm:中載閾值
Th:重載閾值
(S100)~(460):步驟
圖1A為習知的電源轉換器操作於臨界導通模式之功率因數校正波形圖;
圖1B為習知的電源轉換器操作於三角形電流模式之功率因數校正波形圖;
圖2A為本發明具有降低功率消耗的電源轉換器之電路方塊圖;
圖2B為本發明控制器之電路方塊圖;
圖3A為本發明的電源轉換器操作於臨界導通模式的切換頻率曲線示意圖;
圖3B為本發明的電源轉換器操作於三角形電流模式的切換頻率曲線示意圖;
圖4A為本發明的電源轉換器操作於臨界導通模式的切換頻率操作區間圖;
圖4B為本發明的電源轉換器操作於三角形電流模式的切換頻率操作區間圖;及
圖5為本發明電源轉換器的操作方法流程圖。
(S100)~(S460):步驟

Claims (18)

  1. 一種電源轉換器,係接收一輸入電壓,且提供一輸出電壓對一負載供電,該電源轉換器包括: 一功率因數校正電路,接收該輸入電壓,且包括至少一功率開關; 一控制器,耦接該至少一功率開關,且控制該至少一功率開關的切換,以控制該功率因數校正電路轉換該輸入電壓為該輸出電壓,且控制該功率因數校正電路的一輸入電流追隨該輸入電壓; 其中,該控制器基於該輸入電壓的一瞬時值與該輸入電流的一有效值取得一切換頻率及一頻率範圍,該頻率範圍包括一上限頻率與一下限頻率;當該控制器判斷該有效值高於一中載閾值時,基於該切換頻率低於該下限頻率而將該功率因數校正電路的一操作模式由一臨界導通模式切換至一連續導通模式,且將該切換頻率限制於該下限頻率,或者將該操作模式由一三角形電流模式切換至該連續導通模式,且將該切換頻率限制於該下限頻率;及 其中,當該控制器判斷該有效值高於一中載閾值時,該控制器基於該有效值的增減而將該下限頻率於一第一下限頻率與一第二下限頻率之間進行調整。
  2. 如請求項1所述之電源轉換器,其中當該控制器判斷該切換頻率高於該上限頻率時,將該操作模式切換至該連續導通模式,且將該切換頻率限制於該上限頻率。
  3. 如請求項1所述之電源轉換器,其中當該控制器判斷該切換頻率在該頻率範圍時,該控制器將該操作模式設定於該臨界導通模式或該三角形電流模式。
  4. 如請求項1所述之電源轉換器,當該控制器判斷該有效值低於該中載閾值,且該操作模式為該臨界導通模式時,該控制器設定該下限頻率與該有效值為負相關。
  5. 如請求項1所述之電源轉換器,當該控制器判斷該有效值低於該中載閾值,且該操作模式為該三角形電流模式時,該控制器設定該下限頻率為一固定頻率。
  6. 如請求項1所述之電源轉換器,其中當該控制器判斷該有效值低於一重載閾值,且該上限頻率等於該第二下限頻率時,將該操作模式切換至該連續導通模式,且將該切換頻率限制於該第二下限頻率。
  7. 如請求項6所述之電源轉換器,其中當該控制器判斷該有效值高於該重載閾值時,該控制器基於該有效值調整該第二下限頻率,且該控制器設定該有效值與該第二下限頻率為正相關。
  8. 如請求項7所述之電源轉換器,其中該控制器基於該輸入電壓調整該切換頻率與該有效值,且該控制器設定該輸入電壓與該切換頻率、該有效值為負相關。
  9. 如請求項1所述之電源轉換器,其中該控制器包括: 一誤差放大器,耦接該功率因數校正電路的一輸出端,且基於該輸出電壓與一參考電壓產生一誤差訊號;及 一控制模組,耦接該誤差放大器,且基於該誤差訊號與一輸入訊號產生一脈寬調變訊號,且該脈寬調變訊號用以控制該至少一功率開關的切換; 其中,該輸入訊號包括該輸入電壓與該輸入電流,且該控制模組基於該輸入訊號取得該瞬時值與該有效值。
  10. 一種電源轉換器的操作方法,該電源轉換器係接收一輸入電壓,且提供一輸出電壓對一負載供電;該電源轉換器包括一功率因數校正電路,且該功率因數校正電路包括至少一功率開關;該操作方法係包括下列步驟: 基於該輸入電壓的一瞬時值與該功率因數校正電路的一輸入電流的一有效值取得一切換頻率及一頻率範圍,該頻率範圍包括一上限頻率與一下限頻率; 基於該有效值高於一中載閾值而判斷切換頻率; (a)基於該切換頻率低於該下限頻率而將該功率因數校正電路的一操作模式由一臨界導通模式切換至一連續導通模式,且將該切換頻率限制於該下限頻率;或 (b)基於該切換頻率低於該下限頻率而將該操作模式由一三角形電流模式切換至該連續導通模式,且將該切換頻率限制於該下限頻率; 基於該有效值的增加而將該下限頻率由一第一下限頻率調升至一第二下限頻率;及 基於該有效值的減少而將該下限頻率由該第二下限頻率調降至該第一下限頻率。
  11. 如請求項10所述之操作方法,更包括下列步驟: 判斷該切換頻率高於該上限頻率;及 將該操作模式切換至該連續導通模式,且將該切換頻率限制於該上限頻率。
  12. 如請求項10所述之操作方法,更包括下列步驟: 判斷該切換頻率在該頻率範圍;及 將該操作模式設定於該臨界導通模式或該三角形電流模式。
  13. 如請求項10所述之操作方法,更包括下列步驟: (a1)判斷該有效值低於該中載閾值,且該操作模式為該臨界導通模式;及 (a2)設定該下限頻率與該有效值為負相關。
  14. 如請求項10所述之操作方法,更包括下列步驟: (b1)判斷該有效值低於該中載閾值,且該操作模式為該三角形電流模式;及 (b2)設定該下限頻率為一固定頻率。
  15. 如請求項10所述之操作方法,更包括下列步驟: 判斷該有效值低於一重載閾值,且該上限頻率等於該第二下限頻率;及 將該操作模式切換至該連續導通模式,且將該切換頻率限制於該第二下限頻率。
  16. 如請求項15所述之操作方法,更包括下列步驟: 判斷該有效值高於該重載閾值;及 基於該有效值調整該第二下限頻率,且設定該有效值與該第二下限頻率為正相關。
  17. 如請求項16所述之操作方法,更包括下列步驟: 基於該輸入電壓調整該切換頻率與該有效值,且設定該輸入電壓與該切換頻率、該有效值為負相關。
  18. 如請求項10所述之操作方法,更包括下列步驟: 基於該輸出電壓與一參考電壓產生一誤差訊號; 基於該誤差訊號與一輸入訊號產生用以控制該至少一功率開關切換的一脈寬調變訊號;及 基於該輸入訊號取得該瞬時值與該有效值,以計算該切換頻率、該上限頻率及該下限頻率。
TW111147716A 2022-12-13 2022-12-13 電源轉換器及其操作方法 TWI821069B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111147716A TWI821069B (zh) 2022-12-13 2022-12-13 電源轉換器及其操作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111147716A TWI821069B (zh) 2022-12-13 2022-12-13 電源轉換器及其操作方法

Publications (2)

Publication Number Publication Date
TWI821069B true TWI821069B (zh) 2023-11-01
TW202425508A TW202425508A (zh) 2024-06-16

Family

ID=89722195

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111147716A TWI821069B (zh) 2022-12-13 2022-12-13 電源轉換器及其操作方法

Country Status (1)

Country Link
TW (1) TWI821069B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105450052A (zh) * 2014-08-20 2016-03-30 台达电子工业股份有限公司 变换器、控制器与控制方法
TW202038038A (zh) * 2019-04-10 2020-10-16 群光電能科技股份有限公司 圖騰柱無橋功率因數轉換裝置及其操作方法
US20210313875A1 (en) * 2020-04-02 2021-10-07 Stmicroelectronics S.R.L. Method to control a variable frequency switching converter, and corresponding variable frequency converter apparatus
CN114513115A (zh) * 2020-11-16 2022-05-17 新时代电力***有限公司 用于功率转换器中的过电流保护和crcm控制的方法和装置
US20220263402A1 (en) * 2020-03-25 2022-08-18 Delta Electronics (Shanghai) Co., Ltd. Control method for power supply

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105450052A (zh) * 2014-08-20 2016-03-30 台达电子工业股份有限公司 变换器、控制器与控制方法
TW202038038A (zh) * 2019-04-10 2020-10-16 群光電能科技股份有限公司 圖騰柱無橋功率因數轉換裝置及其操作方法
US20220263402A1 (en) * 2020-03-25 2022-08-18 Delta Electronics (Shanghai) Co., Ltd. Control method for power supply
US20210313875A1 (en) * 2020-04-02 2021-10-07 Stmicroelectronics S.R.L. Method to control a variable frequency switching converter, and corresponding variable frequency converter apparatus
CN114513115A (zh) * 2020-11-16 2022-05-17 新时代电力***有限公司 用于功率转换器中的过电流保护和crcm控制的方法和装置

Similar Documents

Publication Publication Date Title
CN109687719B (zh) 一种用于cllc双向隔离型dc-dc变换器的调制方法
CN103401400B (zh) 开关电源转换器***及其控制电路和控制方法
WO2017028500A1 (zh) 一种提高开关电源动态响应的控制方法
WO2020015376A1 (zh) 一种提高开关电源重载切轻载动态响应的控制方法
US10720829B1 (en) Totem-pole bridgeless PFC conversion device and method of operating the same
TWM580821U (zh) 倍流dc-dc轉換器
US8599579B2 (en) Method of controlling a PFC stage operating in boundary conduction mode, a PFC stage, and an SMPS
WO2005057767A1 (en) An apparatus for reducing the power consumption of a pfc-pwm power converter
WO2011057523A1 (zh) 逻辑链路控制谐振变换器控制方法、同步整流控制方法及装置
WO2015027750A1 (zh) 一种Boost控制器及Boost变换器
WO2020015391A1 (zh) 一种提高开关电源输出精度的控制方法
TWI806213B (zh) 開關電源控制電路、控制系統及控制方法
TWI752891B (zh) Llc諧振轉換器及其控制方法
US11677326B2 (en) LLC resonant converter and method of controlling the same
WO2018157796A1 (zh) 一种谐振变换器
CN113765393A (zh) 一种dab变换器电流模式调制方法
TWI821069B (zh) 電源轉換器及其操作方法
Lim et al. A multimode digital control scheme for boost PFC with higher efficiency and power factor at light load
TWM579409U (zh) 倍流dc-dc轉換器
TW202425508A (zh) 電源轉換器及其操作方法
US20240195291A1 (en) Power converter and method of operating the same
TWI835425B (zh) 具有降低功率消耗的電源轉換器及其操作方法
CN110086368B (zh) 一种基于断续电流模式的全桥逆变器的轻载效率优化方案
KR101810096B1 (ko) 디지털 제어 기반의 브릿지리스 crm pfc 컨버터
TWI751725B (zh) Llc諧振轉換器及其控制方法