TWI820170B - 電漿處理方法及電漿處理裝置 - Google Patents

電漿處理方法及電漿處理裝置 Download PDF

Info

Publication number
TWI820170B
TWI820170B TW108125909A TW108125909A TWI820170B TW I820170 B TWI820170 B TW I820170B TW 108125909 A TW108125909 A TW 108125909A TW 108125909 A TW108125909 A TW 108125909A TW I820170 B TWI820170 B TW I820170B
Authority
TW
Taiwan
Prior art keywords
film
plasma treatment
treatment method
plasma
side walls
Prior art date
Application number
TW108125909A
Other languages
English (en)
Other versions
TW202014548A (zh
Inventor
中谷理子
久松亨
石川慎也
熊倉翔
本田昌伸
木原嘉英
Original Assignee
日商東京威力科創股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商東京威力科創股份有限公司 filed Critical 日商東京威力科創股份有限公司
Publication of TW202014548A publication Critical patent/TW202014548A/zh
Application granted granted Critical
Publication of TWI820170B publication Critical patent/TWI820170B/zh

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Plasma Technology (AREA)
  • Formation Of Insulating Films (AREA)
  • Drying Of Semiconductors (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

本發明達成形成於基板上之圖案之精密尺寸控制。本發明之電漿處理裝置執行之電漿處理方法,包含第一程序與第二程序。第一程序之中,電漿處理裝置,在處理對象所具有之開口部的側壁上,形成厚度依相向之成對側壁彼此之間隔而異的第一膜。第二程序之中,電漿處理裝置,於第一程序後,將成膜循環施行一次以上,形成厚度依相向之成對側壁彼此之間隔而異的第二膜。

Description

電漿處理方法及電漿處理裝置
以下揭示係關於電漿處理方法及電漿處理裝置。
作為一種在基板上進行成膜之手段,吾人普知有電漿增強原子層沉積(PE-ALD:Plasma Enhanced Atomic Layer Deposition)法。吾人將包含PE-ALD法之各樣技術使用於半導體裝置之圖案形成。
例如,吾人提案一種使用ALD(Atomic Layer Deposition,原子層沉積)之手段,俾因應於形成於被處理基板之開口部的位置而選擇性促進成膜(專利文獻1)。又,吾人提案一種手段,選擇性形成SAM(Self-assembled monolayer,自組裝單層膜),並在其後進行氣相蝕刻(專利文獻2)。又,吾人提案一種手段,使用離子注入而實現針對3D奈米構造體之選擇性成膜(非專利文獻1)。
〔先前技術文獻〕 〔專利文獻〕
專利文獻1:美國專利申請案公開第2017/0140983號說明書
專利文獻2:美國專利申請案公開第2017/0148642號說明書
〔非專利文獻〕
非專利文獻1:Woo-Hee Kim等,”A Process for Topographically Selective Deposition on 3D Nanostructures by Ion Implantation” ACS Nano 2016, 10, 4451-4458.
本說明書提供一種可實現形成於基板上之圖案的精密尺寸控制之技術。
本說明書的一態樣之電漿處理裝置所執行之電漿處理方法包含第一程序與第二程序。第一程序之中,電漿處理裝置,在處理對象所具有之開口部的側壁上,形成厚度依相向之成對側壁彼此之間隔而異的第一膜。第一程序後的第二程序之中,電漿處理裝置,將成膜循環施行一次以上,形成厚度依相向之成對側壁彼此之間隔而異的第二膜。
依據本說明書,則可實現形成於基板上之圖案之精密尺寸控制。
10:電漿處理裝置
21:腔室
22:絕緣板
23:支持台
24:基座
25:靜電夾盤
25a:聚焦環
26:電極
27:直流電源
28:內壁構件
29:冷媒室
30a、30b:配管
31:配管
33:匹配器
34:射頻電源
36a、36b:壓力計
37a、37b:閥
38、38a、38b:配管
40:上部電極
41:頂板支持部
42:頂板
42a:氣體導入口
43:擴散室
43a:流通口
45:絕緣性構件
46:氣體導入口
47:配管
48a~48c:氣體供給源
49a~49c:質流控制器(MFC)
50a~50c:閥
51:匹配器
52:射頻電源
60:控制裝置
61:記憶體
62:處理器
63:使用者介面
71:排氣口
72:排氣管
73:排氣裝置
74:開口
76、77:沉積障蔽
78:開口
79:GND區塊
G:閘閥
O1~O7:開口部
W:晶圓
S61~S65:步驟
圖1顯示一實施形態之電漿處理裝置的構成的一例。
圖2A用以說明ALD中之前驅體氣體的化學吸附步驟。
圖2B用以說明ALD中之前驅體氣體的氣滌步驟。
圖2C用以說明ALD中之反應氣體所成之活性化步驟。
圖2D用以說明ALD中之反應氣體的氣滌步驟。
圖3A係用以說明一實施形態之電漿處理方法中之潛伏之圖(1)。
圖3B係用以說明一實施形態之電漿處理方法中之潛伏之圖(2)。
圖3C係用以說明一實施形態之電漿處理方法中之潛伏之圖(3)。
圖3D係用以說明一實施形態之電漿處理方法中之潛伏之圖(4)。
圖3E係用以說明一實施形態之電漿處理方法中之潛伏之圖(5)。
圖3F係用以說明一實施形態之電漿處理方法中之潛伏之圖(6)。
圖4A用以說明形成於遮罩的開口部之尺寸控制。
圖4B用以說明形成於遮罩的開口部的一例。
圖4C顯示使用圖4B的遮罩而進行蝕刻之情形下形成之圖案的一例。
圖5A用以說明X-Y圖案。
圖5B用以說明X-Y圖案之尺寸控制例1。
圖5C用以說明X-Y圖案之尺寸控制例2。
圖6係將一實施形態之電漿處理裝置中之電漿處理方法的大致流程的一例 加以顯示之流程圖。
圖7用以說明載入效果的一例。
圖8A用以說明藉由一實施形態之電漿處理方法而獲得之X>Y收縮效果的圖(1)。
圖8B用以說明藉由一實施形態之電漿處理方法而獲得之X>Y收縮效果的圖(2)。
圖9顯示將一實施形態之電漿處理方法加以應用之處理對象的材料的組合例。
圖10A用以說明變形例2之電漿處理方法的第一程序。
圖10B用以說明變形例2之電漿處理方法的第二程序。
〔實施發明之較佳形態〕
以下,基於圖式,詳細說明所揭示之實施形態。此外,本實施形態非限定。又,各實施形態可在不使處理內容矛盾之範圍內合宜組合。
<ALD中之潛伏的機制>
說明實施形態前,先說明ALD中之潛伏的機制。
圖2A至圖2D用以說明一般ALD的流程的一例。圖2A用以說明ALD中之前驅體氣體的化學吸附步驟。圖2B用以說明ALD中之前驅體氣體的氣滌步驟。圖2C 用以說明ALD中之反應氣體所成之活性化步驟。圖2D用以說明ALD中之反應氣體的氣滌步驟。ALD,如圖2A至圖2D所示,通常包含下述四個步驟。
(1)化學吸附步驟,將配置在處理室內之處理對象(例如半導體基板)曝露於前驅體氣體(參照圖2A)
(2)氣滌步驟,將殘留在處理室內之前驅體氣體加以氣滌(參照圖2B)
(3)反應步驟,將配置在處理室內之處理對象曝露於反應氣體(參照圖2C)
(4)氣滌步驟,將殘留在處理室內之反應氣體加以氣滌(參照圖2D)
此外,以下說明之中,(3)反應步驟,係使反應氣體電漿化而執行。ALD之中,重複執行上述步驟(1)至(4),將膜形成於處理對象上。此外,氣滌步驟(2)及(4)係任意步驟,不一定執行。
ALD之中,可例如使用含矽氣體作為前驅體氣體、並使用含O氣體作為反應氣體,而將SiO2膜沉積在處理對象上。此情形下,首先步驟(1)之中,將配置在處理室內之處理對象曝露於前驅體氣體即含矽氣體。如此一來,則含矽氣體化學吸附在處理對象的表面。未化學吸附在處理對象而殘存在處理室內的前驅體氣體,於步驟(2)被氣滌。其後,步驟(3)之中,使含O氣體電漿化,並使氧自由基與化學吸附在處理對象之含矽分子進行反應(矽氧化),而形成一層SiO2膜。殘存在處理室內之含O氣體,於步驟(4)被氣滌。ALD基本上係逐層地形成膜,若處理對象上沒有原子所化學吸附的表面,則處理會停止,因此可自我限制形成保形的膜。
然而,當將前驅體氣體之化學吸附加以妨礙的因子(以下亦稱作抑制劑) 存在處理對象表面上時,則步驟(1)之中,前驅體氣體不化學吸附在處理對象,而不進行ALD所成之成膜。將由於此等妨礙因子等而產生之成膜開始之延遲稱作潛伏。圖3A至圖3F係用以說明一實施形態之電漿處理方法中之圖(1)至(6)。
圖3A顯示使用CF(碳氟化合物)之化學氣相沉積(CVD:Chemical Vapor Deposition)等藉以在處理對象的表面上形成CF膜之狀態。圖3A中,利用黑圓表示氟原子(CF:共價鍵結於碳之氟原子)。又,利用白圓表示處理對象(基板)的原子。
圖3B顯示針對圖3A所示之處理對象而將ALD循環執行一次之狀態的一例。處理對象表面存在抑制劑即CF膜,因此未化學吸附前驅體氣體(含矽氣體),而不進行ALD所行之成膜。相反地,由於ALD循環中之利用氧電漿產生之氧自由基的影響,而從處理對象表面逐漸去除CF膜。
圖3C顯示針對圖3A所示之處理對象而將ALD循環執行5次之狀態下的一例。圖3C的例之中,已藉由5次ALD循環而去除CF膜全部。
圖3D、圖3E、圖3F各自顯示針對圖3A所示之處理對象而將ALD循環執行6次、8次、10次之狀態下的一例。如圖3C所示,利用將ALD循環執行5次而去除CF膜,並使CF膜下的層露出。此狀態下之處理對象表面,存在前驅體氣體可化學吸附之物質,因此前驅體氣體進行化學吸附而與反應氣體反應,並如圖3D所示,開始成膜。其後,如圖3E、圖3F所示,每次執行ALD循環,則膜厚增加。 圖3D、圖3E、圖3F中,自上起算第二層的圓表示含Si前驅體氣體,且最上的圓表示氧原子。
<X-Y圖案之控制>
然而,半導體裝置製造時,在基板上形成各樣圖案。例如,會有在一基板上形成複數之具有同樣形狀的開口部之情形。此情形下,開口部的尺寸之精密控制對半導體裝置的性能造成影響。
圖4A用以說明形成於遮罩的開口部之尺寸控制。圖4A所示之基板S係藉由自對準型雙重圖案化來形成。因此,在基板S的表面,以各自不同種類的材料A(芯)、材料B(間隔件)、材料C(填充物)所形成之線條係依A、B、C、B、A、B、C、B、A之順序排列。以下,將以材料A形成之線條稱作線條A、以材料B形成之線條稱作線條B、以材料C形成之線條稱作線條C。在此,吾人考慮使用圖4A中以點線表示之形狀之遮罩來執行基板S的蝕刻。圖4A中顯示有:開口部O1、O2、O4、O5、O6、O7,形成為二個端部分別位在彼此有別的線條C上;以及開口部O3,形成為二個端部分別位在彼此有別的線條A上。此外,於說明的便宜上,將圖4A至圖4C所示之線條的長邊方向稱作X1方向,並將橫切線條之方向稱作Y1方向。
於形成出如同圖4A所示之形狀的遮罩之情形下,其後藉由蝕刻形成之圖案的形狀亦無大問題。然而,定為如圖4B所示,遮罩的開口部係形成於從期望位置起於Y1方向上偏移的位置。圖4B用以說明形成於遮罩的開口部的一例。此情 形下,當使用該遮罩而執行基板S的蝕刻時,則會有以下可能性:如圖4C所示,基板S上所形成之開口部的位置更往Y1方向偏移而不形成為將線條C加以連結。圖4C顯示使用圖4B的遮罩而進行蝕刻之情形下形成之圖案的一例。於形成有如圖4B所示之遮罩之情形下,為了不使如圖4C所示之不良狀況產生,若可調整途中形成之遮罩的開口部的尺寸則方便。尤其,於如圖4A所示之形狀的遮罩之情形下,相較於開口部的短邊方向的尺寸控制而言,長邊方向的尺寸控制更加影響其後之配線形成。如上所述,有時將俯視下具有短邊與長邊之略矩形的開口部稱作X-Y圖案。
圖5A用以說明X-Y圖案。圖5A係基板上所形成之X-Y圖案的局部上表面圖。圖5A所示之基板之中,俯視下略矩形之開口部係以排列複數個之狀態形成。複數之開口部具有約略同一尺寸。此外,X-Y圖案,不僅係俯視下約略矩形,亦可係俯視下約略橢圓狀。X-Y圖案定為俯視下正交之二方向(X方向、Y方向)中具有尺寸差之圖案。
圖5B用以說明X-Y圖案的尺寸控制例1。圖5C用以說明X-Y圖案的尺寸控制2。圖5B的例,係於維持短邊X的開口尺寸之情況下,縮小長邊Y的開口尺寸之控制例(X<Y收縮:以相較於X邊而言,Y邊的減少量更多之方式,縮小開口部)。圖5B的例,於X-Y圖案形成後,以Y邊變短之方式在基板上成膜。另一方面,圖5C的例,係於縮小短邊X的開口尺寸之情況下,維持長邊Y的開口尺寸之控制例(X>Y收縮:以相較於Y邊而言,X邊的減少量更多之方式,縮小開口部)。圖5C的例,於X-Y圖案形成後,以X邊變短之方式在基板上成膜。
為了不使圖4C所示之不良狀況產生,只要利用執行圖4B的遮罩的開口部之X>Y收縮(參照圖5C),而盡可能縮小開口部之Y邊的減少量即可。
<實施形態>
鑒於上述,實施形態之電漿處理裝置,使用於將具有因應於形成於基板上之圖案的狀態之膜厚差之第一膜利用CVD成膜後,採用使第一膜作為抑制劑而發揮功能之材料來進行ALD循環,而將第二膜加以成膜。電漿處理裝置,將例如使用載入效果而將具有膜厚差之第一膜利用CVD成膜。其後,當執行ALD循環時,則第一膜逐漸因電漿的影響而削減,但產生因應於第一膜的膜厚之潛伏時間。因此,在例如厚幅形成有第一膜之位置則薄幅形成第二膜,在薄幅形成有第一膜之位置則厚幅形成第二膜。如上所述,本實施形態之電漿處理裝置,使用潛伏與載入效果而實現精密尺寸控制。
<實施形態之電漿處理裝置的一例>
圖1顯示一實施形態之電漿處理裝置10的構成的一例。本實施例中之電漿處理裝置10,例如圖1所示,具有:腔室21,由表面已陽極氧化處理之鋁等所形成,且在內部劃定略圓筒狀的處理空間。腔室21係保安接地。本實施例中之電漿處理裝置10,例如構成為電容耦合型平行板電漿處理裝置。在腔室21內,隔著以陶瓷等形成之絕緣板22而配置支持台23。支持台23上設有:基座24,例如以鋁等形成,且作為下部電極而發揮功能。
基座24的略中央上部,設有:靜電夾盤25,利用靜電力而吸附固持處理對象的一例即半導體晶圓W。靜電夾盤25具有利用一對絕緣層夾著以導電膜等形成之電極26之構造。電極26電性連接有直流電源27。此外,靜電夾盤25亦可設有為了加熱半導體晶圓W之未圖示的加熱器。
基座24的上部以圍繞靜電夾盤25之方式配置有聚焦環25a。藉由聚焦環25a而提昇半導體晶圓W邊緣附近中之電漿的均勻性。聚焦環25a由例如單晶矽等形成。支持台23及基座24的周圍以圍繞支持台23及基座24之方式設有內壁構件28。內壁構件28例如由石英等形成為略圓筒狀。
支持台23的內部例如沿著支持台23的周向而形成有冷媒室29。從設在外部之未圖示之冷卻單元,經由配管30a及配管30b而將預定溫度的冷媒循環供給至冷媒室29。可藉由使預定溫度的冷媒循環在冷媒室29內,而利用與冷媒之熱交換來將靜電夾盤25上的半導體晶圓W控制為預定溫度。又,由未圖示之氣體供給機構供給之傳熱氣體,經由配管31而供給至靜電夾盤25的上表面與靜電夾盤25上所載置之半導體晶圓W的背面之間。傳熱氣體例如係氦氣。
作為下部電極而發揮功能之基座24的上方,以隔著腔室21內的處理空間而與基座24相向之方式設有上部電極40。上部電極40與基座24之間的空間、且由腔室21圍繞的空間,係產生電漿之處理空間。上部電極40具有作為電極本體部而發揮功能之頂板42、及將頂板42加以支持之頂板支持部41。
頂板支持部41隔著絕緣性構件45而由腔室21的上部所支持。頂板支持部41,例如藉由表面已陽極氧化處理之鋁等之熱傳導性較高之導電性材料而形成為略圓板狀。又,頂板支持部41亦作為將產生在處理空間之電漿所加熱之頂板42加以冷卻之冷卻板而發揮功能。頂板支持部41形成有:氣體導入口46,導入處理氣體;擴散室43,使從氣體導入口46導入之處理氣體進行擴散;以及複數之流通口43a,係使擴散在擴散室43內之處理氣體向下方流通之流道。
頂板42係由例如石英等含矽物質而形成為略圓板狀。頂板42形成有:複數之氣體導入口42a,沿頂板42的厚度方向貫穿頂板42。將各氣體導入口42a配置成連通至頂板支持部41的任意流通口43a。藉此,供給至擴散室43內之處理氣體,經由流通口43a及氣體導入口42a而呈噴淋狀擴散供給至腔室21內。
頂板支持部41的氣體導入口46經由配管47而連接有複數之閥50a~50c。閥50a經由質流控制器(MFC)49a而連接有氣體供給源48a。於閥50a控制為開狀態即開啟狀態之情形下,由氣體供給源48a供給之處理氣體係藉由MFC49a而控制流量,並經由配管47而供給至腔室21內。氣體供給源48a例如將前驅體氣體供給至腔室21內。
又,閥50b經由MFC49b而連接有氣體供給源48b。於閥50b控制為開狀態之情形下,由氣體供給源48b供給之氣體係藉由MFC49b而控制流量,並經由配管47而供給至腔室21內。氣體供給源48b例如將氣滌氣體供給至腔室21內。就氣滌氣體而言,例如使用氬氣或氮氣等非活性氣體。
又,閥50c經由MFC49c而連接有氣體供給源48c。於閥50c控制為開狀態之情形下,由氣體供給源48c供給之氣體係藉由MFC49c而控制流量,並經由配管47而供給至腔室21內。氣體供給源48c例如將反應氣體供給至腔室21內。
此外,亦可於將前驅體氣體及反應性氣體供給至腔室21之際,使用添加氣體,目的在於前驅體氣體及反應性氣體之使用量的削減、及腔室21的內部中之氣體分布之均勻化等生產性。就添加氣體而言,可使用例如氬氣或氮氣等非活性氣體。例如,亦可將經由閥50b及MFC49b而從氣體供給源48b供給之非活性氣體添加至經由閥50a及MFC49a而從氣體供給源48a供給之前驅體氣體。又,例如,亦可將經由閥50b及MFC49b而從氣體供給源48b供給之非活性氣體添加至經由閥50c及MFC49c而從氣體供給源48c供給之反應氣體。
藉由後述控制裝置60而控制各個MFC49a~49c所行之各氣體的流量之調整、及各個閥50a~50c之開閉。
上部電極40經由匹配器51而電性連接有射頻電源52。射頻電源52將例如40MHz上下之電漿激發用的射頻電力(HF:High Frequency)供給至上部電極40。利用後述控制裝置60控制由射頻電源52供給之射頻電力。
作為下部電極而發揮功能之基座24經由匹配器33而電性連接有射頻電源34。射頻電源34將偏壓用的射頻電力(LF:Low Frequency)施加至基座24。射 頻電源34將13.56MHz以下之頻率例如2MHz之射頻電力經由匹配器33而供給至基座24。藉由將射頻電力供給至基座24,而使電漿中的離子等活性物種拉入至靜電夾盤25上的半導體晶圓W。利用後述控制裝置60而控制由射頻電源34供給之射頻電力。
腔室21的側壁形成有開口78,且開口78連接有配管38。配管38分歧為二,一者連接有閥37a的一端,另一者連接有閥37b的一端。閥37a的另一端經由配管38a而連接至壓力計36a,且閥37b的另一端經由配管38b而連接至壓力計36b。壓力計36a及36b例如係電容壓力計。
藉由將閥37a控制為開狀態,而連通配管38與配管38a。藉此,經由腔室21的側壁所形成之開口78,而使壓力計36a曝露於腔室21內的處理空間。藉此,壓力計36a可量測處理空間內的壓力。另一方面,藉由將閥37a控制為閉狀態即關閉狀態,而阻斷配管38與配管38a。藉此,對於腔室21內的處理空間而言,壓力計36a被遮蔽。
又,藉由將閥37b控制為開狀態,而連通配管38與配管38b。藉此,經由腔室21的側壁所形成之開口78,而將壓力計36b曝露於腔室21內的處理空間。藉此,壓力計36b可量測處理空間內的壓力。另一方面,藉由將閥37b控制為閉狀態,而阻斷配管38與配管38b。藉此,對於腔室21內的處理空間而言,壓力計36b被遮蔽。利用後述控制裝置60而進行閥37a及37b之開閉控制。
腔室21的底部設有排氣口71,排氣口71經由排氣管72而連接有排氣裝置73。排氣裝置73例如具有DP(Dry Pump;乾式泵)或TMP(Turbo Molecular Pump;渦輪分子泵)等真空泵,且可將腔室21內減壓至期望真空度。藉由後述控制裝置60而控制排氣裝置73的排氣量等。例如,由氣體供給源48a將前驅體氣體供給至腔室21內之情形下,控制裝置60將閥37a控制為開狀態,並將閥37b控制為閉狀態。而且,基於由壓力計36a量測之腔室21內的壓力,來控制排氣裝置73的排氣量等,藉以將腔室21內的壓力控制為預定壓力。又例如,由氣體供給源48c將反應氣體供給至腔室21內之情形下,控制裝置60將閥37a控制為閉狀態,並將閥37b控制為開狀態。而且,基於由壓力計36b量測之腔室21內的壓力,來控制排氣裝置73的排氣量等,藉以將腔室21內的壓力控制為預定壓力。
腔室21的側壁設有:開口74,用以進行半導體晶圓W的搬入及搬出。開口74藉由閘閥G而可開閉。又,腔室21的內壁沿著壁面而呈自由裝卸設有沉積障蔽76。又,內壁構件28的外周面沿著內壁構件28的外周面而呈自由裝卸設有沉積障蔽77。沉積障蔽76及77防止反應副產物(沉積物)附著至腔室21的內壁及內壁構件28。在與靜電夾盤25上所載置之半導體晶圓W約略相同高度之沉積障蔽76的位置,設有連接至接地之導電性構件(GND區塊)79。藉由GND區塊79防止腔室21內的異常放電。
上述電漿處理裝置10係藉由控制裝置60而將其動作統合控制。控制裝置60具有例如ROM(Read Only Memory;唯讀記憶體)或RAM(Random Access Memory;隨機存取記憶體)等記憶體61、例如CPU(Central Processing Unit; 中央處理器)或DSP(Digital Signal Processor;數位訊號處理器)等處理器62、使用者介面63。使用者介面63例如包含使程序管理者等使用者為了管理電漿處理裝置10而將指令之輸入操作加以進行之鍵盤、或將電漿處理裝置10的工作狀況加以可視化顯示之顯示器等。
記憶體61儲存有:配方,包含用以在電漿處理裝置10實現各種處理之處理條件資料等;以及控制程式(軟體)。而且,處理器62因應於經由使用者介面63之來自使用者的指示而從記憶體61呼叫任意配方並執行,藉以控制電漿處理裝置10的各部。藉此,藉由電漿處理裝置10而進行成膜等期望處理。此外,包含處理條件資料等之配方或控制程式,可使用儲存在電腦可讀取之記錄媒體等之狀態者、或者使用從其它裝置例如經由通信線路而被傳送者。電腦可讀取之記錄媒體係例如硬碟、CD(Compact Disc;光碟)、DVD(Digital Versatile Disc;數位多功能影音光碟)、軟碟、半導體記憶體等。
此外,在此,就一例而言說明使用電容耦合型電漿(CCP:Capacitively Coupled Plasma)作為電漿源之電漿處理裝置10,但本發明揭示技術不限於此,可採用使用感應耦合型電漿(ICP:Inductively Coupled Plasma)、微波電漿等任意電漿源之電漿處理裝置10。
<一實施形態之電漿處理方法的流程的一例>
圖6係將一實施形態之電漿處理裝置10中之電漿處理方法的大概流程的一例加以顯示之流程圖。
首先,在電漿處理裝置10的腔室21內,載置處理對象(例如晶圓W)。電漿處理裝置10首先在處理對象的表面上形成遮罩層(步驟S61)。其次,電漿處理裝置10藉由蝕刻而在遮罩層形成圖案(步驟S62)。圖案例如包含具有X-Y圖案之開口部。在此,步驟S61及S62,亦可不在電漿處理裝置10內執行,而在其它裝置執行。例如,亦可於其它裝置將遮罩層與圖案形成於晶圓W後,使晶圓W移動至電漿處理裝置10的腔室21內而執行以下處理。
其次,電漿處理裝置10,從所形成之圖案之上,執行:CVD,其使用成膜而成為抑制劑之氣體(步驟S63,第一程序)。藉由CVD而形成厚度依處理對象上之圖案的形狀而異的第一膜(以下亦稱作抑制劑層)。其次,電漿處理裝置10,從第一膜之上將ALD循環執行預定次數(步驟S64,第二程序)。藉由ALD循環,而在處理對象上形成第二膜。其後,判斷電漿處理裝置10是否滿足預定條件(步驟S65)。當判斷為滿足預定條件(步驟S65,是)時,則電漿處理裝置10結束處理。另一方面,當判斷為未滿足預定條件(步驟S65,否)時,則電漿處理裝置10返回步驟S63而重複處理。此係一實施形態之電漿處理方法的大概流程。此外,亦可構成為於步驟S64之後執行其它處理。以下說明中,亦將自步驟S63至步驟S64為止之一次處理稱作一序列。
<第一膜的膜厚>
電漿處理裝置10藉由CVD而形成之成為抑制劑層之第一膜的膜厚,係由各種要因來決定。例如,可使用載入效果,藉以使電漿處理裝置10將第一膜形成 為期望膜厚。載入效果係一種因圖案的疏密度而導致成膜之膜的膜厚等變動之現象。例如,因圖案自身的大小例如開口部的開口面積而導致成膜後的開口尺寸變動。又,因位在該圖案的周圍之圖案的形狀或配置而導致成膜後的開口尺寸變動。
吾人認為載入效果產生之理由之一,係因為由開口部的縱橫比決定氣體等成膜材料可自開口側而入侵至開口部內之角度,就結果而言,決定進入至開口部之成膜材料的量。圖7用以說明載入效果的一例。如圖7所示,處理對象上的開口部的縱橫比係小之情形下,材料的侵入角度(Ω)變大。另一方面,開口部的縱橫比係大之情形下,材料的侵入角度變小。因此,各開口部的成膜量因應於侵入角度而變動。就結果而言,小開口之X邊上之成膜量小於大開口之Y邊上之成膜量。
如上所述,例如開口部的縱橫比越小,則第一膜的膜厚越厚。又例如,開口部的立體角越大,則第一膜的膜厚越厚。又例如,第一膜的膜厚因應於開口部的寬窄或深度而變動。例如,開口部越廣而淺則第一膜的膜厚越厚。又,第一膜的膜厚因應於處理對象上所形成之圖案的疏密、線徑與間距(L/S)等而變動。
此外,實施形態之電漿處理所形成之第一膜的材料,只要係將第二膜之成膜加以妨礙的材料則不特別限定。例如,第一膜係疏水性的膜。又例如,第一膜係含有氟(F)的膜。又例如,第一膜係由含有碳氟化合物之氣體所形成之膜。 又例如,第一膜係由不含氫之氣體所形成之膜。又例如,第一膜係將處理對象表面加以改質之改質膜。
<第二膜的膜厚>
第二膜形成時,第一膜作為抑制劑層而發揮功能,妨礙前驅體氣體的化學吸附。因此,第二膜的膜厚因應於第一膜的膜厚而受控制。
例如,定為因上述載入效果而使第一膜薄幅形成於X邊上,且厚幅形成於Y邊上。此情形下,當從第一膜之上執行ALD循環而形成第二膜時,則X邊上的第一膜因ALD循環而被去除所消耗之時間短於Y邊上的第一膜因ALD循環而被去除所消耗之時間。如此一來,則在X邊上由ALD循環所成之第二膜之形成開始的時機早於在Y邊上由ALD循環所成之第二膜之形成開始的時機。就結果而言,若X邊及Y邊皆執行相同次數的ALD循環,則形成於X邊上之第二膜的膜厚厚於形成於Y邊上之第二膜的膜厚。
例如,將形成於Y邊上之第一膜的膜厚定為A、並將形成於X邊上之第一膜的膜厚定為B(其中A>B)。而且,將第二程序(步驟S64)之中隨一次ALD循環而被去除之第一膜的膜厚定為x、隨一次ALD循環而形成之第二膜的膜厚定為y。而且,定為A=10x、B=2x。此情形下,當於步驟S64執行ALD循環12次後,則形成於Y邊上之第二膜的膜厚成為2y、形成於X邊上之第二膜的膜厚成為10y。其中,於第一程序(步驟S63)形成之第一膜隨一次ALD循環一次被去除之量(膜厚)係與利用一次ALD循環而形成之第二膜的膜厚不同(x≠y)。因此, 可考慮第二程序中之第一膜的去除量與第二膜的形成量,而調整第一程序及第二程序的處理條件例如處理時間或循環次數。
因此,若可使用載入效果而將與圖5B的基板上所形成之膜係同樣形狀的抑制劑層加以形成,則可藉由其後之ALD循環而實現X>Y收縮。又,若可將與圖5C的基板上所形成之膜係同樣形狀的抑制劑層加以形成,則可藉由其後之ALD循環而實現X<Y收縮。
圖8A及圖8B用以說明藉由一實施形態之電漿處理方法而獲得之X>Y收縮效果。圖8A概略性顯示將圖6所示之步驟S63及S64重複三次而在X邊形成第二膜之狀態。又,圖8B概略性顯示將圖6所示之步驟S63及S64重複3次而在Y邊形成第二膜之狀態。於任一情形下,皆於步驟S63執行一次CVD而形成CF膜後,而於步驟S64重複執行預定次數之ALD循環,並將此步驟S63與步驟S64之序列重複三次來執行。
如圖8A所示,X邊之中,藉由夾著X邊而相向之側壁上所形成之第二膜,而使X邊的長度平均減少8.12奈米〔nm〕。亦即,側壁上形成有平均8.12奈米之第二膜。另一方面,Y邊之中,藉由夾著Y邊而相向之側壁上所形成之第二膜,而使Y邊的長度平均減少6.37奈米。亦即,側壁上形成有平均6.37奈米的第二膜。吾人由圖8A及圖8B而知悉:可利用重複執行步驟S63及S64,而於使X邊的開口尺寸相較於Y邊的開口尺寸而言大程度減少之情況下,使兩者的開口尺寸減少。亦即,吾人知悉可實現X>Y收縮。又,可藉由進一步增加步驟S63及S64的執行 次數,來增加X>Y收縮效果。
<基板其它材料例>
本實施形態之電漿處理方法可應用於以各樣材料形成之處理對象。
圖9顯示將本實施形態的電漿處理方法加以應用之處理對象的材料組合。在此,定為針對在基板上依順序形成有被蝕刻層與遮罩之處理對象,為了遮罩之尺寸控制而應用本實施形態的電漿處理方法來形成第二膜。此外,被蝕刻層與基板之間亦可形成停止層。
此情形下,例如,可在矽基板上形成氮化矽(SiN)、矽(Si)或矽鍺(SiGe)之被蝕刻層,並形成二氧化矽(SiO2)之遮罩。此情形下,可將二氧化矽(SiO2)作為第二膜使用。
又,可在被蝕刻層使用SiO2,在遮罩使用SiN,並在第二膜使用SiN。又,可在被蝕刻層使用SiO2,在遮罩使用氮化鈦(TiN)、碳化鎢(WC)或二氧化鋯(ZrO2)。此情形下,可將TiN或WC作為第二膜使用。
任一材料組合之情形下,皆可使用CCP等裝置而實現處理。
又,上述實施形態的電漿處理方法,不只應用於基板上依序形成有被蝕刻層與遮罩之處理對象,亦可應用於其它構成之處理對象。例如,可應用於矽基 板上依序形成有被蝕刻層、有機層、含矽反射防止層等、且在反射防止層上形成有光阻等遮罩層之處理對象。此情形下,亦可例如在基板上插設藉由多重圖案化形成之層。而且,亦可使用上述實施形態之電漿處理方法而調整遮罩的圖案尺寸,俾使形成於遮罩之圖案係與藉由多重圖案化而形成之層的各線條整齊排列。上述實施形態的電漿處理方法可用以藉由調整遮罩的圖案尺寸,來精密調整將通孔或接觸部加以形成之位置。
<實施形態的效果>
上述實施形態之電漿處理方法包含第一程序與第二程序。第一程序之中,電漿處理裝置,在處理對象所具有之開口部的側壁上,形成厚度依相向之成對側壁彼此之間隔而異的第一膜。第一程序後的第二程序之中,電漿處理裝置,將成膜循環施行一次以上,並形成厚度依前述相向之成對側壁彼此之間隔而異的第二膜。因此,電漿處理裝置,可在處理對象上,形成具有因應於圖案的狀態之膜厚差之第二膜。因此,實施形態之電漿處理裝置,即使於不易利用一次程序而形成具有期望膜厚差之第二膜之情形下,亦可使用載入效果或潛伏而形成具有期望膜厚差之第二膜。因此,實施形態之電漿處理裝置可實現形成於基板上之圖案之精密尺寸控制。
又,實施形態之電漿處理方法之中,電漿處理裝置,於第一程序,在以比處理對象上所形成之成對第一側壁更窄的間隔相向之成對第二側壁上,形成比成對第一側壁上所形成之第一膜更薄的第一膜。又,電漿處理裝置,於第二程序,在成對第二側壁上,形成比成對第一側壁上所形成之第二膜更厚之第二膜。 因此,實施形態之電漿處理裝置,可依照空著不同間隔相向之成對側壁每者,調整膜厚而進行尺寸控制,可提昇圖案精度。
又,實施形態之電漿處理方法之中,電漿處理裝置,於第一程序形成含有成膜循環中之第二膜之形成的妨礙因子之成分之第一膜。因此,實施形態之電漿處理裝置,可藉由第一膜的膜厚,而精密控制其後形成之第二膜的膜厚。
又,實施形態之電漿處理方法之中,電漿處理裝置,於第一程序,形成疏水性之第一膜。又,電漿處理裝置,於第一程序,形成含有氟(F)之第一膜。又,電漿處理裝置,於第一程序,藉由不含氫、而含有碳氟化合物(CF)之氣體來形成第一膜。如同上述,實施形態之電漿處理裝置,可將產生第二膜之潛伏之材料加以選擇來形成第一膜,並可精密控制圖案的尺寸。
又,實施形態之電漿處理方法之中,電漿處理裝置,於第二程序之中,係於去除第一膜之後,形成第二膜。因此,實施形態之電漿處理裝置,可藉由第一膜的膜厚來精密控制第二膜的膜厚。
又,實施形態之電漿處理方法之中,電漿處理裝置將包含第一程序及第二程序之序列重複執行一次以上。因此,實施形態之電漿處理裝置,可藉由調整重複序列之次數,來精密控制所形成之第二膜的膜厚。
又,實施形態之電漿處理方法包含:第三程序,於第二程序之後,將第二 膜作為遮罩而進行蝕刻。因此,實施形態之電漿處理裝置,可於精密控制遮罩即第二膜的尺寸之後,執行蝕刻,並可精密控制由蝕刻所形成之圖案的尺寸。
又,實施形態之電漿處理方法中之處理對象的成對側壁,至少包含一部分曲面。因此,實施形態之電漿處理裝置,不僅將直線性形成之圖案,亦可將曲線性形成之圖案的尺寸加以精密控制。
又,實施形態之電漿處理方法,於第二程序,將原子層沉積循環施行一次以上,而形成第二膜。因此,實施形態之電漿處理裝置,可使用原子層沉積的自我限制性而容易控制第二膜的膜厚。
又,實施形態之電漿處理方法的第一程序之中,電漿處理裝置,藉由化學氣相沉積或電漿化學氣相沉積來形成第一膜。因此,實施形態之電漿處理裝置可有效率執行處理。
又,實施形態之電漿處理方法的第一程序之中,電漿處理裝置形成具有因應於處理對象上所形成之開口部的縱橫比、立體角、開口部的寬窄及深度、開口部的面積、圖案的疏密、線徑與間距中之至少一者之厚度差之第一膜。因此,實施形態之電漿處理裝置,可使用因各樣要因而產生之載入效果,來精密控制圖案的尺寸。
又,實施形態之電漿處理方法,具備:成膜程序,在處理對象上將第一膜 加以成膜;以及成膜循環執行程序,針對處理對象而執行成膜循環。而且,成膜循環係使用下者來執行:前驅體氣體,不化學吸附在第一膜的表面,而化學吸附在處理對象表面;以及反應氣體,進行電漿化而產生將第一膜加以去除之自由基。因此,實施形態之電漿處理方法,可使用第一膜而控制成膜循環中形成之膜的膜厚。因此,實施形態之電漿處理方法可精密控制圖案的尺寸。
又,實施形態之電漿處理方法,執行成膜循環,前述成膜循環包含藉由同一氣體同時執行以下處理之程序:去除處理,在處理對象上,以第一預定量去除第一膜;以及沉積處理,在處理對象上,以與第一預定量不同之第二預定量沉積第二膜。因此,實施形態之電漿處理方法,可於一程序實現膜之去除與膜之形成兩個不同處理。因此,實施形態之電漿處理方法可效率良好地控制圖案的尺寸。
<變形例1>
此外,上述實施形態之中,藉由第一膜的膜厚而控制成膜循環例如ALD循環的潛伏時間。亦可取而代之,例如將第一膜的膜厚定為固定,並在第一膜施行ALD循環所行之改質處理,而使第二膜的膜厚變動。
例如,圖6的步驟S63之中,代替形成厚度依相向之成對側壁彼此之間隔而異的第一膜,而在處理對象上形成具有均勻厚度之第一膜。此時,成膜手段可使用熱CVD(thermal chemical vapor deposition;熱化學氣相沉積)、供給二種有機氣體而藉由溫度控制進行聚合反應而進行成膜之手段等。
而且,圖6的步驟S64之中,執行使用載入效果之改質處理。例如,ALD循環中,於化學吸附步驟(參照圖2A),將含矽氣體作為前驅體氣體供給至腔室21。而且,於反應步驟(參照圖2C),將碳氟化合物(CxFy例如C4F6)與含O氣體作為反應氣體而供給至腔室21。亦可於化學吸附步驟與反應步驟各自之後,執行將腔室21內加以氣滌之氣滌步驟。
此情形下,在形成有第一膜之處,於化學吸附步驟之中含矽氣體不進行化學吸附,且於反應步驟受到含O電漿去除第一膜。又,反應步驟之中,反應氣體所含之碳氟化合物沉積在第一膜上。另一方面,在第一膜(及沉積在第一膜上之碳氟化合物的膜)受到含O電漿去除之處,於化學吸附步驟中,含矽氣體化學進行吸附,並於反應步驟中,氧自由基與含矽分子進行反應而形成SiO2膜。
反應步驟之中,處理對象上的圖案中,CxFy不易進入圖案緊密的部分,且CxFy容易進入圖案鬆散的部分。因此,圖案越緊密的部分(X邊)則CxFy所成之成膜量越少,且圖案越鬆散的部分(Y邊)則CxFy所行之成膜量越多。又,含O電漿不易進入圖案緊密的部分,且含O電漿容易進入圖案鬆散的部分。因此,圖案越緊密的部分(X邊)則由含O氣體產生之含O電漿所成之第一膜的去除量越少,且圖案越鬆散的部分(Y邊)則第一膜的去除量越多。可調整反應氣體所含之碳氟化合物與含O氣體之比率,而使X邊上之第一膜的去除速度快於Y邊上之第一膜的去除速度,藉以獲得X>Y收縮效果(參照圖5C)。因此,藉由變形例之電漿處理方法,亦可獲得X>Y收縮效果(參照圖5C)。
<變形例2>
又,上述實施形態之中,定為:ALD循環的處理條件為了完結處理對象的表面上之自我限制吸附、反應而設有充份的處理時間。但不限於此,亦可將ALD循環的處理條件設定為不完結處理對象的表面上之自我限制吸附、反應。例如,亦可將所謂不飽和ALD(以下亦稱作亞保形ALD)使用於第二程序。亞保形ALD,可利用例如以下二態樣實現。
(1)使前驅物吸附在處理對象的表面全體。控制為此後導入之反應氣體係不遍佈處理對象的表面全體。
(2)使前驅物僅吸附在處理對象的表面的一部分。其後導入之反應氣體,僅在吸附有前驅物之表面部分進行成膜。可使用亞保形ALD,而將第二膜形成為第二膜的厚度係從頂部朝底部而逐漸減少。
圖10A用以說明變形例2之電漿處理方法的第一程序。圖10B用以說明變形例2之電漿處理方法的第二程序。圖10A所示之X-Y圖案設係設定為與圖5B所示之X-Y圖案同樣,但短邊X的成膜量少於圖5B的例。
變形例2的第一程序,使用CVD,而進行下述控制:於維持短邊X的開口尺寸之情況下,縮小長邊Y的開口尺寸(X<Y收縮)。其後,於第二程序,使用亞保形ALD,而進行下述控制:於縮小短邊X的開口尺寸之情況下,維持長邊Y的開口尺寸(X>Y收縮)。此時,短邊X上,將第二膜形成為藉由不飽和ALD而使膜厚從頂部至底部為止逐漸變薄。又,短邊X的底部未將第二膜加以成膜。如上 所述,可使用亞保形ALD,藉以抑制往處理對象之底部的成膜量。又,使用亞保形ALD之情形下,亦維持下述關係:第一膜的膜厚越厚,則形成於相同部分之第二膜的膜厚越薄。因此,依據此電漿處理方法,可實現X-Y圖案的尺寸控制。
如同變形例2,本實施形態之電漿處理方法,亦可第二程序之中,利用不完結處理對象的表面上之自我限制吸附或反應之處理條件,施行亞保形ALD循環一次以上來形成第二膜。因此,電漿處理方法,不僅控制X-Y圖案,可抑制圖案底部的成膜量,且能容易執行後續處理例如蝕刻。
當知悉本說明書揭示之實施形態,在全部特點係例示而非限制。上述實施形態,可不超脫附加之發明申請專利範圍及其主旨而以各樣形態進行省略、取代、變更。
S61~S65:步驟

Claims (16)

  1. 一種電漿處理方法,包括:第一程序,在處理對象所具有之開口部的側壁上,形成厚度依相向之成對側壁彼此之間隔而異的第一膜;以及第二程序,於該第一程序後,將成膜循環施行一次以上,形成厚度依該相向之成對側壁彼此之間隔而異的第二膜;該第一程序,在以比該處理對象上所形成之成對第一側壁更窄的間隔相向之成對第二側壁上,形成比該成對第一側壁上所形成之第一膜更薄的第一膜,該第二程序,在該成對第二側壁上,形成比該成對第一側壁上所形成之第二膜更厚的第二膜。
  2. 如申請專利範圍第1之電漿處理方法,其中,該第一程序,形成含有成為該成膜循環中之第二膜之形成的妨礙因子之成分的該第一膜。
  3. 如申請專利範圍第2項之電漿處理方法,其中,該第一程序形成疏水性之該第一膜。
  4. 如申請專利範圍第3項之電漿處理方法,其中,該第一程序形成含有氟(F)之該第一膜。
  5. 如申請專利範圍第4項之電漿處理方法,其中,該第一程序,藉由不含氫、而含碳氟化合物(CF)之氣體來形成該第一膜。
  6. 如申請專利範圍第1至5項中任一項之電漿處理方法,其中,該第二程序,於去除該第一膜之後,形成該第二膜。
  7. 如申請專利範圍第1至5項中任一項之電漿處理方法,其中,將包含該第一程序及該第二程序之序列重複執行一次以上。
  8. 如申請專利範圍第1至5項中任一項之電漿處理方法,其中,包含:第三程序,於該第二程序之後,將該第二膜作為遮罩而進行蝕刻。
  9. 如申請專利範圍第1至5項中任一項之電漿處理方法,其中,該成對側壁至少包含一部分曲面。
  10. 如申請專利範圍第1至5項中任一項之電漿處理方法,其中,該第二程序之中,將原子層沉積(Atomic Layer Deposition;ALD)循環施行一次以上,而形成該第二膜。
  11. 如申請專利範圍第1至5項中任一項之電漿處理方法,其中,該第二程序之中,以不完結處理對象的表面上之自我限制吸附或反應之處理條件,來將亞保形ALD循環施行一次以上,而形成該第二膜。
  12. 如申請專利範圍第1至5項中任一項之電漿處理方法,其中,該第一程序之中,藉由化學氣相沉積來形成該第一膜。
  13. 如申請專利範圍第1至5項中任一項之電漿處理方法,其中,該第一程序形成具有因應於該處理對象上所形成之開口部的縱橫比、立體角、開口部的寬窄及深度、開口部的面積、圖案的疏密、線徑與間距中之至少一者之厚度差的該第一膜。
  14. 如申請專利範圍第1至5項中任一項之電漿處理方法,其中,該第二程序之中,藉由重複以下步驟而形成該第二膜:吸附步驟,將該處理對象曝露於前驅體;及反應步驟,將該處理對象曝露於反應氣體。
  15. 如申請專利範圍第14項之電漿處理方法,其中,藉由以下手段亞保形地形成該第二膜:在該反應步驟之中,進行控制以使該反應氣體不遍佈該處理對象的表面;及/或在該吸附步驟之中,使該前驅物僅吸附在該處理對象的一部分。
  16. 一種電漿處理裝置,具備:記憶部,記憶有將如申請專利範圍第1至15項中任一項之電漿處理方法加以執行之程式;以及 控制部,進行控制以執行該程式。
TW108125909A 2018-07-26 2019-07-23 電漿處理方法及電漿處理裝置 TWI820170B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018140334 2018-07-26
JP2018-140334 2018-07-26
JP2019-104041 2019-06-03
JP2019104041A JP7345283B2 (ja) 2018-07-26 2019-06-03 プラズマ処理方法およびプラズマ処理装置

Publications (2)

Publication Number Publication Date
TW202014548A TW202014548A (zh) 2020-04-16
TWI820170B true TWI820170B (zh) 2023-11-01

Family

ID=69619516

Family Applications (1)

Application Number Title Priority Date Filing Date
TW108125909A TWI820170B (zh) 2018-07-26 2019-07-23 電漿處理方法及電漿處理裝置

Country Status (2)

Country Link
JP (1) JP7345283B2 (zh)
TW (1) TWI820170B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023134139A (ja) * 2022-03-14 2023-09-27 キオクシア株式会社 半導体製造装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200525689A (en) * 2003-09-05 2005-08-01 Promos Technologies Inc Method of forming a dielectric film including an air gap and a low-k dielectric layer, and semiconductor structure
TW200531206A (en) * 2003-12-23 2005-09-16 Applied Materials Inc Improved gap-fill techniques

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006173299A (ja) 2004-12-15 2006-06-29 Nec Electronics Corp 半導体装置の製造方法
JP6382055B2 (ja) 2014-10-07 2018-08-29 東京エレクトロン株式会社 被処理体を処理する方法
JP6545094B2 (ja) 2015-12-17 2019-07-17 東京エレクトロン株式会社 成膜方法及び成膜装置
JP6800004B2 (ja) 2016-02-01 2020-12-16 東京エレクトロン株式会社 シリコン窒化膜の形成方法
JP6576277B2 (ja) 2016-03-23 2019-09-18 東京エレクトロン株式会社 窒化膜の形成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200525689A (en) * 2003-09-05 2005-08-01 Promos Technologies Inc Method of forming a dielectric film including an air gap and a low-k dielectric layer, and semiconductor structure
TW200531206A (en) * 2003-12-23 2005-09-16 Applied Materials Inc Improved gap-fill techniques

Also Published As

Publication number Publication date
JP7345283B2 (ja) 2023-09-15
JP2020025079A (ja) 2020-02-13
TW202014548A (zh) 2020-04-16

Similar Documents

Publication Publication Date Title
US9607811B2 (en) Workpiece processing method
US10043639B2 (en) Substrate processing apparatus and substrate processing method
TW200822264A (en) Substrate processing system, gas supply unit, method of substrate processing, computer program, and storage medium
US10151034B2 (en) Substrate processing method including supplying a fluorine-containing gas on a surface of a substrate
US11289339B2 (en) Plasma processing method and plasma processing apparatus
TW201903896A (zh) 被處理體之處理方法
JP6735549B2 (ja) 基板処理装置、基板処理方法及びリング状部材
US10668512B2 (en) Particle removal method and substrate processing method
JP7323330B2 (ja) 基板処理方法および基板処理装置
TWI820170B (zh) 電漿處理方法及電漿處理裝置
US20220411928A1 (en) Plasma processing method and plasma processing apparatus
JP6804277B2 (ja) 処理方法および処理装置
TW201931465A (zh) 電漿蝕刻方法及電漿蝕刻裝置
JP7278456B2 (ja) プラズマ処理装置
JP6988629B2 (ja) 成膜方法及び成膜装置
WO2015111329A1 (ja) 基板処理装置、シャワープレート及び基板処理方法
TWI829810B (zh) 基板處理方法
US10541170B2 (en) Substrate processing apparatus and method of manufacturing semiconductor device
TW202032662A (zh) 電漿處理方法及電漿處理裝置
JP2020096155A (ja) 基板処理方法
JP2018081964A (ja) 成膜装置
CN111261514A (zh) 基片处理方法
JP2011139001A (ja) 成膜装置