TWI818495B - Power converter and power conversion method using the same - Google Patents

Power converter and power conversion method using the same Download PDF

Info

Publication number
TWI818495B
TWI818495B TW111112812A TW111112812A TWI818495B TW I818495 B TWI818495 B TW I818495B TW 111112812 A TW111112812 A TW 111112812A TW 111112812 A TW111112812 A TW 111112812A TW I818495 B TWI818495 B TW I818495B
Authority
TW
Taiwan
Prior art keywords
control unit
current
current command
mode
threshold
Prior art date
Application number
TW111112812A
Other languages
Chinese (zh)
Other versions
TW202245389A (en
Inventor
陳敬孝
Original Assignee
光寶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 光寶科技股份有限公司 filed Critical 光寶科技股份有限公司
Priority to US17/736,835 priority Critical patent/US11990837B2/en
Publication of TW202245389A publication Critical patent/TW202245389A/en
Application granted granted Critical
Publication of TWI818495B publication Critical patent/TWI818495B/en

Links

Images

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

A power converter includes a voltage control unit, a current control unit and a hysteresis control unit. The voltage control unit is adapted to generate a first current command. The hysteresis control unit couples the voltage control unit with the current control unit and is adapted to, in the first mode, decouple the voltage control unit and the current control unit and generate a second current command to be transmitted to the current control unit when the detection current reaches the first threshold value, and couple the voltage control unit with the current control unit and transmit the first current command generated by the voltage control unit to the current control unit when the first current command reaches the second threshold, so as to convert the first mode of the power converter to a second mode. The current control unit is adapted to output a mode control signal according to the first current command and the second current command.

Description

電源轉換器及應用其之電源轉換方法Power converter and power conversion method using the same

本發明是有關於一種電源轉換器及應用其之電源轉換方法,且特別有關於一種併網型雙模式之電源轉換器及應用其之電源轉換方法。The present invention relates to a power converter and a power conversion method using the same, and in particular, to a grid-connected dual-mode power converter and a power conversion method using the same.

習知電源轉換器在模式切換過程中,切換路徑於二模式的變換點(或稱「換向點」)會發生震盪,此震盪容易導致自動控制的狀態方程失控。因此,如何提出一種新的電源轉換器以解決換向震盪問題是本技術領域業者努力方向之一。It is known that during the mode switching process of a power converter, the switching path will oscillate at the conversion point (or "reversal point") between the two modes. This oscillation can easily cause the automatic control state equation to go out of control. Therefore, how to propose a new power converter to solve the problem of commutation oscillation is one of the efforts of those in this technical field.

因此,本發明提出一種電源轉換器及應用其之電源轉換方法,可改善前述習知問題。Therefore, the present invention proposes a power converter and a power conversion method using the same, which can improve the aforementioned conventional problems.

本發明一實施例提出一種電源轉換器。電源轉換器包括一電壓控制單元、一電流控制單元及一磁滯控制單元。電壓控制單元適於產生一第一電流命令。磁滯控制單元耦接電壓控制單元與電流控制單元且適於:在一第一模式中,當一偵測電流到達一第一門檻值時,解偶電壓控制單元與電流控制單元且產生一第二電流命令傳輸至電流控制單元;以及,當第一電流命令到達一第二門檻值時,耦接電壓控制單元與電流控制單元,且傳輸電壓控制單元所產生之第一電流命令給電流控制單元,以將電源轉換器從第一模式切換至一第二模式。其中,電流控制單元適於依據第一電流命令及第二電流命令,輸出一模式控制訊號。An embodiment of the present invention provides a power converter. The power converter includes a voltage control unit, a current control unit and a hysteresis control unit. The voltage control unit is adapted to generate a first current command. The hysteresis control unit is coupled to the voltage control unit and the current control unit and is adapted to: in a first mode, when a detection current reaches a first threshold value, decouple the voltage control unit and the current control unit and generate a first transmitting the two current commands to the current control unit; and, when the first current command reaches a second threshold value, coupling the voltage control unit and the current control unit, and transmitting the first current command generated by the voltage control unit to the current control unit , to switch the power converter from a first mode to a second mode. Wherein, the current control unit is adapted to output a mode control signal according to the first current command and the second current command.

本發明另一實施例提出一種電源轉換方法。電源轉換方法包括以下步驟:一電壓控制單元產生一第一電流命令;在一第一模式中,當一偵測電流到達一第一門檻值時,一磁滯控制單元解偶電壓控制單元與一電流控制單元且產生一第二電流命令傳輸至電流控制單元;以及,當第一電流命令到達一第二門檻值時,磁滯控制單元耦接電壓控制單元與電流控制單元且傳輸電壓控制單元所產生之第一電流命令給電流控制單元,以將電源轉換器從第一模式切換至一第二模式。其中,電流控制單元適於依據第一電流命令及第二電流命令,輸出一模式控制訊號。Another embodiment of the present invention provides a power conversion method. The power conversion method includes the following steps: a voltage control unit generates a first current command; in a first mode, when a detection current reaches a first threshold value, a hysteresis control unit uncouples the voltage control unit and a The current control unit generates a second current command and transmits it to the current control unit; and when the first current command reaches a second threshold, the hysteresis control unit couples the voltage control unit and the current control unit and transmits the command of the voltage control unit. The generated first current command is given to the current control unit to switch the power converter from the first mode to a second mode. Wherein, the current control unit is adapted to output a mode control signal according to the first current command and the second current command.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉實施例,並配合所附圖式詳細說明如下:In order to have a better understanding of the above and other aspects of the present invention, examples are given below and are described in detail with reference to the accompanying drawings:

請參照第1~4圖,第1圖繪示依照本發明一實施例之電源轉換器100的示意圖,第2圖繪示第1圖之授控體120之示意圖,第3A及3B圖繪示第1圖之電源轉換器100之供電模式切換之系統方塊圖,而第4圖繪示第1圖之電源轉換器100之模式切換路徑之示意圖。Please refer to Figures 1 to 4. Figure 1 is a schematic diagram of the power converter 100 according to an embodiment of the present invention. Figure 2 is a schematic diagram of the control body 120 of Figure 1. Figures 3A and 3B are Figure 1 is a system block diagram of the power supply mode switching of the power converter 100, and Figure 4 is a schematic diagram of the mode switching path of the power converter 100 of Figure 1.

如第1及4圖所示,電源轉換器100包括電壓控制單元111、電流控制單元112及磁滯控制單元113。電壓控制單元111適於產生第一電流命令 。磁滯控制單元113耦接電壓控制單元111與電流控制單元112。磁滯控制單元113適於:(1). 在第一模式中,當一偵測電流 到達第一門檻值T1時,解偶電壓控制單元111與電流控制單元112且產生第二電流命令 傳輸至電流控制單元112(如第3A圖所示),及(2).當第一電流命令 到達第二門檻值T2時,耦接電壓控制單元111與電流控制單元112,且傳輸電壓控制單元111所產生之第一電流命令 給電流控制單元111(如第3B圖所示),以將電源轉換器100從第一模式切換至第二模式。電流控制單元112適於依據第一電流命令 及第二電流命令 ,輸出一模式控制訊號 As shown in FIGS. 1 and 4 , the power converter 100 includes a voltage control unit 111 , a current control unit 112 and a hysteresis control unit 113 . The voltage control unit 111 is adapted to generate the first current command . The hysteresis control unit 113 is coupled to the voltage control unit 111 and the current control unit 112 . The hysteresis control unit 113 is adapted to: (1). In the first mode, when a current is detected When the first threshold T1 is reached, the voltage control unit 111 and the current control unit 112 are decoupled and a second current command is generated. transmitted to the current control unit 112 (as shown in Figure 3A), and (2). When the first current command When the second threshold value T2 is reached, the voltage control unit 111 and the current control unit 112 are coupled, and the first current command generated by the voltage control unit 111 is transmitted. to the current control unit 111 (shown in FIG. 3B ) to switch the power converter 100 from the first mode to the second mode. The current control unit 112 is adapted to respond to the first current command and the second current command , output a mode control signal .

由於磁滯控制單元113可在適當時機解偶電壓控制單元111與電流控制單元112,並傳輸不同於第一電流命令 之第二電流命令 至電流控制單元112,因此能改變電源轉換器100之模式切換路徑。例如,如第4圖所示,本發明實施例之電源轉換器100之模式切換路徑可避免通過或避免過度接近原點O,進而避免發生由於換向所產生之震盪。 Since the hysteresis control unit 113 can decouple the voltage control unit 111 and the current control unit 112 at an appropriate time and transmit a current command different from the first The second current command to the current control unit 112, thereby changing the mode switching path of the power converter 100. For example, as shown in FIG. 4 , the mode switching path of the power converter 100 according to the embodiment of the present invention can avoid passing through or being too close to the origin O, thereby avoiding the occurrence of oscillation due to commutation.

如第1圖所示,電源轉換器100之功率潮流係由電流控制單元112控制(透過模式控制訊號 控制),而電流控制單元112的電流命令是由電壓控制單元111提供。相較於由電壓控制單元111控制功率潮流,以電流控制單元112控制功率潮流的速度更快。 As shown in Figure 1, the power flow of the power converter 100 is controlled by the current control unit 112 (through the mode control signal control), and the current command of the current control unit 112 is provided by the voltage control unit 111. Compared with controlling the power flow by the voltage control unit 111, the speed of controlling the power flow by the current control unit 112 is faster.

如第1圖所示,電源轉換器100更包括控制器110、授控體120及使用者介面130。前述電壓控制單元111、電流控制單元112及磁滯控制單元113可配置在控制器110內。此外,控制器110更包括切換訊號產生單元114,其也可配置在控制器110內。切換訊號產生單元114可依據模式控制訊號 產生對應之控制訊號P1,以控制授控體120進行模式切換。在一實施例中,切換訊號產生單元114例如是脈寬調變(Pulse Width Modulation, PWM)產生單元,控制訊號P1例如是脈寬調變訊號,脈寬調變訊號之工作循環(Duty cycle)的數值可依據控制訊號 而變,以控制授控體120進行模式切換。 As shown in FIG. 1 , the power converter 100 further includes a controller 110 , a controller 120 and a user interface 130 . The aforementioned voltage control unit 111 , current control unit 112 and hysteresis control unit 113 may be configured in the controller 110 . In addition, the controller 110 further includes a switching signal generating unit 114, which can also be configured within the controller 110. The switching signal generating unit 114 can control the signal according to the mode A corresponding control signal P1 is generated to control the control body 120 to switch modes. In one embodiment, the switching signal generating unit 114 is, for example, a pulse width modulation (PWM) generating unit, the control signal P1 is, for example, a pulse width modulation signal, and the duty cycle of the pulse width modulation signal is The value can be determined according to the control signal Then, the mode switching is performed by controlling the control body 120.

電壓控制單元111、電流控制單元112、磁滯控制單元113與切換訊號產生單元114中至少一者例如是軟體、韌體或由半導體製程所形成之實體電路(circuit)。電壓控制單元111、電流控制單元112、磁滯控制單元113與切換訊號產生單元114中至少二者可整合成一個單元。此外,電壓控制單元111、電流控制單元112、磁滯控制單元113與切換訊號產生單元114中至少一者也可相對控制器110在空間上分開配置(但仍電連接於控制器110)。At least one of the voltage control unit 111 , the current control unit 112 , the hysteresis control unit 113 and the switching signal generation unit 114 is, for example, software, firmware, or a physical circuit formed by a semiconductor process. At least two of the voltage control unit 111, the current control unit 112, the hysteresis control unit 113 and the switching signal generation unit 114 can be integrated into one unit. In addition, at least one of the voltage control unit 111 , the current control unit 112 , the hysteresis control unit 113 and the switching signal generation unit 114 may also be spatially separated from the controller 110 (but still electrically connected to the controller 110 ).

如第1圖所示,使用者介面130可耦接控制器110。使用者介面130可接收來自於使用者的控制指令S1,並依據控制指令S1產生對應之電壓控制命令 ,電壓控制命令 可傳輸給控制器110,例如是傳輸給控制器110之電壓控制單元111。在一實施例,使用者介面130可透過一介面(未繪示)與控制器110通訊,其中介面例如是RS422轉RS232介面,然本發明實施例不以此為限。此外,如第3A圖所示,控制器110依據電壓控制單元111、電流控制單元112與磁滯控制單元113所形成的控制迴路(例如是閉迴路方程),採用合適或甚至是習知自動控制技術或自動控制狀態方程,產生接近或符合控制指令S1之控制訊號 。雖然未說明,然誤差 為第二電流命令 與偵測電流 的差值,可用於控制迴路。 As shown in FIG. 1 , the user interface 130 can be coupled to the controller 110 . The user interface 130 can receive the control command S1 from the user and generate the corresponding voltage control command according to the control command S1 , voltage control command It may be transmitted to the controller 110, for example, to the voltage control unit 111 of the controller 110. In one embodiment, the user interface 130 can communicate with the controller 110 through an interface (not shown), where the interface is, for example, an RS422 to RS232 interface, but the embodiment of the present invention is not limited to this. In addition, as shown in FIG. 3A , the controller 110 adopts appropriate or even conventional automatic control according to the control loop (for example, a closed loop equation) formed by the voltage control unit 111 , the current control unit 112 and the hysteresis control unit 113 . Technical or automatic control state equations generate control signals close to or consistent with control instructions S1 . Although not stated, the error for the second current command and detection current The difference can be used in the control loop.

如第2圖所示,授控體120包含第一耦接端120A及第二耦接端120B,其中第一耦接端120A可耦接支援第一模式的第一模式系統10,第一模式系統10 例如是第一電源或第一負載,而第二耦接端120B可耦接支援第二模式的第二模式系統20,第二模式系統20例如是第二電源或第二負載。第一負載例如是儲電裝置,例如是配置在固定物體(如,建築物、充電樁等)、可移動裝置(如,電動車等)或可攜式裝置(如,行動電源裝置等)的電池。第二負載例如是家電、電腦等電子裝置。在本實施例中,第一模式系統10例如是屬於區域匯流排系統 (Local Bus System),例如,分散式電源發電端或儲電端的直流側匯流排(DC BUS),而第二模式系統20例如是是屬於全域匯流排系統 (Global Bus System),例如,交流側匯流排(AC BUS)。As shown in FIG. 2 , the control body 120 includes a first coupling terminal 120A and a second coupling terminal 120B. The first coupling terminal 120A can be coupled to the first mode system 10 that supports the first mode. The first mode The system 10 is, for example, a first power supply or a first load, and the second coupling terminal 120B can be coupled to the second mode system 20 that supports the second mode. The second mode system 20 is, for example, a second power supply or a second load. The first load is, for example, a power storage device, which is configured on a fixed object (such as a building, a charging pile, etc.), a movable device (such as an electric vehicle, etc.) or a portable device (such as a mobile power supply device, etc.) Battery. The second load is, for example, electronic devices such as home appliances and computers. In this embodiment, the first mode system 10 belongs to, for example, a local bus system (Local Bus System), for example, a DC side bus (DC BUS) of a distributed power generation end or a power storage end, and the second mode system 20 For example, it belongs to the Global Bus System, such as the AC BUS.

如第2圖所示,授控體120更包括切換器121、電容器C1、電感器L1、電容偵測器122及電感偵測器123。電容器C1及電容偵測器122可耦接於切換器121中符合第一模式之側。電容偵測器122可偵測電容器C1的一電容電壓(本文稱「偵測電壓 」)。電感器L1及電感偵測器123可耦接於切換器121中符合第二模式之側。電感偵測器123可偵測電感器L1之一電感電流(本文稱「偵測電流 」)。切換器121耦接電容器C1與電感器L1。切換器121可將第一模式系統10的儲電轉換成第二模式系統20的用電,或將第二模式系統20的供電轉換成第一模式系統10的儲電。透過二模式之切換,可增加電能的應用彈性。例如,當電動車(第一負載)具有閒置儲電時,電動車可將儲電回饋給市電(第二電源)或回饋給支援第二模式的負載(第二負載);當電動車需要充電時,市電可供電給電動車。此外,本發明實施例不限定切換器121的具體電路結構,其可以包含任何能進行交流與直流轉換的合適電路或習知電路。 As shown in FIG. 2 , the control body 120 further includes a switch 121 , a capacitor C1 , an inductor L1 , a capacitance detector 122 and an inductance detector 123 . The capacitor C1 and the capacitance detector 122 may be coupled to the side of the switch 121 that conforms to the first mode. The capacitance detector 122 can detect a capacitance voltage of the capacitor C1 (herein referred to as "detection voltage"). ”). The inductor L1 and the inductance detector 123 may be coupled to the side of the switch 121 that conforms to the second mode. The inductor detector 123 can detect an inductor current of the inductor L1 (herein referred to as "detection current"). ”). The switch 121 is coupled to the capacitor C1 and the inductor L1. The switch 121 can convert the power storage of the first mode system 10 into the power consumption of the second mode system 20 , or convert the power supply of the second mode system 20 into the power storage of the first mode system 10 . By switching between the two modes, the flexibility of electric energy application can be increased. For example, when the electric vehicle (first load) has idle power storage, the electric vehicle can feed the stored power back to the mains (second power supply) or to the load that supports the second mode (second load); when the electric vehicle needs to be charged At this time, the mains power can be used to power electric vehicles. In addition, the embodiment of the present invention does not limit the specific circuit structure of the switch 121, which may include any suitable circuit or conventional circuit that can perform AC and DC conversion.

此外,雖然未繪示,然,在一實施例中,前述偵測電壓 及偵測電流 可透放大器及轉換器處理後,再傳輸給控制器110,其中放大器例如是差動放大器,而轉換器例如是類比數位轉換器(Analog-to-Digital Converter, ADC)。 In addition, although not shown, in one embodiment, the aforementioned detection voltage and detect current After being processed by the transparent amplifier and converter, it is then transmitted to the controller 110, where the amplifier is, for example, a differential amplifier, and the converter, for example, is an analog-to-Digital Converter (ADC).

此外,前述第一模式例如是直流模式與交流模式之一者,而第二模式例如是直流模式與交流模式之另一者。直流模式例如是功率因數校正(Power Factor Correction, PFC)操作,而交流模式例如是逆變器(Inverter)操作。本發明實施例之第一模式以直流模式,而第二模式以交流模式為例說明。此外,如第4圖所示,第一模式與第二模式例如以第4圖之橫軸( )為分界,第4圖之橫軸以下的區域(負值)定義為第一模式,而橫軸以上的區域(正值)定義為第二模式。 In addition, the first mode is, for example, one of the DC mode and the AC mode, and the second mode is, for example, the other one of the DC mode and the AC mode. The DC mode is, for example, a Power Factor Correction (PFC) operation, and the AC mode is, for example, an inverter (Inverter) operation. The first mode of the embodiment of the present invention is a DC mode, and the second mode is an AC mode as an example. In addition, as shown in Figure 4, the first mode and the second mode are, for example, represented by the horizontal axis ( ) is the boundary, the area below the horizontal axis (negative value) in Figure 4 is defined as the first mode, and the area above the horizontal axis (positive value) is defined as the second mode.

以下說明從第一模式切換至第二模式的詳細過程。The following describes the detailed process of switching from the first mode to the second mode.

請同時參照第4及5圖,第5圖繪示第1圖之電源轉換器100之模式切換流程圖。第4圖之橫軸表示第一電流命令 之變化,而縱軸表示偵測電流 之變化。在本實施例中,偵測電流 例如是第2圖之電感器L1之電感電流的峰值,然亦可為電感電流本身或平均值。 Please refer to Figures 4 and 5 at the same time. Figure 5 illustrates a mode switching flow chart of the power converter 100 in Figure 1 . The horizontal axis in Figure 4 represents the first current command changes, and the vertical axis represents the detection current changes. In this embodiment, the detection current For example, it is the peak value of the inductor current of the inductor L1 in Figure 2, but it can also be the inductor current itself or the average value.

在步驟S110中,如第3B及4圖所示,在工作點A1(處於第一模式),當偵測電流 未達第一門檻值T1時,磁滯控制單元113將電壓控制單元111所產生之第一電流命令 傳輸給電流控制單元112。例如,磁滯控制單元113不對電壓控制單元111進行處理,僅單純將第一電流命令 傳輸給電流控制單元112。第一電流命令 係依據電壓控制命令 與偵測電壓 的誤差 而定;換言之,第一電流命令 的值可基於誤差 而更新。以表示從第一模式切換至第二模式之控制指令S1舉例來說,回應此控制指令S1,控制器110可產生小於偵測電壓 的電壓控制命令 (即, ),以產生正值(+)的誤差 。誤差 的正值表示從負方向(第4圖之橫軸以下的區域)切換到正方向(第4圖之橫軸以上的區域)的趨勢。 In step S110, as shown in Figures 3B and 4, at the operating point A1 (in the first mode), when the current is detected When the first threshold value T1 is not reached, the hysteresis control unit 113 changes the first current command generated by the voltage control unit 111 to transmitted to the current control unit 112. For example, the hysteresis control unit 113 does not process the voltage control unit 111 and simply converts the first current command to transmitted to the current control unit 112. first current command based on the voltage control command and detection voltage error depends; in other words, the first current command The value of can be based on the error And updated. For example, taking the control instruction S1 indicating switching from the first mode to the second mode, in response to the control instruction S1, the controller 110 can generate a voltage smaller than the detection voltage. voltage control command (Right now, ) to produce a positive (+) error . Error The positive value of represents a tendency to switch from the negative direction (the area below the horizontal axis in Figure 4) to the positive direction (the area above the horizontal axis in Figure 4).

此外,第一門檻值T1例如是滿載電流之峰值之一預設比例,此預設比例例如是介於1%~10%之間的任意整數,例如5%、6%、7%等。以具備額定功率5千瓦(kW)及電壓為220伏特之規格的電源轉換器100為例,其滿載電流為22.72安培,而滿載電流之峰值為32.12安培。預設比例以5%為例來說,所得之第一門檻值T1是-1.61安培 (負值是基於第一模式的負值定義)。In addition, the first threshold T1 is, for example, a preset ratio of the peak value of the full load current. The preset ratio is, for example, any integer between 1% and 10%, such as 5%, 6%, 7%, etc. Taking a power converter 100 with a rated power of 5 kilowatts (kW) and a voltage of 220 volts as an example, the full load current is 22.72 amps, and the peak value of the full load current is 32.12 amps. Taking the default ratio of 5% as an example, the obtained first threshold value T1 is -1.61 amps (the negative value is based on the negative value definition of the first mode).

如第3B及4圖所示,在工作點A1至工作點A2之第一切換路徑SW1 ,電壓控制單元112所產生之第一電流命令 之值仍持續更新。例如,第一電流命令 由振幅大的負值逐步轉變成振幅較小的負值,以使偵測電流 隨著第一電流命令 縮小振幅(沿負值方向往正值方向的變化趨勢)。 As shown in Figures 3B and 4, in the first switching path SW1 from the operating point A1 to the operating point A2, the first current command generated by the voltage control unit 112 The value continues to be updated. For example, the first current command It gradually changes from a negative value with a large amplitude to a negative value with a smaller amplitude, so that the detection current With the first current command Reduce the amplitude (the trend of change from negative value to positive value direction).

在步驟S120中,如第3A及4圖所示,在工作點A2(處於第一模式),當偵測電流 到達第一門檻值T1時,磁滯控制單元113解偶電壓控制單元112與電流控制單元110,且產生第二電流命令 ,並傳輸第二電流命令 至電流控制單元112。由於電壓控制單元112與電流控制單元110係解偶,因此電流控制單元110不受電壓控制單元112控制,例如,電壓控制單元111所產生之第一電流命令 不傳輸給電流控制單元112。 In step S120, as shown in Figures 3A and 4, at the operating point A2 (in the first mode), when the current is detected When the first threshold T1 is reached, the hysteresis control unit 113 decouples the voltage control unit 112 and the current control unit 110 and generates a second current command. , and transmits the second current command to the current control unit 112. Since the voltage control unit 112 and the current control unit 110 are decoupled, the current control unit 110 is not controlled by the voltage control unit 112, for example, the first current command generated by the voltage control unit 111 Not transmitted to current control unit 112.

如第3A及4圖所示,在工作點A2至工作點A3之第二切換路徑SW2,電壓控制單元112不受解偶影響,在不改變第一電流命令 的產生方式下,仍持續產生更新的第一電流命令 ,惟不傳輸至電流控制單元112。在第二切換路徑SW2中,磁滯控制單元113所產生之第二電流命令 之幅值(Amplitude)係常數,使偵測電流 之值維持常數。在第二切換路徑SW2,當第一電流命令 未達第二門檻值T2時,磁滯控制單元113持續傳輸第二電流命令 給電流控制單元112。 As shown in Figures 3A and 4, in the second switching path SW2 from the operating point A2 to the operating point A3, the voltage control unit 112 is not affected by decoupling and does not change the first current command. In the generation mode, the updated first current command is still continuously generated. , but is not transmitted to the current control unit 112 . In the second switching path SW2, the second current command generated by the hysteresis control unit 113 The amplitude (Amplitude) is a constant, so that the detection current The value remains constant. In the second switching path SW2, when the first current command When the second threshold T2 is not reached, the hysteresis control unit 113 continues to transmit the second current command. to the current control unit 112.

在步驟S130中,如第3B及4圖所示,在工作點A3(處於第一模式)中 ,當第一電流命令 到達第二門檻值T2(到達工作點A3)時,磁滯控制單元113重新耦接電壓控制單元111與電流控制單元112,並將電壓控制單元111所產生之第一電流命令 傳輸給電流控制單元111,以將電源轉換器100從第一模式切換至第二模式。在電壓控制單元111與電流控制單元112重新耦接後,磁滯控制單元113不產生第二電流命令 ,也不傳輸訊號給電流控制單元112;換言之,磁滯控制單元113不控制電流控制單元112。在一實施例中,第二門檻值T2可採用電源轉換器100規格所標示的電流額定值之一定比例,例如介於1%~10%之間的任意整數,例如5%、6%、7%等。 In step S130, as shown in Figures 3B and 4, at the operating point A3 (in the first mode), when the first current command When reaching the second threshold T2 (reaching the operating point A3), the hysteresis control unit 113 re-couples the voltage control unit 111 and the current control unit 112, and transmits the first current command generated by the voltage control unit 111 Transmitted to the current control unit 111 to switch the power converter 100 from the first mode to the second mode. After the voltage control unit 111 and the current control unit 112 are re-coupled, the hysteresis control unit 113 does not generate the second current command. , nor transmit a signal to the current control unit 112; in other words, the hysteresis control unit 113 does not control the current control unit 112. In one embodiment, the second threshold T2 may be a certain proportion of the current rating indicated in the specifications of the power converter 100, such as any integer between 1% and 10%, such as 5%, 6%, 7% etc.

如第3B及4圖所示,在工作點A3至工作點A4之第三切換路徑SW3,偵測電流 介於第一門檻值T1與第三門檻值T3之間,電壓控制單元111所產生之第一電流命令 之值大致上為常數。詳言之,由於第三切換路徑SW3的發生時間相當短,因此第一電流命令 的變化量不顯著,因此可視為常數。 As shown in Figures 3B and 4, in the third switching path SW3 from the operating point A3 to the operating point A4, the detection current Between the first threshold T1 and the third threshold T3, the first current command generated by the voltage control unit 111 The value is roughly constant. In detail, since the occurrence time of the third switching path SW3 is quite short, the first current command The change in is not significant, so it can be regarded as a constant.

如第3B及4圖所示,在工作點A4(處於第二模式)中,當偵測電流 到達第三門檻值T3時,磁滯控制單元113持續將電壓控制單元111所產生之第一電流命令 傳輸給電流控制單元112。第三門檻值T3的決定方式類似或同於第一門檻值T1。例如,第三門檻值T3例如是滿載電流之峰值之一預設比例,此預設比例例如是介於1%~10%之間的任意整數,例如5%、6%、7%等。以具備額定功率5 kW及電壓為220伏特之規格的電源轉換器100為例,其滿載電流為22.72安培,而滿載電流之峰值為32.12安培。預設比例以5%為例來說,所得之第三門檻值T3是+1.61安培 (正值是基於第二模式的正值定義)。 As shown in Figures 3B and 4, at the operating point A4 (in the second mode), when the current is detected When reaching the third threshold value T3, the hysteresis control unit 113 continues to transmit the first current command generated by the voltage control unit 111. transmitted to the current control unit 112. The third threshold T3 is determined in a manner similar to or the same as the first threshold T1. For example, the third threshold T3 is a preset ratio of the peak value of the full load current. The preset ratio is, for example, any integer between 1% and 10%, such as 5%, 6%, 7%, etc. Taking the power converter 100 with a rated power of 5 kW and a voltage of 220 volts as an example, the full load current is 22.72 amps, and the peak value of the full load current is 32.12 amps. Taking the default ratio of 5% as an example, the obtained third threshold value T3 is +1.61 amps (the positive value is based on the positive value definition of the second mode).

如第3B及4圖所示,在工作點A4至工作點A5(處於第二模式)之第四切換路徑SW4,當偵測電流 大於第三門檻值T3時,電壓控制單元111所產生之第一電流命令 之值係持續更新。例如,第一電流命令 由振幅小的正值逐步轉變成振幅較大的正值,以使偵測電流 隨著第一電流命令 加大振幅 (往正方向加大傳輸功率)。 As shown in Figures 3B and 4, in the fourth switching path SW4 from the operating point A4 to the operating point A5 (in the second mode), when the current is detected When it is greater than the third threshold T3, the first current command generated by the voltage control unit 111 The values are continuously updated. For example, the first current command It gradually changes from a positive value with a small amplitude to a positive value with a larger amplitude, so that the detection current With the first current command Increase the amplitude (increase the transmission power in the positive direction).

如第3B及4圖所示,在第四切換路徑SW4,當偵測電流 未達工作點A5時,磁滯控制單元113將電壓控制單元111所產生之第一電流命令 傳輸給電流控制單元112。例如,磁滯控制單元113不對電壓控制單元111進行處理,僅單純將第一電流命令 傳輸給電流控制單元112。第一電流命令 係依據電壓控制命令 與偵測電壓 的誤差 而定。如第3B圖所示,控制器110可持續產生小於偵測電壓 的電壓控制命令 (即, ),以產生正值(+)的誤差 。在第四切換路徑SW4,誤差 的正值表示持續往正方向(第4圖之橫軸以上的區域)的變化趨勢。當偵測電流 達到工作點A5時,表示完成功率潮流換向。 As shown in Figures 3B and 4, in the fourth switching path SW4, when the current is detected When the operating point A5 is not reached, the hysteresis control unit 113 changes the first current command generated by the voltage control unit 111 to transmitted to the current control unit 112. For example, the hysteresis control unit 113 does not process the voltage control unit 111 and simply converts the first current command to transmitted to the current control unit 112. first current command based on the voltage control command and detection voltage error Depends. As shown in Figure 3B, the controller 110 can continuously generate a voltage smaller than the detection voltage. voltage control command (Right now, ) to produce a positive (+) error . In the fourth switching path SW4, the error A positive value indicates a continuous trend in the positive direction (the area above the horizontal axis in Figure 4). When detecting current When the operating point A5 is reached, the power flow reversal is completed.

從第二模式切換至第一模式的過程類似前述從第一模式切換至第二模式的切換過程,以下係以第3及4圖為例說明。The process of switching from the second mode to the first mode is similar to the aforementioned switching process from the first mode to the second mode. The following is explained using Figures 3 and 4 as examples.

如第3B及4圖所示,在工作點A5(處於第二模式)中,當偵測電流 未達第三門檻值T3時,磁滯控制單元113傳輸第一電流命令 給電流控制單元112。第一電流命令 係依據電壓控制命令 與偵測電壓 的誤差 而定。以表示從第二模式切換至第一模式之控制指令S1舉例來說,回應此控制指令S1,控制器110可產生大於偵測電壓 的電壓控制命令 (即, ),以產生負值(-)的誤差 。誤差 的負值表示從正方向(第4圖之橫軸以上的區域)切換到負方向(第4圖之橫軸以下的區域)的變化趨勢。 As shown in Figures 3B and 4, in the operating point A5 (in the second mode), when the current is detected When the third threshold value T3 is not reached, the hysteresis control unit 113 transmits the first current command to the current control unit 112. first current command based on the voltage control command and detection voltage error Depends. Taking the control instruction S1 indicating switching from the second mode to the first mode as an example, in response to the control instruction S1, the controller 110 can generate a voltage greater than the detection voltage. voltage control command (Right now, ), to produce a negative (-) error . Error The negative value of represents the trend of switching from the positive direction (the area above the horizontal axis in Figure 4) to the negative direction (the area below the horizontal axis in Figure 4).

如第3B及4圖所示,在工作點A5至工作點A4(處於第二模式)之第五切換路徑SW5中 ,電壓控制單元112所產生之第一電流命令 之值仍持續更新。例如,第一電流命令 由振幅大的正值逐步轉變成振幅較小的正值,以使偵測電流 隨著第一電流命令 縮小振幅(沿正值方向往負值方向的變化趨勢)。 As shown in Figures 3B and 4, in the fifth switching path SW5 from the operating point A5 to the operating point A4 (in the second mode), the first current command generated by the voltage control unit 112 The value continues to be updated. For example, the first current command It gradually changes from a positive value with a large amplitude to a positive value with a smaller amplitude, so that the detection current With the first current command Reduce the amplitude (the trend of change from the positive value direction to the negative value direction).

如第3A及4圖所示,在工作點A4(處於第二模式),當偵測電流 到達第三門檻值T3時,磁滯控制單元113解偶電壓控制單元112與電流控制單元110,且產生第二電流命令 ,並傳輸第二電流命令 至電流控制單元112。由於電壓控制單元112與電流控制單元110係解偶,因此電流控制單元110不受電壓控制單元112控制,例如,電壓控制單元111所產生之第一電流命令 不傳輸給電流控制單元112。 As shown in Figures 3A and 4, at the operating point A4 (in the second mode), when the current is detected When the third threshold value T3 is reached, the hysteresis control unit 113 decouples the voltage control unit 112 and the current control unit 110 and generates a second current command. , and transmits the second current command to the current control unit 112. Since the voltage control unit 112 and the current control unit 110 are decoupled, the current control unit 110 is not controlled by the voltage control unit 112, for example, the first current command generated by the voltage control unit 111 Not transmitted to current control unit 112.

如第3A及4圖所示,在工作點A4至工作點A6之第六切換路徑SW6,電壓控制單元112不受解偶影響,在不改變第一電流命令 的更新方式下,仍持續產生更新的第一電流命令 ,惟不傳輸至電流控制單元112。在第六切換路徑SW6中,磁滯控制單元113所產生之第二電流命令 之幅值係常數,使偵測電流 之值維持常數。在第六切換路徑SW6,當第一電流命令 未達第四門檻值T4時,磁滯控制單元113持續傳輸第二電流命令 給電流控制單元112。第四門檻值T4的決定方式同前述第二門檻值T2,於此不再贅述。 As shown in Figures 3A and 4, in the sixth switching path SW6 from the operating point A4 to the operating point A6, the voltage control unit 112 is not affected by decoupling and does not change the first current command. In the update mode, the updated first current command is still continuously generated. , but is not transmitted to the current control unit 112 . In the sixth switching path SW6, the second current command generated by the hysteresis control unit 113 The amplitude of is a constant, so that the detection current The value remains constant. In the sixth switching path SW6, when the first current command When the fourth threshold T4 is not reached, the hysteresis control unit 113 continues to transmit the second current command. to the current control unit 112. The determination method of the fourth threshold value T4 is the same as the aforementioned second threshold value T2, and will not be described again here.

如第3B及4圖所示,在工作點A6(處於第二模式)中 ,當第一電流命令 到達第四門檻值T4 (到達工作點A6)時,磁滯控制單元113重新耦接電壓控制單元111與電流控制單元112,並將電壓控制單元111所產生之第一電流命令 傳輸給電流控制單元111,以將電源轉換器100從第二模式切換至第一模式。在電壓控制單元111與電流控制單元112重新耦接後,磁滯控制單元113不產生第二電流命令 ,也不傳輸訊號給電流控制單元112;換言之,磁滯控制單元113不控制電流控制單元112。 As shown in Figures 3B and 4, in the operating point A6 (in the second mode), when the first current command When reaching the fourth threshold T4 (reaching the operating point A6), the hysteresis control unit 113 re-couples the voltage control unit 111 and the current control unit 112, and converts the first current command generated by the voltage control unit 111 Transmitted to the current control unit 111 to switch the power converter 100 from the second mode to the first mode. After the voltage control unit 111 and the current control unit 112 are re-coupled, the hysteresis control unit 113 does not generate the second current command. , nor transmit a signal to the current control unit 112; in other words, the hysteresis control unit 113 does not control the current control unit 112.

如第3B及4圖所示,在工作點A6至工作點A2之第七切換路徑SW7,偵測電流 介於第三門檻值T3與第一門檻值T1之間,電壓控制單元111所產生之第一電流命令 之值大致上為常數。詳言之,由於第七切換路徑SW7的發生時間相當短,因此第一電流命令 的變化量不顯著,因此可視為常數。 As shown in Figures 3B and 4, in the seventh switching path SW7 from the operating point A6 to the operating point A2, the detection current Between the third threshold value T3 and the first threshold value T1, the first current command generated by the voltage control unit 111 The value is roughly constant. In detail, since the occurrence time of the seventh switching path SW7 is quite short, the first current command The change in is not significant, so it can be regarded as a constant.

如第3B及4圖所示,在工作點A2(處於第一模式)中,當偵測電流 到達第四門檻值T4時,磁滯控制單元113持續將電壓控制單元111所產生之第一電流命令 傳輸給電流控制單元112。 As shown in Figures 3B and 4, in the operating point A2 (in the first mode), when the current is detected When reaching the fourth threshold value T4, the hysteresis control unit 113 continues to transmit the first current command generated by the voltage control unit 111. transmitted to the current control unit 112.

如第3B及4圖所示,在工作點A2至工作點A1(處於第一模式)之第八切換路徑SW8,當偵測電流 大於第一門檻值T1時,電壓控制單元111所產生之第一電流命令 之值係持續更新。例如,第一電流命令 由振幅小的負值逐步轉變成振幅較大的負值,以使偵測電流 隨著第一電流命令 加大振幅 (往負方向加大傳輸功率)。 As shown in Figures 3B and 4, in the eighth switching path SW8 from the operating point A2 to the operating point A1 (in the first mode), when the current is detected When it is greater than the first threshold T1, the first current command generated by the voltage control unit 111 The values are continuously updated. For example, the first current command It gradually changes from a negative value with a small amplitude to a negative value with a larger amplitude, so that the detection current With the first current command Increase the amplitude (increase the transmission power in the negative direction).

如第3B及4圖所示,在第八切換路徑SW8,當偵測電流 未達工作點A1時,磁滯控制單元113將電壓控制單元111所產生之第一電流命令 傳輸給電流控制單元112。例如,磁滯控制單元113不對電壓控制單元111進行處理,僅單純將第一電流命令 傳輸給電流控制單元112。第一電流命令 係依據電壓控制命令 與偵測電壓 的誤差 而定。如第3B圖所示,控制器110可持續產生大於偵測電壓 的電壓控制命令 (即, ),以產生負值(-)的誤差 。在第八切換路徑SW8,誤差 的負值表示持續往負方向(第4圖之橫軸以下的區域)的變化趨勢。當偵測電流 達到工作點A1,表示完成切換,或完成功率轉換。 As shown in Figures 3B and 4, in the eighth switching path SW8, when the current is detected When the operating point A1 is not reached, the hysteresis control unit 113 changes the first current command generated by the voltage control unit 111 to transmitted to the current control unit 112. For example, the hysteresis control unit 113 does not process the voltage control unit 111 and simply converts the first current command to transmitted to the current control unit 112. first current command based on the voltage control command and detection voltage error Depends. As shown in Figure 3B, the controller 110 can continuously generate a voltage greater than the detection voltage. voltage control command (Right now, ), to produce a negative (-) error . In the eighth switching path SW8, the error The negative value of represents a trend that continues to change in the negative direction (the area below the horizontal axis in Figure 4). When detecting current Reaching the operating point A1 indicates completion of switching, or completion of power conversion.

綜上,本揭露實施例提出一種電源轉換器及應用其之電源轉換方法,磁滯控制單元可選擇性解偶電壓控制單元與電流控制單元,並改變電流命令,使切換路徑避開換向點(如,第4圖之原點),以避免換向震盪發生,進而避免自動控制方程的控制器失控。In summary, embodiments of the present disclosure provide a power converter and a power conversion method using the same. The hysteresis control unit can selectively decouple the voltage control unit and the current control unit and change the current command so that the switching path avoids the reversal point. (For example, the origin in Figure 4) to avoid commutation oscillation, thereby preventing the controller of the automatic control equation from running out of control.

綜上所述,雖然本發明已以實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。In summary, although the present invention has been disclosed above through embodiments, they are not intended to limit the present invention. Those with ordinary knowledge in the technical field to which the present invention belongs can make various modifications and modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention shall be determined by the appended patent application scope.

100:電源轉換器 10:第一模式系統 20:第二模式系統 110:控制器 111:電壓控制單元 112:電流控制單元 113:磁滯控制單元 114:切換訊號產生單元 120:授控體 120A:第一耦接端 120B:第二耦接端 121:切換器 122:電容偵測器 123:電感偵測器 130:使用者介面 A1~A6:工作點 C1:電容器 :模式控制訊號 L1:電感器 O:原點 :第一電流命令 :第二電流命令 :偵測電流 :電壓控制命令 , :誤差 :偵測電壓 P1:控制訊號 S1:控制指令 SW1~SW8:切換路徑 T1:第一門檻值 T2:第二門檻值 T3:第三門檻值 T4:第四門檻值 100: Power converter 10: First mode system 20: Second mode system 110: Controller 111: Voltage control unit 112: Current control unit 113: Hysteresis control unit 114: Switching signal generation unit 120: Controller 120A: First coupling terminal 120B: Second coupling terminal 121: Switch 122: Capacitance detector 123: Inductance detector 130: User interface A1~A6: Operating point C1: Capacitor :Mode control signal L1:Inductor O:Origin :First current command :Second current command :Detect current :Voltage control command , :error : Detection voltage P1: Control signal S1: Control command SW1~SW8: Switching path T1: First threshold T2: Second threshold T3: Third threshold T4: Fourth threshold

第1圖繪示依照本發明一實施例之電源轉換器的示意圖。 第2圖繪示第1圖之授控體之示意圖。 第3A及3B圖繪示第1圖之電源轉換器之供電模式切換之系統方塊圖。 第4圖繪示第1圖之電源轉換器之模式切換路徑之示意圖。 第5圖繪示第1圖之電源轉換器之模式切換流程圖。 Figure 1 is a schematic diagram of a power converter according to an embodiment of the present invention. Figure 2 shows a schematic diagram of the control body in Figure 1. Figures 3A and 3B illustrate the system block diagram of the power supply mode switching of the power converter in Figure 1. Figure 4 is a schematic diagram of the mode switching path of the power converter in Figure 1. Figure 5 illustrates the mode switching flow chart of the power converter in Figure 1 .

100:電源轉換器 100:Power converter

110:控制器 110:Controller

111:電壓控制單元 111: Voltage control unit

112:電流控制單元 112:Current control unit

113:磁滯控制單元 113: Hysteresis control unit

114:切換訊號產生單元 114:Switch signal generation unit

120:授控體 120: Controller

130:使用者介面 130:User interface

D cmd :模式控制訊號 D cmd : mode control signal

I L,cmd1:第一電流命令 I L,cmd 1 : first current command

I L,cmd2:第二電流命令 I L,cmd 2 : second current command

I L :偵測電流 I L : detection current

V bus,cmd :電壓控制命令 V bus,cmd : voltage control command

I L,err :誤差 I L,err : error

V bus :偵測電壓 V bus : detection voltage

P1:控制訊號 P1: control signal

S1:控制指令 S1: Control command

Claims (18)

一種電源轉換器,包括: 一電壓控制單元,適於產生一第一電流命令; 一電流控制單元;以及 一磁滯控制單元,耦接該電壓控制單元與該電流控制單元,且適於: 在一第一模式中,當一偵測電流到達一第一門檻值時,解偶該電壓控制單元與該電流控制單元且產生一第二電流命令傳輸至該電流控制單元;及 當該第一電流命令到達一第二門檻值時,耦接該電壓控制單元與該電流控制單元,且傳輸該電壓控制單元所產生之該第一電流命令給該電流控制單元,以將該電源轉換器從該第一模式切換至一第二模式; 其中,該電流控制單元適於依據該第一電流命令及該第二電流命令,輸出一模式控制訊號。 A power converter including: a voltage control unit adapted to generate a first current command; a current control unit; and A hysteresis control unit couples the voltage control unit and the current control unit and is suitable for: In a first mode, when a detected current reaches a first threshold, decouple the voltage control unit and the current control unit and generate a second current command to transmit to the current control unit; and When the first current command reaches a second threshold value, the voltage control unit and the current control unit are coupled, and the first current command generated by the voltage control unit is transmitted to the current control unit to convert the power supply The converter switches from the first mode to a second mode; Wherein, the current control unit is adapted to output a mode control signal according to the first current command and the second current command. 如請求項1所述之電源轉換器,其中該磁滯控制單元更適於: 在該第一模式中,當該偵測電流未達該第一門檻值時,將該電壓控制單元所產生之該第一電流命令傳輸給該電流控制單元。 The power converter as claimed in claim 1, wherein the hysteresis control unit is more suitable for: In the first mode, when the detected current does not reach the first threshold, the first current command generated by the voltage control unit is transmitted to the current control unit. 如請求項1所述之電源轉換器,其中當該第一電流命令到達該第二門檻值時,該磁滯控制單元產生之該第二電流命令之幅值為常數,且該偵測電流維持常數。The power converter of claim 1, wherein when the first current command reaches the second threshold, the amplitude of the second current command generated by the hysteresis control unit is constant, and the detection current maintains constant. 如請求項1所述之電源轉換器,其中當該第一電流命令未達該第二門檻值時,該電壓控制單元持續更新該第一電流命令。The power converter of claim 1, wherein when the first current command does not reach the second threshold, the voltage control unit continues to update the first current command. 如請求項1所述之電源轉換器,其中該磁滯控制單元更適於: 當該第一電流命令未達該第二門檻值時,持續傳輸該第二電流命令給該電流控制單元。 The power converter as claimed in claim 1, wherein the hysteresis control unit is more suitable for: When the first current command does not reach the second threshold, the second current command is continuously transmitted to the current control unit. 如請求項1所述之電源轉換器,其中當該偵測電流介於該第一門檻值與一第三門檻值之間,該電壓控制單元產生常數之該第一電流命令。The power converter of claim 1, wherein when the detection current is between the first threshold and a third threshold, the voltage control unit generates the constant first current command. 如請求項4所述之電源轉換器,其中該磁滯控制單元更適於: 當該偵測電流到達一第三門檻值時,將該電壓控制單元所產生之該第一電流命令傳輸給該電流控制單元。 The power converter as claimed in claim 4, wherein the hysteresis control unit is more suitable for: When the detected current reaches a third threshold, the first current command generated by the voltage control unit is transmitted to the current control unit. 如請求項6所述之電源轉換器,其中當該偵測電流大於該第三門檻值時,該電壓控制單元持續更新該第一電流命令。The power converter of claim 6, wherein when the detection current is greater than the third threshold, the voltage control unit continues to update the first current command. 如請求項1所述之電源轉換器,該磁滯控制單元更適於: 在該第二模式中,當該偵測電流到達一第三門檻值時,解偶該電壓控制單元與該電流控制單元且產生該第二電流命令傳輸至該電流控制單元;以及 當該第一電流命令到達一第四門檻值時,耦接該電壓控制單元與該電流控制單元,且傳輸該電壓控制單元所產生之該第一電流命令給該電流控制單元,以將該電源轉換器從該第二模式切換至該第一模式。 As for the power converter described in claim 1, the hysteresis control unit is more suitable for: In the second mode, when the detection current reaches a third threshold, decouple the voltage control unit and the current control unit and generate the second current command to transmit to the current control unit; and When the first current command reaches a fourth threshold value, the voltage control unit and the current control unit are coupled, and the first current command generated by the voltage control unit is transmitted to the current control unit to convert the power supply The converter switches from the second mode to the first mode. 一種電源轉換方法,包括: 一電壓控制單元產生一第一電流命令; 在一第一模式中,當一偵測電流到達一第一門檻值時,一磁滯控制單元解偶該電壓控制單元與一電流控制單元且產生一第二電流命令傳輸至該電流控制單元; 當該第一電流命令到達一第二門檻值時,該磁滯控制單元耦接該電壓控制單元與該電流控制單元且傳輸該電壓控制單元所產生之該第一電流命令給該電流控制單元,以將該電源轉換器從該第一模式切換至一第二模式; 其中,該電流控制單元適於依據該第一電流命令及該第二電流命令,輸出一模式控制訊號。 A power conversion method including: a voltage control unit generates a first current command; In a first mode, when a detected current reaches a first threshold, a hysteresis control unit decouples the voltage control unit and a current control unit and generates a second current command to transmit to the current control unit; When the first current command reaches a second threshold, the hysteresis control unit couples the voltage control unit and the current control unit and transmits the first current command generated by the voltage control unit to the current control unit, to switch the power converter from the first mode to a second mode; Wherein, the current control unit is adapted to output a mode control signal according to the first current command and the second current command. 如請求項10所述之電源轉換方法,更包括: 在該第一模式中,當該偵測電流未達該第一門檻值時,該磁滯控制單元將該電壓控制單元所產生之該第一電流命令傳輸給該電流控制單元。 The power conversion method as described in claim 10 further includes: In the first mode, when the detected current does not reach the first threshold, the hysteresis control unit transmits the first current command generated by the voltage control unit to the current control unit. 如請求項10所述之電源轉換方法,更包括: 當該第一電流命令到達該第二門檻值時,該磁滯控制單元產生之該第二電流命令之幅值為常數,且該偵測電流維持常數。 The power conversion method as described in claim 10 further includes: When the first current command reaches the second threshold, the amplitude of the second current command generated by the hysteresis control unit is constant, and the detection current remains constant. 如請求項10所述之電源轉換方法,更包括: 當該第一電流命令未達該第二門檻值時,該電壓控制單元持續更新該第一電流命令。 The power conversion method as described in claim 10 further includes: When the first current command does not reach the second threshold, the voltage control unit continues to update the first current command. 如請求項10所述之電源轉換方法,更包括: 當該第一電流命令未達該第二門檻值時,該磁滯控制單元持續傳輸該第二電流命令給該電流控制單元。 The power conversion method as described in claim 10 further includes: When the first current command does not reach the second threshold, the hysteresis control unit continues to transmit the second current command to the current control unit. 如請求項10所述之電源轉換方法,更包括: 當該偵測電流介於該第一門檻值與一第三門檻值之間,該電壓控制單元產生常數之該第一電流命令。 The power conversion method as described in claim 10 further includes: When the detected current is between the first threshold and a third threshold, the voltage control unit generates a constant first current command. 如請求項13所述之電源轉換方法,更包括: 當該偵測電流到達一第三門檻值時,該磁滯控制單元將該電壓控制單元所產生之該第一電流命令傳輸給該電流控制單元。 The power conversion method as described in claim 13 further includes: When the detected current reaches a third threshold, the hysteresis control unit transmits the first current command generated by the voltage control unit to the current control unit. 如請求項15所述之電源轉換方法,更包括: 當該偵測電流大於該第三門檻值時,該電壓控制單元持續更新該第一電流命令。 The power conversion method as described in claim 15 further includes: When the detected current is greater than the third threshold, the voltage control unit continues to update the first current command. 如請求項10所述之電源轉換方法,更包括: 在該第二模式中,當該偵測電流到達一第三門檻值時,該磁滯控制單元解偶該電壓控制單元與該電流控制單元且產生該第二電流命令傳輸至該電流控制單元;以及 當該第一電流命令到達一第四門檻值時,該磁滯控制單元耦接該電壓控制單元與該電流控制單元且傳輸該電壓控制單元所產生之該第一電流命令給該電流控制單元,以將該電源轉換器從該第二模式切換至該第一模式。 The power conversion method as described in claim 10 further includes: In the second mode, when the detected current reaches a third threshold, the hysteresis control unit decouples the voltage control unit and the current control unit and generates the second current command to transmit to the current control unit; as well as When the first current command reaches a fourth threshold, the hysteresis control unit couples the voltage control unit and the current control unit and transmits the first current command generated by the voltage control unit to the current control unit, to switch the power converter from the second mode to the first mode.
TW111112812A 2021-05-13 2022-04-01 Power converter and power conversion method using the same TWI818495B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/736,835 US11990837B2 (en) 2021-05-13 2022-05-04 Power converter and power conversion method using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163187973P 2021-05-13 2021-05-13
US63/187,973 2021-05-13

Publications (2)

Publication Number Publication Date
TW202245389A TW202245389A (en) 2022-11-16
TWI818495B true TWI818495B (en) 2023-10-11

Family

ID=85793102

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111112812A TWI818495B (en) 2021-05-13 2022-04-01 Power converter and power conversion method using the same

Country Status (1)

Country Link
TW (1) TWI818495B (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW392998U (en) * 1998-06-16 2000-06-01 Iindustrial Technology Res Ins Control circuit for 3-phase DC/AC power converter
TW201134070A (en) * 2010-03-31 2011-10-01 Inergy Technology Inc Control circuit for detecting the output voltage of the power converter circuit and method thereof
US8232761B1 (en) * 2009-09-30 2012-07-31 The United States Of America As Represented By The Secretary Of The Navy Power conditioner for microbial fuel cells
CN104868701A (en) * 2014-02-21 2015-08-26 立锜科技股份有限公司 Hybrid compensating circuit of power supply converter
US20200099288A1 (en) * 2016-05-07 2020-03-26 Icergi Limited A method of controlling a current shaping circuit in a converter with power factor correction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW392998U (en) * 1998-06-16 2000-06-01 Iindustrial Technology Res Ins Control circuit for 3-phase DC/AC power converter
US8232761B1 (en) * 2009-09-30 2012-07-31 The United States Of America As Represented By The Secretary Of The Navy Power conditioner for microbial fuel cells
TW201134070A (en) * 2010-03-31 2011-10-01 Inergy Technology Inc Control circuit for detecting the output voltage of the power converter circuit and method thereof
CN104868701A (en) * 2014-02-21 2015-08-26 立锜科技股份有限公司 Hybrid compensating circuit of power supply converter
US20200099288A1 (en) * 2016-05-07 2020-03-26 Icergi Limited A method of controlling a current shaping circuit in a converter with power factor correction

Also Published As

Publication number Publication date
TW202245389A (en) 2022-11-16

Similar Documents

Publication Publication Date Title
JP4232785B2 (en) Hybrid vehicle
JP5470965B2 (en) Power supply device
WO2014132943A1 (en) Dc-ac conversion device and control circuit
JP5812040B2 (en) Power converter
WO2013129231A1 (en) Power supply apparatus
JP5929943B2 (en) Power conversion device and power conversion method
JP5478190B2 (en) DCDC converter system
JP2015119616A (en) Battery charging system and battery charging method
JP2014230369A (en) Power conversion device and power conversion method
WO2021254533A1 (en) Bidirectional dc/dc converter and energy storage system
JP6526800B2 (en) Method of controlling a battery charger with a DC-DC series resonant converter
JP2010068611A (en) Controller of converter
US10601342B2 (en) Power conversion device
TWI818495B (en) Power converter and power conversion method using the same
JP2009207328A (en) Power device
US9871402B2 (en) Electric power conversion apparatus and method of controlling the same
JP6283888B2 (en) DC-DC converter
US8704496B2 (en) Charge control system
US11990837B2 (en) Power converter and power conversion method using the same
JP2013070547A (en) Power conversion device
CN216851764U (en) Energy storage type variable frequency transmission device
WO2022226980A1 (en) Charger, soft start method, electric vehicle, and charging system
CN115694167A (en) Multi-mode voltage conversion circuit and control thereof
WO2021227407A1 (en) Direct-current electric energy generation circuit for new energy application
JP2015027203A (en) Power conditioner, power conditioner system, and method of controlling power conditioner