TWI818191B - Modified cellulose nanofiber-nanosilver wire conductive film and its manufacturing method and photovoltaic device containing the same - Google Patents

Modified cellulose nanofiber-nanosilver wire conductive film and its manufacturing method and photovoltaic device containing the same Download PDF

Info

Publication number
TWI818191B
TWI818191B TW109128117A TW109128117A TWI818191B TW I818191 B TWI818191 B TW I818191B TW 109128117 A TW109128117 A TW 109128117A TW 109128117 A TW109128117 A TW 109128117A TW I818191 B TWI818191 B TW I818191B
Authority
TW
Taiwan
Prior art keywords
agnws
modified cellulose
film
tocn
cellulose nanofiber
Prior art date
Application number
TW109128117A
Other languages
Chinese (zh)
Other versions
TW202209353A (en
Inventor
林柏辰
闕居振
陳文章
Original Assignee
國立臺灣大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立臺灣大學 filed Critical 國立臺灣大學
Priority to TW109128117A priority Critical patent/TWI818191B/en
Publication of TW202209353A publication Critical patent/TW202209353A/en
Application granted granted Critical
Publication of TWI818191B publication Critical patent/TWI818191B/en

Links

Images

Abstract

The present invention relates to a modified cellulose nanofiber-nanosilver wire conductive film and its manufacturing method and photovoltaic device containing the same. The modified cellulose nanofiber-nanosilver wire conductive film has low coefficient of thermal expansion, excellent transparency, and maintaining certain sheet resistance after many times of bending. The photovoltaic device comprises the modified cellulose nanofiber-nanosilver wire conductive film as conductive film, providing bendability and great power conversion efficiency.

Description

改質纖維素奈米纖維-奈米銀線導電薄膜及其製造方法及含其之光伏裝置Modified cellulose nanofiber-nanometer silver conductive film and its manufacturing method and photovoltaic device containing the same

本發明係關於一種改質纖維素奈米纖維-奈米銀線導電薄膜之製造方法及含其之光伏裝置,本發明之光伏裝置具有可彎折性。The invention relates to a manufacturing method of modified cellulose nanofiber-nanometer silver conductive film and a photovoltaic device containing the same. The photovoltaic device of the invention is bendable.

為因應使用者需求,許多新商品已發展為曲面或可彎折性的光電產品,例如曲面螢幕、折疊式智慧型手機等。隨著此潮流趨勢,光伏供電科技也開始發展可彎折性有機光伏(flexible organic photovoltaics, OPVs)。除具備可彎折性之優勢以外,可彎折性有機光伏輕量及可列印性,同時,易於與布料或生物相容基質整合,極具有發展性及市場價值。In response to user needs, many new products have been developed into curved or bendable optoelectronic products, such as curved screens, foldable smartphones, etc. Following this trend, photovoltaic power supply technology has also begun to develop flexible organic photovoltaics (OPVs). In addition to the advantages of being flexible, flexible organic photovoltaics are lightweight and printable. At the same time, they are easy to integrate with fabrics or biocompatible substrates, making them extremely promising and marketable.

目前效能最好的可彎折性有機光伏係使用塑料作為可彎折性基板,例如聚對苯二甲酸(PET)及聚萘二甲酸乙二醇酯(PEN)。過去研究發現,使用網格狀聚對苯二甲酸/奈米銀線(AgNWs)作為可彎折性基板時,可彎折性有機光伏的功率轉換效率(power conversion efficiency, PCE)可高於13%,而可彎折性有機光伏焊接至聚對苯二甲酸(PET)時,功率轉換效率可再提高至15%。然而,塑料可彎折性基板係聚合物基板,熱膨脹係數高,在大範圍的溫度變化下,容易有嚴重膨脹或收縮,進而產生裂縫並降低功率轉換效率。Currently, the most efficient flexible organic photovoltaics use plastics as flexible substrates, such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN). Past studies have found that when mesh-shaped polyterephthalate/silver nanowires (AgNWs) are used as the bendable substrate, the power conversion efficiency (PCE) of bendable organic photovoltaics can be higher than 13 %, and when bendable organic photovoltaics are welded to polyterephthalate (PET), the power conversion efficiency can be further increased to 15%. However, the plastic bendable substrate is a polymer substrate with a high thermal expansion coefficient. It is prone to severe expansion or contraction under a wide range of temperature changes, resulting in cracks and reduced power conversion efficiency.

鑒於聚合物基板的缺陷,應開發出更利於可彎折性有機光伏使用的可彎折性基板或可彎折性導電基板,材料性質上需具低熱膨脹係數,以因應使用時,可彎折性有機光伏能承受大範圍溫度變化,不易膨脹或收縮,降低功率轉換效率。In view of the shortcomings of polymer substrates, bendable substrates or bendable conductive substrates that are more conducive to the use of bendable organic photovoltaics should be developed. The material properties need to have a low thermal expansion coefficient so that they can be bent during use. Sexual organic photovoltaics can withstand a wide range of temperature changes and are not prone to expansion or contraction, which reduces power conversion efficiency.

是以,本發明之目的為提供一種改質纖維素奈米纖維-奈米銀線導電薄膜之製造方法,包含:(a)提供一基板;(b)噴塗一奈米銀線溶液至該基板的表面,經加熱後形成一奈米銀線導電層;(c)使一改質纖維素奈米纖維溶液分布於該奈米銀線導電層的表面,經加熱後形成一改質纖維素奈米纖維層-奈米銀線導電層;(d)將該改質纖維素奈米纖維層-奈米銀線導電層由該基板的表面剝離,獲得該改質纖維素奈米纖維-奈米銀線導電薄膜。Therefore, the object of the present invention is to provide a method for manufacturing a modified cellulose nanofiber-silver nanowire conductive film, which includes: (a) providing a substrate; (b) spraying a nanosilver wire solution onto the substrate The surface of the silver nanowire conductive layer is heated to form a silver nanowire conductive layer; (c) a modified cellulose nanofiber solution is distributed on the surface of the silver nanowire conductive layer, and a modified cellulose nanofiber solution is formed after heating. Nanofiber layer - nanosilver wire conductive layer; (d) peeling off the modified cellulose nanofiber layer - nanosilver wire conductive layer from the surface of the substrate to obtain the modified cellulose nanofiber - nanometer Silver wire conductive film.

於較佳實施例中,該製造方法進一步包含:(e)熱壓該改質纖維素奈米纖維-奈米銀線導電薄膜。In a preferred embodiment, the manufacturing method further includes: (e) hot pressing the modified cellulose nanofiber-silver nanowire conductive film.

於較佳實施例中,該基板為矽基板,且其表面經過矽烷化合物處理。In a preferred embodiment, the substrate is a silicon substrate, and its surface is treated with a silane compound.

於較佳實施例中,該矽烷化合物為十八烷基三氯矽烷(octadecyltrichlorosilane;ODTS)。In a preferred embodiment, the silane compound is octadecyltrichlorosilane (ODTS).

於較佳實施例中,該改質纖維素奈米纖維溶液中的改質纖維素奈米纖維係TEMPO氧化纖維素奈米纖維(TOCN)。In a preferred embodiment, the modified cellulose nanofibers in the modified cellulose nanofiber solution are TEMPO oxidized cellulose nanofibers (TOCN).

於較佳實施例中,該奈米銀線溶液包含奈米銀線及有機溶劑,該奈米銀線及有機溶劑的比例為1:10~1:15(v/v)。In a preferred embodiment, the silver nanowire solution includes silver nanowires and an organic solvent, and the ratio of the silver nanowires to the organic solvent is 1:10~1:15 (v/v).

於較佳實施例中,該奈米銀線及有機溶劑的比例為1:12.5 (v/v)。In a preferred embodiment, the ratio of the silver nanowires to the organic solvent is 1:12.5 (v/v).

於較佳實施例中,該有機溶劑為異丙醇。In a preferred embodiment, the organic solvent is isopropyl alcohol.

本發明另一目的為提供一種改質纖維素奈米纖維-奈米銀線導電薄膜,其係使用如本發明之改質纖維素奈米纖維-奈米銀線導電薄膜之製造方法所獲得。Another object of the present invention is to provide a modified cellulose nanofiber-silver nanowire conductive film, which is obtained by using the manufacturing method of the modified cellulose nanofiber-silver nanowire conductive film of the present invention.

本發明之另一目的為提供一種光伏裝置,依序包含一第一電極、一電子傳輸層、一活性層、一電洞傳輸層及一第二電極;其中,該第一電極為本發明之改質纖維素奈米纖維-奈米銀線導電薄膜。Another object of the present invention is to provide a photovoltaic device, which sequentially includes a first electrode, an electron transport layer, an active layer, a hole transport layer and a second electrode; wherein the first electrode is the Modified cellulose nanofiber-nano silver wire conductive film.

相較於習知技術,本發明之製造方法可以將奈米銀線牢固地限制於基材表面上,並提供強大的附著力,避免熱誘導的聚集,使能與後續成膜的改質纖維素奈米纖維層完整附著,不易分離。本發明之製造方法所獲得之改質纖維素奈米纖維-奈米銀線導電薄膜具有低熱膨脹係數,良好的光穿透性,不易散射,經過多次彎折後仍維持一定的薄膜電阻。比起其他使用生物相容材料作為導電薄膜的光伏裝置,本發明之光伏裝置係使用該改質纖維素奈米纖維-奈米銀線導電薄膜作為導電薄膜,具有可彎折性及良好的功率轉換效率。Compared with the conventional technology, the manufacturing method of the present invention can firmly confine the silver nanowires to the surface of the substrate, provide strong adhesion, avoid heat-induced aggregation, and enable subsequent film formation of modified fibers. The plain nanofiber layer is completely attached and not easy to separate. The modified cellulose nanofiber-nanometer silver conductive film obtained by the manufacturing method of the present invention has a low thermal expansion coefficient, good light penetration, is not easy to scatter, and maintains a certain film resistance after repeated bending. Compared with other photovoltaic devices that use biocompatible materials as conductive films, the photovoltaic device of the present invention uses the modified cellulose nanofiber-nanometer silver conductive film as the conductive film, which has bendability and good power. conversion efficiency.

以下實施方式不應視為過度地限制本發明。本發明所屬技術領域中具有通常知識者可在不背離本發明之精神或範疇的情況下對本文所討論之實施例進行修改及變化,而仍屬於本發明之範圍。以下,將配合圖式,說明本發明之自動化萃取核酸之機台的整體結構及相關使用流程。The following embodiments should not be considered as unduly limiting the present invention. Those skilled in the art may make modifications and changes to the embodiments discussed herein without departing from the spirit or scope of the invention, while still falling within the scope of the invention. Below, the overall structure and related usage procedures of the automatic nucleic acid extraction machine of the present invention will be explained with reference to the drawings.

請參閱圖1,係本發明之改質纖維素奈米纖維-奈米銀線導電薄膜之製造方法的流程示意圖。Please refer to Figure 1, which is a schematic flow chart of the manufacturing method of the modified cellulose nanofiber-silver nanowire conductive film of the present invention.

本發明之改質纖維素奈米纖維-奈米銀線導電薄膜之製造方法,包含:(a)提供一基板S,於較佳實施態樣中,該基板S具有改質表面B;(b)噴塗一奈米銀線溶液1至該基板S的改質表面B(如圖1所示,噴塗噴嘴SP噴塗該奈米銀線溶液1至該改質表面B),經加熱後形成一奈米銀線導電層1’;(c)使一改質纖維素奈米纖維溶液2分布於該奈米銀線導電層1’上,經加熱後形成一改質纖維素奈米纖維層-奈米銀線導電層3’;(d)將該改質纖維素奈米纖維層-奈米銀線導電層3’由該基板S的表面剝離,獲得該改質纖維素奈米纖維-奈米銀線導電薄膜3;進一步地,(e)熱壓該改質纖維素奈米纖維-奈米銀線導電薄膜3(如圖1所示,使用熱壓機HP熱壓該改質纖維素奈米纖維-奈米銀線導電薄膜3)。The manufacturing method of the modified cellulose nanofiber-nanometer silver conductive film of the present invention includes: (a) providing a substrate S. In a preferred embodiment, the substrate S has a modified surface B; (b) ) Spray a nanosilver wire solution 1 to the modified surface B of the substrate S (as shown in Figure 1, the spray nozzle SP sprays the nanosilver wire solution 1 to the modified surface B), and forms a nanosilver wire solution 1 after heating. Silver nanowire conductive layer 1'; (c) Distribute a modified cellulose nanofiber solution 2 on the silver nanowire conductive layer 1', and form a modified cellulose nanofiber layer-nano after heating. rice silver wire conductive layer 3'; (d) peel off the modified cellulose nanofiber layer-nanometer silver wire conductive layer 3' from the surface of the substrate S to obtain the modified cellulose nanofiber-nano Silver wire conductive film 3; further, (e) hot pressing the modified cellulose nanofiber-nano silver wire conductive film 3 (as shown in Figure 1, use a hot press HP to hot press the modified cellulose nanofiber Rice fiber-nanometer silver wire conductive film 3).

所述的基板S可為矽基板,其表面改質可為使用矽烷化合物進行,以利於後續膜之剝離。該矽烷化合物可為烷基氯矽烷類、烷基烷氧基矽烷類、氟化烷基氯矽烷類或氟化烷基烷氧基矽烷類等,具體例如十八烷基三氯矽烷、六甲基二矽氮烷、辛基三氯矽烷、苯乙基三氯矽烷、正十八烷基三甲氧基矽烷、正十八烷基三乙氧基矽烷、正十八烷基三(正丙基)氧基矽烷、正十八烷基三(異丙基)氧基矽烷、三乙氧基胺基丙基矽烷、N[(3-三乙氧基矽基)丙基]乙二胺、3-縮水甘油基三乙氧基丙基醚矽烷、烯丙基三甲氧基矽烷或三烷氧基(異氰酸基烷基)矽烷,且本發明並不限於此等;其中,以十八烷基三氯矽烷為較佳。於較佳實施態樣中,步驟(a)之基板S係先經預熱,再行步驟(b)。The substrate S may be a silicon substrate, and its surface may be modified using a silane compound to facilitate subsequent film peeling. The silane compound may be an alkyl chloride silanes, an alkyl alkoxy silanes, a fluorinated alkyl chloride silanes or a fluorinated alkyl alkoxy silanes, etc., such as octadecyltrichlorosilane, hexamethyl disilazane, octyltrichlorosilane, phenethyltrichlorosilane, n-octadecyltrimethoxysilane, n-octadecyltriethoxysilane, n-octadecyltri(n-propyl )oxysilane, n-octadecyltri(isopropyl)oxysilane, triethoxyaminopropylsilane, N[(3-triethoxysilyl)propyl]ethylenediamine, 3 - Glycidyl triethoxypropyl ether silane, allyl trimethoxy silane or trialkoxy (isocyanatoalkyl) silane, and the present invention is not limited to these; wherein, octadecane Trichlorosilane is preferred. In a preferred embodiment, the substrate S in step (a) is first preheated, and then step (b) is performed.

該步驟(b)中,使用噴塗完成的奈米銀線導電層1’, 其奈米銀線具有良好的覆蓋率,可均勻性分布而無聚集體,能與後續成膜的改質纖維素奈米纖維層完整附著,不易分離,利於本發明之改質纖維素奈米纖維-奈米銀線導電薄膜3作為可彎折性之導電基板或導電薄膜時,承受多次彎折,不易有膜層分離而損害光伏性質。該步驟(b)中,該加熱係在溫度約90~120°C,例如90°C、95°C、100°C、105°C、110°C、115°C或120°C,且本發明並不限於此等;其中,以100°C為較佳。In this step (b), the sprayed nanosilver wire conductive layer 1' is used. The nanosilver wires have good coverage, can be uniformly distributed without aggregation, and can be combined with the modified cellulose that is subsequently formed into a film. The nanofiber layer is completely attached and is not easy to separate, which is conducive to the modified cellulose nanofiber-nanometer silver conductive film 3 of the present invention being used as a bendable conductive substrate or conductive film to withstand multiple bends and is not prone to damage. Separation of film layers damages photovoltaic properties. In this step (b), the heating system is at a temperature of about 90°C to 120°C, such as 90°C, 95°C, 100°C, 105°C, 110°C, 115°C or 120°C, and the The invention is not limited to this; among them, 100°C is preferred.

該步驟(c)中,該改質纖維素奈米纖維溶液2的分布方式可為塗佈(例如噴塗或旋轉塗佈)、或將該改質纖維素奈米纖維溶液2傾倒至該奈米銀線導電層1’後均勻分布。該加熱係在溫度約70~100°C,例如70°C、75°C、80°C、85°C、90°C、95°C或100°C等,且本發明並不限於此等;其中,以80°C為較佳。經加熱後的該改質纖維素奈米纖維層-奈米銀線導電層3’會有殘留水分,可使用低於該加熱溫度的溫度(例如60°C或以下)進行退火處理,使殘留水分完全蒸發。In step (c), the modified cellulose nanofiber solution 2 may be distributed by coating (such as spraying or spin coating), or by pouring the modified cellulose nanofiber solution 2 onto the nanofiber. Silver wires are evenly distributed behind the conductive layer 1'. The heating system is at a temperature of about 70°C to 100°C, such as 70°C, 75°C, 80°C, 85°C, 90°C, 95°C or 100°C, and the invention is not limited thereto. ; Among them, 80°C is preferred. The heated modified cellulose nanofiber layer-nanometer silver conductive layer 3' will have residual moisture, and can be annealed at a temperature lower than the heating temperature (for example, 60°C or below) to eliminate the remaining moisture. The water evaporates completely.

本發明之較佳實施態樣之該步驟(e)中,該熱壓的壓力約700~800psi,溫度約50~80°C;較佳為壓力約730~780psi,溫度約55~75°C;更佳為壓力約750psi,溫度約60°C。該熱壓的時間約40~80分鐘,較佳為60分鐘。經過熱壓後,薄膜的光滑表面可更有利於後續的設備製造,因較光滑的表面可避免短路。In the step (e) of the preferred embodiment of the present invention, the pressure of the hot pressing is about 700~800 psi and the temperature is about 50~80°C; preferably, the pressure is about 730~780 psi and the temperature is about 55~75°C. ; The preferred pressure is about 750psi and the temperature is about 60°C. The hot pressing time is about 40 to 80 minutes, preferably 60 minutes. After hot pressing, the smooth surface of the film can be more conducive to subsequent device manufacturing, because the smoother surface can avoid short circuits.

所述的奈米銀線具有直徑55~75µm及寬度20~40µm,直徑的具體例如55µm、60µm、65µm、70µm或75µm,寬度的具體例如20µm、25µm、30µm、35µm或40µm,且本發明並不限於此等。The silver nanowire has a diameter of 55~75µm and a width of 20~40µm. The specific diameter is 55µm, 60µm, 65µm, 70µm or 75µm, the specific width is 20µm, 25µm, 30µm, 35µm or 40µm, and the present invention does not include Not limited to this.

所述的奈米銀線溶液的溶劑為水或有機溶劑,例如醇類,具體例如異丙醇、甲醇或乙醇等,且本發明並不限於此等;其中,以異丙醇為較佳。該奈米銀線及該有機溶劑的比例為1:10~1:15(v/v),例如1:10(v/v)、1:11(v/v)、1:12(v/v)、1:12.5(v/v)、1:13(v/v)、1:13(v/v)、1:14(v/v)或1:15(v/v),且本發明並不限於此等;其中,以1:12.5(v/v)為較佳。The solvent of the silver nanowire solution is water or an organic solvent, such as alcohols, specifically isopropyl alcohol, methanol or ethanol, etc., and the present invention is not limited thereto; among them, isopropyl alcohol is preferred. The ratio of the silver nanowires to the organic solvent is 1:10~1:15(v/v), such as 1:10(v/v), 1:11(v/v), 1:12(v/ v), 1:12.5(v/v), 1:13(v/v), 1:13(v/v), 1:14(v/v) or 1:15(v/v), and this The invention is not limited to this; among them, 1:12.5 (v/v) is preferred.

所述的改質纖維素奈米纖維溶液2可使用水作為溶劑,濃度約0.1~30wt%,較佳為0.5wt%。其中,所述的改質纖維素奈米纖維可為TEMPO氧化纖維素奈米纖維(TOCN)。TEMPO氧化纖維素奈米纖維係使用2,2,6,6-四甲基哌啶-1-氧基 (TEMPO)氧化木材紙漿等天然纖維素,使纖維更微細化,並具有高結晶度及高縱橫比。The modified cellulose nanofiber solution 2 can use water as a solvent, with a concentration of about 0.1~30wt%, preferably 0.5wt%. Wherein, the modified cellulose nanofibers can be TEMPO oxidized cellulose nanofibers (TOCN). TEMPO oxidized cellulose nanofibers use 2,2,6,6-tetramethylpiperidin-1-oxy (TEMPO) to oxidize natural cellulose such as wood pulp to make the fibers more finely divided and have high crystallinity and High aspect ratio.

本發明之製造方法所獲得之改質纖維素奈米纖維-奈米銀線導電薄膜3由於使用改質纖維素奈米纖維形成薄膜層,比起未改質纖維素奈米纖維,改質纖維素奈米纖維的長度及寬度都相對較小,與奈米銀線有較佳的分散性及同質性,能緊密與奈米銀線纏繞,利於混成(hybrid),使獲致的改質纖維素奈米纖維層及奈米銀線導電薄膜層1’之間能緊密不鬆散,不易分離,進而,使該改質纖維素奈米纖維-奈米銀線導電薄膜3能具有良好的光穿透性,不會有嚴重散射,此外,經過多次彎曲仍可維持一定的薄膜電阻。另外,該改質纖維素奈米纖維-奈米銀線導電薄膜3的熱膨脹係數低於5 (10-6 /K),明顯低於習知的聚合性基板(熱膨脹係數約20 (10-6 /K))。因此,本發明之製造方法所獲得之改質纖維素奈米纖維-奈米銀線導電薄膜3利於作為可彎折性光伏裝置的導電薄膜或導電基板。The modified cellulose nanofiber-nanometer silver conductive film 3 obtained by the manufacturing method of the present invention uses the modified cellulose nanofiber to form the film layer. Compared with the unmodified cellulose nanofiber, the modified cellulose nanofiber has a higher The length and width of the plain nanofibers are relatively small, and they have better dispersion and homogeneity with the silver nanowires. They can be tightly entangled with the silver nanowires, which is conducive to hybridization and the resulting modified cellulose. The nanofiber layer and the nanosilver wire conductive film layer 1' can be tightly connected, not loose, and difficult to separate, thereby enabling the modified cellulose nanofiber-nanometer silver conductive film 3 to have good light penetration. It has good properties and will not cause serious scattering. In addition, it can maintain a certain sheet resistance after repeated bending. In addition, the thermal expansion coefficient of the modified cellulose nanofiber-nanosilver conductive film 3 is lower than 5 (10 -6 /K), which is significantly lower than the conventional polymeric substrate (the thermal expansion coefficient is about 20 (10 -6 /K)). Therefore, the modified cellulose nanofiber-silver nanowire conductive film 3 obtained by the manufacturing method of the present invention is advantageous as a conductive film or conductive substrate for a bendable photovoltaic device.

請參閱圖2,係本發明之光伏裝置的剖視圖。Please refer to Figure 2, which is a cross-sectional view of the photovoltaic device of the present invention.

本發明之光伏裝置依序包含一本發明之改質纖維素奈米纖維-奈米銀線導電薄膜3之第一電極、一電子傳輸層4、一活性層5、一電洞傳輸層6及一第二電極7。The photovoltaic device of the present invention sequentially includes a first electrode of the modified cellulose nanofiber-nanometer silver wire conductive film 3 of the present invention, an electron transport layer 4, an active layer 5, a hole transport layer 6 and a second electrode 7.

所述的電子傳輸層4可為n型半導體金屬氧化物,例如ZnO、TiO2 、SnO2 、WO3 、Fe2 O3 、SnO3 、BaTiO3 及BaSnO3 ,且本發明並不限於此等;其中,以ZnO為較佳。The electron transport layer 4 can be an n-type semiconductor metal oxide, such as ZnO, TiO 2 , SnO 2 , WO 3 , Fe 2 O 3 , SnO 3 , BaTiO 3 and BaSnO 3 , and the invention is not limited thereto. ; Among them, ZnO is preferred.

所述的活性層5可為光伏通用的活性層材料,例如PBDB-T-2F、PTB7-Th、PCBM、IT-4F、Y6,且本發明並不限於此等;較佳為非富勒烯衍生物。The active layer 5 can be a general photovoltaic active layer material, such as PBDB-T-2F, PTB7-Th, PCBM, IT-4F, Y6, and the invention is not limited to these; preferably non-fullerene derivative.

所述的電洞傳輸層6可為p型半導體金屬化合物,例如MoO3 、V2 O5 、VO3 、WO3 、CuO、CuO2 、NiO、NiO2 、ReO3 、Re2 O7 、AuNP、AgNP、石墨烯層或碳奈米管層,且本發明並不限於此等;其中,以MoO3 為較佳。The hole transport layer 6 can be a p-type semiconductor metal compound, such as MoO 3 , V 2 O 5 , VO 3 , WO 3 , CuO, CuO 2 , NiO, NiO 2 , ReO 3 , Re 2 O 7 , AuNP , AgNP, graphene layer or carbon nanotube layer, and the present invention is not limited to these; among them, MoO 3 is preferred.

所述的第二電極7可為金屬,例如銀、鎂、鈣、鈉、鉀、鈦、銦、釔、鋰、釓、鋁、錫、鉛或其組合,且本發明並不限於此等;其中,以銀為較佳。[ 具體實施例 ] The second electrode 7 may be metal, such as silver, magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, yttrium, aluminum, tin, lead or combinations thereof, and the invention is not limited thereto; Among them, silver is preferred. [ Specific embodiments ]

在下文中,將進一步以詳細說明與實施例描述本發明。然而,應理解這些實施例僅用於幫助可更加容易理解本發明而非用於限制本發明之範圍。In the following, the present invention will be further described with detailed description and examples. However, it should be understood that these examples are only used to help make the present invention easier to understand and are not intended to limit the scope of the present invention.

實施例Example 1.1. 改質纖維素modified cellulose 奈米纖維nanofiber -- 奈米銀線導電膜Nanosilver wire conductive film (TOCN/AgNWs(TOCN/AgNWs membrane )) ( 使用use 1:10(v/v)1:10(v/v) 奈米銀線溶液製備奈米銀線導電層)Nano-silver wire solution to prepare nano-silver wire conductive layer)

使用異丙醇稀釋含有奈米銀線的異丙醇溶液(奈米銀線的平均直徑為55~75µm,長度為20~40µm),以配製奈米銀線及異丙醇比例為1:10(v/v)的奈米銀線溶液,超音波震盪15分鐘。使用水及TEMPO氧化纖維素奈米纖維(TOCN)配製濃度為0.5wt%的改質纖維素奈米纖維溶液,超音波震盪30分鐘,以均勻混合。使用十八烷基三氯矽烷(ODTS)表面處理矽基板,隨後,預熱該矽基板,使其表面達到100°C。噴塗該奈米銀線溶液至該矽基板表面(面積大小:1.5×2.5 cm2 )上,以形成奈米銀線導電層。倒入該改質纖維素奈米纖維溶液至該奈米銀線導電層,使該改質纖維素奈米纖維溶液分布在該奈米銀線導電層的表面,在80°C下加熱4.5小時後,以60°C退火處理使水分蒸發,即獲得改質纖維素奈米纖維層-奈米銀線導電層。將該改質纖維素奈米纖維層-奈米銀線導電層由該矽基板表面剝離,即獲得TOCN/AgNWs膜。最後,該將TOCN/AgNWs膜在60°C下熱壓30分鐘。Use isopropyl alcohol to dilute the isopropyl alcohol solution containing silver nanowires (the average diameter of silver nanowires is 55~75µm and the length is 20~40µm) to prepare a silver nanowire and isopropyl alcohol ratio of 1:10 (v/v) silver nanowire solution, ultrasonic oscillation for 15 minutes. Use water and TEMPO oxidized cellulose nanofibers (TOCN) to prepare a modified cellulose nanofiber solution with a concentration of 0.5wt%, and ultrasonically oscillate for 30 minutes to mix evenly. The silicon substrate was surface-treated with octadecyltrichlorosilane (ODTS), and then the silicon substrate was preheated so that its surface reached 100°C. Spray the silver nanowire solution onto the surface of the silicon substrate (area size: 1.5×2.5 cm 2 ) to form a conductive layer of silver nanowires. Pour the modified cellulose nanofiber solution onto the silver nanowire conductive layer, distribute the modified cellulose nanofiber solution on the surface of the silver nanowire conductive layer, and heat at 80°C for 4.5 hours. Afterwards, the water is evaporated by annealing at 60°C to obtain the modified cellulose nanofiber layer-silver nanowire conductive layer. The modified cellulose nanofiber layer-silver nanowire conductive layer is peeled off from the surface of the silicon substrate to obtain a TOCN/AgNWs film. Finally, the TOCN/AgNWs film was hot-pressed at 60°C for 30 minutes.

實施例Example 2. TOCN/AgNWs2.TOCN/AgNWs membrane ( 使用use 1:12.5(v/v)1:12.5(v/v) 奈米銀線溶液製備奈米銀線導電層)Nano-silver wire solution to prepare nano-silver wire conductive layer)

實施例2 TOCN/AgNWs膜的製備過程與實施例1 TOCN/AgNWs膜相同,僅有差異使用奈米銀線及異丙醇比例為1:12.5(v/v)的奈米銀線溶液。The preparation process of the TOCN/AgNWs film in Example 2 is the same as that of the TOCN/AgNWs film in Example 1, except that the silver nanowire and isopropyl alcohol solution is used with a ratio of 1:12.5 (v/v).

實施例Example 3. TOCN/AgNWs3.TOCN/AgNWs 膜(使用membrane (use 1:15(v/v)1:15(v/v) 奈米銀線溶液製備奈米銀線導電層)Nano-silver wire solution to prepare nano-silver wire conductive layer)

實施例3 TOCN/AgNWs膜的製備過程與實施例1 TOCN/AgNWs膜相同,僅有差異在於使用奈米銀線及異丙醇比例為1:15(v/v)的奈米銀線溶液。The preparation process of the TOCN/AgNWs film in Example 3 is the same as that of the TOCN/AgNWs film in Example 1. The only difference is that a nanosilver wire solution with a ratio of isopropyl alcohol to 1:15 (v/v) is used.

比較例Comparative example 1. TOCN/AgNWs1.TOCN/AgNWs 膜;使用membrane; use 1:12.5(v/v)1:12.5(v/v) 奈米銀線溶液及滴落塗佈法Nanosilver wire solution and drop coating method (drop coating)(drop coating) 製備奈米銀線導電層Preparation of nanosilver wire conductive layer

比較例1 TOCN/AgNWs膜的製備過程與實施例1 TOCN/AgNWs膜相同,差異在於奈米銀線溶液的奈米銀線及異丙醇比例為1:12.5(v/v),且奈米銀線溶液係使用滴落塗佈法塗佈在矽基板的表面。The preparation process of Comparative Example 1 TOCN/AgNWs film is the same as that of Example 1 TOCN/AgNWs film. The difference is that the ratio of nanosilver wires and isopropyl alcohol in the nanosilver wire solution is 1:12.5 (v/v), and the nanosilver wire solution has The silver wire solution is coated on the surface of the silicon substrate using the drop coating method.

比較例Comparative example 2.2. 纖維素奈米纖維cellulose nanofibers -- 奈米銀線導電膜Nanosilver wire conductive film (CNF/AgNWs(CNF/AgNWs membrane ))

比較例2 CNF/AgNWs膜的製備過程與實施例1 TOCN/AgNWs膜相同,差異在係使用0.5wt%纖維素奈米纖維水溶液取代0.5wt%TEMPO氧化纖維素奈米纖維水溶液,以製造CNF/AgNWs膜。The preparation process of Comparative Example 2 CNF/AgNWs membrane is the same as that of Example 1 TOCN/AgNWs membrane. The difference is that 0.5wt% cellulose nanofiber aqueous solution is used instead of 0.5wt% TEMPO oxidized cellulose nanofiber aqueous solution to produce CNF/ AgNWs film.

I.I. 奈米銀線溶液濃度及塗佈方式對The concentration of silver nanowire solution and the coating method have different effects on TOCN/AgNWsTOCN/AgNWs 膜之影響membrane influence

使用掃描電子顯微鏡(SEM)觀察實施例1至3及比較例1的TOCN/AgNWs膜,如圖3(a)至(c)所示(圖3(a)至(c)依序為實施例1至3),實施例1至3 TOCN/AgNWs膜的奈米銀線導電層係使用噴塗所完成,其等奈米銀線分布均勻且無聚集體,特別係實施例2 TOCN/AgNWs膜的奈米銀線導電層具有最高的覆蓋率及均勻性。相較之下,如圖3(d)所示,比較例1 TOCN/AgNWs膜的奈米銀線導電層係使用滴落塗佈所完成,其奈米銀線分布不均並糾結成團,有聚集體。The TOCN/AgNWs films of Examples 1 to 3 and Comparative Example 1 were observed using a scanning electron microscope (SEM), as shown in Figures 3(a) to (c) (Figures 3(a) to (c) are examples in sequence. 1 to 3), the nanosilver wire conductive layer of the TOCN/AgNWs film in Examples 1 to 3 was completed by spraying, and the nanosilver wires were evenly distributed and without aggregation, especially the TOCN/AgNWs film in Example 2. The silver nanowire conductive layer has the highest coverage and uniformity. In comparison, as shown in Figure 3(d), the silver nanowire conductive layer of the TOCN/AgNWs film in Comparative Example 1 was completed by drop coating, and the silver nanowires were unevenly distributed and tangled into groups. There are aggregates.

II. TOCN/AgNWsII. TOCN/AgNWs 膜、membrane, CNF/AgNWsCNF/AgNWs 膜及membrane and PEN/ITOPEN/ITO 表面粗糙度及膜層間差異Surface roughness and differences between film layers

使用掃描電子顯微鏡(SEM)及原子力顯微鏡(AFM)觀察實施例2 TOCN/AgNWs膜、比較例2 CNF/AgNWs膜及市售的聚萘二甲酸乙二醇酯/氧化銦錫基材(PEN/ITO)的表面及剖面。如圖4(a)所示,實施例2 TOCN/AgNWs膜的表面光滑均勻,且無聚集體,而比較例2 CNF/AgNWs膜並不均勻且多處有聚集體。如圖4(b)所示,實施例2 TOCN/AgNWs膜的膜層係逐層堆疊的緊湊結構,與市售的PEN/ITO相似,而比較例2 CNF/AgNWs膜的膜層之間為鬆散不僅密。如圖4(c)所示,實施例2 TOCN/AgNWs膜的表面襯底比較光滑,經量測,實施例2 TOCN/AgNWs膜、比較例2 CNF/AgNWs膜及市售的PEN/ITO的表面均方根粗糙度(RMS)分別為28.0nm、35.5nm及2.39nm。造成實施例2 TOCN/AgNWs膜及比較例2 CNF/AgNWs膜之間的差異原因在於,比起未改質的纖維素奈米纖維(CNF),改質纖維素奈米纖維(即TOCN)由於長度及寬度縮小,成膜時,較利於與奈米銀線導電層的奈米銀線混成(hybrid),具有較佳的分散性及同質性,能緊密纏繞,使獲致的膜層不易有聚集體。Scanning electron microscope (SEM) and atomic force microscope (AFM) were used to observe the TOCN/AgNWs film of Example 2, the CNF/AgNWs film of Comparative Example 2 and the commercially available polyethylene naphthalate/indium tin oxide substrate (PEN/ ITO) surface and cross section. As shown in Figure 4(a), the surface of the TOCN/AgNWs film in Example 2 is smooth and uniform without aggregates, while the CNF/AgNWs film in Comparative Example 2 is not uniform and has aggregates in many places. As shown in Figure 4(b), the film layers of the TOCN/AgNWs film in Example 2 have a compact structure stacked layer by layer, which is similar to commercially available PEN/ITO, while the layers of the CNF/AgNWs film in Comparative Example 2 are Looseness is not just denseness. As shown in Figure 4(c), the surface substrate of the TOCN/AgNWs film in Example 2 is relatively smooth. After measurement, the TOCN/AgNWs film in Example 2, the CNF/AgNWs film in Comparative Example 2 and the commercially available PEN/ITO The surface root mean square roughness (RMS) is 28.0nm, 35.5nm and 2.39nm respectively. The reason for the difference between the TOCN/AgNWs membrane in Example 2 and the CNF/AgNWs membrane in Comparative Example 2 is that compared with unmodified cellulose nanofibers (CNF), modified cellulose nanofibers (i.e. TOCN) have The reduced length and width make it easier to hybridize with the silver nanowire conductive layer during film formation. It has better dispersion and homogeneity, and can be tightly wound, making the resulting film less likely to aggregate. body.

III. TOCN/AgNWsIII. TOCN/AgNWs 膜、membrane, CNF/AgNWsCNF/AgNWs 膜及membrane and PEN/ITOPEN/ITO 的導電性及熱性質electrical conductivity and thermal properties

如表1所示,實施例2 TOCN/AgNWs膜及比較例2 CNF/AgNWs膜的薄膜電阻分別為2.62及6.89,即薄膜電阻皆不高,已符合可作為光伏裝置構件的條件。值得注意的是,實施例2 TOCN/AgNWs膜的薄膜電阻為最低,且明顯低於市售的PEN/ITO。另外,實施例2 TOCN/AgNWs膜及比較例2 CNF/AgNWs膜的熱膨脹係數也明顯低於市售的PEN/ITO,特別係實施例2 TOCN/AgNWs膜的熱膨脹係數可低至3.37,係比較例2 CNF/AgNWs膜的2.2倍低及市售的PEN/ITO的5.5倍低。如圖5所示,三種膜的熱機械分析(TMA)的曲線圖,L0 為初始長度;ΔL為長度變化量;在溫度升高的情況下,TOCN/AgNWs膜的長度變化最小,其次為CNF/AgNWs膜,市售的PEN/ITO會隨溫度升高而長度增加,即市售的PEN/ITO會隨溫度升高而膨脹。因此,比起市售的PEN/ITO,實施例2 TOCN/AgNWs膜具有低熱膨脹係數,更利於作為導電薄膜或導電基板。As shown in Table 1, the sheet resistances of the TOCN/AgNWs film of Example 2 and the CNF/AgNWs film of Comparative Example 2 are 2.62 and 6.89 respectively, that is, the sheet resistances are not high and meet the conditions for being used as components of photovoltaic devices. It is worth noting that the sheet resistance of the TOCN/AgNWs film in Example 2 is the lowest and is significantly lower than that of commercially available PEN/ITO. In addition, the thermal expansion coefficient of the TOCN/AgNWs film of Example 2 and the CNF/AgNWs film of Comparative Example 2 is also significantly lower than that of commercially available PEN/ITO. In particular, the thermal expansion coefficient of the TOCN/AgNWs film of Example 2 can be as low as 3.37, which is a comparative Example 2: 2.2 times lower than CNF/AgNWs membrane and 5.5 times lower than commercially available PEN/ITO. As shown in Figure 5, the thermomechanical analysis (TMA) curves of the three films, L 0 is the initial length; ΔL is the length change; when the temperature increases, the length change of the TOCN/AgNWs film is the smallest, followed by CNF/AgNWs membrane, commercially available PEN/ITO will increase in length as the temperature increases, that is, commercially available PEN/ITO will expand as the temperature increases. Therefore, compared with commercially available PEN/ITO, the TOCN/AgNWs film of Example 2 has a low thermal expansion coefficient and is more suitable as a conductive film or conductive substrate.

表1   薄膜電阻 (Ω/sq) 分解溫度 (Td, 5%) (℃) 熱膨脹係數(10-6 /K) 拉伸強度 (MPa) 彈性模量 (GPa) 實施例2 TOCN/AgNWs膜 2.62 192.9 3.37 70.1 5.59 比較例2 CNF/AgNWs膜 6.89 279.1 7.37 63.2 3.37 市售的PEN/ITO 5.08 394.3 18.45 113.1 3.87 Table 1 Thin film resistor(Ω/sq) Decomposition temperature (Td, 5%) (℃) Thermal expansion coefficient (10 -6 /K) Tensile strength(MPa) Modulus of elasticity (GPa) Example 2 TOCN/AgNWs membrane 2.62 192.9 3.37 70.1 5.59 Comparative Example 2 CNF/AgNWs membrane 6.89 279.1 7.37 63.2 3.37 Commercially available PEN/ITO 5.08 394.3 18.45 113.1 3.87

IV. TOCN/AgNWsIV.TOCN/AgNWs 膜、membrane, CNF/AgNWsCNF/AgNWs 膜及membrane and PEN/ITOPEN/ITO 的光穿透性light penetration

使用UV穿透性光譜量測實施例2 TOCN/AgNWs膜、比較例2 CNF/AgNWs膜及市售的PEN/ITO光穿透性;如圖6所示,比起市售的PEN/ITO,實施例2 TOCN/AgNWs膜在整體上,具有較佳的光穿透性。在波長550nm下,實施例2 TOCN/AgNWs膜的光穿透性為78.5%,市售的PEN/ITO光穿透性為76.1%,即實施例2 TOCN/AgNWs膜略勝於市售的PEN/ITO。相較下,比較例2 CNF/AgNWs膜的光穿透性最差,在550nm下,比較例2 CNF/AgNWs膜的光穿透性最高只有55%。值得注意的是,在440nm以下(即短波長區域),實施例2 TOCN/AgNWs膜的光穿透性明顯高於市售的PEN/ITO,顯見實施例2 TOCN/AgNWs膜更適於作為室內光伏裝置的導電薄膜或導電基板。另外,如圖7所示(圖7(a)至(c)依序為市售的PEN/ITO、比較例2 CNF/AgNWs膜及實施例2 TOCN/AgNWs膜),當圖像置於實施例2 TOCN/AgNWs膜及比較例2 CNF/AgNWs膜後方時,皆可看到圖像,比較例2 CNF/AgNWs膜則無法清楚看到圖像。如圖8所示(圖8(a)及(b)分別為實施例2 TOCN/AgNWs膜及市售的PEN/ITO),實施例2 TOCN/AgNWs膜的清晰度明顯高於比較例2 CNF/AgNWs膜,可證實施例2 TOCN/AgNWs膜的光穿透性較佳。造成實施例2 TOCN/AgNWs膜及比較例2 CNF/AgNWs膜之間的差異原因在於,比較例2 CNF/AgNWs膜係使用未改質的纖維素奈米纖維(CNF),長度及寬度比改質纖維素奈米纖維(即TOCN)較大,不利與奈米銀線導電層的奈米銀線混成(hybrid),致使纖維素奈米纖維層及奈米銀線導電層之間鬆散不緊密,光穿透到該膜層之間時則嚴重散射。UV transmittance spectroscopy was used to measure the light transmittance of Example 2 TOCN/AgNWs film, Comparative Example 2 CNF/AgNWs film and commercially available PEN/ITO. As shown in Figure 6, compared with commercially available PEN/ITO, Example 2 TOCN/AgNWs film has better light transmittance as a whole. At a wavelength of 550nm, the light transmittance of the TOCN/AgNWs film of Example 2 is 78.5%, and the light transmittance of commercially available PEN/ITO is 76.1%. That is, the TOCN/AgNWs film of Example 2 is slightly better than the commercially available PEN. /ITO. In comparison, the light transmittance of the CNF/AgNWs film of Comparative Example 2 is the worst. At 550nm, the light transmittance of the CNF/AgNWs film of Comparative Example 2 is only 55%. It is worth noting that below 440 nm (i.e., short wavelength region), the light transmittance of the TOCN/AgNWs film in Example 2 is significantly higher than that of commercially available PEN/ITO. It is obvious that the TOCN/AgNWs film in Example 2 is more suitable for indoor use. Conductive films or conductive substrates for photovoltaic devices. In addition, as shown in Figure 7 (Figure 7(a) to (c) are commercially available PEN/ITO, Comparative Example 2 CNF/AgNWs film and Example 2 TOCN/AgNWs film), when the image is placed on the The image can be seen behind both the TOCN/AgNWs film in Example 2 and the CNF/AgNWs film in Comparative Example 2, but the image cannot be clearly seen behind the CNF/AgNWs film in Comparative Example 2. As shown in Figure 8 (Figures 8(a) and (b) show Example 2 TOCN/AgNWs film and commercially available PEN/ITO respectively), the clarity of Example 2 TOCN/AgNWs film is significantly higher than that of Comparative Example 2 CNF. /AgNWs film, it can be proved that the light transmittance of the TOCN/AgNWs film in Example 2 is better. The reason for the difference between the TOCN/AgNWs membrane of Example 2 and the CNF/AgNWs membrane of Comparative Example 2 is that the CNF/AgNWs membrane of Comparative Example 2 uses unmodified cellulose nanofibers (CNF), and the length and width ratio are modified. The cellulose nanofibers (i.e. TOCN) are relatively large and are not conducive to hybridization with the silver nanowires in the conductive layer of silver nanowires, resulting in a loose and loose connection between the cellulose nanofiber layer and the conductive silver nanowire layer. , light is severely scattered when it penetrates between the film layers.

V. TOCN/AgNWsV.TOCN/AgNWs 膜、membrane, CNF/AgNWsCNF/AgNWs 膜及membrane and PEN/ITOPEN/ITO 的機械強度mechanical strength

除了具有可接受的導電性和光學透明性之外,具有良好的機械強度和穩定性也是對柔性導電基板的關鍵要求。首先檢查了這些膜的機械性能,圖9(a)顯示了它們相應的應力-應變曲線。根據該曲線,計算出各基材的拉伸強度和彈性模量,並彙總在表1中。由於增加了結晶度,因此如表1所示,實施例2 TOCN/AgNWs膜的拉伸強度從63.2 MPa(相對於比較例2 CNF/AgNWs膜)增加到70.1 MPa,但是,相應地,實施例2 TOCN / AgNWs膜的彈性模量從3.37 GPa(相對於比較例2 CNF / AgNWs膜)增加到5.59 GPa。通常,高彈性模量不利於彎曲,並且可能在彎曲過程中降低導電性和機械穩定性,然而,幸運的是,此增加的彈性模量並不會對實施例2 TOCN/AgNWs膜的柔韌性產生很大影響。如圖9(b)所示,在彎曲半徑為0.8mm的彎曲試驗下,實施例2 TOCN/AgNWs膜的薄膜電阻並無太大變化,儘管市售的PEN/ITO具有最高的拉伸強度和較低的彈性模量,但是ITO的脆性可能會在彎曲過程中產生潛在的裂紋,導致500次彎曲實驗後的薄層電阻大幅增加,即實施例2 TOCN/AgNWs膜在多次彎曲下仍可維持一定的薄膜電阻,比起市售的PEN/ITO,因此更適於作為光伏裝置的可彎折性導電基板。In addition to having acceptable electrical conductivity and optical transparency, having good mechanical strength and stability are also key requirements for flexible conductive substrates. The mechanical properties of these membranes were first examined, and Figure 9(a) shows their corresponding stress-strain curves. Based on this curve, the tensile strength and elastic modulus of each substrate were calculated and summarized in Table 1. Due to the increased crystallinity, as shown in Table 1, the tensile strength of Example 2 TOCN/AgNWs film increased from 63.2 MPa (relative to Comparative Example 2 CNF/AgNWs film) to 70.1 MPa. However, accordingly, Example The elastic modulus of 2 TOCN/AgNWs film increased from 3.37 GPa (relative to Comparative Example 2 CNF/AgNWs film) to 5.59 GPa. Generally, high elastic modulus is not conducive to bending and may reduce the conductivity and mechanical stability during bending. However, fortunately, this increased elastic modulus does not affect the flexibility of the TOCN/AgNWs film in Example 2. Have a big impact. As shown in Figure 9(b), under the bending test with a bending radius of 0.8 mm, the sheet resistance of the TOCN/AgNWs film of Example 2 did not change much, although the commercially available PEN/ITO has the highest tensile strength and Lower elastic modulus, but the brittleness of ITO may cause potential cracks during the bending process, resulting in a significant increase in sheet resistance after 500 bending experiments. That is, the TOCN/AgNWs film in Example 2 can still be bent under multiple bends. It maintains a certain sheet resistance and is therefore more suitable as a flexible conductive substrate for photovoltaic devices than commercially available PEN/ITO.

VI.VI. 塗佈方式對Coating method TOCN/AgNWsTOCN/AgNWs 膜的機械強度影響Effect of membrane mechanical strength

為探討改質纖維素奈米纖維素層及奈米銀線導電層之間的附著力,利用3M透明膠帶進行膠帶-剝離試驗,如圖10所示,比較例1 TOCN/AgNWs膜的奈米銀線導電層在第1次剝離時即與該改質纖維素奈米纖維素層分離,而實施例2 TOCN/AgNWs膜經過15次的剝離,其奈米銀線導電層及改質纖維素奈米纖維素層仍未分離。因此,當奈米銀線導電層係使用噴塗所完成時,該奈米銀線導電層及該改質纖維素奈米纖維素層之間可具有良好的附著性,相較之下,當奈米銀線導電層係使用習知的滴落塗佈所完成時,該奈米銀線導電層及該改質纖維素奈米纖維素層之間的附著性差。In order to explore the adhesion between the modified cellulose nanocellulose layer and the nanosilver wire conductive layer, a tape-peel test was performed using 3M transparent tape, as shown in Figure 10, Comparative Example 1 TOCN/AgNWs film nanoparticles The silver wire conductive layer was separated from the modified cellulose nanocellulose layer during the first peeling. However, after 15 times of peeling off of the TOCN/AgNWs film in Example 2, the nanosilver wire conductive layer and the modified cellulose layer were separated. The nanocellulose layer remains intact. Therefore, when the silver nanowire conductive layer is completed by spraying, there can be good adhesion between the silver nanowire conductive layer and the modified cellulose nanocellulose layer. In comparison, when the silver nanowire conductive layer is completed, When the conductive layer of silver nanowires is completed by conventional drop coating, the adhesion between the conductive silver nanowire layer and the modified cellulose nanocellulose layer is poor.

VII. TOCN/AgNWsVII. TOCN/AgNWs 膜的品質因素Membrane quality factors (FOM)(FOM)

本發明之品質因素(FOM)係為直流電導率()及光導性()的比例()所界定,其係藉由以下公式所獲得:,其中,為波長550nm時的穿透度,Rs為薄膜電阻;光波長設定為波長550nm係因人眼對此波長最為敏感。The quality factor (FOM) of the present invention is the DC conductivity ( ) and photoconductivity ( )proportion( ), which is obtained by the following formula: ,in, is the penetration at a wavelength of 550nm, and Rs is the sheet resistance; the light wavelength is set to 550nm because the human eye is most sensitive to this wavelength.

分別量測實施例2 TOCN/AgNWs膜、比較例2 CNF/AgNWs膜及其他習知導電基板或導電薄膜的薄膜電阻及波長550nm光穿透性,並經由以上公式計算品質因素。結果如表2及圖11所示,相較於其他材料的導電基板或導電薄膜,實施例2 TOCN/AgNWs膜具有最高的品質因素,顯示實施例2 TOCN/AgNWs膜適於作為光伏裝置的導電薄膜。The sheet resistance and light transmittance at a wavelength of 550 nm of the TOCN/AgNWs film of Example 2, the CNF/AgNWs film of Comparative Example 2, and other conventional conductive substrates or conductive films were measured respectively, and the quality factor was calculated using the above formula. The results are shown in Table 2 and Figure 11. Compared with conductive substrates or conductive films of other materials, the TOCN/AgNWs film of Example 2 has the highest quality factor, indicating that the TOCN/AgNWs film of Example 2 is suitable as a conductive material for photovoltaic devices. film.

表2   薄膜電阻 ( Ω /sq) 550nm 時的光穿透性 (%) 品質因素 (FOM) 實施例2 TOCN/AgNWs 2.62 78.5 559 比較例2 CNF/AgNWs 6.89 52.9 73 PEN/ITO 5.08 76.1 254 PET/AgNWs 14.1 92.8 351 PET/PEDOT:PSS 75 86 32 PVA/AgNWs 63 87.5 43 奈米紙/AgNWs 12 88 238 奈米紙/ITO 12 65 65 PEN/ITO:聚萘二甲酸乙二醇酯/氧化銦錫基材 PET/AgNWs:聚對苯二甲酸/奈米銀線 PET/PEDOT:PSS:聚對苯二甲酸/聚(3,4-乙撐二氧噻吩)聚苯乙烯磺酸鹽 PVA/AgNWs:聚乙烯醇/奈米銀線 奈米紙/AgNWs:奈米紙/奈米銀線 奈米紙/ITO:奈米紙/氧化銦錫基材 Table 2 Thin film resistor ( Ω /sq) Light transmittance at 550nm (%) Factor of Quality (FOM) Example 2 TOCN/AgNWs 2.62 78.5 559 Comparative Example 2 CNF/AgNWs 6.89 52.9 73 PEN/ITO 5.08 76.1 254 PET/AgNWs 14.1 92.8 351 PET/PEDOT:PSS 75 86 32 PVA/AgNWs 63 87.5 43 Nanopaper/AgNWs 12 88 238 Nanopaper/ITO 12 65 65 PEN/ITO: polyethylene naphthalate/indium tin oxide substrate PET/AgNWs: polyterephthalate/silver nanowires PET/PEDOT: PSS: polyterephthalate/poly(3,4- Ethylenedioxythiophene) polystyrene sulfonate PVA/AgNWs: polyvinyl alcohol/silver nanowire nanopaper/AgNWs: nanopaper/silver nanowire nanopaper/ITO: nanopaper/indium oxide tin substrate

實施例Example 4. TOCN/AgNWs/ZnO/4.TOCN/AgNWs/ZnO/ 活性層active layer /MoO3 /Ag/MoO 3 /Ag 光伏裝置photovoltaic installation

TOCN/AgNWs膜製備光伏裝置時,係做為第一電極,為維持性質穩定,本實施例係使用含有乙醯丙酮鋅水合物的乙醇溶液製備ZnO電子傳輸層,其所需的固化溫度約為130℃,低於TOCN/AgNWs膜的分解溫度(Td)(如表1所示之192.9℃),即固化成膜時不會影響TOCN/AgNWs膜之性質。光伏裝置之製造方法如下:When preparing a photovoltaic device, the TOCN/AgNWs film is used as the first electrode. In order to maintain stable properties, in this example, an ethanol solution containing zinc acetyl acetonate hydrate is used to prepare the ZnO electron transport layer. The required curing temperature is about 130°C, which is lower than the decomposition temperature (Td) of the TOCN/AgNWs film (192.9°C as shown in Table 1), which means that the properties of the TOCN/AgNWs film will not be affected when cured to form a film. The photovoltaic device is manufactured as follows:

將乙醯丙酮鋅水合物20mg溶解在1ml乙醇中,以配製ZnO前驅物。噴塗該ZnO前驅物至實施例2- TOCN/AgNWs膜上,以5分鐘130°C退火處裡,形成ZnO層。在無其他添加物下,使用氯仿配製PM6:Y6層的前驅物溶液,其中PM6及Y6的重量比例為1:1.5;將該前驅物溶液會放置於含N2 手套箱中,在50°C下劇烈攪拌過夜。隨後,以60秒4000rpm的速度旋轉塗佈該前驅物溶液至該ZnO層上,以形成活性層。最後,在高真空(<10-6 torr)下,熱沉積形成依序形成厚度10nm的MoO3 及厚度100nm的Ag在該活性層上,以作為頂部電極,即完成光伏裝置TOCN/AgNWs/ZnO/活性層/MoO3 /Ag。經測試,如圖12(a)及(b)所示,係分別為光伏裝置的電流-電壓特性曲線圖及彎曲試驗下的光伏各種特性曲線圖。Dissolve 20 mg of zinc acetate hydrate in 1 ml of ethanol to prepare a ZnO precursor. Spray the ZnO precursor onto the TOCN/AgNWs film in Example 2, and anneal at 130°C for 5 minutes to form a ZnO layer. Without other additives, use chloroform to prepare a precursor solution for the PM6:Y6 layer, where the weight ratio of PM6 and Y6 is 1:1.5; the precursor solution will be placed in a glove box containing N2 at 50°C. Stir vigorously overnight. Subsequently, the precursor solution was spin-coated onto the ZnO layer at a speed of 4000 rpm for 60 seconds to form an active layer. Finally, under high vacuum (<10 -6 torr), thermal deposition is performed to sequentially form MoO 3 with a thickness of 10nm and Ag with a thickness of 100nm on the active layer as the top electrode, thus completing the photovoltaic device TOCN/AgNWs/ZnO /active layer/MoO 3 /Ag. After testing, as shown in Figure 12 (a) and (b), they are the current-voltage characteristic curve of the photovoltaic device and various photovoltaic characteristic curves under the bending test.

比較例Comparative example 4. ITO4.ITO 玻璃基板Glass base board /ZnO//ZnO/ 活性層active layer /MoO3 /Ag/MoO 3 /Ag 光伏裝置photovoltaic installation

為比較TOCN/AgNWs膜及ITO玻璃基板的光伏性質,比較例4同樣選擇使用固化溫度相對低的ZnO製備電子傳輸層,係使用含有醋酸鋅及乙醇胺的2-甲基氧乙醇溶液以製備ZnO電子傳輸層,其固化溫度約80~180°C。In order to compare the photovoltaic properties of TOCN/AgNWs films and ITO glass substrates, Comparative Example 4 also chose to use ZnO with a relatively low curing temperature to prepare the electron transport layer. A 2-methyloxyethanol solution containing zinc acetate and ethanolamine was used to prepare ZnO electrons. The transmission layer has a curing temperature of about 80~180°C.

依序使用去離子水、丙酮及異丙醇超音波震盪ITO玻璃基板,每次震盪15分鐘,超音波震盪結束後,使用N2 氣流乾燥ITO玻璃基板,並電漿處理20分鐘。溶解醋酸鋅0.1g於2-甲基氧乙醇1ml中,並添加乙醇胺28μL,以配置ZnO前驅物溶液。旋轉噴塗ZnO前驅物溶液於ITO玻璃基板上,隨後置於手套箱內,於含空氣環境下依序以10分鐘80°C及30分鐘180°C退火處理。使用氯仿及氯萘為添加物配製PM6:Y6層的前驅物溶液,其中PM6及Y6的重量比例為1:1.5,氯仿及氯萘的體積比例為99.5/0.5(v/v);將該前驅物溶液會放置於含N2 手套箱中,在50°C下劇烈攪拌過夜。隨後,以60秒4000rpm的速度旋轉塗佈該前驅物溶液至該ZnO層上,以形成活性層,以以10分鐘100°C退火處理。最後,在高真空(<10-6 torr)下,熱沉積形成依序形成厚度10nm的MoO3 及厚度100nm的Ag在該活性層上,以作為頂部電極,即完成光伏裝置ITO玻璃基板/ZnO/活性層/MoO3 /Ag。Use deionized water, acetone and isopropyl alcohol to ultrasonically vibrate the ITO glass substrate in sequence for 15 minutes each time. After the ultrasonic vibration is completed, use N2 air flow to dry the ITO glass substrate and treat it with plasma for 20 minutes. Dissolve 0.1g of zinc acetate in 1ml of 2-methyloxyethanol, and add 28μL of ethanolamine to prepare a ZnO precursor solution. The ZnO precursor solution was spin-sprayed on the ITO glass substrate, then placed in a glove box and annealed in an air-containing environment at 80°C for 10 minutes and 180°C for 30 minutes. Use chloroform and chloronaphthalene as additives to prepare a precursor solution for the PM6:Y6 layer, where the weight ratio of PM6 and Y6 is 1:1.5, and the volume ratio of chloroform and chloronaphthalene is 99.5/0.5 (v/v); add the precursor solution The solution will be placed in a glove box containing N and stirred vigorously at 50°C overnight. Subsequently, the precursor solution was spin-coated onto the ZnO layer at a speed of 4000 rpm for 60 seconds to form an active layer, and was annealed at 100°C for 10 minutes. Finally, under high vacuum (<10 -6 torr), thermal deposition is performed to sequentially form MoO 3 with a thickness of 10nm and Ag with a thickness of 100nm on the active layer as the top electrode, thereby completing the photovoltaic device ITO glass substrate/ZnO /active layer/MoO 3 /Ag.

如表3所示,實施例4光伏裝置的最大功率轉化效率已可達到市售光伏裝置55%((7.47/13.6) ×100%)及比較例4光伏裝置的64%((7.47/11.7) ×100%)。此外,如圖13所示,不同生物相容材料作為導電薄膜時,實施例4光伏裝置的功率轉換效率最好;使用TOCN/AgNWs作為導電薄膜時,其功率轉換效率明顯高於聚左乳酸(PLLA)、奈米紙(N-paper)、二種習知的纖維素奈米纖維(CNC)及角蛋白(keratin)。As shown in Table 3, the maximum power conversion efficiency of the photovoltaic device of Example 4 has reached 55% of the commercially available photovoltaic device ((7.47/13.6) × 100%) and 64% of the photovoltaic device of Comparative Example 4 ((7.47/11.7) ×100%). In addition, as shown in Figure 13, when different biocompatible materials are used as conductive films, the power conversion efficiency of the photovoltaic device in Example 4 is the best; when TOCN/AgNWs is used as the conductive film, the power conversion efficiency is significantly higher than poly(L-lactic acid) ( PLLA), nanopaper (N-paper), two common cellulose nanofibers (CNC) and keratin (keratin).

surface 33   電極electrode 電子傳輸層electron transport layer 開路電壓open circuit voltage (Voc ) (V oc ) (V)(V) 短路電流short circuit current (Jsc )(J sc ) (mA cm-2 )(mA cm -2 ) 填充因子fill factor (FF)(FF) (%)(%) 最大功率轉換效率Maximum power conversion efficiency , PCEmax,PCEmax (( 平均功率轉換效率average power conversion efficiency , PCEavg), PCEavg) (%)(%) 市售光伏裝置Commercially available photovoltaic devices ITO玻璃基板ITO glass substrate 一般固化溫度 ZnOGeneral curing temperature ZnO 0.800 (0.8000.0081)0.800 (0.800 0.0081) 24.1 (24.60.61 )24.1 (24.6 0.61 ) 70.3 (67.32.0)70.3 (67.3 2.0) 13.6 (13.20.17)13.6 (13.2 0.17) 比較例Comparative example 44 ITO玻璃基板ITO glass substrate 低固化溫度ZnOLow curing temperature ZnO 0.821 (0.8220.0050)0.821 (0.822 0.0050) 23.1 (22.20.96)23.1 (22.2 0.96) 61.8 (61.52.2)61.8 (61.5 2.2) 11.7 (11.20.24)11.7 (11.2 0.24) 實施例Example 44 TOCN/AgNWs膜TOCN/AgNWs membrane 低固化溫度ZnOLow curing temperature ZnO 0.811 (0.8130.012)0.811 (0.813 0.012) 17.0 (16.50.69)17.0 (16.5 0.69) 54.2 (51.32.5)54.2 (51.3 2.5) 7.47 (6.880.39)7.47 (6.88 0.39)

綜上所述,本發明提供一種便捷且可印刷的轉移方法,將Ag NWs嵌入到化學修飾的CNF中,從而可成功開發基於CNF的柔性導電基板。由上開實施例的結果可知,TOCN的奈米級纖維及其更緊密的纏繞網絡不僅能夠與Ag NWs均勻混合,而且還可以使大部分的可見光穿過此膜。此外,本發明之轉移方法可以將Ag NWs牢固地限制在基材表面上,以提供強大的附著力,並避免熱誘導的聚集。所製成的TOCN / AgNWs膜在可見光和紅外光區域顯示出優異的導電性和高透明度,這由其高FoM值可得到證明。此外,由於其較高的縱橫比和結晶度,TOCN / AgNWs導電基材具有較低的CTE和較高的機械穩定性,可以承受15個剝離循環和彎曲半徑為0.8 mm 之500次彎曲循環,而薄層電阻沒有任何降低。使用該TOCN / AgNWs膜製造了柔性OPV,該設備可提供7.47%的高PCE。此外,經過200次彎曲後,製成的柔性OPV可以保留其原始PCE的43.5%。綜上所述,本發明為製造高性能基於生物材料的導電基材提供了一種簡便的方法,並且可以促進柔性OPV的持續發展。In summary, the present invention provides a convenient and printable transfer method to embed Ag NWs into chemically modified CNF, so that CNF-based flexible conductive substrates can be successfully developed. From the results of the above examples, it can be seen that the nanoscale fibers of TOCN and its more tightly wound network can not only mix evenly with Ag NWs, but also allow most of the visible light to pass through the film. In addition, the transfer method of the present invention can firmly confine Ag NWs on the substrate surface to provide strong adhesion and avoid thermally induced aggregation. The fabricated TOCN/AgNWs film shows excellent conductivity and high transparency in the visible and infrared light regions, as evidenced by its high FoM value. In addition, due to its higher aspect ratio and crystallinity, the TOCN/AgNWs conductive substrate has lower CTE and higher mechanical stability, which can withstand 15 peeling cycles and 500 bending cycles with a bending radius of 0.8 mm, There is no reduction in sheet resistance. Flexible OPVs were fabricated using this TOCN/AgNWs film, and the device provided a high PCE of 7.47%. Furthermore, after 200 bending times, the fabricated flexible OPV can retain 43.5% of its original PCE. In summary, the present invention provides a simple method for fabricating high-performance biomaterial-based conductive substrates and can promote the continued development of flexible OPVs.

以上已將本發明做一詳細說明,惟以上所述者,僅惟本發明之一較佳實施例而已,當不能以此限定本發明實施之範圍,即凡依本發明申請專利範圍所作之均等變化與修飾,皆應仍屬本發明之專利涵蓋範圍內。The present invention has been described in detail above. However, what is described above is only one of the preferred embodiments of the present invention. It should not be used to limit the scope of the present invention, that is, any application based on the patent scope of the present invention shall be equal. Changes and modifications should still fall within the scope of the patent of the present invention.

S:基板 B:改質表面 SP:噴塗噴嘴 HP:熱壓機 1:奈米銀線溶液 1’:奈米銀線導電層 2:改質纖維素奈米纖維溶液 3’:改質纖維素奈米纖維層-奈米銀線導電層 3:改質纖維素奈米纖維-奈米銀線導電薄膜 4:電子傳輸層 5:活性層 6:電洞傳輸層 7:第二電極層S:Substrate B: modified surface SP: spray nozzle HP: Heat press 1: Nanosilver wire solution 1’: Nano silver wire conductive layer 2: Modified cellulose nanofiber solution 3’: Modified cellulose nanofiber layer – nanosilver wire conductive layer 3: Modified cellulose nanofiber-nano silver wire conductive film 4:Electron transport layer 5:Active layer 6: Hole transport layer 7: Second electrode layer

圖1係本發明之改質纖維素奈米纖維-奈米銀線導電薄膜之製造方法的流程示意圖。Figure 1 is a schematic flow chart of the manufacturing method of the modified cellulose nanofiber-silver nanowire conductive film of the present invention.

圖2係本發明之光伏裝置的剖視圖。Figure 2 is a cross-sectional view of the photovoltaic device of the present invention.

圖3係使用不同奈米銀線溶液濃度及塗佈方法所製備的改質纖維素奈米纖維-奈米銀線導電薄膜(TOCN/AgNWs膜)表面的掃描電子顯微鏡(SEM)拍攝圖:(a)使用1:10(v/v)奈米銀線溶液製備奈米銀線導電層;(b)使用1:12.5(v/v)奈米銀線溶液製備奈米銀線導電層;(c)使用1:15(v/v)奈米銀線溶液製備奈米銀線導電層;及(d)使用1:12.5(v/v) 奈米銀線溶液及滴落塗佈法(drop coating)製備奈米銀線導電層。Figure 3 is a scanning electron microscope (SEM) photograph of the surface of modified cellulose nanofiber-silver nanowire conductive film (TOCN/AgNWs film) prepared using different silver nanowire solution concentrations and coating methods: ( a) Use a 1:10 (v/v) nanosilver wire solution to prepare a nanosilver wire conductive layer; (b) Use a 1:12.5 (v/v) nanosilver wire solution to prepare a nanosilver wire conductive layer; ( c) Use 1:15 (v/v) silver nanowire solution to prepare the conductive layer of silver nanowire; and (d) Use 1:12.5 (v/v) silver nanowire solution and drop coating method coating) to prepare the conductive layer of silver nanowires.

圖4係TOCN/AgNWs膜、纖維素奈米纖維-奈米銀線導電薄膜(CNF/AgNWs膜)及聚萘二甲酸乙二醇酯/氧化銦錫基材(PEN/ITO)的掃描電子顯微鏡(SEM)拍攝圖及原子力顯微鏡(AFM)拍攝圖;圖4(a)為表面SEM拍攝圖;圖4(b)為剖面SEM拍攝圖;圖4(c)為表面AFM拍攝圖。Figure 4 is a scanning electron microscope of TOCN/AgNWs film, cellulose nanofiber-silver nanowire conductive film (CNF/AgNWs film) and polyethylene naphthalate/indium tin oxide substrate (PEN/ITO) (SEM) pictures and atomic force microscope (AFM) pictures; Figure 4(a) is a surface SEM picture; Figure 4(b) is a cross-sectional SEM picture; Figure 4(c) is a surface AFM picture.

圖5係TOCN/AgNWs膜、CNF/AgNWs膜及PEN/ITO的熱機械分析(TMA)的曲線圖。Figure 5 is a graph of thermomechanical analysis (TMA) of TOCN/AgNWs film, CNF/AgNWs film and PEN/ITO.

圖6係TOCN/AgNWs膜、CNF/AgNWs膜及PEN/ITO在不同波長下的光穿透性曲線圖。Figure 6 shows the light transmittance curves of TOCN/AgNWs film, CNF/AgNWs film and PEN/ITO at different wavelengths.

圖7係同一圖像放置於TOCN/AgNWs膜、CNF/AgNWs膜及PEN/ITO後方的透視照片:(a) PEN/ITO;(b) CNF/AgNWs膜;及(c) TOCN/AgNWs膜。Figure 7 is a perspective photo of the same image placed behind TOCN/AgNWs film, CNF/AgNWs film and PEN/ITO: (a) PEN/ITO; (b) CNF/AgNWs film; and (c) TOCN/AgNWs film.

圖8係圖像放置於TOCN/AgNWs膜及PEN/ITO後方的透視照片:(a) TOCN/AgNWs膜及(b) PEN/ITO。Figure 8 is a perspective photo of the image placed behind the TOCN/AgNWs film and PEN/ITO: (a) TOCN/AgNWs film and (b) PEN/ITO.

圖9係TOCN/AgNWs膜、CNF/AgNWs膜及PEN/ITO的應力-應變曲線圖,及彎曲試驗下薄膜電阻的變化量曲線圖:(a)應力-應變曲線圖;(b) 薄膜電阻的變化量曲線圖。Figure 9 is the stress-strain curve of TOCN/AgNWs film, CNF/AgNWs film and PEN/ITO, and the change curve of film resistance under bending test: (a) stress-strain curve; (b) film resistance Variation curve graph.

圖10係使用不同奈米銀線溶液塗佈方法所製備的TOCN/AgNWs膜的剝離試驗下薄膜電阻的變化量曲線圖。Figure 10 is a graph showing the change in sheet resistance under the peeling test of TOCN/AgNWs films prepared using different silver nanowire solution coating methods.

圖11係不同導電薄膜的依據光穿透性及薄膜電阻計算的品質因素分布圖。Figure 11 is a distribution chart of quality factors calculated based on light transmittance and film resistance of different conductive films.

圖12係本發明之光伏裝置的電流-電壓特性曲線圖及彎曲試驗下光伏的各種特性曲線圖:(a) 光伏裝置的電流-電壓特性曲線圖;(b) 彎曲試驗下光伏的各種特性曲線圖。Figure 12 is a current-voltage characteristic curve of the photovoltaic device of the present invention and various photovoltaic characteristic curves under a bending test: (a) Current-voltage characteristic curve of the photovoltaic device; (b) Various photovoltaic characteristic curves under a bending test Figure.

圖13係不同生物相容基質作為光伏裝置的導電薄膜的功率轉換效率分布圖。Figure 13 is a distribution diagram of the power conversion efficiency of conductive films using different biocompatible matrices as photovoltaic devices.

3:改質纖維素奈米纖維-奈米銀線導電薄膜3: Modified cellulose nanofiber-nano silver wire conductive film

4:電子傳輸層4:Electron transport layer

5:活性層5:Active layer

6:電洞傳輸層6: Hole transport layer

7:第二電極層7: Second electrode layer

Claims (7)

一種改質纖維素奈米纖維-奈米銀線導電薄膜之製造方法,包含:(a)提供一基板;(b)噴塗一奈米銀線溶液至該基板的表面,經加熱後形成一奈米銀線導電層;(c)使一改質纖維素奈米纖維溶液分布於該奈米銀線導電層的表面,經加熱後形成一改質纖維素奈米纖維層-奈米銀線導電層;(d)將該改質纖維素奈米纖維層-奈米銀線導電層由該基板的表面剝離,獲得該改質纖維素奈米纖維-奈米銀線導電薄膜;及(e)熱壓該改質纖維素奈米纖維-奈米銀線導電薄膜。 A method for manufacturing a modified cellulose nanofiber-nanometer silver conductive film, including: (a) providing a substrate; (b) spraying a nanosilver wire solution onto the surface of the substrate, and forming a nanosilver wire solution after heating rice silver wire conductive layer; (c) distributing a modified cellulose nanofiber solution on the surface of the nanosilver wire conductive layer, and forming a modified cellulose nanofiber layer - nanosilver conductive layer after heating layer; (d) peeling off the modified cellulose nanofiber layer-nanometer silver conductive layer from the surface of the substrate to obtain the modified cellulose nanofiber-nanometer silver conductive film; and (e) The modified cellulose nanofiber-nanometer silver wire conductive film is hot pressed. 如請求項1所述之製造方法,其中該基板為矽基板,且其表面經過矽烷化合物處理。 The manufacturing method as claimed in claim 1, wherein the substrate is a silicon substrate, and its surface is treated with a silane compound. 如請求項2所述之製造方法,其中該矽烷化合物為十八烷基三氯矽烷(octadecyltrichlorosilane;ODTS)。 The manufacturing method as described in claim 2, wherein the silane compound is octadecyltrichlorosilane (ODTS). 如請求項1至3任一項所述之製造方法,其中該改質纖維素奈米纖維溶液中的改質纖維素奈米纖維係TEMPO氧化纖維素奈米纖維(TOCN)。 The manufacturing method according to any one of claims 1 to 3, wherein the modified cellulose nanofibers in the modified cellulose nanofiber solution are TEMPO oxidized cellulose nanofibers (TOCN). 如請求項1至3任一項所述之製造方法,其中該奈米銀線溶液包含奈米銀線及有機溶劑,該奈米銀線及有機溶劑的比例為1:10~1:15(v/v)。 The manufacturing method as described in any one of claims 1 to 3, wherein the silver nanowire solution includes silver nanowires and an organic solvent, and the ratio of the silver nanowires to the organic solvent is 1:10~1:15 ( v/v). 如請求項5所述之製造方法,其中該奈米銀線及有機溶劑的比例為1:12.5(v/v)。 The manufacturing method as described in claim 5, wherein the ratio of the silver nanowires and the organic solvent is 1:12.5 (v/v). 如請求項6所述之製造方法,其中該有機溶劑為異丙醇。 The manufacturing method as claimed in claim 6, wherein the organic solvent is isopropyl alcohol.
TW109128117A 2020-08-18 2020-08-18 Modified cellulose nanofiber-nanosilver wire conductive film and its manufacturing method and photovoltaic device containing the same TWI818191B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109128117A TWI818191B (en) 2020-08-18 2020-08-18 Modified cellulose nanofiber-nanosilver wire conductive film and its manufacturing method and photovoltaic device containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109128117A TWI818191B (en) 2020-08-18 2020-08-18 Modified cellulose nanofiber-nanosilver wire conductive film and its manufacturing method and photovoltaic device containing the same

Publications (2)

Publication Number Publication Date
TW202209353A TW202209353A (en) 2022-03-01
TWI818191B true TWI818191B (en) 2023-10-11

Family

ID=81747120

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109128117A TWI818191B (en) 2020-08-18 2020-08-18 Modified cellulose nanofiber-nanosilver wire conductive film and its manufacturing method and photovoltaic device containing the same

Country Status (1)

Country Link
TW (1) TWI818191B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040752A2 (en) * 2009-09-29 2011-04-07 Korea Advanced Institute Of Science And Technology Conductive polymer adhesive using nanofiber and method for preparing the same
TW201251173A (en) * 2011-04-26 2012-12-16 Sumitomo Chemical Co Organic electroluminescence element and method for preparation of the same
CN104134484A (en) * 2014-07-31 2014-11-05 中国电子科技集团公司第五十五研究所 Flexible transparent conductive film based on silver nanowires and preparation method
CN104217788A (en) * 2014-08-26 2014-12-17 南京邮电大学 Silver nanowire based transparent conductive film and production method thereof
TW201809399A (en) * 2016-07-22 2018-03-16 國立臺北科技大學 Elastic conductive fiber structure and optoelectronics comprising the same
KR20180093379A (en) * 2017-02-13 2018-08-22 울산과학기술원 Manufacturing apparatus of flexible transparent film and manufacturing method of flexible transparent film and flexible transparent substrate thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011040752A2 (en) * 2009-09-29 2011-04-07 Korea Advanced Institute Of Science And Technology Conductive polymer adhesive using nanofiber and method for preparing the same
TW201251173A (en) * 2011-04-26 2012-12-16 Sumitomo Chemical Co Organic electroluminescence element and method for preparation of the same
CN104134484A (en) * 2014-07-31 2014-11-05 中国电子科技集团公司第五十五研究所 Flexible transparent conductive film based on silver nanowires and preparation method
CN104217788A (en) * 2014-08-26 2014-12-17 南京邮电大学 Silver nanowire based transparent conductive film and production method thereof
TW201809399A (en) * 2016-07-22 2018-03-16 國立臺北科技大學 Elastic conductive fiber structure and optoelectronics comprising the same
KR20180093379A (en) * 2017-02-13 2018-08-22 울산과학기술원 Manufacturing apparatus of flexible transparent film and manufacturing method of flexible transparent film and flexible transparent substrate thereof

Also Published As

Publication number Publication date
TW202209353A (en) 2022-03-01

Similar Documents

Publication Publication Date Title
CN106782769B (en) Flexible and transparent conductive laminated film of low roughness low square resistance and preparation method thereof
Choi et al. Annealing-free, flexible silver nanowire–polymer composite electrodes via a continuous two-step spray-coating method
CN111341497B (en) Preparation method of silver nanowire-MXene composite transparent conductive film
US8840954B2 (en) Transparent carbon nanotube electrode with net-like carbon nanotube film and preparation method thereof
JP5690852B2 (en) Method for producing coated article comprising alloyed carbon nanotube thin film
TWI541828B (en) Electronic devices including transparent conductive coatings including carbon nanotubes and nanowire composites, and methods of making the same
JP5700583B2 (en) Large area transparent conductive coating comprising doped carbon nanotubes and nanowire composites, and method of manufacturing the same
US9576707B2 (en) Conductive thin film and transparent electrode including graphene oxide and carbon nanotube, and methods of producing the same
KR101285415B1 (en) Piezoelectric composite material
US20120251824A1 (en) Stretchable Conductive Nanofibers, Stretchable Fiber Electrode Using The Same And Method For Producing The Same
KR20130010471A (en) Structures with surface-embedded additives and related manufacturing methods
CN103021532A (en) Transparent electrode laminate
JP2010251292A (en) Forming method of conductive film using conductive structure and conductive film
US20210016349A1 (en) Scalable electrically conductive nanowires bundle-ring-network for deformable transparent conductor
CN111192965A (en) Flexible transparent electrode, preparation method thereof and flexible solar cell prepared from flexible transparent electrode
KR100951946B1 (en) Transparent and flexible thin film transistor having carbon nano tube, and method of fabricating thereof
Duan et al. Can insulating graphene oxide contribute the enhanced conductivity and durability of silver nanowire coating?
TW200941509A (en) Transparent conductors that exhibit minimal scattering, methods for fabricating the same, and display devices comprising the same
JP6849673B2 (en) Solid-state junction type photoelectric conversion element and its manufacturing method
TWI818191B (en) Modified cellulose nanofiber-nanosilver wire conductive film and its manufacturing method and photovoltaic device containing the same
KR101534298B1 (en) a composition for electro-magnetic interference shielding film, a method of fabricating a electro-magnetic interference shielding film therewith and an electro-magnetic interference shielding film fabricated thereby
KR101514743B1 (en) The method for manufacturing patterned metal nanowire transparent electrode and the patterned metal nanowire transparent electrode thereby
KR20180132202A (en) Transparent electrode and method for fabricating the same
CN112509728A (en) Tetrachloroauric acid trihydrate doped carbon nanotube flexible transparent conductive film and preparation method thereof
KR20160130017A (en) Method for manufacturing transparent electrode and transparent electrode manufatured by the same