TWI815272B - 使用具有鄰近取樣縮減的線性或仿射變換的內預測 - Google Patents

使用具有鄰近取樣縮減的線性或仿射變換的內預測 Download PDF

Info

Publication number
TWI815272B
TWI815272B TW111101183A TW111101183A TWI815272B TW I815272 B TWI815272 B TW I815272B TW 111101183 A TW111101183 A TW 111101183A TW 111101183 A TW111101183 A TW 111101183A TW I815272 B TWI815272 B TW I815272B
Authority
TW
Taiwan
Prior art keywords
samples
linear
given
width
block
Prior art date
Application number
TW111101183A
Other languages
English (en)
Other versions
TW202241130A (zh
Inventor
強納森 帕雅夫
菲利浦 希利
麥可 夏佛
羅馬 里奇克
托比亞斯 辛茲
飛利浦 馬克爾
柏喬恩 史泰倫柏格
馬汀 文肯
米斯洽 希克曼
希克 史瓦茲
迪特利 馬皮
湯瑪士 威剛德
Original Assignee
弗勞恩霍夫爾協會
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 弗勞恩霍夫爾協會 filed Critical 弗勞恩霍夫爾協會
Publication of TW202241130A publication Critical patent/TW202241130A/zh
Application granted granted Critical
Publication of TWI815272B publication Critical patent/TWI815272B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/182Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a pixel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/184Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being bits, e.g. of the compressed video stream
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/44Decoders specially adapted therefor, e.g. video decoders which are asymmetric with respect to the encoder
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/59Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial sub-sampling or interpolation, e.g. alteration of picture size or resolution

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)
  • Picture Signal Circuits (AREA)

Abstract

提供用於視訊信號編碼/解碼的技術,該技術實現在解碼器、編碼器、方法及儲存執行該方法的指令的非暫時性儲存單元之中。一解碼器或編碼器可能配置為使用多個鄰近取樣通過縮減該多個鄰近取樣預測該圖片的一既定區塊以獲得一縮減集合的取樣值,該縮減集合的取樣值在取樣數量上少於該多個鄰近取樣,使該縮減集合的取樣值受到一線性或仿射線性變換,以獲得針對該既定區塊的既定取樣的預測值。

Description

使用具有鄰近取樣縮減的線性或仿射變換的內預測
在下文中,將描述不同的發明範例、實施例與層面。這些範例、實施例與層面中的至少一些特別有關於用於視訊編碼及/或用於執行內預測,例如,使用具有鄰近取樣縮減的線性或仿射變換,及/或用於最佳化視訊傳遞(例如廣播、串流式傳輸、文件播放等),例如用於訊應用程序及/或虛擬實境應用程序的方法及/或設備。此外,範例、實施例與層面可能泛指高效視訊編碼(HEVC)或後續版本的技術。而且,進一步的實施例、範例與層面將由所附申請專利範圍定義。
應當注意,由申請專利範圍定義的任何實施例、範例與層面可以通過以下各章節中描述的任何細節(特徵與功能)補充。
並且,在以下各章節中描述的實施例、範例與層面可以單獨使用,並且還可以通過另一章節中的任何特徵或申請專利範圍中包括的任何特徵補充。
另外,應當注意,在此描述的各個範例、實施例與層面可以單獨使用或組合使用。因此,細節可以添加到每個所述範例、實施例與各個層面,而無需添加細節到所述層面的另一個。
還應當注意,本揭露明確地或隱含地描述解碼及/或編碼系統及/或方法的特徵。
此外,在此揭露的關於方法的特徵及功能也可以在設備中使用。此外,在此揭露的關於設備的任何特徵與功能也可以使用在對應的方法中。換句話說,在此揭露的方法可以通過關於設備描述的任何特徵與功能來補充。此外,如同在其他部分,例如“其他實施例與範例”等中所描述的,在此所述的任何特徵與功能可以在硬體或軟體,或使用硬體與軟體的組合實現。
此外,括號(“(…)” or “[…]”)中描述的任何特徵都可能在一些範例、實施例或層面中認為是可選擇的。
根據一個層面,提供一種用於解碼來自一資料流的一圖片的解碼器,該解碼器配置為通過以下步驟使用多個鄰近取樣預測該圖片的一既定區塊: 縮減(例如通過平均與降取樣)該多個鄰近取樣以獲得一縮減集合的取樣值,該縮減集合的取樣值在取樣數量上少於該多個鄰近取樣,使該縮減集合的取樣值受到一線性或仿射線性變換以獲得針對該既定區塊的既定取樣的預測值。
在範例中,該解碼器進一步配置為執行該縮減,例如通過平均降取樣該多個鄰近取樣以獲得該縮減集合的取樣值,該縮減集合的取樣值在取樣數量上少於該多個鄰近取樣。
在一些案例中,該解碼器可能也基於針對該既定取樣的該預測值以及該多個鄰近取樣,通過內插推導針對該既預區塊的另外取樣的預測值。因此,應用一升取樣運算。
根據一個層面,提供一種用於編碼來自一資料流的一圖片的編碼器,該編碼器配置為通過以下步驟使用多個鄰近取樣預測該圖片的一既定區塊: 縮減(例如通過平均與降取樣)該多個鄰近取樣以獲得一縮減集合的取樣值,該縮減集合的取樣值在取樣數量上少於該多個鄰近取樣,使該縮減集合的取樣值受到一線性或仿射線性變換以獲得針對該既定區塊的既定取樣的預測值。
在範例中,該編碼器進一步配置為執行該縮減,例如通過平均降取樣該多個鄰近取樣以獲得該縮減集合的取樣值,該縮減集合的取樣值在取樣數量上少於該多個鄰近取樣。
在一些案例中,該編碼器可能也基於針對該既定取樣的該預測值以及該多個鄰近取樣,通過內插推導針對該既預區塊的另外取樣的預測值。因此,應用一升取樣運算。
在範例中,可能提供一種包括上述的一編碼器及/或上述的一解碼器的系統。在一些範例中,該編碼器的該硬體及/或至少一些程序例程可能與該解碼器的類似。
在範例中,可能提供一種解碼方法,包括通過以下步驟使用多個鄰近取樣預測該圖片的一既定區塊: 縮減,例如通過平均與降取樣,該多個鄰近取樣以獲得一縮減集合的取樣值,該縮減集合的取樣值在取樣數量上少於該多個鄰近取樣,使該縮減集合的取樣值受到一線性或仿射線性變換以獲得針對該既定區塊的既定取樣的預測值。
在範例中,可能提供一種編碼方法,包括通過以下步驟使用多個鄰近取樣預測該圖片的一既定區塊: 縮減,例如通過平均與降取樣,該多個鄰近取樣以獲得一縮減集合的取樣值,該縮減集合的取樣值在取樣數量上少於該多個鄰近取樣,使該縮減集合的取樣值受到一線性或仿射線性變換以獲得針對該既定區塊的既定取樣的預測值。
在範例中,可能提供一種儲存指令的非暫時性儲存單元,當通過一處理器執行時,使該處理器執行上述方法。
編碼器、解碼器
在下文中描述各種範例,這些範例可以在使用內預測時幫助實現一更有效的壓縮。一些範例通過花費一組內預測模式來實現該壓縮效率的增加。例如,後者可能添加到啟發式設計的其他內預測模式中,或者可能僅提供後者。甚至其他範例都利用剛剛討論的兩個專業。
為了簡化對本申請的以下範例的理解,描述以適合於其可能的編碼器與解碼器的呈現開始,可以將本申請的隨後概述的範例構建於其中。第1圖顯示用於以逐區塊(block-wise)方式編碼一圖片10為一資料流12的一設備。使用參考標記14表示該設備,並且可能是一靜止圖片編碼器或一視訊編碼器。換句話說,當編碼器14配置為將包括圖片10的視訊16編碼為資料流12時,圖片10可以是一視訊16中的一當前圖片,或者編碼器14可以將圖片10專門地編碼為資料流12。
如上所述,編碼器14以逐區塊方式或以區塊基礎執行該編碼。為此,編碼器14將圖片10細分為區塊,即編碼器14將圖片10編碼為資料流12的單位。以下將更詳細地開始可能細分圖片10為區塊18的範例。通常,該細分可以採取在恆定尺寸的區塊18,例如排列成列與行的一陣列的區塊,或者不同區塊尺寸的區塊18,例如通過使用一分層(hierarchy)多樹細分,開始將圖片10的該整個圖片區域細分或將圖片10的預分區細分為一陣列的樹區塊,其中這些範例不應視為排除將圖片10細分為區塊18的其他可能方式。
此外,編碼器14是配置為將圖片10預測地編碼為資料流12的一預測編碼器。對於一特定區塊18,這意味著編碼器14決定區塊18的一預測信號並編碼該預測殘差,亦即,從在該區塊18的該實際圖片內容推導的該預測信號的該預測誤差,成為資料流。
編碼器14可能支持不同的預測模式,以便推導一特定區塊的該預測信號。根據從鄰近的圖片已經編碼的取樣空間地預測哪個該區塊18的內部,在以下範例中重要的該預測模式是的內預測模式。編碼圖像10成為資料流12以及該對應的解碼程序可以基於在區塊18之間定義的一特定編碼順序20。例如,該編碼順序20可以用一光柵掃描順序橫貫(traverse)區塊,例如,逐列從上到下,從左到右橫貫每一列。假如在基於分層多樹的細分的情況,光柵掃描排序可能應用在每個分層級別內,其中可能應用一深度優先橫貫順序,即一特定分層級別的一區塊內的葉節點可以根據編碼順序20位於具有相同親屬區塊的同分層的區塊之前。取決於該編碼順序20,鄰近的已經編碼的一區塊18的取樣,可能通常位於區塊18的一側或多側。例如,以在此發表的範例的情況,鄰近的,已編碼一區塊的取樣定位於區塊18的該頂部以及該左側。
內預測模式可能不是編碼器14支持的唯一模式。例如,在編碼器14是一視訊編碼器的情況下,根據從先前編碼的視訊的圖片臨時地預測一區塊18,編碼器14還可能支持畫面間預測(inter-prediction)模式。根據針對這樣的區塊18發信號通知一運動向量,這樣的內預測模式可以是運動補償的預測模式,該運動向量指示要從中推導出區塊18的該預測信號作為一副本的部分的一相對空間偏移。附加地或可選替地,在編碼器14是多視點編碼器的情況下,其他非內預測模式也可以是可用的,例如畫面間預測模式,或者根據該區塊18的內部編碼成沒有任何預測的非預測模式。
在開始將本申請的描述集中於內預測模式之前,針對可能的基於區塊的編碼器,亦即是,針對編碼器14的可能的實現的更具體的範例,如關於第2圖所描述的,然後呈現符合第1及2圖解碼器的兩個對應的範例。
第2圖顯示第1圖的編碼器14的可能的實現,亦即,該編碼器配置為使用變換編碼來編碼該預測殘差的實現,儘管這幾乎是範例,並且本申請不限於那種預測殘差編碼。根據第2圖,編碼器14包括一減法器22,該減法器22配置為將該入站信號,亦即是圖片10,或在一區塊基礎、當前區塊18、減去該對應的預測信號24,以便獲得該預測殘差信號26,該殘差信號然後通過一預測殘差編碼器28編碼為一資料流12。該預測殘差編碼器28由一有損編碼級28a與一無損編碼級28b組成。該有損級28a接收該預測殘差信號26,並且包括一量化器30,該量化器30量化該預測殘差信號26的該取樣。如上所述,本範例使用預測殘差信號26的變換編碼,因此,該有損編碼級28a包括連接在減法器22與量化器30之間的一變換級32,以便於以量化器的一量化變換這種頻譜分解的預測殘差26,該量化器的量化發生在呈現該殘餘信號26的該變換係數上。該變換可以是DCT、 DST、FFT、Hadamard變換等。然後,該變換與量化的預測殘差信號34通過該無損編碼級28b進行無損編碼,該無損編碼級28b是將量化的預測殘差信號34熵編碼成資料流12的一個熵編碼器。編碼器14更包括連接至該量化器30的輸出的該預測殘差信號重建級36,以便於以在該解碼器處也可用的方式從該變換與量化的預測殘差信號34重建該預測殘差信號,亦即,考慮到該編碼損失是量化器30。為此,該預測殘差重建級36包括一解量化器38,該解量化器38執行該量化器30的量化的該逆向;隨後是一逆變換器40,該逆變換器40執行相對於變換器32執行的該變換的該逆變換,例如,該頻譜分解的該逆向,例如與上述任何特定變換範例相反的該逆向。編碼器14包括一加法器42,該加法器42將該逆變換器40作為輸出的該重建的預測殘差信號與該預測信號24相加,以輸出一重建的信號,亦即是重建的取樣。此輸出饋送到編碼器14的一預測器44,該預測器44然後基於其決定該預測信號24。預測器44支持上面關於第1圖已經討論的所有預測模式。第2圖也說明假如編碼器14是一視訊編碼器,編碼器14也可能包括具有完全重建的圖片的濾波器的一環內濾波器46,在已經過濾後,形成關於畫面間預測區塊的預測器44的參考圖片。
如上所述,編碼器14基於區塊進行操作。對於隨後的描述,關注的該區塊基礎是將圖片10細分成區塊,該區塊是分別從預測器44或編碼器14支持的一組或多個內預測模式中選擇出的該內預測模式的區塊,並且該選擇的內預測模式個別地執行。然而,也可能存在將圖片10細分成的其他種類的區塊。例如,可能以粒度或以與區塊18不同的區塊的單位來進行圖片10是畫面間編碼還是內編碼的上述判定。例如,在圖像10被細分的編碼區塊的一級別上可能執行畫面間/內模式判定,並且每個編碼塊被細分為預測塊。具有已經判定使用內預測的編碼區塊的預測塊分別細分為內預測模式判定。為此,對於這些預測區塊的每一個,判定哪種支持的內預測模式應用於該各個預測塊。這些預測塊將形成在此關注的區塊18。與畫面間預測相關聯的編碼區塊內的預測區塊將被預測器44進行不同處理。通過決定一運動向量及複製針對此區塊的該預測信號,將從參考圖片對他們進行畫面間預測,此區塊的該預測信號來自該運動向量指向的該參考圖片中的一位置。在通過變換器32與逆變換器40進行該變換的單元處,另一個區塊細分關聯於細分為變換區塊。舉例來說,變換的區塊可能是進一步細分編碼區塊的結果。自然地,在此闡述的範例不應視為限制性的,並且也存在其他範例。僅出於完整性的目的,應注意的是,例如,細分為編碼區塊可能使用多樹細分,並且使用多樹細分通過進一步細分編碼區塊也可能獲得預測區塊及/或變換區塊。
在第3圖描述針對適合於第1圖的該編碼器14的逐區塊解碼的一解碼器54或設備。此解碼器54進行與編碼器14相反的操作,亦即,它以逐區塊方式從資料流12解碼圖片10。並且為此目的,支持多個內預測模式。例如,該解碼器54可能包括一殘差提供器156。上面關於第1圖討論的所有其他可能性對於該解碼器54也是有效的。為此,解碼器54可能是一靜止圖像解碼器或一視訊解碼器,並且解碼器54也支持所有的該預測模式與預測可能性。編碼器14與解碼器54之間的差異主要在於,編碼器14根據某種最佳化選擇編碼決策,例如,為了最小化可能取決於編碼率及/或編碼失真的某些成本函數。這些編碼選項或編碼參數之一可以涉及在可用或支持的內預測模式中選擇要用於一當前區塊18的該內預測模式。然後針對資料流12內的當前區塊18可以通過編碼器14用信號通知該選擇的內預測模式,並且解碼器54使用針對區塊18的資料流12中的該信號化來重新進行該選擇。同樣,將圖片10細分為區塊18可能在編碼器14內進行最佳化,並且對應的細分資訊可能在資料流12內傳送,解碼器54基於該細分信息將圖片10的該細分恢復為區塊18。綜上所述,解碼器54可以是操作在一區塊基礎的一預測解碼器,並且除了內預測模式之外,解碼器54還可以支持其他預測模式,例如畫面間預測模式,如同在解碼器54是一視訊解碼器的情況。在解碼中,解碼器54還可以使用關於第1圖討論的編碼順序20,並且在編碼器14與解碼器54處都遵守該編碼順序20,因此在編碼器14與解碼器54處針對一當前區塊18相同的鄰近取樣是可用的。因此,為了避免不必要的重複,編碼器14的該操作模式的描述也應適用於解碼器54,只要涉及將圖片10細分為區塊,例如,涉及預測,以及涉及該預測殘差的該編碼。差異在於以下事實:編碼器14通過最佳化選擇一些編碼選項或編碼參數及在資料流12中的信號,然後通過解碼器54***從該資料流12推導出的編碼參數,以重做該預測、細分等。
第4圖顯示第3圖的解碼器54的一種可能的實現方式,亦即,一種適合於第2圖所示的第1圖的編碼器14的實現方式。第4圖的該解碼器54的許多元件與在第2圖的該對應編碼器中出現的那些相同,為了指示這些元件,在帶有撇號的相同參考符號用於第4圖中。特別地,加法器42'、可選的環內濾波器46’與預測器44’用與它們在第2圖的編碼器中相同的方式連接到一預測環路。該重建的,亦即解量化與重新變換的預測殘差信號施加到加法器42'。加法器42'由一序列的熵解碼器56推導出,該解碼器56逆轉熵編碼器28b的該熵編碼,隨後是殘差信號重建級36',該重建級36'由解量化器38'及逆變換器40'組成,就像在編碼端的情況一樣。該解碼器的輸出是圖片10的重建。該圖片10的重建可以直接在該加法器42'的輸出處使用,或可選替地,也可以在該環內濾波器46'的輸出處使用。在該解碼器的輸出端可能設置一些後濾波器,以使該圖片10的重建受到一些後濾波,以改善該圖片質量,但是此選項未在第4圖中描繪。
再次,關於第4圖,以上關於第2圖提出的描述對於第4圖也應是有效的,除了僅該編碼器執行最佳化任務及關於編碼選項的相關聯決策。然而,關於區塊細分、預測、解量化和重新變換的所有描述對於第4圖的解碼器54也是有效的。
ALWIP
即使具體實現此處討論的技術ALWIP不是始終必要的,仍然在此討論有關ALWIP的一些非限制性範例。
本申請涉及針對逐區塊圖片編碼的改進的內預測模式概念,例如使用在一視訊編解碼器,例如HEVC或HEVC的任何後續版本。
內預測模式廣泛用於圖片與視訊編碼中。在視訊編碼中,內預測模式與其他預測模式競爭,例如畫面間預測模式,例如運動補償的預測模式。在內預測模式中,基於鄰近取樣預測一當前區塊,亦即,就該編碼器側而言取樣已經被編碼,並且就該解碼器側而言取樣已經被解碼。鄰近取樣值被外推到當前區塊中,以形成針對該當前區塊的一預測信號,其中該預測殘差針對當前區塊在該資料流中發送。該預測信號越好,該預測殘差就越低,因此,需要較少的位元數編碼該預測殘差。
為了有效,應當考慮幾個方面,以在一逐區塊圖片編碼環境中針對內預測形成一有效畫面工作。例如,為了信號發送該選擇到該解碼器,該編解碼器支持的內預測模式的數量越多,該輔助資訊(side information)速率消耗就越大。另一方面,該組支持的內預測模式應該能夠提供一良好的預測信號,亦即導致一較低預測殘差的一預測信號。
如果尋求使用該改進的內預測模式概念,一內預測模式概念允許一逐區塊圖片編解碼器的一更有效壓縮。
通過該所謂的仿射線性加權內預測器(ALWIP)變換實現該目的。揭露一種用於從一資料流逐區塊解碼一圖片的設備(編碼器或解碼器),該設備支持至少一種內預測模式,其係根據:通過將與該當前區塊相鄰的取樣的一第一模板應用於一仿射線性預測器針對該圖像的一既定尺寸的一區塊決定該內預測信號,該仿射線性預測器在後文中將稱為仿射線性加權內預測器(ALWIP)。
該裝置可能具有以下屬性中的至少一個(相同屬性可以應用於一種方法或另一種技術,例如,在儲存指令的一非暫時性儲存單元中實現,該指令在通過一處理器執行時使得該處理器實現該方法及/或作為該設備運行)。
提出的預測器可能與其他預測器互補
該設備支持的該內預測模式與該編解碼器的其他內預測模式互補。因此,它們可以與該HEVC編解碼器中定義的DC、平面或角度預測模式互補。該JEM參考軟體。 從現在起,後三種類型的內預測模式將稱為習知內預測模式。因此,對於幀內模式下的一給定區塊,需要通過該解碼器解析一旗標(flag),該旗標指示是否要使用該設備所支持的該內預測模式之一。
超過一種建議的預測模式
該設備可以包含超過一種ALWIP模式。 因此,在解碼器知道該設備支持的該ALWIP模式之一待使用的情況下,該解碼器需要解析附加資訊,該附加資訊指示該設備支持的該ALWIP模式的哪一個待使用。
支持的該模式的該信號化可能具有以下特性:某些ALWIP模式的該編碼可能比其他ALWIP模式需要更少的二進位值(bins)。 這些模式中的哪一個需要較少的二進位值,並且哪些模式需要更多的二進位值可能取決於從該已經解碼的位元流中提取的資訊,或者可以預先固定。
一些層面
第2圖顯示用於編碼來自一資料流12的一圖片的該解碼器54。該解碼器54可能配置為解碼該圖片的一預定區塊18。特別地,該預測器44可能配置為使用一線性或仿射線性變換[例如,ALWIP]將與該既定區塊18相鄰的一集合的P個鄰近取樣映射到針對該既定區塊的取樣的一集合的Q個預測值上。
如第5圖所示,一既定區塊18包括待預測的Q值(在該運算結束時,將是“預測值”)。如果區塊18具有M列與N行,則Q=M*N。該區塊18的該Q值可能在該空間域(例如,像素)中或在該變換域中(例如,DCT、離散小波變換等)。基於從該鄰近區塊17a-17c獲得的P值可能預測該區塊18的該Q值,該鄰近區塊17a-17c通常與區塊18相鄰。該鄰近區塊17a-17c的該P值可能是最接近該區塊18的位置(例如,鄰接)。該鄰近區塊17a-17c的該P值已經處理與預測。該P值在部分17’a-17’c中表示為數值,以將它們與所屬的該區塊區分,(在某些範例中,未使用17’b)。
如第6圖所示,為了執行該預測,可能以具有P個條目(每個條目與該鄰近部分17'a-17'c中的一特定位置關聯)的一第一向量17P、具有Q個條目(每個條目與該區塊18中的一特定位置關聯)的一第二向量18Q,以及一映射矩陣17M(每個列與該區塊18中的一特定位置關聯,每一行與該鄰近部分17'a-17'c中的一特定位置關聯)進行運算。因此,該映射矩陣17M根據一預定模式執行進入到該區塊的數值的該鄰近部分17'a-17'c的該P值的該預測。因此,該映射矩陣17M中的該條目可能理解為加權因子。在下面的段落中,我們將使用該符號17a-17c取代17’a-17’c參照該邊界的該鄰近部分。
在本領域中,已知幾種習知模式,例如DC模式、平面模式與65個方向預測模式。可能已知例如67種模式。
但是,已經注意到,也可能利用不同的模式,在這裡稱為線性或仿射線性變換。該線性或仿射線性變換包括P*Q加權因子,其中至少¼P*Q加權因子是非零加權值,對於Q個預測值中的每一個,包括與該各自預測值相關的一系列P加權因子。當該系列根據該既定區塊的取樣之間的一光柵掃描順序一個接一個地排列時,形成全方位非線性的包絡。
第13圖顯示圖表70的範例,該圖表70映射該鄰近值17’a-17’c(模板)的P位置,該鄰近取樣17’a-17’c的該Q個位置以及在該矩陣17M的該P*Q加權因子的該數值。一平面72是針對一DC變換的該系列的該包絡的一範例(其是針對該DC變換的一平面)。該包絡明顯是平面的,因此被該線性或仿射線性變換(ALWIP)的定義所排除。另一個範例是模擬一個矩陣,該矩陣導致一個角度模式的一個模擬:一個包絡將被排除在該ALWIP定義之外,並且坦白說,看起來像是一個斜坡,沿著該P/Q平面的一方向從上到下傾斜。該平面模式與該65個方向預測模式將具有不同的包絡,但是其在至少一個方向上是線性的,亦即,例如對於該範例的DC的所有方向,以及對於一角度模式的該斜坡方向。
相反地,該線性或仿射變換的該包絡將不是全方向線性的。可以理解的是,在某些情況下,這種類型的變換對於執行區塊18的該預測可能是最佳的。已經注意到,較佳的是,至少¼的加權因子不同於零(亦即,至少25%的該P*Q加權因子不同於0)。
根據任何常規映射規則,該加權因子可能彼此不相關。因此,一矩陣17M可能使得其條目的該數值沒有明顯可識別的關係。例如,該加權因子不能通過任何分析或微分函數來描述。
在範例中,一ALWIP變換使得與該各自預測值相關的一第一系列加權因子及與預測值而非該各自預測值相關的一第二系列加權因子之間的互相關最大值的一平均值,或者該後面系列的一相反版本,無論導致一更高的最大值,都可能低於一既定門檻(例如0.2或0.3或0.35或0.1,例如,一門檻在0.05到0.035之間的一範圍)。例如,對於該ALWIP矩陣17M的每一對列(i 1,i 2),可以通過將該第i 1列的該P值乘以該第i 2列的該P值來計算一互相關。對於每個獲得的互相關,可以獲得該最大值。因此,可以獲得針對整個矩陣17M的一平均值(平均值)(亦即,對所有組合中的該互相關的該最大值進行平均)。此後,該門檻可能例如0.2或0.3或0.35或0.1,例如在0.05至0.035之間的一範圍內的一門檻。
區塊17a-17c的該P個鄰近取樣可以沿著一一維路徑定位,該一維路徑沿著該既定區塊18的一邊界(例如,18c,18a)延伸。對於該既定區塊18的該Q個預測值中的每個,關於該各自預測值的該序列的P個加權因子可能在一預定方向(例如,從左到右,從上到下等)橫貫該一維路徑的方式排序。
在範例中,該ALWIP矩陣17M可能是非對角線或非區塊對角線。
針對來自4個已經預測的鄰近取樣的一4x4區塊18的ALWIP矩陣17M的範例可能是: { { 37,  59,  77,  28}, { 32,  92,  85,  25}, { 31,  69, 100,  24}, { 33,  36, 106,  29}, { 24,  49, 104,  48}, { 24,  21,  94,  59}, { 29,   0,  80,  72}, { 35,   2,  66,  84}, { 32,  13,  35,  99}, { 39,  11,  34, 103}, { 45,  21,  34, 106}, { 51,  24,  40, 105}, { 50,  28,  43, 101}, { 56,  32,  49, 101}, { 61,  31,  53, 102}, { 61,  32,  54, 100} }.
(此處,{37,59,77,28}是該第一列;{32,92,85,25}是第二列;以及{61,32,54,100}是該矩陣17M的第16列。)矩陣17M具有維度16x4及包括64個加權因子(作為6*4=64的一個結果)。這是因為矩陣17M具有維度QxP,其中Q=M*N,這是待預測的區塊18的取樣數(區塊18是4x4區塊),並且P是該已經預測的取樣的取樣數。在此,M=4,N=4,Q=16(作為M×N=4×4=16的一個結果),P=4。 該矩陣是非對角線與非區塊對角線,並且沒有通過一特定規則描述。
可以看出,少於1/4的該加權因子為0(在上述該矩陣顯示的情況下,六十四個加權因子中的一個為零)。由這些數值形成的包絡在按照一光柵掃描順序一個排在另一個之下時,形成了全方位非線性的包絡。
即使主要參考一解碼器(例如,該解碼器54)來討論上述說明,同樣可能在該編碼器(例如,編碼器14)處執行。
在一些範例中,對於每個區塊尺寸(在區塊尺寸的該集合中),針對各個區塊尺寸的該第二組內預測模式內的內預測模式的該ALWIP變換是互不相同。附加地或可選替地,針對在該組的區塊尺寸內的該區塊尺寸,該第二組內預測模式的一基數可能重疊,但是針對不同區塊尺寸該第二組內預測模式內的內預測的相關線性或仿射線性變換可能無法通過縮放相互轉移。
在一些範例中,可能以這樣的方式定義該ALWIP變換:它們與習知變換“沒有共享”(例如,該ALWIP變換與該對應的習知變換“無共享”),即使它們已通過上面的映射之一)。
在範例中,ALWIP模式用於亮度分量與色度分量,但是在其他範例中,ALWIP模式用於亮度分量,但不用於色度分量。
具有編碼器加速功能的仿射線性加權內預測模式 ( 例如,測試 CE3-1.2.1)
方法或裝置的描述
在CE3-1.2.1中測試的仿射線性加權內預測(ALWIP)模式可能與在測試CE3-2.2.2下的JVET-L0199中提出的模式相同,除了以下改變: 與多參考線(MRL)內預測的協調,特別是編碼器估計與信號通知,亦即MRL未與ALWIP結合,並且傳輸一MRL索引限制於非ALWIP區塊。 現在對所有區塊W×H≥32×32的強制副取樣(之前對於32×32是可選的);因此,已刪除該編碼器上發的該附加測試以及傳送該副取樣旗標。 通過分別對32×N與N×32降取樣並應用對應的ALWIP模式,已經添加用於64×N與N×64區塊(N≤32)的ALWIP。
此外,測試CE3-1.2.1包括針對ALWIP的以下編碼器最佳化: 組合模式估計:習知模式與ALWIP模式使用共享的Hadamard候選列表進行完整RD估計,亦即,基於該Hadamard成本,ALWIP模式候選者被添加到與習知(與MRL)模式候選者相同的列表中。 組合模式列表支持EMT畫面內快速與PB畫面內快速,以附加的最佳化縮減完整RD檢查的該數量。 按照與傳統模式相同的方法,僅將可用的左區塊與上區塊的MPM添加到針對ALWIP的完整RD估計的該列表中。
複雜度評估
在測試CE3-1.2.1中,不包括引起該離散餘弦變換的計算,需要每個取樣最多12個乘法才能產生該預測信號。 此外,總共需要136492個參數,每個參數16位元。 這對應於0.273 MB的記憶體。
實驗結果
根據該通用測試條件JVET-J1010 [2]針對具有該VTM軟體3.0.1版的該僅內部(AI)與隨機存取(RA)組態進行測試評估。在具有Linux OS與GCC 7.2.1編譯器的一Intel Xeon群集(E5-2697A v4,AVX2打開,turbo boost關閉)上進行對應的模擬。 表格 1. 針對 VTM AI 配置的 CE3-1.2.1 的結果
Y U V enc time dec time
Class A1 -2,08% -1,68% -1,60% 155% 104%
Class A2 -1,18% -0,90% -0,84% 153% 103%
Class B -1,18% -0,84% -0,83% 155% 104%
Class C -0,94% -0,63% -0,76% 148% 106%
Class E -1,71% -1,28% -1,21% 154% 106%
Overall -1,36% -1,02% -1,01% 153% 105%
Class D -0,99% -0,61% -0,76% 145% 107%
Class F (optional) -1,38% -1,23% -1,04% 147% 104%
表格 2.針對 VTM RA 配置的 CE3-1.2.1 的結果
Y U V enc time dec time
Class A1 -1,25% -1,80% -1,95% 113% 100%
Class A2 -0,68% -0,54% -0,21% 111% 100%
Class B -0,82% -0,72% -0,97% 113% 100%
Class C -0,70% -0,79% -0,82% 113% 99%
Class E           
Overall -0,85% -0,92% -0,98% 113% 100%
Class D -0,65% -1,06% -0,51% 113% 102%
Class F (optional) -1,07% -1,04% -0,96% 117% 99%
測試 CE3-1.2.2 :具複雜度降低的仿射線性加權內預測
CE2中測試的技術與JVET-L0199 [1]中描述的“仿射線性內預測”相關,但在關於記憶體需求與計算複雜度將其簡化: l  可能只有三組不同的預測矩陣(例如S 0,S 1,S 2,也請參見下文)及偏移向量(例如用於提供偏移值)覆蓋所有區塊形狀。結果,該參數的數量縮減到14400個10位元值,相較於在128×128 CTU中儲存的記憶體更少。 l  該預測器的輸入與輸出尺寸進一步減小。此外,代替經由DCT變換該邊界,可能對邊界取樣執行平均或降取樣,並且該預測信號的產生可能使用線性內插代替逆DCT。因此,每個取樣的四個的一最大值可能導致必須產生該預測信號。
範例
這裡討論瞭如何利用ALWIP預測執行一些預測(例如,如圖6所示)。
原則上,參考圖6,為了獲得待預測的一M×N區塊18的該Q=M×N值,應該執行將該Q×P ALWIP預測矩陣17M的該Q×P個取樣乘以該Px1鄰進向量17P的該P個取樣。因此,通常,為了獲得待預測的該M×N區塊18的每個該Q=M×N值,至少需要P=M+N個值乘法。
這些乘法具有極度有害的作用。該邊界向量17P的該維度P通常取決於待預測的相鄰(例如鄰接於)該MxN區塊18的該邊界取樣(二進位值或像素)17a,17c的該數量M+N。這意味著,如果待預測的該區塊18的尺寸大,則該邊界像素(17a,17c)的數量M+N相應地大,因此增加該Px1邊界向量17P的該維度P=M+N,以及該QxP ALWIP預測矩陣17M的每一列的該長度,並且因此也增加該乘法的數量(一般而言,Q=M*N=W*H,其中對於N,W(寬度)是另一個符號,並且對於M,H(高度) 是另一個符號;在該邊界向量僅由一列及/或一行取樣形成的情況下,P為P=M+N=H+W)。
通常,在基於微處理器的系統(或其他數位處理系統)中,乘法通常是耗電的運算,這一問題通常會加劇。可以想像,針對大量區塊的極大量取樣進行的大量乘法會導致計算功率的浪費,這通常是不想要的。
因此,較佳的是縮減預測該MxN區塊18所需的該乘法次數Q*P。
已經理解的是,通過智慧地選擇更容易處理的替代乘法的運算,有可能以某種方式縮減待預測的每個區塊18的每個內預測所需的該計算功率。
特別地,參考第7.1-7.4、8.1及8.2圖,已經可以理解,一編碼器或一解碼器可能使用多個鄰近取樣(例如17a,17c)預測該圖像的一既定區塊(例如18),其通過以下方法步驟: 縮減(100、813)該多個鄰近取樣以獲得一縮減集合(102)的取樣值,該縮減集合(102)的取樣值在取樣數量上少於該多個鄰近取樣(17), 使該縮減集合(102)的取樣值受到(812)一線性或仿射線性變換(19, 17M)以獲得針對該既定區塊(18)的既定取樣(104、118’、188’’)的預測值。
在某些情況下,基於該既定取樣的該預測值及該多個鄰近取樣,該解碼器或編碼器還可能通過內插推導出(例如,第8.1圖中的步驟813)該既定區塊的另外取樣的預測值。因此,可能獲得一上取樣策略。
在範例中,在該邊界17的該取樣上執行(例如,在步驟811)一些平均值,以獲得具有一縮減的取樣數量(該縮減數量的取樣102中的取樣的至少一個取樣可能是該原始邊界取樣的兩個取樣的該平均,或者是該原始邊界取樣的一選擇)的一縮減集合102(圖7.1-7.4)的取樣。例如,如果該原始邊界具有P=M+N個取樣,則該縮減集合的取樣可能具有M red<M與N red<N中至少一個的P red=M red+N red,使得P red<P。因此,將實際用於該預測(例如在步驟812b)的該邊界向量17P將不具有Px1條目,而是具有P red<P的P redx1條目。類似地,針對該預測選擇的該ALWIP預測矩陣17M將不具有QxP維度,但是具有一縮減數量的該矩陣元素的QxP red(或Q redxP red,參見下文),至少是因為P red<P(由於M red<M與N red<N的至少一個)。
在一些範例中(例如,第7.2、7.3與8.2圖),如果通過ALWIP獲得的該區塊(在步驟812處)是具有尺寸 的一縮減區塊,其中 及/或 (亦即,通過ALWIP直接預測的該取樣的在數量上少於要實際預測的區塊18的該取樣),則甚至可能進一步縮減乘法的數量。因此,設置 ,通過使用Q red* P red個乘法(Q red*P red< Q*P red<Q*P)代替Q*P red個乘法,這將獲得ALWIP預測。此乘法將預測維度為Q red*P red< Q*P red<Q*P的一減縮區塊。儘管有可能從該縮減的 預測區塊到該最終MxN預測區塊的上執行(例如,在隨後的步驟813)一上取樣(例如,通過內插獲得)。
這些技術可能是有利的,因為儘管該矩陣乘法涉及一縮減數量的乘法(Q red*P red或Q*P red),但是該初始縮減(例如,平均或降取樣)及該最終變換(例如,內插)都可能通過縮減(或甚至避免)乘法執行。例如,可以通過採用非計算功率要求的二進制運算,例如加法與移位,執行降取樣、平均及/或內插(例如,在步驟811及/或813)。
這裡討論在處理器級別的移位運算的範例。第9圖顯示在十位元暫存器910中以二進制(1001000100b)編碼的該數字580,該十位元暫存器910具有10位元暫存器910a,每個位元暫存器910a儲存一位元值(例如1或0)。以二進制表示、編碼在該兩位元組暫存器910中的該值1001000100b在第9a圖中表示為901,作為“待移位的值”。第9b圖中用數字902表示的該二進制值是用數字901表示的該二進制值的一右移版本。可以看出,該二進制值902(編碼為0100100010b)是在每個位元暫存器910a中編碼的每個值已經簡單地移動到該各自的右側位置的該位元暫存器中之後的該二進制值901的版本。該二進制值901的較低有效位元在該二進制值902中丟失;並且該移位後的二進制值902的最高有效位添加為零。如果將該移位的二進制值902變換為十進制,我們會看到已經獲得580的一半的該十進制值290。這可能是一種將一二進制數除以2的技術(假如該值901是奇數,僅存在一量化誤差)。此運算非常容易執行,並且不需要很高的計算功率。值得注意的是,通過移位多次,獲得2的冪的除法:通過移位兩次,得到除以4。通過移位三倍,獲得除以8,並且通常通過移位r次,獲得2 r(2^r)的除法。這也可以用符號f >> r表示,使得f >> 1表示f/2,f >> 2表示f/4,依此類推(以f為一整數)。此運算也稱為右旋轉。類似地,左旋轉運算f << r表示f乘以2r(或2^r)。對於處理器而言,該移位操作不是計算量需求的,因為它們避免執行乘法的必要,而是僅通過移動不同暫存器中的位元來獲得。在該範例中,暫存器910表示為10位元暫存器。然而,在實例中,該暫存器910可具有不同數目的位元暫存器910a,例如,8位元暫存器910(在這種情況下,該暫存器910是一8位元暫存器)。
而且,該加法是非常容易的運算,無需大量的計算工作就可以容易地執行。
舉例來說,此移位運算可以用於平均兩個邊界取樣及/或用於內插該縮減的預測區塊(或從該邊界獲得)的兩個取樣(支持值),以獲得該最終的預測區塊。(對於內插,兩個取樣值是必要的。在該區塊內,我們始終有兩個既定值,但是對於沿著該區塊的該左邊界與上方邊界內插該取樣,我們只有一個既定值,如第7.2圖所示,因此我們使用一邊界取樣作為內插的一支持值。)
可以使用一兩步驟程序,例如: 首先將該兩個取樣的該數值相加; 然後將該總和的該數值減半(例如,右移)。 可選替地,可能: 首先將該取樣的每個減半(例如,左移); 然後將該兩個減半的取樣的該數值相加。
當降取樣時(例如,在步驟811),甚至可能執行更容易的運算,因為僅需要在一組取樣(例如,彼此相鄰的取樣)中選擇一個取樣量。
因此,現在可能定義用於縮減要執行的該乘法次數的技術。這些技術中的一些尤其可以基於以下至少一項原理: 即使要實際預測的區塊18具有尺寸MxN,也可能減小區塊(在該二維的至少一個中)並且可應用具有減小的尺寸Q redxP red(具有 ,P red=N red+M red, 具有 及/或 及/或  M red<M 及/或 N red<N)的一ALWIP矩陣。因此,該邊界向量17P將具有尺寸P redx1,暗示P red<P乘法(P red=M red+N red,P=M+N)。 該P redx1邊界向量17P可能很容易地從該原始邊界17獲得,例如: 通過降取樣(例如,僅選擇該邊界的一些取樣);及/或 通過平均該邊界的多個取樣(可能容易地通過加法與移位獲得,而無需乘法。 另外或可替代地,代替通過乘法預測要預測的該區塊18的所有該Q=M*N值,可能僅預測具有減小的維度的一縮小區塊(例如,具有 及/或 )。舉例來說, 使用該Q red取樣作為待預測的該剩餘Q-Q red值的支持值通過內插獲得待預測的該區塊18的該剩餘取樣。
第8.1圖提供一個範例,該範例可以理解為一般性地描述一流程810,其特定情況在圖7.1中說明。在這種情況下,待預測一個4x4的區塊18(M=4,N=4,Q=M*N= 16),以及取樣17a(具有四個已經預測的取樣的一垂直行)與17c(具有四個已經預測的取樣的水平列)的一鄰域17已經在先前的迭代中預測(該鄰域17a與17c可以用17共同表示)。先驗地,通過使用圖5所示的等式,該預測矩陣17M應該是一QxP=16x8矩陣(由於Q=M*N=4*4與P=M+N=4+4=8),以及該邊界向量17P應具有8x1維度(由於P=8)。然而,這將驅使對於要預測的4×4區塊18的該16個取樣的每個執行8次乘法的必要性,因此導致總共需要執行16×8=128次乘法。(注意到,每個取樣的平均乘法次數很好地評估該計算複雜性。對於習知的內預測,需要每個取樣四個乘法,並且這會增加涉及的該計算量。因此,可能使用這作為ALWIP的上限,將確保複雜度合理,並且不會超過習知內預測的複雜度。)
儘管如此,已經理解,通過使用本技術,在步驟811,可以縮減與要預測的區塊18相鄰的該取樣17a與17c的數量,從P縮減到P red<P。特別地,已經理解到,可能對彼此相鄰的邊界取樣(17a,17c)進行平均(例如,在第7.1圖中為100),以獲得具有兩個水平列及兩個垂直行的一縮減邊界102。因此用作區塊18的運算是一2×2區塊(該縮減的邊界由平均值形成)。可選替地,可能執行一降取樣,因此針對該列17c選擇兩個取樣,以及針對該行17a選擇兩個取樣。因此,代替具有四個原始取樣,該水平列17c處理為具有兩個取樣(例如,平均取樣),然而該垂直行17a,原本具有四個取樣,被處理為具有兩個取樣(例如,平均的取樣)。也可能理解成,在將該列17c與行17a細分為多組110的兩個取樣之後,保持一單個取樣(例如,該組110的該取樣的該平均或該取樣中的一簡單選擇)。因此,由於該集合102僅具有四個取樣(M red=2, N red=2, P red=M red+N red=4, 具有P red<P),可以獲得所謂的取樣值的縮減集合102。
已經理解的是,在該處理器級可能執行運算(例如該平均或降取樣100)而無需進行執行太多乘法:在步驟811執行的該平均或降取樣100可能透過該直接且計算上非耗電運算簡單地獲得,例如加法與移位。
已經理解的是,在這一點上,可能使該縮減的集合的取樣值102受到一線性或仿射線性(ALWIP)變換19(例如,使用一預測矩陣,如第5圖的矩陣17M)。在這種情況下,該ALWIP變換19將該四個取樣102直接映射到該區塊18的該取樣值104上。在當前情況下,不需要內插。
在這種情況下,該ALWIP矩陣17M具有維度QxP red=16×4:這遵循以下事實:待預測的該區塊18的所有Q=16個取樣都是通過ALWIP乘法直接獲得的(不需要內插)。
因此,在步驟812a,選擇具有尺寸QxP red的一合適的ALWIP矩陣17M。舉例來說,該選擇可能至少部分地基於來自該資料流12的信號通知。該選擇的ALWIP矩陣17M也可能用A k表示,其中k可以理解為一索引,該索引可以在該資料流12中信號通知(在某些情況下,該矩陣也表示為 ,參見下文)。可能根據第12圖說明的方案執行該選擇:對於每個維度(例如,待預測的區塊18的高度/寬度對),例如在該三組矩陣S 0, S 1, S 2(該三組S 0, S 1, S 2中的每一個都能對相同維度的多個ALWIP矩陣17M進行分組,並且待選擇用於預測的該ALWIP矩陣將是它們其中之一)之間選擇一ALWIP矩陣17M。
在步驟812b,執行該選擇的QxP redALWIP矩陣17M(也表示為A k)以及該P redx1邊界向量17P之間的一乘法。
在步驟812c,一偏移值(例如,b k)可能添加到,例如,通過ALWIP獲得的該向量18Q的所有獲得值104。該偏移量的該數值(b k或在某些情況下也用 表示,參見下文)可能與該特定選擇的ALWIP矩陣(A k)相關聯,並且可能基於一索引(例如,可能在資料流12中用信號發送)。
因此,這裡繼續使用本技術與不使用本技術之間的比較: 不用本技術: 待預測的區塊18,該區塊具有維度M=4、N=4; Q=M*N=4*4=16個待預測的值; P=M+N=4+4=8個邊界取樣 對於待預測的Q=16值的每個的P=8個乘法, 總數P*Q=8*16=128個乘法; 使用本技術,我們可以: 待預測的區塊18,該區塊具有維度M=4、N=4; Q=M*N=4*4=16個最終待預測的值; 該邊界向量的縮減維度: P red=M red+N red=2+2=4; 對於通過ALWIP待預測的該Q=16值的每個的P red=4個乘法, 總數P red*Q=4*16=64個乘法(128的一半!) 該乘法數與待獲得的最終值的該數量之比為P red*Q/Q=4,亦即對於待預測的每個取樣,乘數為P=8個的一半!
可以理解的是,通過依賴於直接且在計算上無功率需求的運算,例如平均(以及,在加法及/或移位及/或降取樣的情況下),有可能在步驟812獲得適當的值。
參考第7.2與8.2圖,待預測的區塊18在這裡是64個取樣的一8×8區塊(M=8、N=8)。在此,先驗地,一預測矩陣17M應該具有尺寸QxP=64x16(由於Q=M*N=8*8=64,M=8與N=8以及由於P=M+N=8+8=16,所以Q=64)。因此,先驗地,針對待預測的8×8區塊18的該Q=64個取樣的每個將需要進行P=16乘法,以對於整個8×8區塊18獲得64×16=1024個乘法!
但是,參照第7.2與8.2圖,可以提供一種方法820,根據該方法,不是使用該邊界的全部16個取樣,而僅使用8個值(例如,該邊界的原始取樣之間的該水平邊界列17c中的4個以及該垂直邊界行17a中的4個)。從該邊界列17c,可能使用4個取樣而不是8個取樣(例如,它們可以是2乘2的平均值及/或從兩個取樣中選擇一個取樣)。因此,該邊界向量不是一Px1=16x1向量,而僅是一P redx1=8x1向量(P red=M red+N red=4+4)。已經理解的是,可能選擇或平均(例如,以二乘二)水平列17c的取樣及垂直行17a的取樣以具有僅P red=8個邊界值而不是該原始的P=16個取樣,形成該縮減集合102的取樣值。此縮減集合102將允許獲得區塊18的一縮減版本,該縮減版本具有Q red=M red*N red=4*4=16個取樣(而不是Q=M*N=8*8=64)。可能將一ALWIP矩陣應用於預測具有尺寸M redxN red=4x4的一區塊。該縮減版本的區塊18包括在第7.2圖中的方案106內用灰色指示的該取樣:用灰色正方形指示的取樣(包括取樣118’與118”)形成在該受限812步驟獲得的具有Q red=16值的一4x4縮減區塊。在該受限812的步驟中通過應用該線性變換19以獲得該4x4縮減區塊。獲得該4x4縮減區塊的該值之後,可能獲取該剩餘取樣(在方案106中以白色取樣表示的取樣)的該值,例如通過內插。
關於第7.1及8.1圖,該方法820可能另外包括一推導813,例如通過內插,推導針對待預測的MxN=8x8區塊18的該剩餘Q-Q red=64-16=48個取樣(白方塊)的預測值。通過內插(例如,該內插也可能利用該邊界取樣的值)從該Q red=16直接獲得的取樣中可能獲得該剩餘的Q-Q red=64-16=48取樣。第7.2圖中可以看出,雖然在步驟812已經獲得取樣118’與118’’(如該灰色方形所示),但是(在該取樣118’與118’’中間且用白色方形指示)通過在步驟813該取樣118’與118’’之間的內插來獲得該取樣108’。已經理解的是,還可以通過與用於求平均的那些類似的運算,例如,移位與相加,來獲得內插。因此,在第7.2圖中,通常可以將該值108’確定為該取樣118’的該值與該取樣118’’的該值之間的一中間值(可能是該平均)。
通過執行內插,在步驟813,也可能基於104中指示的多個取樣值得出MxN=8x8區塊18的最終版本。
因此,使用本技術與不使用本技術之間的比較是: 沒有使用本技術: 待預測區塊18,該區塊18具有維度M=8、N=8以及 待預測的該區塊18中的Q=M*N=8*8=64個取樣。 該邊界17中的P=M+N=8+8=16個取樣。 對於待預測的Q=64值的每個,P=16個乘法。 總數P*Q=16*64=1028個乘法。 該乘法數與待獲得的該最終值數之比率為P*Q/Q=16。 使用本技術: 待預測區塊18,具有維度M=8、N=8。 最終要預測的Q=M*N=8*8=64個值。 但是待使用的Q redxP redALWIP矩陣,其中P red=M red+N red, Q red= M red*N red, M red=4, N red=4。 在該邊界內的P red=M red+N red=4+4=8 個取樣,其中P red<P。 對於待預測的該4x4縮減區塊的該Q red=16值的每個的P red=8個乘法(通過方案106中的灰色正方形所形成)。 P red*Q red=8*16=128個乘法的總數(遠少於1024!) 該乘法數與待獲得的該最終值數之比率為P red*Q red/Q=128/64=2(遠少於沒有使用本技術獲得的16!)。
因此,本文提出的技術相較於先前的技術少8倍的功率需求。
第7.3圖顯示另一個範例(其可能基於該方法820),其中待預測的區塊18是一矩形4×8區塊(M=8、N=4),具有Q=4×8=32個待預測的取樣。通過具有N=8個取樣的該水平列17c與具有M=4個取樣的該垂直行17a形成邊界17。因此,先驗地,該邊界向量17P將具有維度Px1=12x1,然而該預測ALWIP矩陣應該是一QxP=32x12矩陣,因此導致需要Q*P=32*12=384個乘法。
但是,舉例來說,可能對該水平列17c的至少該8個取樣進行平均或降取樣,以獲得僅具有4個取樣(例如,平均取樣)的一縮減水平列。在一些範例中,該垂直行17a將保持原樣(例如,不求平均)。總體來看,該減減的邊界將具有維度P red=8,且P red<P。因此,該邊界向量17P將具有維度P redx1=8x1。該ALWIP預測矩陣17M將是具有維度M*N red*P red=4*4*8=64的一個矩陣。在該受限步驟812直接獲得的該4x4縮減區塊(由方案107中的該灰色行形成)將具有尺寸Q red=M*N red=4*4=16個取樣(而不是待預測的該原始4x8區塊18的該Q=4*8=32)。一旦通過ALWIP獲得該縮減的4×4區塊,就可能添加一偏移值b k(步驟812c)並且在步驟813執行內插。如第7.3圖中的步驟813所示,該縮減小的4×4區塊擴展為4×8區塊18,其中在步驟813通過對在步驟812獲得的值118’與118’’(灰色正方形)進行內插來獲得在步驟812未獲得的值108’。
因此,使用本技術與不使用本技術之間的比較是: 沒有使用本技術: 待預測的區塊18,該塊的維度M = 4、N = 8。 Q=M*N=4*8=32個待預測的值。 該邊界中P=M+N=4+8=12個取樣。 對於待預測的該Q=32值的每個,P=12個乘法。 總數P*Q=12*32=384個乘法。 該乘法數與待預測的該最終值數之比率為P*Q/Q=12。 使用本技術: 待預測的區塊18,該區塊的維度M=4、N=8。 Q=M*N=4*8=32個最終待預測的值。 但是可能使用Q redxP red=16x8 ALWIP矩陣,其中M=4,N red=4,Q red=M*N red= 16,P red=M+N red=4+4=8。 P red=M+N red=4+4=8個取樣在該邊界內,其中P red<P。 對於待預測的該縮減區塊該Q red=16值的每個,P red=8個乘法。 總數Q red*P red=16*8=128個乘法(小於384!) 該乘法數與待獲得的該最終值數之比率為P red*Q red/Q=128/32=4(遠少於沒有使用本技術獲得的12!)。
因此,利用本技術,該計算量縮減到三分之一。
第7.4圖顯示待預測的一區塊18的情況,具有維度MxN=16x16且Q=M*N=16*16=256個最終待預測的值,其中P=M+N=16+16=32個邊界取樣。這將導致具有維度QxP=256x32的一預測矩陣,這意味著256*32=8192個乘法!
但是,通過應用該方法820,在步驟811,可能縮減(例如,通過平均或降取樣)該邊界取樣的數量,例如從32個縮減到8個:例如,對於該列17a的四個連續取樣的每組120,保留一個取樣(例如,從該四個取樣中選擇,或者該取樣的該平均)。對於該行17c的四個連續取樣的每組,保留一個取樣(例如,從該四個取樣中選擇,或者該取樣的該平均)。
在這裡,ALWIP矩陣17M是一Q redxP red=64x8矩陣:這是因為已選擇P red=8的事實(通過使用來自該邊界的該32個的8個平均或選擇的取樣)以及在步驟812待預測的該縮減區塊是一8×8區塊(在該方案109中,該灰色正方形是64)。
因此,一旦在步驟812獲得該縮減的8×8區塊的該64個取樣,就可能在步驟813推導出待預測的該區塊18的該剩餘Q-Q red=256-64=192值104。
在這種情況下,為了執行該內插,已經選擇使用該邊界行17a的所有取樣,並且僅使用該邊界列17c中的替代取樣。可以做出其他選擇。
使用本方法時,該乘法數與該最終獲得值的數之比率為Q red*P red/Q=8*64/256=2,遠小於不使用本技術時針對每個值的32個乘法!
使用本技術與不使用本技術之間的比較是: 沒有使用本技術: 待預測的區塊18,該區塊的維度M=16、N=16。 Q=M*N=16*16=256個待預測的值。 P=M+N=16*16=32個取樣在該邊界。 對於待預測的該Q=256值的每個,P=32個乘法。 P*Q=32*256=8192個乘法的總數。 該乘法數與該最終值數之比率為P*Q/Q=32。 使用本技術: 待預測的區塊18,該區塊的維度M=16、N=16。 Q=M*N=16*16=256個最終待預測的值。 但是待使用的一Q redxP red=64x8 ALWIP矩陣,其中M red=4,N red=4,Q red=8*8=64個取樣待通過ALWIP預測,P red=M red+N red=4+4=8。 P red=M red+N red=4+4=8 取樣在該邊界,其中P red<P。 對於待預測的該縮減區塊的該Qred = 64值的每個,P red=8個乘法。 Q red*P red=64*4=256個乘法的總數(小於8192!) 該乘法數與待獲得的該最終值數之比率為P red*Q red/Q=8*64/256=2(遠小於沒有使用本技術獲得的32!)。
因此,本技術所需的該計算功率比該傳統技術少16倍!
因此,可能使用多個鄰近取樣(17)預測該圖片的一既定區塊(18),透過下列方法步驟: 縮減(100、813)該多個鄰近取樣以獲得一縮減集合(102)的取樣值,該縮減集合(102)的取樣值在取樣數量上少於該多個鄰近取樣(17), 使該縮減集合(102)的取樣值受到(812)一線性或仿射線性變換(19, 17M)以獲得針對該既定區塊(18)的既定取樣(104、118’、188’’)的預測值。
特別地,可能通過對該多個鄰近取樣進行降取樣來執行該縮減(100、813),以獲得在取樣數量上,相較於該多個鄰近取樣(17)更少的該縮減集合(102)的取樣值。
可選替地,可能通過對該多個鄰近取樣平均來執行該縮減(100、813),以獲得在取樣數量,相較於該多個鄰近取樣(17)更少的該縮減集合(102)的取樣值。
此外,可能基於針對該既定取樣(104、118’,118’’)的該預測值及該多個鄰近取樣(17)通過內插來推導出(813)該預定區塊(18)的另外的取樣(108、108’)。
該多個鄰近取樣(17a,17c)可能沿著該既定區塊(18)的兩側(例如,在第7.1-7.4圖中向右與朝下方)一維地延伸。該既定取樣(例如,在步驟812中通過ALWIP獲得的取樣)也可能排列成多個列與行,並且沿著該列與行中的至少一個,該既定取樣位於相鄰該既定區塊的該兩側的該既定取樣(112)的一取樣(112)的每第n個位置。
基於該多個鄰近取樣(17),針對該多個列與行中的至少一個的每個可能決定針對該多個鄰近位置中的一個(118)的支持值(118),該支持值與該多個列與行的至少之一的該各自一個對齊。也可能基於針對該既定取樣(104、118’、118”)的該預測值以及列與行的至少一個對齊的該鄰近取樣(118)的該支持值,通過內插推導出該既定區塊(18)的該另外取樣(108、108’)。
該既定取樣(104)可能位於該取樣(112)的每第n個位置處,該取樣(112)沿著該列鄰接既定區塊18的兩側,並且該既定取樣位於該既定取樣的該取樣(112)的第m個位置處,該既定取樣(112)沿著行鄰接該既定區塊(18)的兩側,其中n,m>1。在某些情況下,n=m(例如,在第7.2與7.3圖中,其中通過ALWIP在812直接獲得並且用灰色正方形表示的該取樣104、118’、118’’是沿著該多個列與行交替排列到隨後在步驟813獲得的取樣108、108’。
沿著該列(17c)及行(17a)的至少一者,可能執行該決定支持值的步驟,例如,針對每個支持值,通過降取樣或平均(122)在該多個鄰近取樣內的​​鄰近取樣的一組(120),該組包括決定該各自支持值的該鄰近取樣(118)。因此,在第7.4圖中,在步驟813,可能通過使用該既定取樣118’’’(先前在步驟812中獲得)以及該鄰近取樣118的該值作為支持值來獲得該取樣119的值。
該多個鄰近取樣可能沿著既定區塊(18)的兩側一維地延伸。 通過將該多個鄰近取樣(17)分組為一個或多個連續鄰近取樣的多個組(110),並且對於具有兩個或兩個以上鄰近取樣的一個或多個鄰近取樣的該組(110)的每一個進行一降取樣或一平均是可能執行該縮減(811)。
在範例中,線性或仿射線性變換可以包括具有P red是縮減集合取樣值內的該取樣值(102)的數量的P red*Q red或 P red*Q ,並且Q red或Q是在該既定區塊(18)內的該既定取樣的數量。至少¼ P red*Q red或 ¼ P red*Q加權因子是非零加權值。對於Q或Q red既定取樣的每一個,該P red*Q red或P red*Q加權因子可能包括與各個既定取樣有關的一系列P red加權因子,其中,當該多個系列根據一光柵掃描順序在既定區塊(18)的該既定取樣之間排列為一個在另一個之下時,該多個系列形成全方位非線性的一包絡。該P red*Q red或 P red*Q加權因子通過任何常規映射規則可能彼此無關。與該各個既定取樣有關的一第一系列加權因子以及與預定取樣而非該各個既定取樣相關的一第二系列加權因子之間的一互相關最大值的平均值,或該後面系列的一逆版本,不論怎麼導致一較高最大值,都低於一既定門檻。該既定門檻可能是0.3[或者在某些情況下為0.2或0.1]。該P red鄰近取樣(17)可能沿著一一維路徑設置,該一維路徑沿著該既定區塊(18)的兩側延伸,並且對於該Q或Q red個預定取樣的每個,與該各自的既定取樣有關的該系列的P red加權因子以在一既定方向上貫穿該維路徑的方式進行排序。
方法與裝置的描述
為了預測寬度W(也用N表示)與高度H(也用M表示)的一矩形區塊的該取樣,仿射線性加權內預測(ALWIP)可能取該區塊的左行H重建的相鄰邊界取樣的一行以及該區塊上方W重建的相鄰邊界取樣作為輸入。如果該重建的取樣不可用,則可能如在習知內預測中所做的那樣產生它們。
該預測信號的產生(例如,該完整區塊18的該數值)可能基於以下三個步驟中的至少一個或一些: 1.在邊界取樣17外,通過平均或降取樣(例如,步驟811)可能摘選取樣102(例如,在W=H=4的情況下為四個取樣,及/或在其他情況下為八個取樣)。 2. 使用該平均取樣(或從降取樣所剩餘的取樣)作為輸入來進行一矩陣向量乘法(matrix vector multiplication),然後加上一偏移量。該結果可能是在該原始區塊中的多個取樣的一子取樣集上的一縮減預測信號(例如,步驟812)。 3.通過線性內插(例如步驟813),從該子取樣集上的該預測信號,例如通過升取樣,可能在剩餘位置處產生該預測信號。
由於步驟1.(811)及/或步驟3.(813),在該矩陣向量積的該計算中所需的該乘法總數可能使得總是小於或等於4*W*H。此外,僅通過使用加法與位元移位進行該邊界上的該平均運算與該縮減的預測信號的該線性內插。換句話說,在範例中,對於該ALWIP模式需要每個取樣最多四個乘法。
在一些範例中,需要產生該預測信號的該矩陣(例如17M)與偏移向量(例如b k)可能取自,例如可以儲存在該解碼器與該編碼器的儲存單元中的矩陣的集合(例如三個集合),例如 ,
在一些範例中,該集合 可能包括(例如,由…組成) 個(例如 =16或 =18或其他數量)矩陣 {0,…, -1},每個矩陣可能具有16列4行以及18個偏移向量 {0,…, },每個尺寸16,以根據第7.1圖執行該技術。此集合的矩陣與偏移向量用於尺寸4×4的區塊18。一旦該邊界向量已縮減為一P red=4向量(如第7.1圖的步驟811),就可能將縮減取樣集合的取樣102的該P red=4個取樣直接映射到待預測的該4x4區塊18的該Q=16個取樣。
在一些範例中,該集合 可能包括(例如,由…組成) 個(例如 =8或 =18或其他數量)矩陣 {0,…, -1},每個矩陣可能具有16列8行以及18個偏移向量 {0,…, },每個尺寸16,以根據第7.2或7.3圖執行該技術。該集合 的矩陣與偏移向量可能用於尺寸4×8、4×16、4×32、4×64、8×4、8×8、16×4、32×4與64×4的區塊。另外,它也可能用於具有 的尺寸W×H的區塊,亦即,用於尺寸4×16或16×4、4×32或32×4及4×64或64×4的區塊。該16×8矩陣引用該區塊18的該縮減版本,其是4×4區塊,如圖7.2與7.3所獲得的。
附加地或可選替地,該集合 可能包括(例如,由…組成) 個(例如 =6或 =18或其他數量)矩陣 {0,…, -1},每個矩陣可能具有64列8行以及18個偏移向量 {0,…, },每個尺寸64。該64x8矩陣引用該區塊18的該縮減版本,其是一8x8區塊, 例如如圖7.4所獲得的。 此集合的矩陣與偏移向量可用於尺寸8×16、8×32、8×64、16×8、16×16、16×32、16×64、32×8、32×16、32×32、32×64、64×8、64×16、64×32、64×64。
基於該區塊的該維度的該集合 , 的選擇的範例(可以在步驟812a執行)在第12圖中做總結。在選替的範例中,每個集合具有不同數量的矩陣是可能的。附加地或可選替地,不同尺寸的矩陣可能用於不同的集合。
該集合的矩陣與偏移向量或這些矩陣與偏移向量的一部分可能用於所有其他區塊形狀。
該邊界的平均與降取樣
在此,提供關於步驟811的特徵。
如上所述,可能對該邊界取樣(17a,17c)進行平均及/或降取樣(例如,從P個取樣到P red<P個取樣)。
第一步,可能縮減該輸入邊界 (例如17c)以及 (例如17a)為較小的邊界 來到達該縮減集合102。在4x4區塊的情況下, 均由2個取樣組成,在其他情況下均由4個取樣組成。
在一4x4區塊的情況下,可能定義 ,
並類似地定義 。因此, , , [1] 是求得的平均值,例如使用位元移位運算。
在所有其他情況下(例如,對於寬度或高度不等於4的區塊),如果該區塊寬度給定W , 針對 個定義 . 以及類似地定義
在其他情況下,可能對該邊界進行降取樣(例如,通過從一組邊界取樣選擇一個特定的邊界取樣),以達到縮減取樣數量。例如, 可能在 之間選擇,並且 可能在 選擇。也可能類似地定義
該兩個縮減邊界 可能連串成一縮減邊界向量 (與該縮減集合102相關聯), 也以17P表示。該縮減邊界向量 可能是針對形狀 的區塊尺寸四(P red=4)的(第7.1圖的範例)以及針對所有其他形狀(第7.2-7.4圖的範例)的區塊尺寸八 (P red=8)的。
在此,如果 (或該矩陣集內的該矩陣數),則可能定義
如果 ,其對應於 的該轉置模式,則可能定義
因此,根據一特定狀態(一種狀態: ;另一種狀態: ,),可能沿一不同的掃描順序(例如,一個掃描順序: 另一個掃描順序: )分配該輸出向量的該預測值。
可以執行其他策略。在其他範例中,該模式索引‘mode’不一定在0到35的範圍內(可能定義其他範圍)。此外,三個集合S 0, S 1, S 2中的每一個都不必具有18個矩陣(因此,可以代替mode≥18之類的表達式,可能 0, 1, 2,分別針對每個集合的矩陣S 0, S 1, S 2的該矩陣的數目)。此外,該集合可能各自具有不同矩陣的數量(例如,可能是S 0具有16個矩陣,S 1具有8個矩陣,而S 2具有6個矩陣)。
該模式與轉置資訊不必作為一個組合模式索引 `mode’儲存及/或發送:在某些範例中,有可能明顯地用信號發送作為轉置旗標與該矩陣索引(S 0為0-15、S 1為0-7、S 2為0-5)。
在某些情況下,該轉置標誌與矩陣索引的該組合可能解釋為一集合索引。例如,可以有一個位元用作轉置標誌,並且一些位元指示矩陣索引,統稱為“集合索引”(set index)。
通過矩陣向量乘法產成縮減的預測信號
在此,提供關於步驟812的特徵。
該縮減輸出向量 (邊界向量17P)可能產生一縮減預測信號, 。後者信號可能是寬度 與高度 的該降取樣的區塊上的一個信號。在此, 可能定義成: ; 假如 ,則 ;否則其他。 通過計算一矩陣向量乘積以及加上一偏移可能計算該縮減預測信號 : .
在此, 是一矩陣(例如預測矩陣17M) ,假如W=H=4可能具有 列與 4 行,以及在所有其他情況是 8行並且 可能是尺寸 的一向量。
假如 , 則A 可能據有4行與16列,並且因此在這種情況下,每個取樣可能需要4次乘法來計算 。在所有其他情況下,A可能有8列,並且可能驗證在這種情況下具有 ,即在這些情況下,每個樣本最多需要4個乘法計算
該矩陣A與向量 可能如下所示取自該集合 , 一個。在所有情況中,通過設定 假如 , 假如 以及 定義一索引 。此外,可能設定 , 假如 以及 ,否則其他。然後,假如 以及 , 可能設定 以及 =2 且 的情況下,讓A為通過忽略 每一行而產生的矩陣,在W = 4情況下,對應於該下取樣區塊的一奇數x-座標,或者在H = 4的情況下,對應於下取樣的區塊中的奇數y坐標。 如果 ,則用其轉置信號替換縮減的預測信號。 在選替的範例中,可能執行不同的策略。例如,代替縮減一較大矩陣的該尺寸(“省去”),使用具有W red= 4與H red= 4的S 1(idx=1)的一較小矩陣。亦即,現在將這樣的區塊分配給S 1而不是S 2
可能執行其他策略。在其他範例中,該模式索引‘mode’不一定在0到35的範圍內(可以定義其他範圍)。此外,三個集合S 0, S 1, S 2中的每一個都不必具有18個矩陣(因此,代替 之類的表達式,可能 0, 1, 2,分別針對每個集合的矩陣S 0, S 1, S 2的該矩陣的數目)。此外,該集合可能各自具有不同矩陣的數量(例如,可能是S 0具有16個矩陣,S 1具有八個矩陣,而S 2具有六個矩陣)。
線性插值以生成最終預測信號
在此,提供關於步驟812的特徵。
在大區塊上一第二版的該平均邊界,該二次取樣的預測信號的內插可能是需要的。亦即,假如 以及 , 寫成 W , 以及針對 定義
假如 以及 , 類似地定義
附加地或可選替地,可能具有“硬下取樣”,其中 等於
並且可能類似地定義
的產生中遺漏的該取樣位置處,通過來自 的線性內插可能產生該最終預測信號(例如,在第7.2-7.4與8.2圖的範例中的步驟813)。在一些範例中,假如W=H=4(例如,第7.1與8.1圖的範例),則此線性內插可能是不必要的。
該線性內插可能如下給出(儘管其他範例是可能的)。假設 。然後,假如 ,可能執行 的垂直升取樣。在那情況, 可能如下所示向上延伸一行。假如 可能具有寬度 並且可能通過該平均邊界信號 延伸到該頂端,如上面定義的。假如 是寬度 並且通過該平均邊界信號 延伸到該頂端,如上面定義的。針對 的該第一行可能寫 。然後在寬度 與高度 的一區塊上的該信號 可能給定 [x][2*y+1] = [x][y], [x][2*y] = [x][y-1] + [x][y] + 1)>>1,
其中 以及 。後者程序可能進行 k次直到 。因此,假如H 或 H ,可能至少執行一次。假如H ,可能執行兩次。假如H ,可能執行三次。接下來,一水平升取樣運算可能應用於該垂直升採樣的該結果。後面的升取採樣運算可能使用該預測信號的該完整邊界。最後,如果H>W,則可能先在該水平方向(如果需要)然後在該垂直方向上通過第一升取樣以類似的方式進行。
這是一個內插範例,該內插範例針對該第一內插(水平或垂直)使用縮減的邊界取樣,針對該第二內插(水平或垂直)使用原始邊界取樣。根據區塊大小,僅需要第二內插或不用內插。 如果需要水平與垂直內插,則該順序取決於該區塊的該寬度與高度。
然而,可以實現不同的技術:例如,原始邊界取樣可能用於該第一與第二內插兩者,並且該順序可能是固定的,例如,先水平然後垂直(在其他情況下,先垂直然後水平)。
因此,該內插順序(水平/垂直)以及縮減/原始邊界取樣的使用可能會變化。
整個 ALWIP 流程範例的圖示
在第7.1-7.4圖中用不同形狀說明平均、矩陣向量乘法及線性插值的整個過程。注意,其餘形狀按所示情況之一處理。
給定一個4×4區塊,ALWIP可能通過使用第7.1圖的技術沿該邊界的每個軸取兩個平均值。所得的四個輸入取樣進入矩陣向量乘法。該矩陣取自集合 。在添加一 偏移之後,這可以產生該16個最終預測取樣。線性內插對於產生該預測信號不是必需的。因此,每個取樣總共執行(4*16)/(4*4)= 4個乘法。舉例來說,參見第 7.1與8.1圖。 給定一個8×8區塊,ALWIP可以沿該邊界的每個軸取四個平均值。通過使用第7.2圖的技術,得到的八個輸入取樣進入該矩陣向量乘法。矩陣取自集合 。這在該預測區塊的該奇數位置上產生16個取樣。因此,每個取樣總共執行(8*16)/(8*8)=2個乘法。在添加一偏移之後,例如通過使用該頂端邊界可能垂直地對這些取樣進行內插,以及例如通過使用左邊界可能水平地對這些取樣進行內插。例如,參見第 7.2與8.2圖。 給定一個8×4區塊,ALWIP可能使用第7.3圖的技術沿該邊界的該水平軸取四個平均,並在該左邊界取該四個原始邊界值。所得的八個輸入取樣進入該矩陣向量乘法。該矩陣取自集合 。這在該預測區塊的奇數水平與每個垂直位置上產生16個取樣。因此,每個取樣總共執行(8*16)/(8*4)=4個乘法。在添加一偏移後,例如通過使用該左邊界對這些取樣進行水平內插。例如,參見第 7.3與8.2圖。 轉置後的情況將得到相應處理。 給定一個16×16的區塊,ALWIP可以沿該邊界的每個軸取四個平均。通過使用第7.2圖的技術,得到的八個輸入取樣進入該矩陣向量乘法。該矩陣取自集合 。這在預測區塊的該奇數位置上產生64個取樣。因此,每個取樣總共執行(8*64)/(16*16)=2乘法。在添加一偏移之後,例如,使用該頂端邊界垂直地對這些取樣進行內插,以及使用該左邊界水平地對這些取樣進行內插。例如,參見第7.2與8.2圖。例如,參見第 7.4與8.2圖。 對於較大的形狀,過程可能基本相同,並且很容易檢查每個取樣的乘法數是否少於兩個。 當在該奇數個水平位置及每個垂直位置都給出取樣,對於W×8區塊,僅需要水平內插。因此,在這些情況下,每個取樣最多執行(8*64)/(16*8)=4個乘法。 最後,對於W> 8的W×4區塊,使得A k為通過捨棄對應於沿著該降取樣區塊的該水平軸的一奇數項的每一行所產生的該矩陣。因此,該輸出尺寸可能是32,並且再次,僅水平內插值有待執行。每個取樣最多可以執行(8*32)/(16*4)=4個乘法。 轉置後的情況可能會得到相應處理。
所需參數數量和復雜性評估
屬於該集合 , 的該矩陣與偏移向量可能包括針對所有可能提出的內預測模式所需的該參數。所有矩陣係數與偏移向量都可能儲存為10位元數值。因此,根據以上描述,對於所提出的方法可能需要總共14400個參數,每個是10位元精度。這對應於0,018 MB的記憶體。需要指出的是,目前,在標準4:2:0色度二次取樣中,尺寸128×128的CTU由24576個數值組成,每個值10位元。因此,所提出的內預測工具的該記憶體需求不超過在上次會議上採用的該當前圖片參考工具的該記憶體需求。此外,應當指出,由於該PDPC工具或具有分數角位置的該角度預測模式的4抽頭(4-tap)內插濾波器,該習知的內預測模式每個取樣需要四個乘法。因此,就運算複雜度而言,該提出的方法不超過該習知的內預測模式。
提出的內預測模式的信號化
對於亮度區塊,例如,提出35種ALWIP模式(可能以使用其他數量的模式)。對於幀內模式下的每個編碼單元(CU),在該位元流中發送指示是否將一ALWIP模式應用於該對應的預測單元(PU)的旗標。 該後者索引的該信號化可能如同針對該第一個CE測試的相同方式與MRL協調。 如果一ALWIP模式待應用,則該ALWIP模式的該索引 可能使用帶有3個MPMS的一MPM列表來發信號通知。
在此,可以如下所述使用以上的該幀內模式以及該左方PU來執行該MPM的推導。可能有表格,例如可能分配給每個習知內預測模式 一個 ALWIP模式的三個固定表 ,
對於寬度 與高度 的每個PU定義以及索引
其指示從該三集合中的哪一集合中獲取該ALWIP參數,如上文第4節所述。假如上述預測單元 是有效的,與該當前PU屬於該同樣CTU並且是在幀內模式,假如 以及假如 ALWIP 應用在具有ALWIP模式 上, 設定
假如上述預測單元PU是有效的,與該當前PU屬於該同樣CTU並且是在幀內模式並且假如一習知內預測模式 應用在上述PU,設定
在所有其他情況下,設定
這表示此模式不可用。 以相同的方式,但不限制左PU必須與該當前PU屬於同一CTU,推到一個模式
最後,提供三個固定預設列表 , , 每個包含三個不同ALWIP模式。 該預設列表 以及該模式 ,,通過預設值通過substituting -1建構三個不同MPMs以及消除重複。
適用於常規亮度及色度內預測模式的 MPM 列表推導
如下所述,所提出的ALWIP模式可能與該習知內預測模式的該基於MPM的編碼相協調。對於該習知內預測模式的該亮度與色度MPM列表推導過程可能使用固定表格 , ,,將給定PU上的一ALWIP模式 映射到該習知內預測模式的一個。 .
對於亮度MPM列表推導,只要遇到使用一ALWIP模式 的一相鄰的亮度區塊,此區塊就可能視為好像使用該習知內預測模式 。對於該色度MPM列表推導,只要該當前亮度區塊使用一LWIP模式,相同的映射可能用於將該ALWIP模式變換為一習知的內預測模式。
實驗結果
根據該通用測試條件JVET-J1010 [2],針對具有VTM軟體3.0.1版的該僅內部(AI)與隨機訪問(RA)配置進行測試評估。 在具有Linux OS與GCC 7.2.1編譯器的Intel Xeon叢集(E5-2697A v4,AVX2打開,turbo boost關閉)上進行該對應的模擬。 表格 1. 針對 VTM AI 配置的 CE3-1.2.2 的結果
Y U V enc time dec time
Class A1 -1,38% -0,89% -0,75% 152% 104%
Class A2 -0,75% -0,25% -0,24% 151% 103%
Class B -0,79% -0,27% -0,30% 155% 101%
Class C -0,86% -0,41% -0,56% 154% 100%
Class E -1,11% -0,40% -0,49% 151% 98%
Overall -0,95% -0,42% -0,46% 153% 101%
Class D -0,94% -0,58% -0,38% 154% 101%
Class F (optional) -1,01% -0,64% -0,63% 151% 99%
                 
表格 2 . 針對 VTM RA 配置的 CE3-1.2.2 的結果
Y U V enc time dec time
Class A1 -0,90% -1,56% -1,61% 111% 100%
Class A2 -0,42% -0,24% -0,15% 109% 103%
Class B -0,52% -0,52% -0,99% 111% 99%
Class C -0,52% -0,71% -0,56% 110% 97%
Class E           
Overall -0,57% -0,73% -0,83% 110% 100%
Class D -0,54% -0,77% -0,70% 110% 99%
Class F (optional) -0,72% -0,66% -0,45% 112% 95%
進一步編碼器加速的附加結果
我們額外地提供針對測試的兩個另外的結果,這些結果依賴於如CE 3-1.2.2的相同語法,但具有一最佳化的編碼器搜索。 表格 1. 針對 VTM AI 配置的 CE3-1.2.2 的結果 , 第一編碼加速
Y U V enc time dec time
Class A1 -1,30% -0,72% -0,77% 137% 104%
Class A2 -0,65% -0,21% -0,20% 136% 104%
Class B -0,69% -0,22% -0,22% 137% 102%
Class C -0,74% -0,37% -0,47% 134% 103%
Class E -1,00% -0,42% -0,39% 137% 101%
Overall -0,85% -0,37% -0,39% 136% 103%
Class D -0,86% -0,32% -0,39% 131% 103%
Class F (optional) -0,92% -0,68% -0,63% 132% 102%
表格 2 . 針對 VTM R A 配置的 CE3-1.2.2 的結果 , 第一編碼加速
Y U V enc time dec time
Class A1 -0,90% -1,56% -1,61% 111% 100%
Class A2 -0,42% -0,24% -0,15% 109% 103%
Class B -0,52% -0,52% -0,99% 111% 99%
Class C -0,52% -0,71% -0,56% 110% 97%
Class E           
Overall -0,57% -0,73% -0,83% 110% 100%
Class D -0,54% -0,77% -0,70% 110% 99%
Class F (optional) -0,72% -0,66% -0,45% 112% 95%
表格 3 . 針對 VTM AI 配置的 CE3-1.2.2 的結果 , 第二編碼加速
Y U V enc time dec time
Class A1 -1,13% -0,71% -0,67% 127% 103%
Class A2 -0,58% -0,18% -0,13% 127% 102%
Class B -0,59% -0,25% -0,29% 128% 99%
Class C -0,67% -0,37% -0,45% 125% 101%
Class E -0,90% -0,46% -0,37% 127% 100%
Overall -0,75% -0,38% -0,38% 127% 101%
Class D -0,75% -0,40% -0,37% 124% 102%
Class F (optional) -0,71% -0,46% -0,39% 124% 100%
表格 4 . 針對 VTM R A 配置的 CE3-1.2.2 的結果 , 第二編碼加速
Y U V enc time dec time
Class A1 -0,79% -1,54% -1,44% 107% 98%
Class A2 -0,36% -0,28% -0,02% 106% 100%
Class B -0,43% -0,41% -0,64% 107% 97%
Class C -0,44% -0,68% -0,42% 106% 96%
Class E           
Overall -0,49% -0,68% -0,62% 107% 97%
Class D -0,43% -1,09% -0,66% 106% 101%
Class F (optional) -0,59% -0,47% -0,41% 107% 94%
10 的該編碼器
圖10顯示可能從第1、2與5-9圖的範例解釋的另一範例。(特別是某些特徵可能直接從第2圖導出,因此在此不再重複)。
圖10顯示一編碼器14,該編碼器14可能是例如第1圖的該編碼器的一特定情況。類似於第2圖,編碼器14可以包括配置為將該入站信號減去,亦即,圖片10,或在一區塊的基礎上,當前區塊18,該對應的預測信號24 (例如,具有在步驟812處獲得的該重建的取樣104的區塊18)的一減法器22,以便獲得該預測殘差信號26,然後該預測殘差信號26通過一預測殘差編碼器28編碼為一資料流12。該預測殘差編碼器28可能包括一有損編碼級28a與一無損編碼級(熵編碼器)28b。該有損編碼級28a可能接收該預測殘差信號26,並且包括一配置為量化該預測殘差信號26的該取樣的一量化器30(未顯示)。然後,通過該無損編碼級28b使該獲得的預測殘差信號34受到無損編碼。該無損編級28b是將量化的預測殘差信號34熵編碼到資料流12中的一熵編碼器。編碼器14還可能包括連接到該有損編碼級28a的該輸出的該預測殘差信號重建級36,以便從該變換與量化的預測殘差信號34’中重建。
該編碼器14可能包括一加法器42,用以將由級36輸出的該重建的預測殘差信號34’與該預測信號24相加(例如,包括具有在步驟813獲得的該重建的取樣104的該區塊18),以便輸出一重建的信號,亦即重建的取樣。該輸出饋送到該預測器44,該預測器然後可能基於其來決定該預測信號24(例如,通過應用第8.1-7.4圖所示的技術)。
可以看出,在圖9中,該方法步驟811、812、813在這裡分別由該預測器44內的級811’、812’、813’映射:該方法步驟811、812、813可能實現於硬體單元中及/或該預測器44中的程序例程,以811’、812’、813’共同表示,或由該預測器控制。顯示出可能在範例中,如第7.1圖的範例中,跳過該推導級813’。
特別地,級811及/或813可能描繪為呈現一暫存器,例如該暫存器910,用於執行上述的該移位運算(暫存器910不一定是該級811或813的一部分:它可以是由該受限級控制的一個單元)。取而代之,級812描繪為具有或控制一乘法器1910,其中在該鄰近取樣17的該選定的或平均的取樣102的P red元件之間執行的乘法是乘以該矩陣17M( )的Q或Q red加權因子。為了簡潔起見,在級811’、812’、813’中,未顯示其他元件(例如加法器等)。
一儲存裝置1044在這裡指示為儲存ALWIP矩陣17M或 (例如,在該集合S 0、S 1、S 2中)及偏移向量 (在上文中也指示為b k)。矩陣及/或偏移的該索引944(例如,上面討論的該索引的一個或多個,例如i、k,轉置索引、設置索引)可以編碼在資料流12中。Q或Q red加權因子通常沒有在該資料流12中用信號通知:這是因為該解碼器已經具有該ALWIP矩陣17M的Q或Q red加權因子的概念(例如,具有儲存在該儲存裝置1044的該資料的一副本),因此減少該有效負載。
即使未在圖中顯示,例如,根據該區塊18的該維度,該編碼器14也可能決定待使用的該ALWIP矩陣的維度(例如,在集合S 0、S 1、S 2中設置的哪個)。在某些情況下,由於選擇該區塊18的該維度,因此沒有必要用信號表示此選擇。
因此,該編碼器14配置為針對該既定區塊18,使用在步驟812獲得的該預測殘差與該既定取樣的該預測值24(104)將一預測殘差34***到該資料流12中,可從該資料流12重建該既定區塊18。
附加地或替代地,該編碼器14可能配置為針對該既定區塊(18)將一預測殘差(26、34)***到一資料流(12)中,該預測殘差針對該Q個或Q red個既定取樣中的每一個指示一對應的殘差值,使得通過校正該組Q或Q red值的每一個的該預測值,使用該預測殘差(26、34)及該既定取樣的該預測值可能重建該既定區塊(18),使得該對應的重建的數值,除了可選地,在預測及/或校正之後施加的一修剪(clipping)之外,嚴格地線性地取決於該縮減集合(102)的取樣值內的P red鄰近取樣(102)。
附加地或可選替地,該編碼器14可能配置為細分包括該既定區塊(18)的該圖片(16)為不同區塊尺寸的多個區塊。該編碼器14可能配置為根據該既定區塊(18)的一寬度W(也用N表示)與高度H(也用M表示)選擇該線性或仿射線性變換(19,Ak),使得只要該既定區塊(18)的該寬度W與該高度H在多個寬度/高度對的一第一集合(例如關聯於S 0)內,從多個線性或仿射線性變換的一第一集合內選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換(19,A k),以及只要該既定區塊(18)的該寬度W與該高度H在多個寬度/高度對的一第二集合(例如關聯於S 1)內,從多個線性或仿射線性變換的一第二集合內選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換,該寬度/高度對的第二集合與該寬度/高度對的第一集合是不相交的。
附加地或可選替地,該編碼器可能配置為使得一個或多個寬度/高度對的該第三組(例如,S 0)僅包括一個寬度/高度對,W’、H’以及在線性或仿射線性變換的第二集合內的每個線性或仿射線性變換是用於針對一W’* H’陣列的取樣位置將N’個取樣值變換為W’* H’個預測值。
附加地或替代地,該編碼器可能配置為使得多個寬度/高度對的該第一與第二集合的每個包括具有W p等於H p的一第一寬度/高度對W p、 H p,以及具有H q=W p與 W q=H p的一第二寬度/高度對W q、H q
附加地或替代地,該編碼器可能配置為使得多個寬度/高度對的該第一與第二集合的每個包括具有W p等於H p並且H p>H q的一第三寬度/高度對W p、H p
附加地或替代地,該編碼器可能配置為針對該既定區塊將一組索引***該資料流中,根據該組索引從線性或仿射線性變換的一既定集合中選擇該線性或仿射線性變換。
附加地或替代地,編碼器可能被配置使得該多個鄰近取樣沿著該既定區塊的兩側一維地延伸,並且該解碼器配置為執行該縮減,通過:針對鄰接該既定區塊的一第一側的一第一子集的該多個鄰近取樣,將該第一子集分組為具有一個或多個連續鄰近取樣的多個第一組(110),以及針對鄰接該既定區塊的一第二側的一第二子集的該多個鄰近取樣,將該第二子集分組為具有一個或多個連續鄰近取樣的多個第二組(110),並且為了從該多個第一組獲得多個第一取樣值及從該多個第二組獲得多個第二取樣值,在具有一個或多個鄰近取樣的該多個第一與第二組(110)的每組上進行一降取樣或一平均,該多個第一與第二組的每組具有多於兩個的鄰近取樣,以及該解碼器配置為取決於該組索引從一既定集合的線性或仿射線性變換選擇出該線性或仿射線性變換,使得兩個不同狀態的該組索引導致選擇該既定集合的線性或仿射線性變換的該多個該線性或仿射線性變換的一個,以及使該縮減集合的取樣值受到該既定的線性或仿射線性變換,假如該集合索引在一第一向量的形式假設該兩個不同狀態中的一第一個以產生預測值的一輸出向量,並且沿一第一掃描順序將該輸出向量的該預測值分佈到該既定區塊的該預定取樣上,以及假如該集合索引在一第二向量形式假設該兩個不同狀態中的一第二個以產生預測值的一輸出向量,並且沿著一第二掃描順序將該輸出向量的該預測值分佈到該既定區塊的該預定取樣上,該第二掃描順序相對於該第一掃描順序是轉置的,該第一向量與該第二向量不同,使得在該第二向量中的該多個第二取樣值的一個填充該第一向量中該多個第一取樣值的一個所填充的分量,以及在該第二向量中的該多個第一取樣值的一個填充該第一向量中該多個第二取樣值的一個所填充的分量。
附加地或替代地,該編碼器可能被配置使得多個線性或仿射線性變換的第一集合(S 1)內的每個線性或仿射線性變換用於針對一w 1xh 1陣列的取樣位置變換N 1個取樣值為w 1*h 1個預測值,並且第二組線性或仿射線性變換內的每個線性或仿射線性變換用於針對一w 2xh 2陣列的取樣位置變換N 2個取樣值為w 2*h 2個預測值,以及其中,針對多個寬度/高度對的該第一集合的一第一既定的一個,w 1超過該第一既定寬度/高度對的該寬度,或者h 1超過該第一既定寬度/高度對的該高度,並且對於多個寬度/高度對的該第一集合的一第二既定的一個,w 1既不超過該第二既定寬度/高度對的該寬度,h 1也不超過該第二既定寬度/高度對的該高度,並且該編碼器可能配置通過降取樣或平均化執行該縮減(100)步驟,縮減該多個鄰近取樣以獲得該縮減集合(102)的取樣值,所以假如該既定區塊具有該第一既定寬度/高度對以及假如該既定區塊具有該第二既定寬度/高度對,則該縮減集合(102)的取樣值具有N 1個取樣值,以及執行該受到步驟,假如該既定區塊具有該第一既定寬度/高度對,則通過僅使用該選擇的線性或仿射線性變換的一第一子部分使該縮減集合的取樣值受到該選擇的線性或仿射線性變換,假如w 1超過該一個寬度/高度對的該寬度該第一子部分與沿著寬度維度的該w 1xh 1陣列的取樣位置的一子取樣相關,或者假如h 1超過該一個寬度/高度對的該高度該第一子部分與沿著高度維度的該w 1xh 1陣列的取樣位置的一子取樣相關,以及假如該既定區塊具有該第二既定寬度/高度對,則通過完整地使用該選擇的線性或仿射線性變換使該縮減集合的取樣值受到該選擇的線性或仿射線性變換
附加地或替代地,編碼器可能被配置使得第一集合的線性或仿射線性變換內的每個線性或仿射線性變換用於針對具有w 1=h 1的一w 1xh 1陣列的取樣位置變換N1個取樣值為w 1*h 1個預測值,以及第二集合的線性或仿射線性變換內的每個線性或仿射線性變換用於針對具有w 2=h 2的一w 2xh 2陣列的取樣位置變換N 2個取樣值為w 2*h 2個預測值。
11 的範例
圖11顯示可以從第3-9的範例中解釋的另一範例。(特別是一些特徵可能直接從第4圖中導出,因此這裡不再重複)。
圖11顯示第4圖的該解碼器54的一種可能的實現方式,亦即一種適合於第10圖的編碼器14的該實現方式。特別地,加法器42′與預測器44′可能以它們在第10圖的編碼器14的相同的方式連接到一預測循環。施加到加法器42′的該重建的,亦即經解量化與重新變換的預測殘差信號,可能通過一序列的熵解碼器導出,該熵解碼器逆轉熵編碼器的熵編碼,接著,由解量化器與逆變換器40′組成的該殘差信號重建級, 就像在編碼方面一樣。該解碼器的輸出是該圖片10的重建。該圖片10的重建可能直接在該加法器42'的輸出處使用,或可選替地,在一環內濾波器的該輸出處使用。
可以看出,級813’、812’、813’可能作為該編碼器14,並且儲存裝置1044可以如在該編碼器14中那樣儲存該矩陣的集合。因此,這裡不再重複討論。從該資料流12可能直接獲得該索引944(例如,上面討論的該索引中的一個或多個,例如i、k,轉置索引、集合索引)。該集合S 0、S 1、S 2之間的選擇可能遵循該尺寸(例如H/K或M/N)。
附加地或可選替地,該解碼器可配置為針對該既定區塊(18),從該資料流(12)推導一預測殘差(34”),以及使用該預測殘差(34”)與針對該既定取樣(24’、104、108、108’)的該預測值(24’)重建構(42’)該既定區塊(18)。
附加地或替代地,解碼器可以被配置為為了針對該集合的Q或Q red既定取樣的每個獲得一對應的殘差值,針對該既定區塊(18)從該資料流(12)推導一預測殘差(34”),以及通過該對應的殘差值(34”)針對該集合的Q或Q red既定取樣的每個通過校正該預測值,使用該預測殘差(34”)及該預測值(24’,104)重建該既定區塊(18) 以獲得一對應的重建值(10),使得該對應的重建值(10)嚴格地線性地取決於該縮減集合的取樣值(102)內的該P red鄰近取樣(102),除了在預測及/或校正後可選擇性地施加的一刪減。
附加地或替代地,解碼器可以被配置為使得該解碼器配置為將包括該既定區塊(18)的該圖片(10)再分割為不同區塊尺寸的多個區塊,其中該解碼器配置為取決於該既定區塊(18)的一寬度W與高度H,選擇該線性或仿射線性變換(19, 17M, A k),使得只要該既定區塊(18)的該寬度W與該高度H在多個寬度/高度對的一第一集合內,從多個線性或仿射線性變換的一第一集合內選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換,以及只要該既定區塊的該寬度W與該高度H在多個寬度/高度對的一第二集合內,從多個線性或仿射線性變換的一第二集合內選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換,該寬度/高度對的第二集合與該寬度/高度對的第一集合是不相交的。
附加地或替代地,解碼器可以被配置為使得該解碼器配置為將包括該既定區塊(18)的該圖片(10)再分割為不同區塊尺寸的多個區塊,其中解碼器配置為取決於該既定區塊(18)的一寬度W與高度H選擇該線性或仿射線性變換(19, 17M, A k),使得只要該既定區塊(18)的該寬度W與高度H在合多個寬度/高度對的一第一集合內,從多個線性或仿射線性變換的一第一集合(S 1)選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換、只要該既定區塊(18)的該寬度W與高度H在多個寬度/高度對的一第二集合內,從多個線性或仿射線性變換的一第二集合(S 2)選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換,該寬度/高度對的第二集合與該寬度/高度對的第一集合是不相交的,以及只要該既定區塊(18)的該寬度W與高度H在多個寬度/高度對的一第三集合內,從多個線性或仿射線性變換的一第三集合(S 3)選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換,該寬度/高度的第三集合對與該寬度高度對的第一及第二集合是不相交的。
附加地或替代地,解碼器可能配置為使得一個或多個寬度/高度對的該第三集合(S 0)僅包含一個寬度/高度對,W’、H’,並且在多個線性或仿射線性變換的該第三集合(S 0)內的每個線性或仿射線性變換用於針對一W’xH’陣列的取樣位置變換N’個取樣值轉為W’*H’預測值。
附加地或替代地,解碼器可能配置為使得多個寬度/高度對的該第一與第二集合(S 1, S 2)的每個包括具有W p等於H p的一第一寬度/高度對W p、H p,以及具有H q=W p與 W q=H p的一第二寬度/高度對W q、H q
附加地或替代地,解碼器可能配置為使得多個寬度/高度對的該第一與第二集合(S 1, S 2) 的每個包括具有W p等於H p並且H p>H q的一第三寬度/高度對W p、H p
附加地或替代地,解碼器可能配置為針對該既定區塊(18)從該資料流(12)讀取一組索引(k),取決於該組索引(k)從一既定集合的線性或仿射線性變換選擇出該線性或仿射線性變換。
附加地或替代地,解碼器可能配置為使得該多個鄰近取樣(17)沿著該既定區塊(18)的兩側一維地延伸,並且該解碼器配置為執行該縮減(811),通過:針對鄰接該既定區塊的一第一側的一第一子集的該多個鄰近取樣,將該第一子集分組為具有一個或多個連續鄰近取樣的多個第一組(110),以及針對鄰接該既定區塊的一第二側的一第二子集的該多個鄰近取樣,將該第二子集分組為具有一個或多個連續鄰近取樣的多個第二組(110),並且為了從該多個第一組獲得多個第一取樣值(110)及從該多個第二組獲得多個第二取樣值(102),在具有一個或多個鄰近取樣的該多個第一與第二組(110)的每組上進行一降取樣或一平均,該多個第一與第二組(110)的每組具有多於兩個的鄰近取樣,以及該解碼器配置為取決於該組索引從一既定集合的線性或仿射線性變換選擇出該線性或仿射線性變換,使得兩個不同狀態的該組索引導致選擇該既定集合的線性或仿射線性變換的該多個該線性或仿射線性變換的一個,以及使該縮減集合(102)的取樣值受到該既定的線性或仿射線性變換,假如該集合索引在一第一向量的形式假設該兩個不同狀態中的一第一個以產生預測值的一輸出向量,並且沿一第一掃描順序將該輸出向量的該預測值分佈到該既定區塊的該預定取樣上,以及假如該集合索引在一第二向量形式假設該兩個不同狀態中的一第二個以產生預測值的一輸出向量,並且沿著一第二掃描順序將該輸出向量的該預測值分佈到該既定區塊的該預定取樣上,該第二掃描順序相對於該第一掃描順序是轉置的,該第一向量與該第二向量不同,使得在該第二向量中的該多個第二取樣值的一個填充該第一向量中該多個第一取樣值的一個所填充的分量,以及在該第二向量中的該多個第一取樣值的一個填充該第一向量中該多個第二取樣值的一個所填充的分量。
附加地或替代地,解碼器可以配置為使得多個線性或仿射線性變換的第一集合(S1)內的每個線性或仿射線性變換用於針對一w 1xh 1陣列的取樣位置變換N 1個取樣值為w 1*h 1個預測值,並且第二組(S 2)線性或仿射線性變換內的每個線性或仿射線性變換用於針對一w 2xh 2陣列的取樣位置變換N 2個取樣值為w 2*h 2個預測值,以及其中,針對多個寬度/高度對的該第一集合(S 1)的一第一既定的一個,w 1超過該第一既定寬度/高度對的該寬度,或者h1超過該第一既定寬度/高度對的該高度,並且對於多個寬度/高度對的該第一集合(S 1)的一第二既定的一個,w 1既不超過該第二既定寬度/高度對的該寬度,h 1也不超過該第二既定寬度/高度對的該高度,以及其中,解碼器配置為通過降取樣或平均化執行該縮減(100、811)步驟,縮減該多個鄰近取樣以獲得該縮減集合(102)的取樣值,所以假如該既定區塊具有該第一既定寬度/高度對以及假如該既定區塊具有該第二既定寬度/高度對,則該縮減集合(102)的取樣值具有N 1個取樣值,以及執行該受到(813)步驟,假如該既定區塊具有該第一既定寬度/高度對,則通過僅使用該選擇的線性或仿射線性變換的一第一子部分使該縮減集合的取樣值受到該選擇的線性或仿射線性變換,假如w 1超過該一個寬度/高度對的該寬度該第一子部分與沿著寬度維度的該w 1xh 1陣列的取樣位置的一子取樣相關,或者假如h 1超過該一個寬度/高度對的該高度該第一子部分與沿著高度維度的該w 1xh 1陣列的取樣位置的一子取樣相關,以及假如該既定區塊具有該第二既定寬度/高度對,則通過完整地使用該選擇的線性或仿射線性變換使該縮減集合的取樣值受到該選擇的線性或仿射線性變換。
附加地或替代地,解碼器可能配置為使得第一集合的線性或仿射線性變換內的每個線性或仿射線性變換用於針對具有w 1=h 1的一w 1xh 1陣列的取樣位置變換N 1個取樣值為w 1*h 1個預測值,以及第二集合的線性或仿射線性變換內的每個線性或仿射線性變換用於針對具有w 2=h 2的一w 2xh 2陣列的取樣位置變換N 2個取樣值為w 2*h 2個預測值。
討論本技術的效果
針對平均及/或內插獨立使用的運算如位元移位(尤其是達到縮減該計算工作量的效果),還應注意,可以獲得其他效果,在某些範例中甚至可能優於位元移位的有效使用。
特別地,對於本範例,可以在不同的區塊形狀之間共享預測模式,使得該ALWIP矩陣17M的選擇(例如,在步驟812a)在有限數量的集合上執行。例如,ALWIP矩陣的集合可能少於待預測的該區塊18的可能的維度(例如,高度/寬度對)。可以參考第12圖,將待預測的區塊18的不同寬度/高度對映射到集合S 0(例如,具有n 0個矩陣,例如,具有n 0=16),集合S 1(例如,具有n 1個矩陣,例如,具有n 1=8)以及S 2(例如,具有n 2個矩陣,例如,具有n 2=6)的一個,如上所述(不同的劃分是可能的)。
例如,對於具有該維度 , , 8 , , 的任何一個的多個區塊可能通過多個預測模式共享集合S 1的該多個16x8矩陣,以及具有該維度 中任何一個的多個塊可能通過多個預測模式共享集合S 2的該多個64×8矩陣。僅需要執行諸如針對該縮減步驟811所討論的技術(見上文),該縮減步驟用以將該邊界17的該維度縮減為用以形成該集合102的該必要的取樣的P red數量,但是在步驟812中,待預測的該區塊18的該原始維度是不相關的。在步驟813(如果實現的話),將可能通過簡單地執行內插來獲得該區塊的該完整預測。
已經注意到,此方法允許以意外的維度16*16*4+8*16*8+6*64*8=5120值(例如,每個值是,8位元值)縮減在該儲存空間處必要的該儲存空間。
相比之下,一傳統技術將需要針對每個寬度/高度對使用一組矩陣。從第12圖可以很容易地理解,將需要25組!可以很容易地理解25組矩陣遠多於5120數值的一儲存空間。為了縮減必要的儲存空間,因此有必要縮減每組該矩陣的數量:但是,如果只有很少的矩陣可用於該預測,則會降低質量!
考慮到該共享技術,該儲存空間的縮減甚至通過減小該儲存的矩陣本身的該尺寸而放大。例如,一MxN=64x64區塊的該預測將需要尺寸QxP=(M*N)x(M+N)的一矩陣,亦即要儲存(64*64)*(64+64)=524288數值在該儲存空間中!因此,利用本技術,可能比預期節省更多的存儲空間。
因此,本技術允許縮減需要儲存在該單元1044中的該參數的數量。
在有或沒有實際使用該位元移位的情況下,可以縮減該編碼器或解碼器可使用的該儲存資源,或者相反地,更多的預測模式可能用於儲存空間的奇偶校驗。
通過結合該位元移位技術(在步驟811及/或813)以及為多個模式共享相同預測模式的那個(在步驟812處)儘管獲得最佳效果。
關於針對25個不同的高度/寬度對使用25個不同集合的該傳統方法,顯然地本技術可以解釋為增加的複雜度(因為傳統技術無法想像到步驟811及/或813)。但是,步驟811及/或813的引入可以通過該乘法縮減補償。
此外,關於針對25個不同的高度/寬度對使用25個不同集合的該傳統方法,控制該過程所需的指令需要更多的儲存空間(因為步驟811及/或813的額外指令要被儲存)。但是,儲存步驟811及/或813的該指令的必要性可以通過縮減被儲存的該縮減的矩陣數量隱含的空間來彌補。
進一步的實施例與範例
通常,範例可以實現為具有程式指令的一電腦程式產品,當該電腦程式產品在一電腦上運行時,該程式指令可操作於執行該方法之一。舉例來說,該程式指令可能儲存在一機器可讀媒體上。
其他範例包括儲存在機器可讀載體上的,用於執行本文描述的該方法之一的該電腦程式。
換句話說,因此,方法的一個範例是一電腦程式,當該電腦程式在計算機上運行時,該電腦程式具有用於執行本文描述的該方法之一的程式指令。
因此,該方法的另一範例是資料載體媒體(或一數位儲存媒體,或一電腦可讀媒體),包括記錄在其上,用於執行本文該方法之一的該電腦程式。該資料載體媒體,該數位儲存媒體或該記錄媒體是有形的及/或非過渡性的,而不是無形的與短暫的信號。
因此,該方法的另一範例是用於執行本文描述的該方法之一的該電腦程式代表的一資料流或一序列的信號。例如可能經由資料通信連接,例如經由網際網路傳輸該資料流或該序列的信號。
另一個範例包括執行本文該方法之一的一處理裝置,例如一電腦或一可程式化邏輯裝置。
另一範例包括其上安裝有用於執行本文描述的該方法之一的該電腦程式的一電腦。
另一範例包括將用於執行本文描述的該方法之一的一電腦程式傳送(例如,電子地或光學地)到一接收機的一設備或一系統。該接收器可以是例如一電腦,一行動裝置,一記憶體裝置等。該設備或系統可能例如包括用於將該電腦程式傳送到該接收器的文件伺服器。
在一些範例中,一可程式化邏輯裝置(例如,一場域可程式化邏輯閘陣列)可能用於執行本文描述的該方法的一些或全部功能。在一些範例中,一場域可程式化邏輯閘陣列可能與一微處理器協作以執行本文描述的該方法之一。通常,該些方法可能由任何適當的硬體設備執行。
由上述討論,將可理解,本發明可以多種實施例形式體現,包含但不限於下列: 實施例1.  一種用於解碼來自一資料流(12)的一圖片(10)的解碼器(54),配置為通過以下步驟使用多個鄰近取樣(17)預測該圖片的一既定區塊(18): 縮減(100、813)該多個鄰近取樣以獲得一縮減集合(102)的取樣值,該縮減集合(102)的取樣值在取樣數量上少於該多個鄰近取樣(17), 使(812)該縮減集合(102)的取樣值受到一線性或仿射線性變換(19, 17M)以獲得針對該既定區塊(18)的既定取樣(104、118’、188’’)的預測值。 實施例2.  如實施例第1項之解碼器,更配置為通過降取樣執行該縮減(100、813)。 實施例3.  如實施例第1項之解碼器,更配置為通過平均執行該縮減(100、813)。 實施例4.  如實施例第3項之解碼器,其中該平均包括位元移位。 實施例5.  如前述實施例任一項之解碼器,更配置為基於針對該既定取樣(104、118’、118’’) 的該預測值以及該多個鄰近取樣(17),通過內插推導(813)針對該既預區塊(18)的另外取樣(108、108’)的預測值。 實施例6.  如實施例第5項之解碼器,其中,該多個鄰近取樣(17)沿著該既定區塊(18)的兩側一維地延伸,該既定取樣排成多個列與多個行並沿著該多個列與多個行中的至少一個排列, 該既定取樣位於該既定區塊的該兩側相鄰的該既定取樣(112)的一取樣(112)的每第n個位置,以及 該解碼器配置為基於該多個鄰近取樣(17),針對該多個列與該多個行的該至少一個的每個,決定針對該多個鄰近位置的一個(118)的一支持值(118),該支持值與該多個列與該多個行的該至少一個的該各自一個對齊, 其中,該解碼器配置為基於針對該既定取樣(104、118’、118’’)的該預測值以及針對與該多個列與該多個行對齊的該鄰近取樣(118)的該支持值,通過內插推導針對該既定區塊(18)的該另外的取樣(108、108’)的該預測值。 實施例7.  如實施例第6項之解碼器,其中,該既定取樣(104)位於該既定取樣(112)的該取樣(112)的每第n個位置,該每第n個位置與沿著該多個列的該既定區塊的該兩側相鄰,以及該既定取樣位於該既定取樣(112)的該取樣(112)的每第m個位置處,該每第m個位置與沿著該多個行的該既定區塊的該兩側相鄰,其中n、m>1。 實施例8.  如實施例第7項之解碼器,其中n=m。 實施例9.  如實施例第6至8項的任一項之解碼器,配置為針對每個支持值,通過降取樣或平均(122)該多個鄰近取樣內的一組(120)鄰近取樣,沿著該多個列(17c)與該多個行(17a)的至少一個,執行該支持值的該決定,該多個鄰近取樣包括決定該各自支持值的該鄰近取樣(118)。 實施例10. 如實施例第5至9項的任一項之解碼器,配置為通過位元移位執行該內插。 實施例11. 如實施例第1至10項的任一項之解碼器,其中,該多個鄰近取樣(17)沿著該既定區塊(18)的兩側一維地延伸,並且該解碼器配置為通過將該多個鄰近取樣(17)分組為多組(110)的一個或多個連續鄰近取樣執行該縮減(811)以及對具有兩個或兩個以上鄰近取樣的該組(110)的一個或多個連續鄰近取樣的每一組執行一降取樣或一平均。 實施例12. 如實施例第1至11項的任一項之解碼器,其中該線性或仿射線性變換包括P red*Q red或P red*Q加權因子,P red是該縮減集合(102)取樣值內的該取樣值(102)的數量,而Q red或Q是該既定區塊(18)內的該既定取樣的數量,其中至少1/4 P red*Q red或1/4 P red*Q加權因子是非零加權值,針對該Q或Q red既定取樣的每一個,該P red*Q red或P red*Q加權因子包括相關於該各自既定取樣的一系列P red加權因子,其中,當該系列根據該既定區塊(18)的該既定取樣之間的一光柵掃描順序被排列成一個低於另一個時,該系列形成全方向地非線性的一包絡(envelope)。 實施例13. 如實施例第12項之解碼器,其中該P red*Q或 P red*Q red加權因子與通過任何常規映射規則彼此無關。 實施例14. 如實施例第12或13項之解碼器,其中,與該各個既定取樣相關的一第一系列加權因子以及與一既定取樣而非該各個既定取樣相關的一第二系列加權因子之間的互相關的最大值的一平均值,或該較後序列的一反向形式,無論如何導致一更高的最大值,是低於一既定門檻值。 實施例15. 如實施例第14項之解碼器,其中,該既定門檻值是0.3。 實施例16. 如實施例第12至15項之解碼器,其中,該P red鄰近取樣(17)沿著一一維路徑設置,該一維路徑沿著該既定區塊(18)的兩側延伸,以及針對該Q或Q red既定取樣的每個,以在一既預方向上穿越該一維路徑的一方式排序與該各自的既定取樣相關的該系列P red加權因子。 實施例17. 如實施例第1至16項的任一項之解碼器,配置為針對該既定區塊(18),從該資料流(12)推導一預測殘差(34”),以及使用該預測殘差(34”)與針對該既定取樣(24’、104、108、108’)的該預測值(24’)重建構(42’)該既定區塊(18)。 實施例18. 如實施例第10至17項的任一項之解碼器,配置為為了針對該集合的Q或Q red既定取樣的每個獲得一對應的殘差值(residual value),針對該既定區塊(18)從該資料流(12)推導一預測殘差(34”),以及通過該對應的殘差值(34”)針對該集合的Q或Q red既定取樣的每個通過校正該預測值,使用該預測殘差(34”)及該預測值(24’,104)重建該既定區塊(18) 以獲得一對應的重建值(10),使得該對應的重建值(10)嚴格地線性地取決於該縮減集合的取樣值(102)內的該P red鄰近取樣(102),除了在預測及/或校正後可選擇性地施加的一刪減。 實施例19. 如實施例第1至18項的任一項之解碼器,其中該解碼器配置為將包括該既定區塊(18)的該圖片(10)再分割為不同區塊尺寸的多個區塊,其中該解碼器配置為取決於該既定區塊(18)的一寬度W與高度H,選擇該線性或仿射線性變換(19, 17M, A k),使得只要該既定區塊(18)的該寬度W與該高度H在多個寬度/高度對的一第一集合內,從多個線性或仿射線性變換的一第一集合內選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換,以及只要該既定區塊的該寬度W與該高度H在多個寬度/高度對的一第二集合內,從多個線性或仿射線性變換的一第二集合內選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換,該寬度/高度對的第二集合與該寬度/高度對的第一集合是不相交的。 實施例20. 如實施例第1至19項的任一項之解碼器,其中該解碼器配置為將包括該既定區塊(18)的該圖片(10)再分割為不同區塊尺寸的多個區塊,其中解碼器配置為取決於該既定區塊(18)的一寬度W與高度H選擇該線性或仿射線性變換(19, 17M, A k),使得只要該既定區塊(18)的該寬度W與高度H在合多個寬度/高度對的一第一集合內,從多個線性或仿射線性變換的一第一集合(S 1)選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換、只要該既定區塊(18)的該寬度W與高度H在多個寬度/高度對的一第二集合內,從多個線性或仿射線性變換的一第二集合(S 2)選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換,該寬度/高度對的第二集合與該寬度/高度對的第一集合是不相交的,以及只要該既定區塊(18)的該寬度W與高度H在多個寬度/高度對的一第三集合內,從多個線性或仿射線性變換的一第三集合(S 3)選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換,該寬度/高度的第三集合對與該寬度高度對的第一及第二集合是不相交的。 實施例21. 如實施例第20項之解碼器,配置為使得一個或多個寬度/高度對的該第三集合(S 0)僅包含一個寬度/高度對,W’,H’,並且在多個線性或仿射線性變換的該第三集合(S 0)內的每個線性或仿射線性變換用於針對一W’xH’陣列的取樣位置變換N’個取樣值轉為W’*H’預測值。 實施例22. 如實施例第19、20及21項的任一項之解碼器,配置為使得多個寬度/高度對的該第一與第二集合(S 1, S 2)的每個包括具有W p等於H p的一第一寬度/高度對W p, H p,以及具有H q=W p與 W q=H p的一第二寬度/高度對W q, H q。 實施例23. 如實施例第20項之解碼器,配置為使得多個寬度/高度對的該第一與第二集合(S 1, S 2) 的每個包括具有W p等於H p並且H p>H q的一第三寬度/高度對W p, H p。 實施例24. 如實施例第19至23項的任一項之解碼器,其中該既定區塊的多對寬度/高度共享同集合的線性或仿射線性變換。 實施例25. 如實施例第1至23項的任一項之解碼器,配置為針對該既定區塊(18)從該資料流(12)讀取一組索引(944),取決於該組索引(944)從一既定集合的線性或仿射線性變換選擇出該線性或仿射線性變換。 實施例26. 如實施例第25項之解碼器,其中該多個鄰近取樣(17)沿著該既定區塊(18)的兩側一維地延伸,並且該解碼器配置為執行該縮減(811),通過:針對鄰接該既定區塊的一第一側的一第一子集(17a)的該多個鄰近取樣,將該第一子集(17a)分組為具有一個或多個連續鄰近取樣的多個第一組(110),以及針對鄰接該既定區塊的一第二側的一第二子集(17c)的該多個鄰近取樣,將該第二子集(17c)分組為具有一個或多個連續鄰近取樣的多個第二組(110),並且為了從該多個第一組(17a)獲得多個第一取樣值(110)及從該多個第二組(17c)獲得多個第二取樣值(102),在具有一個或多個鄰近取樣的該多個第一與第二組(110)的每組上進行一降取樣或一平均,該多個第一與第二組(110)的每組具有多於兩個的鄰近取樣,以及該解碼器配置為 取決於該組索引從一既定集合的線性或仿射線性變換選擇出該線性或仿射線性變換,使得兩個不同狀態的該組索引導致選擇該既定集合的線性或仿射線性變換的該多個該線性或仿射線性變換的一個,以及 使該縮減集合(102)的取樣值受到該既定的線性或仿射線性變換, 假如該集合索引在一第一向量的形式假設該兩個不同狀態中的一第一個以產生預測值的一輸出向量,並且沿一第一掃描順序將該輸出向量的該預測值分佈到該既定區塊的該預定取樣上,以及 假如該集合索引在一第二向量形式假設該兩個不同狀態中的一第二個以產生預測值的一輸出向量,並且沿著一第二掃描順序將該輸出向量的該預測值分佈到該既定區塊的該預定取樣上,該第二掃描順序相對於該第一掃描順序是轉置的,該第一向量與該第二向量不同,使得在該第二向量中的該多個第二取樣值的一個填充該第一向量中該多個第一取樣值的一個所填充的分量,以及在該第二向量中的該多個第一取樣值的一個填充該第一向量中該多個第二取樣值的一個所填充的分量。 實施例27. 如實施例第18至26項的任一項之解碼器,其中多個線性或仿射線性變換的第一集合(S 1)內的每個線性或仿射線性變換用於針對一w 1xh 1陣列的取樣位置變換N 1個取樣值為w 1*h 1個預測值,並且第二組(S 2)線性或仿射線性變換內的每個線性或仿射線性變換用於針對一w 2xh 2陣列的取樣位置變換N 2個取樣值為w 2*h 2個預測值,以及 其中,針對多個寬度/高度對的該第一集合(S 1)的一第一既定的一個,w 1超過該第一既定寬度/高度對的該寬度,或者h 1超過該第一既定寬度/高度對的該高度,並且對於多個寬度/高度對的該第一集合(S 1)的一第二既定的一個,w 1既不超過該第二既定寬度/高度對的該寬度,h 1也不超過該第二既定寬度/高度對的該高度,以及 其中,解碼器配置為 通過降取樣或平均化執行該縮減(100、811)步驟,縮減該多個鄰近取樣以獲得該縮減集合(102)的取樣值,所以假如該既定區塊具有該第一既定寬度/高度對以及假如該既定區塊具有該第二既定寬度/高度對,則該縮減集合(102)的取樣值具有N 1個取樣值,以及 執行該受到(813)步驟,假如該既定區塊具有該第一既定寬度/高度對,則通過僅使用該選擇的線性或仿射線性變換的一第一子部分使該縮減集合的取樣值受到該選擇的線性或仿射線性變換,假如w 1超過該一個寬度/高度對的該寬度該第一子部分與沿著寬度維度的該w 1xh 1陣列的取樣位置的一子取樣相關,或者假如h 1超過該一個寬度/高度對的該高度該第一子部分與沿著高度維度的該w 1xh 1陣列的取樣位置的一子取樣相關,以及假如該既定區塊具有該第二既定寬度/高度對,則通過完整地使用該選擇的線性或仿射線性變換使該縮減集合的取樣值受到該選擇的線性或仿射線性變換。 實施例28. 如實施例第1至27項的任一項之解碼器,其中,第一集合的線性或仿射線性變換內的每個線性或仿射線性變換用於針對具有w 1=h 1的一w 1xh 1陣列的取樣位置變換N 1個取樣值為w 1*h 1個預測值,以及第二集合的線性或仿射線性變換內的每個線性或仿射線性變換用於針對具有w 2=h 2的一w 2xh 2陣列的取樣位置變換N 2個取樣值為w 2*h 2個預測值。 實施例29. 一種解法方法,包括: 通過以下步驟使用多個鄰近取樣(17)預測該圖片的一既定區塊(18): 通過降取樣或平均,縮減(100、811)該多個鄰近取樣以獲得一縮減集合(102)的取樣值,該縮減集合(102)的取樣值在取樣數量上少於該多個鄰近取樣(17), 使(812)該縮減集合(102)的取樣值受到一線性或仿射線性變換(19, 17M)以獲得針對該既定區塊(18)的既定取樣(104、118’、188’’)的預測值。 實施例30. 一種將一圖片編碼成一資料流的編碼器,配置為通過以下步驟使用多個鄰近取樣(17a,c)預測該圖片的一既定區塊(18): 通過降取樣或平均,縮減(100、811)該多個鄰近取樣以獲得一縮減集合(102)的取樣值,該縮減集合(102)的取樣值在取樣數量上少於該多個鄰近取樣(17), 使(812)該縮減集合(102)的取樣值受到一線性或仿射線性變換(19)以獲得針對該既定區塊(18)的既定取樣(104、118’、188’’)的預測值。 實施例31. 如實施例第30項之解碼器,更配置為通過降取樣執行該縮減(100、811)。 實施例32. 如實施例第30項之解碼器,更配置為通過平均執行該縮減(100、811)。 實施例33. 如實施例第32項之解碼器,其中該平均包括位元移位。 實施例34. 如前述實施例第30至33項的任一項之解碼器,更配置為基於針對該既定取樣的該預測值以及該多個鄰近取樣,通過內插推導針對該既預區塊的另外取樣(108)的預測值。 實施例35. 如實施例第34項之解碼器,其中,該多個鄰近取樣沿著該既定區塊的兩側一維地延伸,該既定取樣排成多個列與多個行並沿著該多個列與多個行中的至少一個排列, 該既定取樣位於該既定區塊的該兩側相鄰的該既定取樣的一取樣(112)的每第n個位置,以及 該解碼器配置為基於該多個鄰近取樣,針對該多個列與該多個行的該至少一個的每個,決定針對該多個鄰近位置的一個的一支持值(118),該支持值與該多個列與該多個行的該至少一個的該各自一個對齊, 其中,該解碼器配置為基於針對該既定取樣的該預測值以及針對與該多個列與該多個行對齊的該鄰近取樣(118)的該支持值,通過內插來推導針對該既定區塊的該另外的取樣的該預測值。 實施例36. 如實施例第35項之解碼器,其中,該既定取樣位於該既定取樣的該取樣(112)的每第n個位置,該每第n個位置與沿著該多個列的該既定區塊的該兩側相鄰,以及該既定取樣位於該既定取樣的該取樣(112)的每第m個位置處,該每第m個位置與沿著該多個行的該既定區塊的該兩側相鄰,其中n、m>1。 實施例37. 如實施例第36項之解碼器,其中n=m。 實施例38. 如實施例第36至37項的任一項之解碼器,配置為針對每個支持值,通過降取樣或平均(122)該多個鄰近取樣內的一組(120)鄰近取樣,沿著該多個列與該多個行的至少一個,執行該支持值的該決定,該多個鄰近取樣包括決定該各自支持值的該鄰近取樣(118)。 實施例39. 如實施例第34至38項的任一項之解碼器,配置為通過位元移位執行該內插。 實施例40. 如實施例第30至38項的任一項之解碼器,其中,該多個鄰近取樣沿著該既定區塊的兩側一維地延伸,並且該解碼器配置為通過將該多個鄰近取樣分組為多組(110)的一個或多個連續鄰近取樣執行該縮減以及對具有兩個或兩個以上鄰近取樣的該組的一個或多個連續鄰近取樣的每一組執行一降取樣或一平均。 實施例41. 如實施例第30至40項的任一項之解碼器,其中該線性或仿射線性變換包括P red*Q red或P red*Q加權因子,P red是該縮減集合(102)取樣值內的該取樣值的數量,而Q red或Q是該既定區塊(18)內的該既定取樣的數量,其中至少1/4 P red*Q red或1/4 P red*Q加權因子是非零加權值,針對該Q或Q red既定取樣的每一個,該P red*Q red或P red*Q加權因子包括相關於該各自既定取樣的一系列P red加權因子,其中,當該系列根據該既定區塊(18)的該既定取樣之間的一光柵掃描順序被排列成一個低於另一個時,該系列形成全方向地非線性的一包絡。 實施例42. 如實施例第41項之解碼器,其中該P red*Q或 P red*Q red加權因子與通過任何常規映射規則彼此無關。 實施例43. 如實施例第41或42項之解碼器,其中,與該各個既定取樣相關的一第一系列加權因子以及與一既定取樣而非該各個既定取樣相關的一第二系列加權因子之間的互相關的最大值的一平均值,或該較後序列的一反向形式,無論如何導致一更高的最大值,是低於一既定門檻值。 實施例44. 如實施例第14項之解碼器,其中,該既定門檻值是0.3。 實施例45. 如實施例第41至44項之解碼器,其中,該P red鄰近取樣沿著一一維路徑設置,該一維路徑沿著該既定區塊的兩側延伸,以及針對該Q或Q red既定取樣的每個,以在一既預方向上穿越該一維路徑的一方式排序與該各自的既定取樣相關的該系列P red加權因子。 實施例46. 如實施例第30至45項之解碼器,配置為針對該既定區塊,使用一預測殘差與針對該既定取樣的該預測值***該預測殘差到該資料流,來自該資料流的該既定區塊是可重建的。 實施例47. 如實施例第41至46項之解碼器,配置為針對該既定區塊(18),***一預測殘差(26,34)到該資料流(12),該資料流針對該Q或Q red預測取樣指示一對應的殘值,使得通過校正針對該集合的Q或Qred值的每個的該預測值,使用該預測殘差(26,34)及針對該既定取樣的該預測值重建該既定區塊(18),使得該對應的重建值嚴格地線性地取決於該縮減集合的取樣值(102)內的該P red鄰近取樣(102),除了在預測及/或校正後可選擇性地施加的一刪減。 實施例48. 如實施例第30至47項的任一項之解碼器,其中該解碼器配置為將包括該既定區塊(18)的該圖片(16)再分割為不同區塊尺寸的多個區塊, 其中該解碼器配置為取決於該既定區塊(18)的一寬度W與高度H,選擇該線性或仿射線性變換(19, A k),使得只要該既定區塊(18)的該寬度W與該高度H在多個寬度/高度對的一第一集合內,從多個線性或仿射線性變換的一第一集合內選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換(19, A k),以及只要該既定區塊的該寬度W與該高度H在多個寬度/高度對的一第二集合內,從多個線性或仿射線性變換的一第二集合內選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換(19, A k),該第二組寬度/高度對與第一組寬度/高度對是不相交的。 實施例49. 如實施例第1至19項的任一項之解碼器,其中該解碼器配置為將包括該既定區塊的該圖片再分割為不同區塊尺寸的多個區塊,其中解碼器配置為取決於該既定區塊的一寬度W與高度H選擇該線性或仿射線性變換,使得只要該既定區塊(18)的該寬度W與高度H在合多個寬度/高度對的一第一集合內,從多個線性或仿射線性變換的一第一集合(S 1)選擇出針對該既定區塊選擇的該線性或仿射線性變換、只要該既定區塊(18)的該寬度W與高度H在多個寬度/高度對的一第二集合內,從多個線性或仿射線性變換的一第二集合(S 2)選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換,該寬度/高度對的第二集合與該寬度/高度對的第一集合是不相交的,以及只要該既定區塊(18)的該寬度W與高度H在多個寬度/高度對的一第三集合內,從多個線性或仿射線性變換的一第三集合(S 3)選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換,該寬度/高度的第三集合對與該寬度高度對的第一及第二集合是不相交的。 實施例50. 如實施例第49項之解碼器,配置為使得一個或多個寬度/高度對的該第三集合(S 0)僅包含一個寬度/高度對,W’,H’,並且在多個線性或仿射線性變換的該第三集合(S 0)內的每個線性或仿射線性變換用於針對一W’xH’陣列的取樣位置變換N’個取樣值轉為W’*H’預測值。 實施例51. 如實施例第47、48、49及50項的任一項之解碼器,配置為使得多個寬度/高度對的該第一與第二集合(S 1, S 2)的每個包括具有W p等於H p的一第一寬度/高度對W p, H p,以及具有H q=W p與 W q=H p的一第二寬度/高度對W q, H q。 實施例52. 如實施例第51項之解碼器,配置為使得多個寬度/高度對的該第一與第二集合(S 1, S 2) 的每個包括具有W p等於H p並且H p>H q的一第三寬度/高度對W p, H p。 實施例53. 如實施例第50至52項的任一項之解碼器,其中該既定區塊的多對寬度/高度共享同集合的線性或仿射線性變換。 實施例54. 如實施例第30至52項的任一項之解碼器,配置為針對該既定區塊從該資料流***一組索引,取決於該組索引從一既定集合的線性或仿射線性變換選擇出該線性或仿射線性變換。 實施例55. 如實施例第54項之解碼器,其中該多個鄰近取樣沿著該既定區塊的兩側一維地延伸,並且該解碼器配置為執行該縮減,通過:針對鄰接該既定區塊的一第一側的一第一子集的該多個鄰近取樣,將該第一子集分組為具有一個或多個連續鄰近取樣的多個第一組(110),以及針對鄰接該既定區塊的一第二側的一第二子集的該多個鄰近取樣,將該第二子集分組為具有一個或多個連續鄰近取樣的多個第二組(110),並且為了從該多個第一組獲得多個第一取樣值(110)及從該多個第二組獲得多個第二取樣值,在具有一個或多個鄰近取樣的該多個第一與第二組(110)的每組上進行一降取樣或一平均,該多個第一與第二組(110)的每組具有多於兩個的鄰近取樣,以及該解碼器配置為: 取決於該組索引從一既定集合的線性或仿射線性變換選擇出該線性或仿射線性變換,使得兩個不同狀態的該組索引導致選擇該既定集合的線性或仿射線性變換的該多個該線性或仿射線性變換的一個,以及 使該縮減集合(102)的取樣值受到該既定的線性或仿射線性變換, 假如該集合索引在一第一向量的形式假設該兩個不同狀態中的一第一個以產生預測值的一輸出向量,並且沿一第一掃描順序將該輸出向量的該預測值分佈到該既定區塊的該預定取樣上,以及 假如該集合索引在一第二向量形式假設該兩個不同狀態中的一第二個以產生預測值的一輸出向量,並且沿著一第二掃描順序將該輸出向量的該預測值分佈到該既定區塊的該預定取樣上,該第二掃描順序相對於該第一掃描順序是轉置的,該第一向量與該第二向量不同,使得在該第二向量中的該多個第二取樣值的一個填充該第一向量中該多個第一取樣值的一個所填充的分量,以及在該第二向量中的該多個第一取樣值的一個填充該第一向量中該多個第二取樣值的一個所填充的分量。 實施例56. 如實施例第47至55項的任一項之解碼器,其中第一集合(S 1)的線性或仿射線性變換內的每個線性或仿射線性變換用於針對一w 1xh 1陣列的取樣位置變換N 1個取樣值為w 1*h 1個預測值,並且第二組(S 2)線性或仿射線性變換內的每個線性或仿射線性變換用於針對一w 2xh 2陣列的取樣位置變換N 2個取樣值為w 2*h 2個預測值,以及 其中,針對多個寬度/高度對的該第一集合(S 1)的一第一既定的一個,w 1超過該第一既定寬度/高度對的該寬度,或者h 1超過該第一既定寬度/高度對的該高度,並且對於多個寬度/高度對的該第一集合(S 1)的一第二既定的一個,w 1既不超過該第二既定寬度/高度對的該寬度,h 1也不超過該第二既定寬度/高度對的該高度,以及 其中,解碼器配置為 通過降取樣或平均化執行該縮減(100)步驟,縮減該多個鄰近取樣以獲得該縮減集合(102)的取樣值,使得假如該既定區塊具有該第一既定寬度/高度對以及假如該既定區塊具有該第二既定寬度/高度對,則該縮減集合(102)的取樣值具有N 1個取樣值,以及 執行該受到 (813)步驟,假如該既定區塊具有該第一既定寬度/高度對,則通過僅使用該選擇的線性或仿射線性變換的一第一子部分使該縮減集合的取樣值受到該選擇的線性或仿射線性變換,假如w 1超過該一個寬度/高度對的該寬度該第一子部分與沿著寬度維度的該w 1xh 1陣列的取樣位置的一子取樣相關,或者假如h 1超過該一個寬度/高度對的該高度該第一子部分與沿著高度維度的該w 1xh 1陣列的取樣位置的一子取樣相關,以及假如該既定區塊具有該第二既定寬度/高度對,則通過完整地使用該選擇的線性或仿射線性變換使該縮減集合的取樣值受到該選擇的線性或仿射線性變換。 實施例57. 如實施例第29至56項的任一項之解碼器,其中,第一集合的線性或仿射線性變換內的每個線性或仿射線性變換用於針對具有w 1=h 1的一w 1xh 1陣列的取樣位置變換N 1個取樣值為w 1*h 1個預測值,以及第二集合的線性或仿射線性變換內的每個線性或仿射線性變換用於針對具有w 2=h 2的一w 2xh 2陣列的取樣位置變換N 2個取樣值為w 2*h 2個預測值。 實施例58. 一種解法方法,包括: 通過以下步驟使用多個鄰近取樣(17a, 17c)預測該圖片的一既定區塊(18): 通過降取樣或平均,縮減(100)該多個鄰近取樣以獲得一縮減集合(102)的取樣值,該縮減集合(102)的取樣值在取樣數量上少於該多個鄰近取樣, 使該縮減集合(102)的取樣值受到一線性或仿射線性變換(19)以獲得針對該既定區塊的既定取樣(104)的預測值。 實施例59. 一種系統,包括根據前述實施例的任一項之編碼器及/或根據前述實施例的任一項之解碼器。 實施例60. 一種方法,包括根據前述實施例的任一項之編碼方法及/或根據前述實施例的任一項之解碼方法。 實施例61. 一種儲存指令的非暫態儲存媒體,當通過一處理器執行時,該處理器實施根據前述實施例的任一項之方法。
上述範例僅是上述原理的範例。應當理解,本文所述的設置與細節的修改及變化將是顯而易見的。因此,本發明的意圖是受即將到來的請求項的範圍限制,而不是受通過本文的範例的描述與解釋而給出的具體細節的限制。
在下面的描述中,即使在不同的圖示中出現,相同或等效的元件或具有相同或等效功能的元件也由相同或等效的參考數字表示。 參考文獻  [1] P. Helle et al., “Non-linear weighted intra prediction”, JVET-L0199, Macao, China, October 2018. [2] F. Bossen, J. Boyce, K. Suehring, X. Li, V. Seregin, “JVET common test conditions and software reference configurations for SDR video”, JVET-K1010, Ljubljana, SI, July 2018.
10:圖片 12:資料流 14:編碼器 16:視訊 17a-17c:鄰近區塊 17’a-17’c:鄰近部分 17M:映射矩陣 17P:邊界向量(第一向量) 18Q:第二向量 18:區塊 18a、18c:邊界 19:線性變換 22:減法器 24:預測信號 24’:預測值 26:預測殘差信號 28:預測殘差編碼器 28a:有損編碼級 28b:熵編碼器 30:量化器 32:變換級 34':預測殘差信號 36:預測殘差信號重建級 38、38':解量化器 40、40':逆變換器 42、42':加法器 44、44':預測器 46、46':環內濾波器 54:解碼器 56:熵解碼器 72:平面 102:縮減集合 104:既定取樣 108、108' :取樣 110:鄰近取樣的一組 119:取樣 112:既定取樣 118:鄰近取樣 118'、118'':取樣 120:鄰近取樣的一組 122:降取樣或平均 156:殘差提供器 811、812、813:步驟 811'、812'、813':級 812a、812b、812c:步驟 901、902:二進制值 910、910a:暫存器 944:索引 1910:乘法器
第1及2圖顯示編碼器範例。 第3及4圖顯示解碼器範例。 第5圖顯示區塊的預測圖。 第6圖顯示矩陣運算。 第7.1-7.4圖根據範例顯示運算範例。 第8.1及8.2圖根據範例顯示方法的範例。 第9圖(細分為第9a與9b圖)顯示出分量的範例。 第10圖顯示編碼器範例。 第11圖顯示解碼器範例。 第12圖顯示與預測模式待預測的區塊維度相關的方案。 第13圖顯示用於理解本發明的方案。
17a-17c:鄰近區塊
17’a-17’c:鄰近部分
17M:映射矩陣
17P:邊界向量(第一向量)
18Q:第二向量
18:區塊
19:線性變換
102:縮減集合
104:既定取樣
110:鄰近取樣的一組
811、812、813:步驟

Claims (63)

  1. 一種用以解碼來自資料流(12)的圖片(10)的解碼器(54),組配來藉由以下步驟使用多個鄰近取樣(17)預測該圖片的一既定區塊(18):縮減(100、811)該多個鄰近取樣以獲得一縮減集合(102)的取樣值,該縮減集合(102)的取樣值在取樣數量上少於該多個鄰近取樣(17),使(812)該縮減集合(102)的取樣值受到一線性或仿射線性變換(19,17M)以獲得預測值,其中該解碼器組配來將包括該既定區塊(18)的該圖片(10)再分割為不同區塊尺寸的多個區塊,其中該解碼器組配來取決於該既定區塊(18)的一寬度W與高度H,選擇該線性或仿射線性變換(19,17M,Ak),使得只要該既定區塊(18)的該寬度W與該高度H在多個寬度/高度對的一第一集合內,從多個線性或仿射線性變換的一第一集合內選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換,以及只要該既定區塊的該寬度W與該高度H在多個寬度/高度對的一第二集合內,從多個線性或仿射線性變換的一第二集合內選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換,該寬度/高度對的第二集合與該寬度/高度對的第一集合是不相交的。
  2. 如申請專利範圍第1項之解碼器,更組配來藉由降取樣執行該縮減(100、813)。
  3. 如申請專利範圍第1項之解碼器,更組配來藉由平均執行該縮減(100、813)。
  4. 如申請專利範圍第3項之解碼器,其中該平均包括位元移位。
  5. 一種用以解碼來自資料流(12)的圖片(10)的解碼器(54),組配來藉由以下步驟使用多個鄰近取樣(17)預測該圖片的一既定區塊(18):縮減(100、811)該多個鄰近取樣以獲得一縮減集合(102)的取樣值,該縮減集合(102)的取樣值在取樣數量上少於該多個鄰近取樣(17),其中之縮減包含將該多個鄰近取樣(17)分組為多群組(110)的一個或多個連續鄰近取樣以及對具有兩個或兩個以上鄰近取樣的該等群組(110)中的每一組執行一平均,使(812)該縮減集合(102)的取樣值受到一線性或仿射線性變換(19,17M)以獲得預測值,及基於針對該多個鄰近取樣(17)的該預測值,通過內插來推導(813)出針對該既定區塊(18)的另外取樣(108、108’)的預測值。
  6. 如申請專利範圍第5項之解碼器,組配來藉由以下步驟預測該既定區塊(18):使(812)該縮減集合(102)的取樣值受到該線性或仿射線性變換(19,17M)以獲得針對該既定區塊(18)的既定取樣(104、118’、188”)的該預測值,及基於針對該等既定取樣(104、118’、118”)以及該多個鄰近取樣(17)的該預測值,推導(813)出該預測值。
  7. 如申請專利範圍第6項之解碼器,其中,該多個鄰近取樣(17)沿著該既定區塊(18)的兩側一維地延伸,該等既定取樣排成多個列與多個行並沿著該多個列與多個行中的至少一個排列,該等既定取樣位於該既定區塊的該兩側相鄰的該等既定取樣(112)的一取樣(112)的每第n個位置,以及 該解碼器組配來基於該多個鄰近取樣(17),針對該多個列與該多個行中的該至少一個的每個,決定針對該多個鄰近位置中與該多個列與該多個行中的該至少一個的各自一個對齊的一個鄰近位置(118)的一支持值(118),其中,該解碼器組配來基於針對該等既定取樣(104、118’、118”)的該等預測值以及針對與該多個列與該多個行中的該至少一個對齊的該等鄰近取樣(118)的該等支持值,通過內插來推導出針對該既定區塊(18)的該等另外的取樣(108、108’)的該等預測值。
  8. 如申請專利範圍第7項之解碼器,其中,該等既定取樣(104)位於該既定取樣(112)的該取樣(112)的每第n個位置,該每第n個位置與沿著該多個列的該既定區塊的該兩側相鄰,以及該等既定取樣位於該既定取樣(112)的該取樣(112)的每第m個位置處,該每第m個位置與沿著該多個行的該既定區塊的該兩側相鄰,其中n、m>1。
  9. 如申請專利範圍第8項之解碼器,其中n=m。
  10. 如申請專利範圍第7項之解碼器,組配來針對每個支持值,藉由降取樣或平均(122)該多個鄰近取樣內的一組(120)鄰近取樣,沿著該多個列(17c)與該多個行(17a)的至少一個,執行該等支持值的該決定,該組鄰近取樣包括決定該各自支持值的該鄰近取樣(118)。
  11. 如申請專利範圍第5項之解碼器,組配來通過位元移位執行該內插。
  12. 如申請專利範圍第5項之解碼器,其中,該多個鄰近取樣(17)沿著該既定區塊(18)的兩側一維地延伸。
  13. 如申請專利範圍第6項之解碼器, 其中該線性或仿射線性變換包括Pred *Qred或Pred *Q加權因子,Pred是該縮減集合(102)取樣值內的該等取樣值(102)的數量,而Qred或Q是該既定區塊(18)內的該等既定取樣的數量,其中至少1/4 Pred *Qred或1/4 Pred *Q加權因子是非零加權值,針對該Q或Qred既定取樣的每一個,該Pred *Qred或Pred *Q加權因子包括相關於該各自既定取樣的一系列Pred加權因子,其中,當該系列根據該既定區塊(18)的該等既定取樣之間的一光柵掃描順序被排列成一個低於另一個時,該系列形成全方向地非線性的一包絡(envelope)。
  14. 如申請專利範圍第13項之解碼器,其中該Pred *Q或Pred*Qred加權因子透過任何常規映射規則彼此無關。
  15. 如申請專利範圍第13項之解碼器,其中,與該各個既定取樣相關的一第一系列加權因子以及與該各個既定取樣以外之既定取樣相關的一第二系列加權因子之間的互相關的最大值的一平均值,或該較後序列的一反向形式,無論如何導致一更高的最大值,是低於一既定門檻值。
  16. 如申請專利範圍第15項之解碼器,其中,該既定門檻值是0.3。
  17. 如申請專利範圍第13項之解碼器,其中,該Pred鄰近取樣(17)沿著一個一維路徑設置,該一維路徑沿著該既定區塊(18)的兩側延伸,以及針對該Q或Qred既定取樣的每個,以在一既定方向上穿越該一維路徑的一方式排序與該各自的既定取樣相關的該系列Pred加權因子。
  18. 如申請專利範圍第5項之解碼器,組配來針對該既定區塊(18),從該資料流(12)推導出一預測殘差(34”),以及使用該預測殘差(34”)重建構(42’)該既定區塊(18)。
  19. 如申請專利範圍第18項之解碼器,組配來:藉由以下步驟預測該既定區塊(18):使(812)該縮減集合(102)的取樣值受到該線性或仿射線性變換(19,17M)以獲得針對該既定區塊(18)的既定取樣(104、118’、188”)的該等預測值,基於針對該等既定取樣(104、118’、118”)以及該多個鄰近取樣(17)的該等預測值,推導(813)該預測值,該解碼器更組配來:使用該預測殘差(34”)與針對該等既定取樣(24’、104、108、108’)的該等預測值(24’)重建構(42’)該既定區塊(18)。
  20. 一種用以解碼來自資料流(12)的圖片(10)的解碼器(54),組配來藉由以下步驟使用多個鄰近取樣(17)預測該圖片的一既定區塊(18):縮減(100、811)該多個鄰近取樣以獲得一縮減集合(102)的取樣值,該縮減集合(102)的取樣值在取樣數量上少於該多個鄰近取樣(17),使(812)該縮減集合(102)的取樣值受到一線性或仿射線性變換(19,17M)以獲得針對該既定區塊(18)的既定取樣(104、118’、188”)的預測值,其中該解碼器組配來:為了針對一集合的Q或Qred既定取樣的每個獲得一對應的殘差值(residual value),針對該既定區塊(18)從該資料流(12)推導出一預測殘差(34”),以及藉由該對應的殘差值(34”)針對該集合的Q或Qred既定取樣的每個藉由校正該預測值,使用該預測殘差(34”)及針對該等既定取樣(118’、118”)的該等預測值(24’,104)重建該既定區塊(18)以獲得一對應的重建值(10), 使得該對應的重建值(10)嚴格地線性地取決於該縮減集合的取樣值(102)內的該Pred鄰近取樣(102),除了在預測及/或校正後可選擇性地施加的一刪減。
  21. 如申請專利範圍第5項之解碼器,其中:該解碼器組配來將包括該既定區塊(18)的該圖片(10)再分割為不同區塊尺寸的多個區塊,其中該解碼器組配來取決於該既定區塊(18)的一寬度W與高度H,選擇該線性或仿射線性變換(19,17M,Ak),使得只要該既定區塊(18)的該寬度W與該高度H在多個寬度/高度對的一第一集合內,從多個線性或仿射線性變換的一第一集合內選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換,以及只要該既定區塊的該寬度W與該高度H在多個寬度/高度對的一第二集合內,從多個線性或仿射線性變換的一第二集合內選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換,該寬度/高度對的第二集合與該寬度/高度對的第一集合是不相交的。
  22. 一種用以解碼來自資料流(12)的圖片(10)的解碼器(54),組配來藉由以下步驟使用多個鄰近取樣(17)預測該圖片的一既定區塊(18):縮減(100、811)該多個鄰近取樣以獲得一縮減集合(102)的取樣值,該縮減集合(102)的取樣值在取樣數量上少於該多個鄰近取樣(17),及使(812)該縮減集合(102)的取樣值受到一線性或仿射線性變換(19,17M)以獲得預測值,其中該解碼器組配來將包括該既定區塊(18)的該圖片(10)再分割為不同區塊尺寸的多個區塊, 其中該解碼器組配來取決於該既定區塊(18)的一寬度W與高度H選擇該線性或仿射線性變換(19,17M,Ak),使得:只要該既定區塊(18)的該寬度W與高度H在多個寬度/高度對的一第一集合內,從多個線性或仿射線性變換的一第一集合(S1)選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換,只要該既定區塊(18)的該寬度W與高度H在多個寬度/高度對的一第二集合內,從多個線性或仿射線性變換的一第二集合(S2)選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換,該寬度/高度對的第二集合與該寬度/高度對的第一集合是不相交的,以及只要該既定區塊(18)的該寬度W與高度H在一或多個寬度/高度對的一第三集合內,從多個線性或仿射線性變換的一第三集合(S3)選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換,該寬度/高度對的第三集合與該寬度高度對的第一及第二集合是不相交的。
  23. 如申請專利範圍第22項之解碼器,組配成使得:一個或多個寬度/高度對的該第三集合(S0)僅包含一個寬度/高度對,W’,H’,並且在多個線性或仿射線性變換的該第三集合(S0)內的每個線性或仿射線性變換用於針對一W’xH’陣列的取樣位置變換N’個取樣值轉為W’*H’預測值。
  24. 如申請專利範圍第22項之解碼器,組配成使得:多個寬度/高度對的該第一與第二集合(S1,S2)的每個包括具有Wp不等於Hp的一第一寬度/高度對Wp,Hp,以及具有Hq=Wp與Wq=Hp的一第二寬度/高度對Wq,Hq
  25. 如申請專利範圍第24項之解碼器,組配成使得: 多個寬度/高度對的該第一與第二集合(S1,S2)的每個包括具有Wp等於Hp並且Hp>Hq的一第三寬度/高度對Wp,Hp
  26. 如申請專利範圍第22項之解碼器,其中該既定區塊的多對寬度/高度共享同集合的線性或仿射線性變換。
  27. 如申請專利範圍第5項之解碼器,組配來針對該既定區塊(18)從該資料流(12)讀取一集合索引(944),取決於該集合索引(k)從一既定集合的線性或仿射線性變換選擇出該線性或仿射線性變換。
  28. 如申請專利範圍第27項之解碼器,組配來藉由以下步驟預測該既定區塊(18):使(812)該縮減集合(102)的取樣值受到該線性或仿射線性變換(19,17M)以獲得針對該既定區塊(18)的既定取樣(104、118’、188”)的該等預測值,以及基於針對該等既定取樣(104、118’、118”)以及該多個鄰近取樣(17)的該等預測值,推導(813)出該等預測值,其中該多個鄰近取樣(17)沿著該既定區塊(18)的兩側一維地延伸,並且該解碼器組配來執行該縮減(811),藉由:針對鄰接該既定區塊的一第一側的一第一子集(17a)的該多個鄰近取樣,將該第一子集(17a)分組為具有一個或多個連續鄰近取樣的多個第一組(110),以及針對鄰接該既定區塊的一第二側的一第二子集(17c)的該多個鄰近取樣,將該第二子集(17c)分組為具有一個或多個連續鄰近取樣的多個第二組(110),並且為了從該多個第一組(17a)獲得多個第一取樣值(110)及從該多個第二組(17c)獲得多個第二取樣值(102),在具有一個或多個鄰近取樣的該多個第一與第二組(110)的每組 上進行一降取樣或一平均,該多個第一與第二組(110)的每組具有多於兩個的鄰近取樣,以及該解碼器組配來:取決於該集合索引從一既定集合的線性或仿射線性變換選擇出該線性或仿射線性變換,使得該集合索引的兩個不同狀態導致選擇該既定集合的線性或仿射線性變換的該多個該線性或仿射線性變換中的一個,以及使該縮減集合(102)的取樣值受到該既定的線性或仿射線性變換,假如該集合索引在一第一向量的形式採取兩個不同狀態中的一第一個以產生預測值的一輸出向量,並且沿一第一掃描順序將該輸出向量的該預測值分佈到該既定區塊的該等既定取樣上,以及假如該集合索引在一第二向量形式採取該兩個不同狀態中的一第二個以產生預測值的一輸出向量,並且沿著一第二掃描順序將該輸出向量的該等預測值分佈到該既定區塊的該等既定取樣上,該第二掃描順序相對於該第一掃描順序是轉置的,該第一向量與該第二向量不同,使得在該第二向量中的多個第二取樣值中的一個填充該第一向量中多個第一取樣值中的一個所填充的分量,以及在該第二向量中的多個第一取樣值中的一個填充該第一向量中多個第二取樣值中的一個所填充的分量。
  29. 一種用以解碼來自資料流(12)的圖片(10)的解碼器(54),組配來藉由以下步驟使用多個鄰近取樣(17)預測該圖片的一既定區塊(18):縮減(100、813)該多個鄰近取樣以獲得一縮減集合(102)的取樣值,該縮減集合(102)的取樣值在取樣數量上少於該多個鄰近取樣(17),以及使(812)該縮減集合(102)的取樣值受到一線性或仿射線性變換(19,17M)以獲得預測值,其中該解碼器組配來: 針對該既定區塊(18)從該資料流(12)讀取一集合索引(944),取決於該集合索引(k)從一既定集合的線性或仿射線性變換選擇出該線性或仿射線性變換,其中多個線性或仿射線性變換的第一集合(S1)內的每個線性或仿射線性變換用於針對一w1xh1陣列的取樣位置變換N1個取樣值為w1*h1個預測值,並且第二集合(S2)之線性或仿射線性變換內的每個線性或仿射線性變換用於針對一w2xh2陣列的取樣位置變換N2個取樣值為w2*h2個預測值,以及其中,針對多個寬度/高度對的第一集合(S1)的一第一既定的一個,w1超過該第一既定寬度/高度對的寬度,或者h1超過該第一既定寬度/高度對的高度,並且對於多個寬度/高度對的該第一集合(S1)的一第二既定的一個,w1既不超過該第二既定寬度/高度對的寬度,h1也不超過該第二既定寬度/高度對的高度,以及其中,解碼器組配來:通過降取樣或平均化執行該縮減(100、811)步驟,縮減該多個鄰近取樣以獲得該縮減集合(102)的取樣值,使得假如該既定區塊具有該第一既定寬度/高度對以及假如該既定區塊具有該第二既定寬度/高度對,則該縮減集合(102)的取樣值具有N1個取樣值,以及執行該受到(813)步驟,假如該既定區塊具有該第一既定寬度/高度對,則藉由僅使用該選擇的線性或仿射線性變換的一第一子部分使該縮減集合的取樣值受到該選擇的線性或仿射線性變換,假如w1超過該一個寬度/高度對的該寬度則該第一子部分與沿著寬度維度的該w1xh1陣列的取樣位置的一子取樣相關,或者假如h1超過該一個寬度/高度對的該高度則該第一子部分與沿著高度維度的該w1xh1陣列的取樣位置的一子取樣相關,以及假如該 既定區塊具有該第二既定寬度/高度對,則藉由完整地使用該選擇的線性或仿射線性變換使該縮減集合的取樣值受到該選擇的線性或仿射線性變換。
  30. 一種用以解碼來自資料流(12)的圖片(10)的解碼器(54),組配來藉由以下步驟使用多個鄰近取樣(17)預測該圖片的一既定區塊(18):縮減(100、811)該多個鄰近取樣以獲得一縮減集合(102)的取樣值,該縮減集合(102)的取樣值在取樣數量上少於該多個鄰近取樣(17),及使(812)該縮減集合(102)的取樣值受到一線性或仿射線性變換(19,17M)以獲得預測值,其中,第一集合的線性或仿射線性變換內的每個線性或仿射線性變換用於針對具有w1=h1的一w1xh1陣列的取樣位置變換N1個取樣值為w1*h1個預測值,以及第二集合的線性或仿射線性變換內的每個線性或仿射線性變換用於針對具有w2=h2的一w2xh2陣列的取樣位置變換N2個取樣值為w2*h2個預測值。
  31. 一種解碼方法,包括:藉由以下步驟使用多個鄰近取樣(17)預測圖片的一既定區塊(18):藉由平均來縮減(100、811)該多個鄰近取樣以獲得一縮減集合(102)的取樣值,該縮減集合(102)的取樣值在取樣數量上少於該多個鄰近取樣(17),其中之縮減包含將該多個鄰近取樣(17)分組為多群組(110)的一個或多個連續鄰近取樣以及對具有兩個或兩個以上鄰近取樣的該等群組(110)中的每一群組執行一平均,使(812)該縮減集合(102)的取樣值受到一線性或仿射線性變換(19,17M)以獲得預測值, 其中該方法基於該等預測值,藉由內插來推導(813)出針對該既定區塊(18)的另外取樣(108、118’)的預測值。
  32. 一種將圖片編碼成資料流的編碼器,組配來:藉由以下步驟使用多個鄰近取樣(17a,c)預測該圖片的一既定區塊(18):縮減(100、811)該多個鄰近取樣以獲得一縮減集合(102)的取樣值,該縮減集合(102)的取樣值在取樣數量上少於該多個鄰近取樣(17),使(812)該縮減集合(102)的取樣值受到一線性或仿射線性變換(19)以獲得預測值,其中該編碼器組配來將包括該既定區塊(18)的該圖片(16)再分割為不同區塊尺寸的多個區塊,其中之方法取決於該既定區塊(18)的一寬度W與高度H,選擇該線性或仿射線性變換(19,Ak),使得只要該既定區塊(18)的該寬度W與該高度H在多個寬度/高度對的一第一集合內,從多個線性或仿射線性變換的一第一集合內選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換(19,Ak),以及只要該既定區塊的該寬度W與該高度H在多個寬度/高度對的一第二集合內,從多個線性或仿射線性變換的一第二集合內選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換(19,Ak),該第二組寬度/高度對與第一組寬度/高度對是不相交的。
  33. 如申請專利範圍第32項之編碼器,更組配來藉由降取樣執行該縮減(100、811)。
  34. 如申請專利範圍第32項之編碼器,更組配來藉由平均執行該縮減(100、811)。
  35. 如申請專利範圍第34項之編碼器,其中該平均包括位元移位。
  36. 一種將圖片編碼成資料流的編碼器,組配來:藉由以下步驟使用多個鄰近取樣(17a,c)預測該圖片的一既定區塊(18):縮減(100、811)該多個鄰近取樣以獲得一縮減集合(102)的取樣值,該縮減集合(102)的取樣值在取樣數量上少於該多個鄰近取樣(17),其中之縮減包含將該多個鄰近取樣(17)分組為多群組(110)的一個或多個連續鄰近取樣以及對具有兩個或兩個以上鄰近取樣的該等群組(110)中的每一群組執行一平均,使(812)該縮減集合(102)的取樣值受到一線性或仿射線性變換(19)以獲得預測值,其中該編碼器組配來:基於針對該多個鄰近取樣的該等預測值,通過內插來推導出針對該既定區塊的另外取樣(108)的預測值。
  37. 如申請專利範圍第36項之編碼器,組配來藉由以下步驟預測該既定區塊(18):使(812)該縮減集合(102)的取樣值受到該線性或仿射線性變換(19,17M)以獲得針對該既定區塊(18)的既定取樣(104、118’、188”)的該等預測值,及基於針對該等既定取樣(104、118’、118”)以及該多個鄰近取樣(17)的該等預測值,推導(813)出該等預測值。
  38. 如申請專利範圍第37項之編碼器,其中,該多個鄰近取樣沿著該既定區塊的兩側一維地延伸,該等既定取樣排成多個列與多個行並沿著該多個列與多個行中的至少一個排列,該等既定取樣位於該既定區塊的該兩側相鄰的該等既定取樣的一取樣(112)的每第n個位置,以及該編碼器組配來基於該多個鄰近取樣,針對該多個列與該多個行中的該至少一個的每個,決定針對該多個鄰近位置中與該多個列與該多個行中的該至少一個的各自一個對齊的一個鄰近位置(118)的一支持值,其中,該編碼器組配來基於針對該等既定取樣的該等預測值以及針對與該多個列與該多個行中的該至少一個對齊的該等鄰近取樣(118)的該等支持值,通過內插來推導出針對該既定區塊的該等另外的取樣的該等預測值。
  39. 如申請專利範圍第38項之編碼器,其中,該等既定取樣位於該既定取樣的該取樣(112)的每第n個位置,該每第n個位置與沿著該多個列的該既定區塊的該兩側相鄰,以及該等既定取樣位於該既定取樣的該取樣(112)的每第m個位置處,該每第m個位置與沿著該多個行的該既定區塊的該兩側相鄰,其中n、m>1。
  40. 如申請專利範圍第39項之編碼器,其中n=m。
  41. 如申請專利範圍第39項之編碼器,組配來針對每個支持值,藉由降取樣或平均(122)該多個鄰近取樣內的一組(120)鄰近取樣,沿著該多個列與該多個行中的至少一個,執行該等支持值的該決定,該組鄰近取樣包括決定該各自支持值的該鄰近取樣(118)。
  42. 如申請專利範圍第36項之編碼器,組配來藉由位元移位執行該內插。
  43. 如申請專利範圍第36項之編碼器,其中,該多個鄰近取樣沿著該既定區塊的兩側一維地延伸。
  44. 如申請專利範圍第37項之編碼器,其中該線性或仿射線性變換包括Pred *Qred或Pred *Q加權因子,Pred是該縮減集合(102)取樣值內的該等取樣值的數量,而Qred或Q是該既定區塊內的該等既定取樣的數量,其中至少1/4 Pred *Qred或1/4 Pred *Q加權因子是非零加權值,針對該Q或Qred既定取樣的每一個,該Pred *Qred或Pred *Q加權因子包括相關於該各自既定取樣的一系列Pred加權因子,其中,當該系列根據該既定區塊(18)的該等既定取樣之間的一光柵掃描順序被排列成一個低於另一個時,該系列形成全方向地非線性的一包絡。
  45. 如申請專利範圍第44項之編碼器,其中該Pred *Qred或Pred*Q加權因子透過任何常規映射規則彼此無關。
  46. 如申請專利範圍第44項之編碼器,其中,與該各個既定取樣相關的一第一系列加權因子以及與該各個既定取樣以外之既定取樣相關的一第二系列加權因子之間的互相關的最大值的一平均值,或該較後序列的一反向形式,無論如何導致一更高的最大值,是低於一既定門檻值。
  47. 如申請專利範圍第46項之編碼器,其中,該既定門檻值是0.3。
  48. 如申請專利範圍第44項之編碼器,其中,該Pred鄰近取樣沿著一個一維路徑設置,該一維路徑沿著該既定區塊的兩側延伸,以及針對該Q或Qred既定取樣的每個,以在一既定方向上穿越該一維路徑的一方式排序與該各自的既定取樣相關的該系列Pred加權因子。
  49. 如申請專利範圍第36項之編碼器,組配來:針對該既定區塊,使用一預測殘差與該等預測值***該預測殘差到該資料流,該既定區塊可自該資料流重建。
  50. 如申請專利範圍第49項之編碼器,組配來藉由以下步驟預測該既定區塊(18):使(812)該縮減集合(102)的取樣值受到該線性或仿射線性變換(19,17M)以獲得針對該既定區塊(18)的既定取樣(104、118’、188”)的該等預測值,及基於針對該等既定取樣(104、118’、118”)以及該多個鄰近取樣(17)的該等預測值,推導(813)出該等預測值,該編碼器更組配來:針對該既定區塊,使用該預測殘差與針對該等既定取樣的該等預測值***該預測殘差到該資料流,該既定區塊可自該資料流重建。
  51. 如申請專利範圍第50項之編碼器,組配來:針對該既定區塊(18),***一預測殘差(26,34)到該資料流(12),該預測殘差針對該Q或Qred既定取樣指出一對應的殘值,使得可藉由校正針對該集合的Q或Qred值的每個的該預測值,使用該預測殘差(26,34)及針對該等既定取樣的該等預測值重建該既定區塊(18),使得對應的重建值嚴格地線性地取決於該縮減集合的取樣值(102)內的該Pred鄰近取樣(102),除了在預測及/或校正後可選擇性地施加的一刪減。
  52. 如申請專利範圍第35項之編碼器,其中該編碼器組配來將包括該既定區塊(18)的該圖片(16)再分割為不同區塊尺寸的多個區塊, 其中該編碼器組配來取決於該既定區塊(18)的一寬度W與高度H,選擇該線性或仿射線性變換(19,Ak),使得只要該既定區塊(18)的該寬度W與該高度H在多個寬度/高度對的一第一集合內,從多個線性或仿射線性變換的一第一集合內選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換(19,Ak),以及只要該既定區塊的該寬度W與該高度H在多個寬度/高度對的一第二集合內,從多個線性或仿射線性變換的一第二集合內選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換(19,Ak),該第二集合之寬度/高度對與第一集合之寬度/高度對是不相交的。
  53. 一種將圖片編碼成資料流的編碼器,組配來:藉由以下步驟使用多個鄰近取樣(17a,c)預測該圖片的一既定區塊(18):縮減(100、811)該多個鄰近取樣以獲得一縮減集合(102)的取樣值,該縮減集合(102)的取樣值在取樣數量上少於該多個鄰近取樣(17),使(812)該縮減集合(102)的取樣值受到一線性或仿射線性變換(19)以獲得預測值,其中該編碼器組配來將包括該既定區塊的該圖片再分割為不同區塊尺寸的多個區塊,其中該編碼器組配來取決於該既定區塊的一寬度W與高度H選擇該線性或仿射線性變換,使得:只要該既定區塊(18)的該寬度W與高度H在多個寬度/高度對的一第一集合內,從多個線性或仿射線性變換的一第一集合(S1)選擇出針對該既定區塊選擇的該線性或仿射線性變換,只要該既定區塊(18)的該寬度W與高度H在多個寬度/高度對的一第二集合內,從多個線性或仿射線性變換的一第二集合(S2)選擇出針對該 既定區塊(18)選擇的該線性或仿射線性變換,該寬度/高度對的第二集合與該寬度/高度對的第一集合是不相交的,以及只要該既定區塊(18)的該寬度W與高度H在一或多個寬度/高度對的一第三集合內,從多個線性或仿射線性變換的一第三集合(S3)選擇出針對該既定區塊(18)選擇的該線性或仿射線性變換,該寬度/高度對的第三集合與該寬度高度對的第一及第二集合是不相交的。
  54. 如申請專利範圍第53項之編碼器,組配成使得:一個或多個寬度/高度對的該第三集合(S0)僅包含一個寬度/高度對,W’,H’,並且在多個線性或仿射線性變換的該第三集合(S0)內的每個線性或仿射線性變換用於針對一W’xH’陣列的取樣位置變換N’個取樣值轉為W’*H’預測值。
  55. 如申請專利範圍第53項之編碼器,組配成使得:多個寬度/高度對的該第一與第二集合(S1,S2)的每個包括具有Wp不等於Hp的一第一寬度/高度對Wp,Hp,以及具有Hq=Wp與Wq=Hp的一第二寬度/高度對Wq,Hq
  56. 如申請專利範圍第55項之編碼器,組配成使得:多個寬度/高度對的該第一與第二集合(S1,S2)的每個另包括具有Wp等於Hp並且Hp>Hq的一第三寬度/高度對Wp,Hp
  57. 如申請專利範圍第53項之編碼器,其中該既定區塊的多對寬度/高度共享同集合的線性或仿射線性變換。
  58. 一種將圖片編碼成資料流的編碼器,組配來:藉由以下步驟使用多個鄰近取樣(17a,c)預測該圖片的一既定區塊(18): 縮減(100、811)該多個鄰近取樣以獲得一縮減集合(102)的取樣值,該縮減集合(102)的取樣值在取樣數量上少於該多個鄰近取樣(17),以及使(812)該縮減集合(102)的取樣值受到一線性或仿射線性變換(19)以獲得預測值,其中該編碼器組配來:針對該既定區塊對該資料流***一集合索引,取決於該集合索引從一既定集合的線性或仿射線性變換選擇出該線性或仿射線性變換。
  59. 如申請專利範圍第58項之編碼器,組配來藉由以下步驟預測該既定區塊(18):使(812)該縮減集合(102)的取樣值受到該線性或仿射線性變換(19,17M)以獲得針對該既定區塊(18)的既定取樣(104、118’、188”)的該等預測值,以及基於針對該等既定取樣(104、118’、118”)以及該多個鄰近取樣(17)的該等預測值,推導(813)出該等預測值,其中該多個鄰近取樣沿著該既定區塊的兩側一維地延伸,並且該編碼器組配來執行該縮減,藉由:針對鄰接該既定區塊的一第一側的一第一子集的該多個鄰近取樣,將該第一子集分組為具有一個或多個連續鄰近取樣的多個第一組(110),以及針對鄰接該既定區塊的一第二側的一第二子集的該多個鄰近取樣,將該第二子集分組為具有一個或多個連續鄰近取樣的多個第二組(110),並且為了從該多個第一組獲得多個第一取樣值(110)及從該多個第二組獲得多個第二取樣值,在具有一個或多個鄰近取樣的該多個第 一與第二組的每組上進行一降取樣或一平均,該多個第一與第二組(110)的每組具有多於兩個的鄰近取樣,以及該編碼器組配來:取決於該集合索引從一既定集合的線性或仿射線性變換選擇出該線性或仿射線性變換,使得該集合索引的兩個不同狀態導致選擇該既定集合的線性或仿射線性變換的該多個該線性或仿射線性變換中的一個,以及使該縮減集合(102)的取樣值受到該既定的線性或仿射線性變換,假如該集合索引在一第一向量的形式採取該兩個不同狀態中的一第一個以產生預測值的一輸出向量,並且沿一第一掃描順序將該輸出向量的該等預測值分佈到該既定區塊的該等既定取樣上,以及假如該集合索引在一第二向量形式採取該兩個不同狀態中的一第二個以產生預測值的一輸出向量,並且沿著一第二掃描順序將該輸出向量的該等預測值分佈到該既定區塊的該等既定取樣上,該第二掃描順序相對於該第一掃描順序是轉置的,該第一向量與該第二向量不同,使得在該第二向量中的該多個第二取樣值的一個填充該第一向量中該多個第一取樣值中的一個所填充的分量,以及在該第二向量中的多個第一取樣值中的一個填充該第一向量中多個第二取樣值中的一個所填充的分量。
  60. 如申請專利範圍第58項之編碼器,其中第一集合(S1)的線性或仿射線性變換內的每個線性或仿射線性變換用於針對一w1xh1陣列的取樣位置變換N1個取樣值為w1*h1個預測值,並且第二集合(S2)之線性或仿射線性變換內的每個線性或仿射線性變換用於針對一w2xh2陣列的取樣位置變換N2個取樣值為w2*h2個預測值,以及其中,針對多個寬度/高度對的第一集合的一第一既定的一個,w1超過該第一既定寬度/高度對的寬度,或者h1超過該第一既定寬度/高度對的高度,並且對於多個寬度/高度對的該第一集合的一第二既定的一個,w1既不 超過該第二既定寬度/高度對的寬度,h1也不超過該第二既定寬度/高度對的高度,以及其中,編碼器組配來:藉由降取樣或平均化執行該縮減(100)步驟,縮減該多個鄰近取樣以獲得該縮減集合(102)的取樣值,使得假如該既定區塊具有該第一既定寬度/高度對以及假如該既定區塊具有該第二既定寬度/高度對,則該縮減集合(102)的取樣值具有N1個取樣值,以及執行該受到(813)步驟,假如該既定區塊具有該第一既定寬度/高度對,則藉由僅使用該選擇的線性或仿射線性變換的一第一子部分使該縮減集合的取樣值受到該選擇的線性或仿射線性變換,假如w1超過該一個寬度/高度對的該寬度則該第一子部分與沿著寬度維度的該w1xh1陣列的取樣位置的一子取樣相關,或者假如h1超過該一個寬度/高度對的該高度則該第一子部分與沿著高度維度的該w1xh1陣列的取樣位置的一子取樣相關,以及假如該既定區塊具有該第二既定寬度/高度對,則藉由完整地使用該選擇的線性或仿射線性變換使該縮減集合的取樣值受到該選擇的線性或仿射線性變換。
  61. 一種將圖片編碼成資料流的編碼器,組配來:藉由以下步驟使用多個鄰近取樣(17a,c)預測該圖片的一既定區塊(18):縮減(100、811)該多個鄰近取樣以獲得一縮減集合(102)的取樣值,該縮減集合(102)的取樣值在取樣數量上少於該多個鄰近取樣,以及使(812)該縮減集合(102)的取樣值受到一線性或仿射線性變換(19)以獲得預測值,其中,第一集合的線性或仿射線性變換內的每個線性或仿射線性變換用於針對具有w1=h1的一w1xh1陣列的取樣位置變換N1個取樣值為w1*h1個預測值,以及第二集合的線性或仿射線性變換內的每個線性或仿射線性變換 用於針對具有w2=h2的一w2xh2陣列的取樣位置變換N2個取樣值為w2*h2個預測值。
  62. 一種編碼方法,包括:藉由以下步驟使用多個鄰近取樣(17a,17c)預測圖片的一既定區塊(18):藉由平均來縮減(100)該多個鄰近取樣以獲得一縮減集合(102)的取樣值,該縮減集合(102)的取樣值在取樣數量上少於該多個鄰近取樣,其中之縮減包含將該多個鄰近取樣(17)分組為多群組(110)的一個或多個連續鄰近取樣以及對具有兩個或兩個以上鄰近取樣的該等群組(110)中的每一群組執行一平均,使該縮減集合(102)的取樣值受到一線性或仿射線性變換(19)以獲得預測值,其中該方法基於針對該多個鄰近取樣之該等預測值,通過內插來推導出針對該既定區塊的另外取樣(108)的預測值。
  63. 一種儲存有指令的非暫態儲存單元,該等指令在由一處理器執行時,使該處理器實施根據申請專利範圍第31或62項之方法。
TW111101183A 2018-12-20 2019-12-19 使用具有鄰近取樣縮減的線性或仿射變換的內預測 TWI815272B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP18214976.5 2018-12-20
EP18214976 2018-12-20

Publications (2)

Publication Number Publication Date
TW202241130A TW202241130A (zh) 2022-10-16
TWI815272B true TWI815272B (zh) 2023-09-11

Family

ID=64901350

Family Applications (2)

Application Number Title Priority Date Filing Date
TW111101183A TWI815272B (zh) 2018-12-20 2019-12-19 使用具有鄰近取樣縮減的線性或仿射變換的內預測
TW108146766A TWI755665B (zh) 2018-12-20 2019-12-19 使用具有鄰近取樣縮減的線性或仿射變換的內預測

Family Applications After (1)

Application Number Title Priority Date Filing Date
TW108146766A TWI755665B (zh) 2018-12-20 2019-12-19 使用具有鄰近取樣縮減的線性或仿射變換的內預測

Country Status (9)

Country Link
US (2) US11503339B2 (zh)
EP (1) EP3900342A2 (zh)
JP (2) JP2022514870A (zh)
KR (1) KR20210103539A (zh)
CN (1) CN113475071A (zh)
BR (1) BR112021011929A2 (zh)
MX (1) MX2021007328A (zh)
TW (2) TWI815272B (zh)
WO (1) WO2020127811A2 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113785588B (zh) 2019-04-12 2023-11-24 北京字节跳动网络技术有限公司 基于矩阵的帧内预测的色度编解码模式确定
CN113748676B (zh) * 2019-04-16 2024-05-10 北京字节跳动网络技术有限公司 帧内编解码模式下的矩阵推导
US11381808B2 (en) * 2019-04-25 2022-07-05 Hfi Innovation Inc. Method and apparatus of matrix based intra prediction in image and video processing
CN113812150B (zh) 2019-05-01 2023-11-28 北京字节跳动网络技术有限公司 使用滤波的基于矩阵的帧内预测
WO2020221372A1 (en) 2019-05-01 2020-11-05 Beijing Bytedance Network Technology Co., Ltd. Context coding for matrix-based intra prediction
WO2020228671A1 (en) 2019-05-10 2020-11-19 Beijing Bytedance Network Technology Co., Ltd. Multiple secondary transform matrices for video processing
KR20220011127A (ko) 2019-05-22 2022-01-27 베이징 바이트댄스 네트워크 테크놀로지 컴퍼니, 리미티드 업샘플링을 이용한 행렬 기반 인트라 예측
JP2022535726A (ja) 2019-05-31 2022-08-10 北京字節跳動網絡技術有限公司 行列ベースイントラ予測における制約されたアップサンプリングプロセス
JP2022534320A (ja) * 2019-06-05 2022-07-28 北京字節跳動網絡技術有限公司 マトリクスベースイントラ予測のためのコンテキスト決定
EP3967032A4 (en) 2019-06-07 2022-07-27 Beijing Bytedance Network Technology Co., Ltd. CONDITIONAL SIGNALING OF A REDUCED SECONDARY TRANSFORM FOR VIDEO BIANARY FLOWS
CN113994703A (zh) 2019-06-11 2022-01-28 索尼集团公司 图像处理装置和图像处理方法
CN114208190B (zh) 2019-08-03 2023-12-15 北京字节跳动网络技术有限公司 视频编解码中缩减二次变换的矩阵的选择
CN114223208B (zh) 2019-08-17 2023-12-29 北京字节跳动网络技术有限公司 为视频中的缩减二次变换的边信息的上下文建模
JP7444570B2 (ja) 2019-09-20 2024-03-06 シャープ株式会社 動画像復号装置、動画像符号化装置、動画像復号方法および動画像符号化方法
US20210092405A1 (en) * 2019-09-19 2021-03-25 Qualcomm Incorporated Matrix combination for matrix-weighted intra prediction in video coding
CN117579823A (zh) 2019-10-28 2024-02-20 北京字节跳动网络技术有限公司 基于颜色分量的语法信令通知和解析
WO2023171988A1 (ko) * 2022-03-11 2023-09-14 현대자동차주식회사 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3310058A1 (en) * 2015-06-12 2018-04-18 Panasonic Intellectual Property Management Co., Ltd. Image coding method, image decoding method, image coding device and image decoding device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107071490B (zh) * 2010-11-04 2020-07-14 Ge视频压缩有限责任公司 解码装置和方法、编码装置和方法、存储和传输图像方法
US9654785B2 (en) 2011-06-09 2017-05-16 Qualcomm Incorporated Enhanced intra-prediction mode signaling for video coding using neighboring mode
US9866859B2 (en) 2011-06-14 2018-01-09 Texas Instruments Incorporated Inter-prediction candidate index coding independent of inter-prediction candidate list construction in video coding
US20140064359A1 (en) 2012-08-31 2014-03-06 Qualcomm Incorporated Intra prediction most probable mode order improvement for scalable video coding
AU2014216056A1 (en) * 2014-08-25 2016-03-10 Canon Kabushiki Kaisha Method, apparatus and system for predicting a block of video samples
WO2017147765A1 (en) * 2016-03-01 2017-09-08 Mediatek Inc. Methods for affine motion compensation
CN108886617B (zh) 2016-04-06 2021-08-27 株式会社Kt 用于处理视频信号的方法和设备
US10547854B2 (en) 2016-05-13 2020-01-28 Qualcomm Incorporated Neighbor based signaling of intra prediction modes
CN107613294B (zh) * 2017-10-12 2020-04-07 杭州当虹科技股份有限公司 一种快速跳过hevc中p、b帧帧内预测模式的方法
KR20240007716A (ko) * 2018-09-13 2024-01-16 프라운호퍼 게젤샤프트 쭈르 푀르데룽 데어 안겐반텐 포르슝 에. 베. 아핀 선형 가중 인트라 예측

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3310058A1 (en) * 2015-06-12 2018-04-18 Panasonic Intellectual Property Management Co., Ltd. Image coding method, image decoding method, image coding device and image decoding device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
網路文獻 Geert Van der Auwera et.al Description of Core Experiment 3 (CE3): Intra Prediction and Mode Coding Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11 12th Meeting: Macau, CN 3–12 October 2018 https://jvet-experts.org/doc_end_user/documents/12_Macao/wg11/JVET-L1023-v2.zip *

Also Published As

Publication number Publication date
EP3900342A2 (en) 2021-10-27
TWI755665B (zh) 2022-02-21
KR20210103539A (ko) 2021-08-23
CN113475071A (zh) 2021-10-01
US11503339B2 (en) 2022-11-15
JP2023179682A (ja) 2023-12-19
BR112021011929A2 (pt) 2021-09-08
MX2021007328A (es) 2021-08-24
WO2020127811A3 (en) 2020-08-06
US20230039672A1 (en) 2023-02-09
TW202031045A (zh) 2020-08-16
US20210314618A1 (en) 2021-10-07
JP2022514870A (ja) 2022-02-16
TW202241130A (zh) 2022-10-16
WO2020127811A2 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
TWI815272B (zh) 使用具有鄰近取樣縮減的線性或仿射變換的內預測
RU2689129C1 (ru) Способ для интерполяции изображений с использованием асимметричного интерполяционного фильтра и устройство для этого
TWI771679B (zh) 以區塊為基礎之預測技術
CN110622511B (zh) 图像编码/解码方法及其设备
JP7477538B2 (ja) 行列ベースのイントラ予測および二次変換を使用したコーディング
JP2024069438A (ja) イントラ予測を用いた符号化
KR20220161439A (ko) 4:4:4 크로마 포맷 및 단일 트리 케이스에서 모든 채널에 대한 매트릭스 기반 예측
US12003724B1 (en) Method and apparatus for controlling coding tools
JP2024095831A (ja) 行列ベースのイントラ予測および二次変換を使用したコーディング
TW202423121A (zh) 使用內預測之寫碼技術