TWI815157B - 時域及碼域覆蓋增強 - Google Patents

時域及碼域覆蓋增強 Download PDF

Info

Publication number
TWI815157B
TWI815157B TW110128999A TW110128999A TWI815157B TW I815157 B TWI815157 B TW I815157B TW 110128999 A TW110128999 A TW 110128999A TW 110128999 A TW110128999 A TW 110128999A TW I815157 B TWI815157 B TW I815157B
Authority
TW
Taiwan
Prior art keywords
wtru
time slots
slot
implementations
grant
Prior art date
Application number
TW110128999A
Other languages
English (en)
Other versions
TW202220403A (zh
Inventor
法里斯 艾爾法漢
阿塔 艾爾漢斯
文大 長谷川
保羅 馬里內爾
Original Assignee
美商內數位專利控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商內數位專利控股公司 filed Critical 美商內數位專利控股公司
Publication of TW202220403A publication Critical patent/TW202220403A/zh
Application granted granted Critical
Publication of TWI815157B publication Critical patent/TWI815157B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)
  • Time-Division Multiplex Systems (AREA)
  • Details Of Television Scanning (AREA)
  • Indexing, Searching, Synchronizing, And The Amount Of Synchronization Travel Of Record Carriers (AREA)
  • Peptides Or Proteins (AREA)

Abstract

用於在多時槽上傳輸傳送塊(TB)的系統、方法和裝置。與混合自動重複請求(HARQ)程序相關聯的第一授權在第一組時槽中被接收。對於上鏈傳輸,第一組時槽的第一子集被確定為可用,並且第一組時槽的第二子集被確定為不可用。回應於該確定,將該TB被分段為第一區段和第二區段。在第一組時槽的第一子集中傳輸第一區段。與該HARQ程序相關聯的第二授權被接收,以在第二組時槽中傳輸該TB。在第二組時槽中,該TB的第二區段被傳輸。

Description

時域及碼域覆蓋增強
在新無線電(NR)中,WTRU可以在複數連續的時槽上傳輸相同的傳送塊(TB)。對於相同TB的授權(grant)可以跨越多達八個時槽而重複。
一些實現方式提供用於在多時槽上傳輸傳送塊(TB)的系統、方法和裝置。與第一組時槽中的混合自動重複請求(HARQ)程序相關聯的第一授權被接收。對於上鏈傳輸,第一組時槽的第一子集被確定為可用,並且第一組時槽的第二子集被確定為不可用。回應於該確定,將TB分段為第一區段(segment)和第二區段。在第一組時槽的第一子集中傳輸第一區段。與HARQ程序相關聯的第二授權被接收,以在第二組時槽中傳輸TB。在該第二組時槽中傳輸TB的第二區段。
圖1A是示出可以實施一個或複數揭露的實施例的範例性通訊系統100的圖式。通訊系統100可以是為多無線使用者提供諸如語音、資料、視訊、訊息傳遞、廣播等內容的多重存取系統。通訊系統100可以經由包含無線頻寬的系統資源的分享而賦能多無線使用者存取此類內容。舉例來說,通訊系統100可以利用一種或多種通道存取方法,諸如分碼多重存取(CDMA)、分時多重存取(TDMA)、分頻多重存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)、零尾唯一字離散傅立葉轉換-擴展OFDM(ZT-UW-DFT-S-OFDM)、唯一字OFDM(UW-OFDM)、資源塊過濾OFDM以及濾波器組多載波(FBMC)等等。
如圖1A所示,通訊系統100可以包含無線傳輸/接收單元(WTRU)102a、102b、102c、102d、無線電存取網路(RAN) 104、核心網路(CN) 106、公共交換電話網路(PSTN)108、網際網路110以及其他網路112,然而應該瞭解,所揭露的實施例設想了任意數量的WTRU、基地台、網路及/或網路元件。WTRU 102a、102b、102c、102d每一者可以是被配置成在無線環境中操作及/或通訊的任何類型的裝置。藉由範例,WTRU 102a、102b、102c、102d任何一者都可以被稱為站(STA),可以被配置成傳輸及/或接收無線訊號,並且可以包含使用者設備(UE)、行動站、固定或行動訂戶單元、基於訂閱的單元、呼叫器、蜂巢電話、個人數位助理(PDA)、智慧型電話、膝上型電腦、小筆電、個人電腦、無線感測器、熱點或Mi-Fi裝置、物聯網(IoT)裝置、手錶或其他可穿戴裝置、頭戴顯示器(HMD)、載具、無人機、醫療設備和應用(例如,遠端手術)、工業設備和應用(例如,機器人及/或在工業及/或自動化處理鏈情境中操作的其他無線裝置)、消費者電子裝置、以及在商業及/或工業無線網路上操作的裝置等等。WTRU 102a、102b、102c、102d的任何一者可被可交換地稱為UE。
通訊系統100還可以包含基地台114a及/或基地台114b。基地台114a、114b的每一者可以是被配置成與WTRU 102a、102b、102c、102d的至少一者無線地形成介面來促使對一個或複數通訊網路(例如,CN 106、網際網路110、及/或其他網路112)的存取的任何類型的裝置。藉由範例,基地台114a、114b可以是基地收發器站(BTS)、節點B、e節點B(eNB)、本地節點B、本地e節點B、下一代節點B(諸如g節點B(gNB))、新無線電(NR)節點B、站點(site)控制器、存取點(AP)、無線路由器等等。雖然基地台114a、114b的每一者都被描述成了單個元件,然而應該瞭解,基地台114a、114b可以包含任何數量的互連基地台及/或網路元件。
基地台114a可以是RAN 104的部分,其還可以包含其他基地台及/或網路元件(未顯示),諸如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點等等。基地台114a及/或基地台114b可被配置成在被稱為胞元(未顯示)的一個或複數載波頻率上傳輸及/或接收無線訊號。這些頻率可以處於許可頻譜、未許可頻譜或是授權與未許可頻譜的組合之中。胞元可對相對固定或者有可隨時間變化的特定地理區域提供無線服務的覆蓋。胞元可被進一步分成胞元磁區。例如,與基地台114a相關聯的胞元可被分為三個磁區。因此,在一個實施例中,基地台114a可以包括三個收發器,即,胞元的每一個磁區的一者。在實施例中,基地台114a可以運用多輸入多輸出(MIMO)技術,並且可以為胞元的每一個磁區利用複數收發器。例如,波束成形可以被使用在預期的空間方向上傳輸及/或接收訊號。
基地台114a、114b可以在空中介面116上與WTRU 102a、102b、102c、102d的一者或多者通訊,其可以是任何適當的無線通訊鏈路(例如,射頻(RF)、微波、釐米波、毫米波、紅外線(IR)、紫外線(UV)、可見光等等)。空中介面116可以使用任何適當的無線電存取技術(RAT)來建立。
更具體地,如上所述,通訊系統100可以是多重存取系統,並且可以運用一種或多種通道存取方案,諸如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等等。例如,RAN 104中的基地台114a與WTRU 102a、102b、102c可以實施某種無線電技術,諸如通用行動電信系統(UMTS)陸地無線電存取(UTRA),其可以使用寬頻CDMA(WCDMA)來建立空中介面116。WCDMA可以包含諸如高速封包存取(HSPA)及/或演進型HSPA(HSPA+)的通訊協定。HSPA可以包含高速下鏈(DL)封包存取(HSDPA)及/或高速上鏈UL封包存取(HSUPA)。
在實施例中,基地台114a和WTRU 102a、102b、102c可以實施諸如演進型UMTS陸地無線電存取(E-UTRA)的無線電技術,其可以使用長期演進(LTE)及/或先進LTE(LTE-A)及/或先進LTE Pro(LTE-A Pro)來建立空中介面116。
在實施例中,基地台114a和WTRU 102a、102b、102c可以實施諸如NR無線電存取的無線電技術,其可以使用NR建立空中介面116。
在實施例中,基地台114a和WTRU 102a、102b、102c可以實施多無線電存取技術。例如,基地台114a和WTRU 102a、102b、102c可以共同實施LTE無線電存取和NR無線電存取,(例如,使用雙連接性(DC)原理)。因此,由WTRU 102a、102b、102c利用的空中介面可以由多種類型的無線電存取技術及/或向/從多種類型的基地台(例如,eNB和gNB)發送的傳輸來表徵。
在其他實施例中,基地台114a和WTRU 102a、102b、102c可以實施以下的無線電技術,諸如IEEE 802.11(即,無線保真(WiFi))、IEEE 802.16(即,全球微波互通存取(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球行動通訊系統(GSM)、用於GSM演進的增強資料速率(EDGE)、GSM EDGE(GERAN)等等。
圖1A中的基地台114b可以例如是無線路由器、本地節點B、本地e節點B、或存取點,並且可以利用任何適當的RAT來促成局部區域(諸如營業場所、住宅、運載工具、校園、工業設施、空中走廊(例如,供無人機使用)以及道路等等)中的無線連接性。在一個實施例中,基地台114b與WTRU 102c、102d可以實施諸如IEEE 802.11的無線電技術來建立無線區域網路(WLAN)。在實施例中,基地台114b與WTRU 102c、102d可以實施諸如IEEE 802.15的無線電技術來建立無線個人區域網路(WPAN)。在又另一個實施例中,基地台114b和WTRU 102c、102d可利用基於蜂巢的RAT(例如,WCDMA、CDMA2000、GSM、LTE、LTE-A、LTE-A Pro、NR等等)來建立微微胞元或毫微微胞元。如圖1A所示,基地台114b可以具有對網際網路110的直接連接。因此,基地台114b可不需要經由CN 106來存取網際網路110。
RAN 104可以與CN 106通訊,其可以是被配置成向WTRU 102a、102b、102c、102d的一者或多者提供語音、資料、應用及/或藉助網際協定語音(VoIP)服務的任何類型的網路。資料可以具有變動的服務品質(QoS)需求,諸如不同的流通量需求、延遲需求、容錯需求、可靠性需求、資料流通量需求、以及行動性需求等等。CN 106可以提供呼叫控制、記帳服務、基於行動位置的服務、預付費呼叫、網際網路連接性、視訊分發等等,及/或可以履行諸如使用者認證的高級安全功能。雖然在圖1A中沒有顯示,將可瞭解,RAN 104及/或CN 106可以與運用如RAN 104相同的RAT或不同的RAT的其他RAN直接或間接地通訊。例如,除了與運用NR無線電技術的RAN 104連接之外,CN 106還可以與運用GSM、UMTS、CDMA 2000、WiMAX、E-UTRA或WiFi無線電技術的其他RAN(未顯示)通訊。
CN 106還可以充當用於WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110及/或其他網路112的閘道。PSTN 108可以包含提供簡易老式電話服務(POTS)的電路交換電話網路。網際網路110可以包含使用了公共通訊協定(諸如傳輸控制協定/網際網路協定(TCP/IP)網際網路協定套組中的TCP、使用者資料包協定(UDP)及/或IP)的全球性互連電腦網路裝置系統。該網路112可以包含由其他服務提供方擁有及/或操作的有線及/或無線通訊網路。例如,網路112可以包含與一個或複數RAN相連的另一個CN,其中該一個或複數RAN可以與RAN 104使用相同RAT或不同RAT。
通訊系統100中的一些或所有WTRU 102a、102b、102c、102d可以包含多模式能力(例如,WTRU 102a、102b、102c、102d可以包含在不同無線鏈路上與不同無線網路通訊的複數收發器)。例如,圖1A所示的WTRU 102c可被配置成與運用基於蜂巢的無線電技術的基地台114a通訊,以及與可以運用IEEE 802無線電技術的基地台114b通訊。
圖1B是示出了範例性WTRU 102的系統圖式。如圖1B所示,在其他之中,WTRU 102可以包含處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源134、全球定位系統(GPS)晶片組136及/或其他週邊設備138。應該瞭解的是,在保持一致於實施例的同時,WTRU 102還可以包含前述元件的任何子組合。
處理器118可以是通用處理器、專用處理器、常規處理器、數位訊號處理器(DSP)、複數微處理器、與DSP核心相關聯的一個或複數微處理器、控制器、微控制器、專用積體電路(ASIC)、現場可程式閘陣列(FPGA)、其他任何類型的積體電路(IC)、狀態機器等等。處理器118可以履行訊號寫碼、資料處理、功率控制、輸入/輸出處理、及/或其他任何賦能WTRU 102在無線環境中操作的功能性。處理器118可以耦合至收發器120,其可以耦合至傳輸/接收元件122。雖然圖1B將處理器118和收發器120描述成單獨組件,然而應該瞭解,處理器118和收發器120也可以一起整合在一電子封裝或晶片中。
傳輸/接收元件122可被配置成經由空中介面116來傳輸訊號至基地台(例如,基地台114a)、或接收來自該基地台的訊號。例如,在一個實施例中,傳輸/接收元件122可以是被配置成傳輸及/或接收RF訊號的天線。在另一實施例中,例如,傳輸/接收元件122可以是被配置成傳輸及/或接收IR、UV或可見光訊號的放射器/檢測器。在又一個實施例中,傳輸/接收元件122可被配置成傳輸及/或接收RF和光訊號兩者。應該瞭解的是,傳輸/接收元件122可以被配置成傳輸及/或接收無線訊號的任何組合。
雖然在圖1B中將傳輸/接收元件122描述成是單個元件,但是WTRU 102可以包含任何數量的傳輸/接收元件122。更具體地,WTRU 102可以運用MIMO技術。因此,在一個實施例中,WTRU 102可以包含在空中介面116上用於傳輸和接收無線訊號的兩個或更多個傳輸/接收元件122(例如,複數天線)。
收發器120可被配置成對將由傳輸/接收元件122傳輸的訊號調變,以及對由傳輸/接收元件122接收的訊號解調。如上所述,WTRU 102可以具有多模式能力。因此,收發器120可以包含複數收發器,用於賦能WTRU 102經由多RAT(諸如例如,NR和IEEE 802.11)來通訊。
WTRU 102的處理器118可以耦合到、以及接收來自揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128(例如,液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元)的使用者輸入資料。處理器118還可以向揚聲器/麥克風124、小鍵盤126及/或顯示器/觸控板128輸出使用者資料。此外,處理器118可以存取來自諸如非移記憶體130及/或可移記憶體132的任何適當類型的記憶體中資訊,以及將資料存入這些記憶體。非可移記憶體130可以包含隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或是其他任何類型的記憶儲存裝置。可移記憶體132可以包含訂戶身份模組(SIM)卡、記憶棒、安全數位(SD)記憶卡等等。在其他實施例中,處理器118可以從那些並非實際位於WTRU 102的記憶體(諸如位於伺服器或家用電腦(未顯示)上)存取資訊,以及將資料存入這些記憶體。
處理器118可以接收來自電源134的電力,並且可被配置成分發及/或控制至WTRU 102中的其他組件的電力。電源134可以是用於供電WTRU 102的任何適當裝置。例如,電源134可以包含一個或複數乾電池組(例如鎳鎘(NiCd)、鎳鋅(NiZn)、鎳金屬氫化物(NiMH)、鋰離子(Li-ion)等)、太陽能電池以及燃料電池等等。
處理器118還可以耦合到GPS晶片組136,其可被配置成提供關於WTRU 102目前位置的位置資訊(例如,經度和緯度)。此外、或替代來自GPS晶片組136的資訊,WTRU 102可以在空中介面116上接收來自基地台(例如,基地台114a、114b)的位置資訊,及/或基於從兩個或更多個附近基地台所接收的訊號的定時來確定其位置。應該瞭解的是,在保持一致於實施例的同時,WTRU 102可以經由任何適當的位置確定方法來獲取位置資訊。
處理器118還進一步可以耦合到其他週邊設備138,其可以包含提供附加特徵、功能性及/或有線或無線連接的一個或複數軟體及/或硬體模組。例如,週邊設備138可以包含加速度計、電子指南針、衛星收發器、數位相機(用於照片及/或視訊)、通用序列匯流排(USB)埠、振動裝置、電視收發器、免手持耳機、藍牙®模組、調頻(FM)無線電單元、數位音樂播放機、媒體播放機、視訊遊戲播放機模組、網際網路瀏覽器、虛擬實境及/或擴增實境(VR/AR)裝置、以及活動追蹤器等。週邊設備138可以包含一個或複數感測器。感測器可以是一個或複數陀螺儀、加速度計、霍爾效應感測器、磁力計、方位感測器、鄰近感測器、溫度感測器、時間感測器、地理位置感測器、高度計、光感測器、觸控感測器、磁力計、氣壓計、姿勢感測器、生物特徵感測器、濕度感測器等等。
WTRU 102可以包含全雙工無線電,對於此,一些或所有訊號(例如,與用於UL(例如,對於傳輸而言)和DL(例如,對於接收而言)兩者的特定子訊框相關聯)的接收或傳輸可以是併行及/或同時的。全雙工無線電裝置以包含干擾管理單元以經由硬體(例如,扼流圈)或是經由處理器(例如,各別的處理器(未顯示)或是經由處理器118)的訊號處理來減小及/或實質地消除自干擾。在實施例中,WTRU 102可以包含為此的一些或所有訊號(例如,與用於UL(例如,對於傳輸而言)或DL(例如,對於接收而言)的傳輸和接收的特定子訊框相關聯)的半雙工無線電。
圖1C是示出了根據實施例的RAN 104和CN 106的系統圖式。如上所述,RAN 104可以在空中介面116上運用E-UTRA無線電技術來與WTRU 102a、102b、102c通訊。該RAN 104還可以與CN 106通訊。
RAN 104可以包含e節點B 160a、160b、160c,然而應該瞭解,在保持一致於實施例的同時,RAN 104可以包含任何數量的e節點B。e節點B 160a、160b、160c每一者都可以包含在空中介面116上與WTRU 102a、102b、102c通訊的一個或複數收發器。在一個實施例中,e節點B 160a、160b、160c可以實施MIMO技術。因此,舉例來說,e節點B 160a可以使用複數天線來向WTRU 102a傳輸無線訊號,及/或接收來自WTRU 102a的無線訊號。
e節點B 160a、160b、160c每一者都可以關聯於特定胞元(未顯示),並且可被配置成處置無線電資源管理決策、交遞決策、UL及/或DL中的使用者排程等等。如圖1C所示,e節點B 160a、160b、160c可以在X2介面上彼此通訊。
圖1C所示的CN 106可以包含移動性管理實體(MME)162、服務閘道(SGW)164以及封包資料網路(PDN)閘道(PGW)166。雖然前述元件都被描述成是CN 106的部分,然而應該瞭解,這些元件的任一者都可以由CN操作者之外的實體所擁有及/或操作。
MME 162可以經由S1介面連接到RAN 104中的e節點B 160a、160b、160c的每一者,並且可以充當控制節點。例如,MME 162可以負責認證WTRU 102a、102b、102c的使用者、執行承載啟動/停用、在WTRU 102a、102b、102c的初始附接期間選擇特定的服務閘道等等。MME 162可以提供用於在RAN 104與運用其他無線電技術(諸如,GSM及/或WCDMA)的其他RAN(未顯示)之間切換的控制平面功能。
SGW 164可以經由S1介面連接到RAN 104中的e節點B 160a、160b、160c的每一者。SGW 164通常可以路由和轉發至/來自WTRU 102a、102b、102c的使用者資料封包。SGW 164還可以履行其他功能,諸如在eNB間的交遞期間錨定使用者平面、當DL資料對於WTRU 102a、102b、102c為可用時觸發呼叫、管理並儲存WTRU 102a、102b、102c的上下文等等。
SGW 164可以連接到PGW 166,其可以提供WTRU 102a、102b、102c對封包切換網路(諸如,網際網路110)的存取,以促成WTRU 102a、102b、102c與IP賦能裝置之間的通訊。
CN 106可以促成與其他網路的通訊。例如,CN 106可以提供WTRU 102a、102b、102c對電路切換式網路(諸如,PSTN 108)的存取,以促成WTRU 102a、102b、102c與傳統的陸線通訊裝置之間的通訊。例如,CN 106可以包含充當CN 106與PSTN 108之間的介面的IP閘道(例如,IP多媒體子系統(IMS)伺服器)或與IP閘道通訊。此外,CN 106可以提供WTRU 102a、102b、102c對其他網路112的存取,其可以包含由其他服務提供者所擁有及/或操作的其他有線及/或無線網路。
雖然在圖1A至圖1D中將WTRU描述成了無線終端,然而應該想到的是,在某些代表性實施例中,此類終端可以與通訊網路使用(例如,臨時或永久地)有線通訊介面。
在代表性實施例中,其他網路112可以是WLAN。
採用基礎架構基本服務組(BSS)模式的WLAN可以具有用於BSS的存取點(AP)以及與該AP相關聯的一個或複數站(STA)。AP可以具有對於分佈式系統(DS)或是攜帶流量進及/或出BSS的其他類型的有線/無線網路的存取或介面。源自於BSS外部而至STA的流量可以通過AP到達並被遞送至STA。源自於STA而至BSS外部的目的地的流量可被發送至AP,而被遞送到分別的目的地。在BSS內的STA之間的流量可以通過AP來發送,例如其中源STA可以向AP發送流量並且AP可以將流量遞送至目的地STA。在BSS內的STA之間的流量可被認為及/或稱為點對點(peer-to-peer)流量。該點對點流量可以在源與目的地STA之間(例如,直接之間)以直接鏈路設置(DLS)來發送。在某些代表性實施例中,DLS可以使用802.11e DLS或802.11z隧道式DLS(TDLS))。用獨立BSS(IBSS)模式的WLAN不具有AP,並且在IBSS內或是使用IBSS的STA(例如,所有STA)可以彼此直接通訊。在此,IBSS通訊模式有時可被稱為“自主(ad-hoc)”通訊模式。
當使用802.11ac基礎架構操作模式或類似的操作模式時,AP可以在固定通道(諸如,主通道)上傳輸信標。主通道可為固定寬度(例如,20 MHz寬的頻寬)或是動態設定的寬度。主通道可以是BSS的操作通道,並且可被STA使用以與AP建立連接。在某些代表性實施例中,具有避免碰撞的載波感測多重存取(CSMA/CA)(例如,在802.11系統中)可被實施。對於CSMA/CA, STA(例如,每一個STA),包含AP,可以感測主通道。如果主通道被特定STA感測到/偵測到及/或確定為繁忙,那麼該特定STA可以退避。在指定的BSS中在任何指定時間一個STA(例如,只有一個站)可以傳輸。
高流通量(HT)STA可以使用40 MHz寬的通道用於通訊(例如,經由結合主要的20 MHz通道與相鄰或不相鄰的20 MHz通道來形成40 MHz寬的通道)。
超高流通量(VHT)STA可以支援20 MHz、40 MHz、80 MHz及/或160 MHz寬的通道。40 MHz及/或80 MHz通道可以藉由組合相連的20 MHz通道來形成。160 MHz通道可以藉由組合8個相連的20 MHz通道、或者藉由組合兩個不相連的80 MHz通道(其可被稱為80+80配置)來形成。對於80+80配置,在通道編碼之後,資料可被傳遞藉由可以將資料分成兩個流的一個區段解析器。在每一個流上可以各別地進行逆快速傅立葉轉換(IFFT)處理以及時域處理。該流可被映射在兩個80 MHz通道上,並且資料可以由傳輸的STA來傳輸。在接收的STA的接收器上,用於80+80配置的上述操作可以是相反的,並且被組合的資料可被發送至媒體存取控制(MAC)。
802.11af和802.11ah支援1GHz以下的操作模式。相對於802.11n和802.11ac中所使用者,在802.11af和802.11ah中的通道操作頻寬和載波被減小。802.11af在TV白空間(TVWS)頻譜中支援5 MHz、10 MHz和20 MHz頻寬,並且802.11ah支援使用非TVWS頻譜的1 MHz、2 MHz、4 MHz、8 MHz和16 MHz頻寬。根據代表性實施例,802.11ah可以支援儀表類型控制/機器類型通訊(MTC),諸如在巨集覆蓋區域中的MTC裝置。MTC裝置可以具有某種能力,例如包含 用於某些及/或有限頻寬的有限能力的支援(例如,只用於支援)。MTC裝置可以包含具有電池壽命高於臨界值(例如,保持很長的電池壽命)的電池。
可以支援多通道和通道頻寬的WLAN系統(諸如,802.11n、802.11ac、802.11af以及802.11ah)包含可被指定成主通道的通道。該主通道可以具有等於BSS中由所有STA支援的最大公共操作頻寬的頻寬。主通道的頻寬可以由來自在支援最小頻寬操作模式的BSS中操作的所有STA之間的STA設定及/或限制。以802.11ah為例,對於支援(例如,只支援)1 MHz模式的STA(例如,MTC類型的裝置),主通道可以是1 MHz寬,即使AP、以及BSS中的其他STA支援2 MHz、4 MHz、8 MHz、16 MHz及/或其他通道頻寬操作模式。載波感測及/或網路分配向量(NAV)設定可以取決於主通道的狀態。如果主通道繁忙(例如, 由於STA(其只支援1 MHz操作模式)對AP正在傳輸),即使大多數的可用頻帶保持空閒,所有可用頻帶可被考慮為繁忙。
在美國,可供802.11ah使用的可用頻帶是從902 MHz到928 MHz。在韓國,可用頻帶是從917.5 MHz到923.5 MHz。在日本,可用頻帶是從916.5 MHz到927.5 MHz。取決於國家碼,對於802.11ah可用的總頻寬是6 MHz到26 MHz。
圖1D是示出了根據實施例的RAN 104和CN 106的系統圖式。如上所述,RAN 104可以在空中介面116上運用NR無線電技術來與WTRU 102a、102b、102c通訊。RAN 104還可以與CN 106通訊。
RAN 104可以包含gNB 180a、180b、180c,但是應該瞭解,在保持一致於實施例的同時,RAN 104可以包含任何數量的gNB。gNB 180a、180b、180c每一者可以包含一個或複數收發器,以用於在空中介面116上與WTRU 102a、102b、102c通訊。在一個實施例中,gNB 180a、180b、180c可以實施MIMO技術。例如,gNB 180a、180b可以利用波束成形向gNB 180a、180b、180c傳輸訊號及/或從其接收訊號。因此,舉例來說,gNB 180a可以使用複數天線向WTRU 102a傳輸無線訊號,及/或從其接收無線訊號。在實施例中,gNB 180a、180b、180c可以實施載波聚合技術。例如,gNB 180a可以向WTRU 102a(未顯示)傳輸複數組成載波。這些組成載波的子集可以處於未許可頻譜上,而剩餘組成載波則可以處於許可頻譜上。在實施例中,gNB 180a、180b、180c可以實施協合式多點(CoMP)技術。例如,WTRU 102a可以接收來自gNB 180a和gNB 180b(及/或gNB 180c)的協合式傳輸。
WTRU 102a、102b、102c可以使用與可縮放參數集(scalable numerology)相關聯的傳輸來與gNB 180a、180b、180c通訊。例如,對於不同的傳輸、不同的胞元及/或不同的無線傳輸頻譜的部分,OFDM符號間隔及/或OFDM子載波間隔可以是不同的。WTRU 102a、102b、102c可以使用具有不同或可縮放長度的子訊框或傳輸時間間隔(TTI)(例如,含有不同數量的OFDM符號及/或持續不同長度的絕對時間)來與gNB 180a、180b、180c通訊。
gNB 180a、180b、180c可被配置成以獨立式配置及/或非獨立式配置方式與WTRU 102a、102b、102c通訊。在獨立式配置中,WTRU 102a、102b、102c可以在也不存取其他RAN(諸如,e節點B 160a、160b、160c)的情況下與gNB 180a、180b、180c通訊。在獨立式配置中,WTRU 102a、102b、102c可以利用gNB 180a、180b、180c中的一者或多者作為行動錨點。在獨立式配置中,WTRU 102a、102b、102c可以使用未許可頻帶中的訊號來與gNB 180a、180b、180c通訊。在非獨立式配置中,WTRU 102a、102b、102c可在也與其他RAN(諸如,e節點B 160a、160b、160c)通訊/相連的同時與gNB 180a、180b、180c通訊/相連。舉例來說,WTRU 102a、102b、102c可以實施DC原理而實質同時地與一個或複數gNB 180a、180b、180c以及一個或複數e節點B 160a、160b、160c通訊。在非獨立式配置中,e節點B 160a、160b、160c可以充當用於WTRU 102a、102b、102c的行動錨點,並且gNB 180a、180b、180c可以提供附加的覆蓋及/或流通量,以服務WTRU 102a、102b、102c。
gNB 180a、180b、180c每一者可以與特定胞元(未顯示)相關聯,並且可以被配置成處置無線電資源管理決策、交遞決策、UL及/或DL中的使用者排程、網路切片的支援、DC、NR與E-UTRA之間的交互工作、向使用者平面功能(UPF)184a、184b的使用者平面資料的路由、向存取及移動性管理功能(AMF)182a、182b的控制平面資訊的路由等等。如圖1D所示,gNB 180a、180b、180c可以在Xn介面上彼此通訊。
圖1D所示的CN 106可以包含至少一個AMF 182a、182b;至少一個UPF 184a、184b;至少一個對話管理功能(SMF)183a、183b;以及有可能地資料網路(DN)185a、185b。雖然前述元件被描述為CN 106的部分,但是應該瞭解,這其中元件的任一者可以被CN操作者之外的實體擁有及/或操作。
AMF 182a、182b可以經由N2介面連接到RAN 104中的gNB 180a、180b、180c的一者或多者,並且可以充當控制節點。例如,AMF 182a、182b可以負責認證WTRU 102a、102b、102c的使用者、網路切片的支援(例如,具有不同需求的不同協定資料單元(PDU)對話)的處置、選擇特定的SMF 183a、183b、註冊區域的管理、非存取層(NAS)傳訊的終止、行動性管理等等。AMF 182a、182b可以使用網路切片,以便基於WTRU 102a、102b、102c利用的服務類型來定制用於WTRU 102a、102b、102c的CN支援。作為範例,針對不同的使用情況,可以建立不同的網路切片,諸如依賴於超可靠低延遲 (URLLC)存取的服務、依賴於增強型大規模行動寬頻(eMBB)存取的服務、用於MTC存取的服務等等。AMF 182a、182b可以提供用於在RAN 104與運用其他無線電技術(諸如LTE、LTE-A、LTE-A Pro、及/或諸如WiFi之類的非3GPP存取技術)的其他RAN(未顯示)之間切換的控制平面功能。
SMF 183a、183b可以經由N11介面連接到CN 106中的AMF 182a、182b。SMF 183a、183b還可以經由N4介面連接到CN 106中的UPF 184a、184b。SMF 183a、183b可以選擇和控制UPF 184a、184b,並且可以經由UPF 184a、184b來配置流量的路由。SMF 183a、183b可以履行其他功能,諸如管理和分配UE IP位址、管理PDU對話、控制策略施行和QoS、提供DL資料通知等等。PDU對話類型可以是基於IP的、非基於IP的、基於乙太網路的等等。
UPF 184a、184b可以經由N3介面連接RAN 104中的gNB 180a、180b、180c的一者或多者,其可提供WTRU 102a、102b、102c對封包交換網路(諸如,網際網路110)的存取,以促成WTRU 102a、102b、102c與IP賦能的裝置之間的通訊。UPF 184、184b可以履行其他功能,諸如路由和轉發封包、施行使用者平面策略、支援多宿主PDU對話、處置使用者平面QoS、緩衝DL封包、提供移動性錨定等等。
CN 106可以促成與其他網路的通訊。例如,CN 106可以包含充當CN 106與PSTN 108之間的介面的IP閘道(例如,IP多媒體子系統(IMS)伺服器)、或者可以與之通訊。此外,CN 106可以提供WTRU 102a、102b、102c針對其他網路112的存取,其可以包含由其他服務提供者所擁有及/或操作的其他有線及/或無線網路。在一個實施例中,WTRU 102a、102b、102c可以藉由經由至UPF 184a、184b的N3介面以及介於UPF 184a、184b與DN 185a、185b之間的N6介面連接到本地DN 185a、185b。
有鑒於圖1A至圖1D以及圖1A至圖1D的對應描述,關於以下的一者或多者所描述的一個或複數或所有功能可以由一個或複數仿真裝置(未顯示)來履行:WTRU 102a-d、基地台114a-b、e節點B 160a-c、MME 162、SGW 164、PGW 166、gNB 180a-c、AMF 182a-b、UPF 184a-b、SMF 183a-b、DN 185a-b及/或此處描述的任何裝置。仿真裝置可以是被配置成仿真此處所描述的一個或複數或所有功能的一個或複數裝置。舉例來說,仿真裝置可使用於測試其他裝置及/或模擬網路及/或WTRU功能。
仿真裝置可被設計成在實驗室環境及/或操作網路環境中實施其他裝置的一個或多個測試。例如,該一個或複數仿真裝置可以在被完全或部分地實施或部署為有線及/或無線通訊網路一部分時執行一個或複數或所有功能,以便測試通訊網路內的其他裝置。該一個或複數仿真裝置可以在被臨時地實施或部署為有線及/或無線通訊網路的部分時履行一個或複數或所有功能。仿真裝置可以直接耦合到其他裝置,以供及/或使用空中的無線通訊而測試及或/履行測試的目的。
該一個或複數仿真裝置可以在未被實施或部署為有線及/或無線通訊網路的部分時履行一個或複數(包含所有)功能。例如,該仿真裝置可以在測試實驗室及/或非部署(例如,測試)的有線及/或無線通訊網路的測試場景中使用,以便實施一個或複數組成的測試。該一個或複數仿真裝置可以是測試裝置。仿真裝置可以使用直接的RF耦合及/或藉由RF電路(例如,其可以包含一個或複數天線)的無線通訊來傳輸及/或接收資料。
一些實現方式提供用於在複數時槽上傳輸傳送塊(TB)的系統、方法和裝置。接收與第一組時槽中的混合自動重複請求(HARQ)程序相關聯的第一授權。對於上鏈傳輸,確定第一組時槽的第一子集為可用,並且確定第一組時槽的第二子集為不可用。回應於該確定,該TB被分段為第一區段和第二區段。在第一組時槽的第一子集中傳輸第一區段。與HARQ程序相關聯的第二授權被接收,以在第二組時槽中傳輸該TB。在第二組時槽中該TB的第二區段被傳輸。
一些實現方式提供了一種在無線傳輸/接收單元中實現的用於傳輸排程的方法。將媒體存取控制(MAC)協定資料單元(PDU)拆解成複數不同的已寫碼PDU區段。將已寫碼的PDU區段映射到與不同的混合自動重複請求(HARQ)程序識別符(PID)相關聯的複數不同的傳輸時機。在複數的傳輸時機傳輸已寫碼的PDU區段。
在一些實現方式中,在WTRU接收對於與複數不同傳輸時機中的一者相關聯的HARQ PID的重傳授權的情況下,不同的已寫碼PDU區段的一者被重傳。在一些實現方式中,複數不同的傳輸時機包括數個不同的傳輸時機,其中,該數量是在動態指示中被接收。在一些實現方式中,動態指示被接收,其指示是否分段被使用、在其上已寫碼PDU區段被傳輸的時槽的數量、是否映射包括交織、是否映射包括跳頻、及/或相關聯的HARQ程序的HARQ PID。
在一些實現方式中,複數不同傳輸時機中的每一者包括時槽。在一些實現方式中,每個已寫碼PDU區段的調變符號被映射到不同的時槽。在一些實現方式中,在將MAC PDU被拆解成複數不同的已寫碼PDU區段之後,複數已寫碼PDU區段被寫碼。在一些實現方式中,在被拆解成複數不同的已寫碼PDU區段之前,MAC PDU被寫碼。在一些實現方式中,使用未與複數不同的已寫碼PDU區段相關聯的排程HARQ程序,不同的MAC PDU被傳輸。在一些實現方式中,傳輸時機是實體上鏈共用通道(PUSCH)傳輸時機。在一些實現方式中,傳輸時機是實體上鏈控制通道(PUCCH)傳輸時機。在一些實現方式中,為每個不同的HARQ PID維持一計時器,其中WTRU同時停止及/或開始用於每個不同的HARQ PID的時間。
一些實現方式提供了無線傳輸接收單元(WTRU)、被配置為用於無線網路化的網路裝置、電腦裝置、積體電路、e節點B (eNB)、下一世代節點B (gNB)、基地台(BS)或存取點(AP)配置為履行上述方法。一些實現方式提供了一種包含指令的非暫態電腦可讀媒體,該指令在由處理裝置執行時導致該處理裝置履行如上所述的方法。
本文所使用的各種縮寫和字首語縮寫包含以下:取決於上下文的所配置授權或胞元組(CG);動態授權(DG);通道存取優先類別(CAPC);下鏈回饋資訊(DFI);HARQ程序ID (HARQ PID);增強的許可輔助存取(eLAA);進一步增強的許可輔助存取(FeLAA);MAC控制元件(MAC CE);RACH時機(RO);隨機存取(RA);實體隨機存取通道(PRACH);應答(ACK);塊錯誤率(BLER);頻寬部分(BWP);通道存取優先(CAP);淨空通道評估(CCA);循環前綴(CP);取決於循環前綴的常規OFDM (CP-OFDM);通道品質指示符(CQI);循環冗餘檢查(CRC);通道狀態資訊(CSI);競爭視窗(CW);競爭視窗大小(CWS);通道佔用(CO);下鏈指派索引(DAI);下鏈控制資訊(DCI);下鏈(DL);解調參考訊號(DM-RS);資料無線電承載(DRB);混合自動重複請求(HARQ);許可輔助存取(LAA);先聽候送(LBT);長期演進(LTE),例如3GPP LTE R8及以上;否定ACK (NACK);調變和寫碼方案(MCS);多輸入多輸出(MIMO);新無線電(NR);正交分頻多工(OFDM);實體層(PHY);實體隨機存取通道(PRACH);主同步訊號(PSS);隨機存取通道(或程序) (RACH);隨機存取回應(RAR);無線存取網路中央單元(RCU);無線電前端(RF);無線電鏈路故障(RLF);無線電鏈路監視(RLM);無線網路識別符(RNTI);無線資源控制(RRC);無線電資源管理(RRM);參考訊號(RS);參考訊號接收功率(RSRP);接收訊號強度指示符(RSSI);服務資料單元(SDU);探測參考訊號(SRS);同步訊號(SS);輔同步訊號(SSS);在自含有子訊框中的切換間隙(SWG);半持續性排程(SPS);補充上鏈(SUL);傳送塊(TB);傳送塊大小(TBS);傳輸/接收點(TRP);時間敏感通訊(TSC);時間敏感網路化(TSN);上鏈(UL);超可靠和低延遲通訊(URLLC);寬頻寬部分(WBWP);無線區域網路和相關技術(WLAN),例如,在IEEE 802.xx域中。
一些NR實現方式包含多TTI排程。在一些NR版本15的實現方式中,上鏈時槽聚合被支援,例如,藉此WTRU可以在複數連續的時槽上傳輸相同的傳送塊(TB),可能連同不同的冗餘版本(RV)和跳頻。這可以支援用於動態的和配置的授權兩者。使用相同的HARQ程序,對於相同TB的授權可以跨越多達八個時槽而被重複。在一束重複內的每個重複可被看作是以RV遞增而不等待回饋的重傳。例如,在一些實現方式中,具有不同RV的相同TB的8個連續傳輸類似於以RV遞增但不等待HARQ回饋的8個重傳。
在一些NR版本16實現方式中,例如,對於NR-U WTRU,多TTI排程被增強。在一些範例中,gNB可使用單個DCI向WTRU分配複數實體上鏈共用通道(PUSCH)傳輸時機;例如,以減少LBT的數量及/或增加通道獲取的機會。多TTI授權的PUSCH時機在時域中可以是連續的。排程多TTI授權的單個DCI排程可以指示HARQ程序ID、時機的數量及/或RV。被傳訊的HARQ PID可以應用於該束中的第一TTI/PUSCH時機。對於每個稍後或隨後的PUSCH時機,WTRU可以將被傳訊的PID遞增1。如果LBT失敗,則WTRU可以將產生的TB映射到不同的HARQ程序,並且由於在與PUSCH(為此LBT為成功的)相關聯的不同的HARQ程序中的失敗LB,WTRU可以在HARQ程序中傳輸TB擱置傳輸。如果使用如所傳訊的相同的RV和TB大小(TBS),則TB可以包含或者可為不同的及/或新的TB。
一些實現方式包含實體上鏈控制通道(PUCCH)中的碼域覆蓋增強。在一些實現方式中,例如,對於NR-PUCCH,對於給定的PRB,多種格式是可能的。例如,對於格式0 (短PUCCH),1或2個符號可以使用於傳輸多達2個位元的UCI (例如,包含HARQ-ACK或SR)。在每個符號中,這兩個位元可以是相同的。在一些實現方式中,不同的循環移位可以在第二符號中使用,導致頻率分集。例如,對於格式2 (短PUCCH),1或2個符號可以使用於傳輸超過2個位元的UCI (例如,包含CSI報告、多位元HARQ-ACK碼本及/或SR)。例如,對於格式1 (長PUCCH),可以傳輸最多2個位元,因為符號的一半是用於RS通道估計。在一些實現方式中,可能配置跳頻(如在LTE中)。對於格式3或格式4 (長PUCCH),可以傳輸多於2個位元,可能以跳頻和UE碼多工。
在一些實現方式中,PUCCH可以被配置在主胞元(PCell)和主輔胞元(PSCell)上。WTRU可以被配置有兩個PUCCH群組,其中每個群組可以被使用於為數個DL載波提供UCI。
在一些實現方式中,NR-PUCCH位元可以用正交碼而被寫碼,以提供更好的(例如,相對於未寫碼的NR-PUCCH位元) PUCCH容量,而可能為較長的PUCCH格式維持良好的(例如,比短PUCCH更好的)覆蓋。
為了產生這樣的正交碼,可以使用基長為12的序列(例如,使用於RS產生的相同序列)。這可能導致時域中的12個可能的循環移位(即,頻域中的12個相位旋轉),並且因此可能多工多達12個WTRU,例如,如果它們每個在相同資源上傳輸1個位元並且使用相同MCS。在一些實現方式中,並非所有循環移位都是可使用的,例如發生在高延遲擴展及/或多路徑環境中,或者在佔用RS的符號的期間。
對於長PUCCH格式,可以使用正交離散傅立葉轉換(DFT)碼來履行附加的擴展,例如,以匹配長PUCCH格式的符號的數量。在一些實現方式中,這可以附加地或可替換地增加WTRU多工容量,而改善覆蓋(例如,對於具有相同循環移位的裝置)。在一些實現方式中,可以在相同資源上被多工的裝置的數量可以被粗略地估計為正交碼的長度+所使用的循環移位的數量。
在一些實現方式中,循環移位跳躍被應用於PUCCH傳輸。在一些實現方式中,循環移位可以藉由每個時槽添加偏移(offset)而在不同時槽之間變化,藉此偏移由WTRU偽隨機序列給出。在一些實現方式中,這使不同WTRU及/或不同胞元之間的干擾隨機化。在一些實現方式中,如果PUCCH位元的數量大(例如,大於2個位元),則基於C-RNTI的加擾序列可以使用於隨機化WTRU和其他胞元之間的干擾。最大寫碼率可以使用於確定資源消耗。
一些實現包含HARQ操作點。從網路的面向來看,排程器可以使用目標HARQ操作點來操作。傳輸塊的成功接收和解碼(例如,以達到每傳輸位元足夠量的接收能量)所需的HARQ傳輸的數量可以被稱為HARQ操作點。在一些實現方式中,排程器可以改變HARQ操作點以最佳化資源使用(例如,用於給定TB傳輸的PRB數量)、傳輸功率(例如,每個較少功率的更多傳輸,反之亦然)及/或延遲(例如,較少的傳輸,其可以在時間上更早地完成傳輸)。在一些實現方式中,排程器可以例如藉由改變PRB的數量、所指派的MCS及/或傳輸功率來調適HARQ操作點,例如,以實現在接收器用於傳輸能量的累積的不同策略。
一些實現方式包括塊寫碼。資料的重複可以被認為是簡單的重複寫碼。在一些實現方式中,如果多於2個資源集為可用,替代對於所有傳輸複製相同的資料,而是塊寫碼階段可以被引入,例如,其中資料(原始資料位元或調變位元)首先被拆解成K個塊,從其產生K + L個MAC已寫碼塊並且在K+L個資源集上傳輸。在接收器側,如果至少K個傳輸被成功接收,資料可以被恢復。在一個範例中,對於3個資源集的情況,資料可以被拆解成2個塊,並且附加塊可以被產生作為該2個塊的總和(例如,二進位總和) (例如,作為奇偶檢驗碼)。在包含更多資源集的情況下,諸如里德-所羅門(Reed-Solomon)或噴泉碼的碼可被使用於產生附加塊。在一些實現方式中,每個MAC已寫碼塊可被發送到實體層作為各別的TB或TB區段。
圖2是示出了在時域中用於4個資源集(K =3,L =1)的範例塊寫碼方案的方塊圖。在圖2中,PDU 200被劃分為三個PDU塊202、204、206。塊編碼器208將PDU塊202、204、206編碼為寫碼塊210、212、214、216。在此範例中,PDU塊202、204、206分別被編碼為寫碼塊210、212及214,且寫碼塊216被產生為寫碼塊210、212及214的總和(例如,作為奇偶檢驗碼)。寫碼塊210、212、214、216被發送到實體層處理以供在不同時槽期間的傳輸。應注意,總和是指關於該圖所使用的3個塊的二進位總和。例如,如果寫碼塊210 = (a1, a2, …, aN),寫碼塊212= (b1, b2, …, bN)和寫碼塊214= (c1, c2, …, cN),則寫碼塊216=(a1+b1+c1, a2+b2+c2, …, aN+bN+cN),其中+是二進位總和。
在一些實現方式中,在具有較大數量的資源集和稀疏衰退(例如,快速衰退)及/或叢發性干擾的條件下,例如,由於深度衰退命中不期望數量(例如,高於臨界值數量,或多於幾個)的資源集的機率非常低,這樣的塊寫碼可以更為有效。在一些實現方式中,對於N個資源集,塊寫碼僅消耗用於傳輸的每資訊位元的(N/K)倍的(例如,大約地)能量的增加,而N = K + L。
在一些實現方式中,通道狀態資訊(CSI)可以包含以下的至少一個:通道品質索引(CQI)、等級指示符(RI)、預寫碼矩陣索引(PMI)、層1 (L1)通道測量(例如,RSRP(諸如,L1-RSRP)或訊號對干擾雜訊比(SINR))、CSI-RS資源指示符(CRI)、SS/PBCH塊資源指示符(SSBRI)、層指示符(LI)及/或由WTRU從所配置的CSI-RS或SS/PBCH塊所測量的任何其他測量。
在一些實現方式中,上鏈控制資訊(UCI)可以包含:CSI、用於一個或複數HARQ程序的HARQ回饋、排程請求(SR)、鏈路恢復請求(LRR)、CG-UCI及/或其它控制資訊位元。在一些實現方式中,UCI可以在PUCCH或PUSCH上傳輸。在一些實現方式中,通道條件可包含有關於無線電/通道的狀態的任何條件,其可由WTRU基於WTRU測量(例如,L1/SINR/RSRP、CQI/MCS、通道佔用、RSSI、功率餘量(power headroom)、暴露餘量)、L3/基於行動性的測量(例如,RSRP、RSRQ)、RLM狀態、及/或未許可頻譜中的通道可用性(例如,通道是否基於LBT程序的確定而被佔用或通道是否被認為已經經歷了一致的LBT故障)來確定。
在一些實現方式中,PRACH資源包含PRACH資源(例如,在頻率中)、PRACH時機(RO) (例如,在時間中)、前導碼格式(例如,在總前導碼持續時間、序列長度、保護時間持續時間方面及/或在循環前綴的長度方面)及/或被使用於在隨機存取程序中前導碼的傳輸的特定前導碼序列。
在一些實現方式中,排程資訊(例如,上鏈授權或下鏈指派的)的性質可包含以下至少一者:頻率分配;時間分配的方面(例如,持續時間;優先;調變和寫碼方案;傳送塊大小;空間層的數量;要承載的傳送塊的數量;TCI狀態或SRI;重複的數量;授權是否為所配置的授權類型1、類型2或動態授權;重複方案是否為類型A或類型B;授權是否為所配置的授權類型1、類型2或動態授權;所配置授權索引或半持久性指派索引;所配置授權或指派的週期性;通道存取優先類別(CAPC);及/或在DCI中、藉由MAC-CE或藉由RRC傳訊所提供的用於排程授權或指派的任何參數。
在以下,傳送塊(TB)中包含的資料的性質可以指參數,其配置邏輯通道或無線電承載,對於其,資料可被包含在TB中。例如,TB中包含的資料的性質可以包含以下至少一者:邏輯通道優先、優先化的位元速率、邏輯通道群組、及/或RLC模式。作為擴展,授權或指派的性質也可指在對應TB中所包含的資料的性質。
在一些實現方式中,DCI的指示可以包含以下至少一者:由DCI欄位或由使用於掩蔽PDCCH的CRC的RNTI給出的顯式指示,及/或由性質給出的隱式指示,該性質諸如DCI格式、DCI大小、控制資源集或搜尋空間、聚合等級、及/或用於DCI的第一控制通道資源的識別(例如,第一CCE的索引),其中性質和數值之間的映射可以藉由RRC傳訊或MAC-CE來傳訊。
在低SNR情況下,基於RV具有循環的重複的傳輸可能不是最優的,例如在功率餘量為有限、胞元容量為有限、或在延遲要求嚴格的狀況。覆蓋增強重複技術可能需要非窄帶頻域分配,以在一時槽(例如,潛在地大於1個PRB)內容納TB大小。
即使TB大小不大,可能有某些延遲要求(例如,對於VoIP或TSC流量),如果需要多次重複來滿足HARQ操作點,該些延遲要求可能無法滿足這些要求。此外,從胞元負載/容量的觀點來看,如果胞元正服務許多在胞元邊緣條件下的裝置,則重複可能限制所服務的裝置的數量,並且可能產生胞元中非GBR流量的饑餓。這在圖3中示出。
圖3是對於在10兆赫的LTE胞元中支援VoIP和網際網路流量的胞元的模擬而反映對於每胞元不同數量的VoIP使用者的胞元流通量的圖形。在一個範例中,對於VOIP服務,封包以每20 ms 308 kbps(這對應於15.4 kbps)叢發的方式到達。因此,最大資料速率可以是15.4 kbps,其包含報頭開銷和強健性報頭壓縮(ROHC)。ROHC、封包資料收斂協定(PDCP)、無線電鏈路控制(RLC)及/或媒體存取控制MAC報頭可以丟棄,如果授權大小不能容納之。因此,保證的位元速率是12.2 kbps,其容納沒有報頭的資料位元。如圖3所示,儘管網際網路最佳努力速率隨著更多VoIP使用者的添加而下降,網路可用15.4 kbps服務高達240個 VoIP使用者。對於多於240個VoIP使用者,非GBR流量被停止,並且額外的VoIP使用者被服務以12.2 kbps位元。這說明在單個胞元中支援許多VoIP使用者可能是容量受限的,尤其是當覆蓋需要重複時。
因此,在一些實現方式中,僅依賴於重複來滿足用於GBR流量的覆蓋要求可能帶來以下成本和缺點中一個或複數:非窄帶頻率分配,因而降低TB的功率頻譜密度;傳輸TB/達到所需HARQ操作點所需的延遲的增加;及/或增加的胞元負載,這可能帶來以胞元中其他服務類型/使用者為代價。
在一些實現方式中,將TB擴展在時域中的複數時槽上可以提高功率頻譜密度。在一些實現方式中,單個TB可以在複數時槽上以窄頻率分配被排程,或者TB可以被拆解成在複數TTI上傳輸的複數已寫碼區段。可能希望重傳未被成功解碼的TB的部分。假定TBS為小,則CBG重傳可以不是可能的。
在一些實現方式中,取決於所選擇的解決方案,一個TB可以與多於一個HARQ程序相關聯。在一些這樣的情況下,HARQ程序緩衝管理及/或在新資料指示符(NDI)雙態觸變時刷新(flush)緩衝可能是複雜的。例如,在較高層處維持的計時器和操作(例如,不連續接收(DRX)計時器、重傳授權和計時器、CG計時器等)是每HARQ程序維持的,並且是基於在TB和HARQ程序之間具有1對1映射的。
“時槽”可以指一組14個時間符號,例如,如在NR規範中所定義的。“子時槽”可以指一時槽內的、或者可能跨越兩個時槽的較小組時間符號。術語“時槽”和“子時槽”可以互換使用,並且適用於時槽的級別的解決方案也可以適用於子時槽的級別。對於其資源可用於WTRU以映射PUSCH調變符號以及PUSCH傳輸的相關聯DMRS的時間間隔可以被稱為“PUSCH時機”。 對於其資源可用於WTRU以映射PUCCH調變符號以及PUCCH傳輸的相關DMRS 的時間間隔可以被稱為“PUCCH時機”。
一些實現方式將複數時槽的資源組合用於單個PUSCH (或PUCCH)時機以用於多時槽傳輸。在一些實現方式中,WTRU可以產生在時域中佔用跨距多於一個時槽(M個時槽)的資源的傳輸。這種處理可以被稱為“多時槽傳輸”。這樣的處理可以適用於PUSCH及/或PUCCH傳輸。在一些實現方式中,這樣的處理可以適用於其他類型的傳輸。
如果WTRU履行多時槽傳輸,則用於傳輸的調變符號可以被映射到複數時槽的組合資源。例如,可以以與現有系統中相同的方式(例如,頻率第一、時間第二)來映射調變符號。在一些實現方式中,用於多時槽傳輸的實體資源可以包含一組M個時槽。在一些實現方式中,用於多時槽傳輸的實體資源還可包含用於每一時槽的以下至少一者:時間符號;頻域分配(PRB的組),其包含跳躍資訊;擴展碼;波束指示,諸如,SRS識別符、CSI-RS識別符或TCI狀態;頻寬部分;子載波間隔;DMRS配置或映射類型;及/或資源索引(例如,用於PUCCH)。
在一些實現方式中,WTRU可以從DCI的顯式指示或從半靜態配置來確定是否履行多時槽傳輸、時槽數量M及/或授權的至少一個性質。WTRU可以獲得以下至少一者:時間符號;頻域分配(PRB的組),其包含跳頻資訊;擴展碼;波束指示,諸如SRS識別符、CSI-RS識別符或TCI狀態;頻寬部分;子載波間隔;DMRS配置或映射類型;及/或資源索引(例如,用於PUCCH),並且將其應用於所有時槽。WTRU可以獲得以下至少一者:時間符號;頻域分配(PRB的組),其包含跳頻資訊;擴展碼;波束指示,諸如SRS識別符、CSI-RS識別符或TCI狀態;頻寬部分;子載波間隔;DMRS配置或映射類型;及/或資源索引(例如,用於PUCCH)(各自用於每個時槽)。多時槽傳輸可以適用於由較高層所配置的HARQ程序的子集。
在一些實現方式中,WTRU可以基於以下至少一者來確定M個時槽的組:較高層配置;指示傳輸的DCI的定時(例如,時槽索引);DCI接收與傳輸開始之間的延遲(例如,由時域資源分配欄位所指示);由較高層配置或由DCI指示的時槽的數量;及/或用於至少一個時槽的時槽配置,其由較高層配置及/或由DCI指示(例如,在時槽形成指示中)。
例如,WTRU可以確定該組時槽為從其中DCI被接收的時槽索引開始的一組K個時槽(n)加上就時槽而言的延遲(k2)。該組時槽可以是一組K個連續時槽{n+k2, n+k2+1, … n+K-1},或者是繼之以且包含時槽n+k2的一組最先K個時槽(其對應於半靜態地配置的及/或動態地指示的某些時槽配置)。例如,該組時槽可以對應於僅包括上鏈符號的時槽配置或者包括至少一個上鏈符號的時槽配置。
可替換地,WTRU可以將時域中的資源確定為一組N個時間符號繼之以且包含符號m+k2,其中m可以是含有授權的PDCCH的最後(或第一)符號的符號索引,並且k2可以對應於符號數量上的延遲。該組N個時間符號可以對應於被配置為上鏈的符號、或者可能被配置為上鏈或可撓的符號,如依照時槽配置。
在一些實現方式中,WTRU可以在映射到實體資源之前,將調變符號(或已寫碼位元)乘以時域中的擴展序列。該擴展序列的大小可以是多時槽分配的時槽數量M及/或可用於傳輸的資源元件數量的函數(或與其對應)。此擴展操作可促進相同資源中WTRU的多工。
一些實現方式包含多時槽傳輸的區段的傳輸或重傳。在一些實現方式中,WTRU可以處理TB並且在例如如上所述的一組時槽的資源上映射調變符號。在一些實現方式中,WTRU可以確定在每個時槽(或子時槽)上用於傳輸的一組已寫碼位元及/或調變符號。被映射到時槽(或子時槽)的資源的每組這樣的已寫碼位元及/或調變符號可以被稱為多時槽傳輸的區段。
在一些實現方式中,WTRU可以在第一時槽或第一組時槽上傳輸一傳輸的第一區段,並且稍後在第二時槽或第二組時槽上重傳該區段。在一些實現方式中,WTRU將該區段的已寫碼位元及/或調變符號重新映射到用於該重傳的第二時槽或第二組時槽的資源。為了支援此者,在一些實現方式中,WTRU可以在記憶體中為了每個適用HARQ程序保存已寫碼位元及/或調變符號,並且可以當新資料被指示用於該HARQ程序時刷新這資訊。
在一些實現方式中,WTRU可以基於較高層配置及/或動態指示,在一時槽中傳輸或重傳一區段。例如,WTRU可以接收指示用於HARQ程序的TB的M個時槽的多時槽傳輸的DCI。該DCI還可以指示在M’<=M個時槽上用於映射的區段子集,其中該M’個時槽可以使用上述用於多時槽或多PUSCH傳輸的方法的一者來確定。例如,在一些實現方式中,該區段子集的指示可以包含點陣圖,並且M’可以根據該點陣圖指示將被傳輸或重傳的區段的數量。
在一些實現方式中,WTRU可以在多時槽上傳輸TB,其中該時槽或該組時槽可以是連續的,或可以不是連續的。例如,WTRU可以在第一組時槽上傳輸TB,並且稍後在第二組時槽上傳輸或重傳TB的另一區段。WTRU可以在第二組時槽上傳輸或重傳TB的其他區段,例如,在第一區段的傳輸中斷時或在之後。第二區段的傳輸可以由一條件、事件或訊號觸發。例如,第二區段的傳輸可以對於第二組時槽藉由排程授權、或者藉由授權的可用性來觸發。第二組時槽在時域中可以與第一組時槽不連續。WTRU可以確定TB的哪個部分要傳輸或重傳,例如,基於時槽數量、PRB數量、TBS及/或在第二組時槽上的授權的資源分配。例如,WTRU可以傳輸被丟棄的TB的部分(亦即,為了特定原因而沒有被傳輸)。例如,在第二組時槽上的授權中WTRU可以傳輸由於UL時槽取消或由於UL時槽不可用性(例如,在動態時域雙工(TDD)環境中)而被丟棄的TB的部分。在一些實現方式中,如果第二授權與在第一組時槽中中斷的時槽的數量相匹配或者具有大於被取消或中斷的UL時槽的大小(例如,以位元或RE為單位)的授權大小,則WTRU可以傳輸由於UL時槽取消或UL時槽不可用性而被丟棄的TB的部分。有條件的,WTRU可以傳輸此等TB區段的傳輸或重傳。例如,對於第二組時槽,如果授權被接收、如果授權是對於與最初被使用於傳輸/儲存TB的HARQ程序相同的HARQ程序的、如果授權是重傳授權(例如,由未翻轉的NDI所指示)、如果授權的大小大於或等於中斷/指示的時槽的大小(例如,該授權是在相同數量的時槽及/或中斷時槽的PRB上被排程的)、及/或如果授權的TBS小於或等於TB的大小,WTRU可以傳輸或重傳TB。
在一些實現方式中,如果PUSCH傳輸被搶占,WTRU可以在一個或複數時槽中在多時槽傳輸中重傳該一個或複數PUSCH傳輸。例如,PUSCH傳輸可能已經被其他PUSCH傳輸、被PUCCH傳輸、或其他參考訊號搶占。WTRU可以從網路接收配置,以由DCI所排程的一個或複數時槽中重傳被搶占的(單數或複數)PUSCH傳輸。在一些實現方式中,WTRU可以在為了第二組時槽所排程的第二重傳授權上傳輸或重傳PUSCH傳輸(例如,TB或TB的部分)。在一些實現方式中,如果第二授權的時槽及/或PRB的數量與在初始傳輸或重傳期間被取消或搶占的時槽及/或PRB的數量匹配,則WTRU可以在為了第二組時槽所排程的第二重傳授權上傳輸或重傳PUSCH傳輸。
一些實現方式包含多PUSCH傳輸。在一些實現方式中,WTRU可以產生來自(例如,基於多重已寫碼塊來自)相同的傳送塊(TB)所處理的一組PUSCH傳輸,並且可以在不同的PUSCH時機中傳輸該組的每個PUSCH傳輸。在現有系統中定義的PUSCH重複方案是多PUSCH傳輸的範例,其中PUSCH時機對應於時槽內的一組符號,並且該組PUSCH傳輸是從通道已寫碼位元的不同冗餘版本產生的。
一些實現方式包含多PUCCH傳輸。在一些實現方式中,WTRU可以產生來自(例如,基於多重已寫碼塊來自)相同的上鏈控制資訊(UCI)位元所處理的一組PUCCH傳輸,並且可以在不同的PUCCH時機中傳輸該組的每個PUCCH傳輸。在現有系統中所定義的PUCCH重複方案是多PUCCH傳輸的範例,其中PUCCH時機對應於時槽內的一組符號,並且該組PUCCH傳輸是複數重複。
一些實現方式包含組合的多PUSCH (或多PUCCH)以及多時槽操作。在一些實現方式中,WTRU可以產生一組PUSCH (或PUCCH)傳輸,並且可以在單時槽或多時槽PUSCH (或PUCCH)時機期間傳輸每個PUSCH (或PUCCH)。WTRU可以確定傳輸數量K,並且可以確定為了每個傳輸按照上述而定義多時槽分配的參數;及/或上述參數可以由RRC配置或由DCI用傳訊。WTRU還可以確定與每個傳輸k相關聯的一組時槽Sk,並且可以指派為了該組時槽Sk所指示的資源用於第k次重複。這種確定可以是隱含地來自每個多時槽分配的時槽數量M或者來自藉由半靜態或動態傳訊所獲得的所有重複上的時槽總數Mt。
一些實現方式包含在多重PUSCH時機上已寫碼TB區段的傳輸。下面的各種範例示出了範例多PUSCH傳輸方案。一些實現方式賦能在一個或複數時槽上的TB傳輸。例如,在一些實現方式中,資訊元件被用於配置PDCCH (攜帶排程UL授權的DCI)與PUSCH之間的時域關係、以及所排程的PUSCH的時域長度。在一些實現方式中,資訊元件是「PUSCH時域資源配置 」及/或 「PUSCH-分配-r16 」資訊元件。在一些實現方式中,資訊元件(例如,「PUSCH時域資源分配」資訊元件)包含K2值、映射類型、及/或起始符號和長度(SLIV)。在一些實現方式中,K2值以時槽為單位指示PUCCH和PUSCH之間的時間差。在一些實現方式中,映射類型指示在所分配的資源內的DMRS的映射類型。在一些實現方式中,起始符號和長度(SLIV)以符號為單位指示PUSCH起始符號和長度。
如本文所使用的,「可能的PUSCH時域資源分配的列表」可以包含PUSCH-TimeDomainResourceAllocationList或 puschAllocationList-r16資訊元件,例如,如在3GPP規範中所使用的。
一些實現方式動態地賦能多時槽PUSCH傳輸。在一些實現方式中,WTRU可以被配置成以時槽(而不是符號)為單位來解釋由資訊元件(例如,「 PUSCH時域資源分配」、「PUSCH-TimeDomainResourceAllocationList」及/或「PUSCH-Allocation-r16”資訊元件)的SLIV參數所指示的長度。例如,資訊元件(例如,「PUSCH時域資源分配」或「PUSCH-TimeDomainResourceAllocationList」資訊元件)可以包含指示PUSCH時域資源分配的單位的參數(例如,附加參數)。可替換地,在一些實現方式中,SLIV參數被起始符號參數及/或附加參數替換以指示用於多時槽傳輸的分配的時槽的數目。
在一些實現方式中,WTRU可以被半靜態地(例如,使用RRC傳訊)配置以可能的PUSCH時域資源分配的列表。在一些實現方式中,可能的PUSCH時域資源分配的列表包含多重時槽上的PUSCH時域資源分配的子集。在一些實現方式中,可能的PUSCH時域資源分配的列表還或者可替換地包含在單個時槽及/或子時槽上的PUSCH時域資源分配的子集。在一些實現方式中,排程上鏈授權的DCI可以包含來自被配置清單的指示(例如,位元欄位),其指示要使用的PUSCH時域資源分配。在一些實現方式中,在接收上鏈授權之後,WTRU使用該時域資源分配指示來確定PUSCH傳輸是否在多重時槽上或在單個時槽或子時槽上。
在一些實現方式中,WTRU可以被半靜態地(例如,使用RRC傳訊)配置以兩個各自的可能的PUSCH時域資源分配的列表。在一些實現方式中,第一清單僅包含在多重時槽上的PUSCH時域資源分配。在一些實現方式中,第二清單僅包含在單個時槽或子時槽上的PUSCH時域資源分配。在一些實現方式中,排程上鏈授權的DCI可以包含指示從哪個列表中選擇的指示(例如,位元欄位)。在一些實現方式中,排程上鏈授權的DCI可以包含一指示(例如,位元欄位),其指示從所指示的列表,哪個PUSCH時域資源分配被使用。在一些實現方式中,在接收上鏈授權之後,WTRU基於指示從哪個列表選擇的位元欄位指示,確定PUSCH傳輸是在多重數時槽上還是在單個時槽或子時槽上。
在一些實現方式中,WTRU可以被半靜態地(例如,使用RRC傳訊)配置以可能的PUSCH時域資源分配的列表,該列表僅包含在單個時槽及/或子時槽上的PUSCH時域資源分配。在一些實現方式中,排程上鏈授權的DCI可以包含指示所分配的時槽的數量的指示(例如,位元欄位),其為除了在單個時槽及/或子時槽上的時域資源分配之外。在一些實現方式中,如果所分配的時槽的指示數量大於1, WTRU可以確定該排程授權是在多重時槽上的傳輸,在一些實現方式中,WTRU可以假設所指示的SLIV在跨越不同的排程時槽上是相同的。在一些實現方式中,可替換地,如果所分配的時槽數量為1之上 ,則WTRU可以假定SLIV是以時槽為單位而不是以符號為單位。
一些實現方式包含使用單個時槽的重傳。例如,在一些實現方式中,WTRU可以被配置成使用單時槽PUSCH傳輸來重傳最初在多時槽PUSCH傳輸上傳輸的傳送塊。在一些實現方式中,WTRU可以例如使用本文描述的方法來確定PUSCH傳輸的類型(例如,單時槽PUSCH傳輸或多時槽PUSCH傳輸)。在一些實現方式中,如果WTRU使用單個時槽用於重傳,則WTRU可以被配置成使用調變和寫碼方案(MCS)索引,其為高於預配置的MCS值。
一些實現方式包含非連續及/或中斷的多時槽傳輸。例如,在一些實現方式中,WTRU可以被配置成傳送非連續的多時槽PUSCH傳輸。在一些實現方式中,對於非連續多時槽PUSCH傳輸為可用的時槽及/或符號可使用在DCI中的指示(例如專用位元欄位)而被指示。在一些實現方式中,可以藉由重新使用DCI中的現有欄位(例如,現有的位元欄位,諸如FDRA及/或MCS位元欄位)來指示對於非連續多時槽PUSCH傳輸為可用的時槽及/或符號。在一些實現方式中,WTRU可以被配置成傳輸多時槽PUSCH傳輸以及接收用於傳輸的所配置的單數時槽、複數時槽、單數符號或複數符號的部分為不可用的指示。此指示可以被稱為中斷指示。在一些實現方式中,WTRU停止在由該中斷指示所指示的單數時槽、複數時槽、單數符號或複數符號中被傳輸。在一些實現方式中,中斷指示可以在與調度排程DCI不同的DCI中被傳輸。在接收UL授權並開始傳輸之後,WTRU可以接收另一個DCI,該另一個DCI指示一組資源(時槽及/或符號)為不可用並且WTRU應該停止在所指示的資源上傳輸。在一些實現方式中,中斷指示可以在排程DCI中被傳輸。
在一些實現方式中,WTRU可以排除及/或不在與所排程的多時槽PUSCH傳輸重疊的所配置或預配置的上鏈訊號及/或通道的資源上傳輸。在一些實現方式中,預配置的訊號及/或通道可以包含PUSCH、PUCCH或PRACH傳輸、SRS或SR。例如,在一些實現方式中,WTRU被半靜態地配置以所配置授權(CG) PUSCH傳輸。WTRU可以從gNB接收多時槽PUSCH授權, 該gNB與該CG PUSCH傳輸部分地或完全地重疊。WTRU可以優先化多時槽PUSCH傳輸的傳輸,並且可以丟棄(亦即,停止或不傳輸)該CG PUSCH傳輸(例如,整個傳輸或僅在重疊資源中者)。在一些實現方式中,可替換地,WTRU可以被配置成優先化所配置的傳輸,並且停止及/或不傳輸多時槽PUSCH傳輸(例如,整個傳輸或僅在重疊資源中者)。在一些實現方式中,WTRU可以確定是否優先化多時槽PUSCH的傳輸或優先化所配置的上鏈傳輸。在一些實現方式中,WTRU可以基於DCI中的顯式指示來做出該確定。
一些實現方式包含重新使用該DCI中的現有位元欄位以指示一個或複數個多時槽PUSCH參數。例如,在一些實現方式中,WTRU可以被配置成在DCI的現有的一個或複數位元欄位中接收與多時槽PUSCH傳輸相關的參數。在一些實現方式中,WTRU可以被配置成使用一個或複數以下位元欄位或其部分來接收一個或複數個多時槽PUSCH參數:頻域資源分配(FDRA)欄位;調變和寫碼方案(MCS)欄位;及/或頻寬部分指示符欄位。
在一些實現方式中,一個或複數個多時槽PUSCH參數可以指示或包含例如以下其中一個或複數:用於多時槽PUSCH的排程時槽的數量;用於多時槽PUSCH的可能的PUSCH時域資源分配的列表(例如,如本文所述);對於多時槽PUSCH傳輸為可用的時槽(例如,如本文所述);該組所分配的時槽內的中斷指示(例如,如本文所述);及/或與已寫碼位元的群組相關的參數(例如,如本文所述)。
在一些實現方式中,WTRU可以基於以下其中一者或多者(例如,組合)來確定多時槽PUSCH傳輸參數是在現有的位元欄位中被攜帶及/或是否多時槽PUSCH傳輸被賦能:被使用於排程上鏈授權的RNTI;現有位元欄位之一的一個的值;在其上接收排程DCI的搜尋空間組;在其上接收排程DCI的CORESET;在其上接收該DCI的頻寬部分;在其上排程PUSCH的頻寬部分;在其上接收DCI的組成載波(CC);及/或在其上排程PUSCH的CC。
例如,在一些實現方式中,WTRU基於被使用於排程上鏈授權的RNTI確定多時槽PUSCH傳輸參數是否被攜帶及/或多時槽PUSCH傳輸是否被賦能,其中新的RNTI被引入用於多時槽排程。
在另一個範例中,在一些實現方式中,WTRU基於現有的位元欄位之一的一個的值來確定多時槽PUSCH傳輸參數是否被攜帶及/或多時槽PUSCH傳輸是否被賦能。例如,時域資源分配欄位的值可以觸發WTRU以限制該組可能的頻域分配及/或調變寫碼方案欄位。在一些實現方式中,WTRU被配置以分別具有N、M大小的FDRA/MCS位元欄位。如果WTRU接收由TDRA指示的多時槽PUSCH授權,WTRU可以使用FDRA位元欄位中的N1<N位元確定頻率分配資源,並且使用M1<M位元確定MCS。在一些實現方式中,剩餘的N-N1位元和M-M1位元可以攜帶多時槽PUSCH傳輸參數。
一些實現方式涉及功率分配。例如,在一些實現方式中,如果多時槽PUSCH傳輸被使用,WTRU可以接收隱式及/或顯式指示以維持不同時槽之間的功率及/或相位連續性。在一些實現方式中,排程多時槽PUSCH傳輸的DCI可以指示或包含用於不同時槽的功率配置。在一些實現方式中,傳輸功率控制命令或相位控制命令可以包含在多時槽PUSCH傳輸中跨越不同時槽使用相同的空間濾波器及/或預寫碼方案的指示。
一些實現方式涉及與其他訊號及/或通道的多工。例如,在一些實現方式中,WTRU可以確定在多時槽傳輸中將其他訊號或通道與PUSCH多工。在一些實現方式中,WTRU可以基於一個或複數條件或條件的組合來確定將在多時槽傳輸中的PUSCH與另一個或複數個參考訊號(諸如,SRS、DMRS或PTRS)或PUCCH多工。在一些實現方式中,WTRU可以基於以下條件中至少一者來確定將在多時槽傳輸中的PUSCH與其他一個或複數個參考訊號多工:為了多時槽傳輸所分配的資源塊的數量;為了多該時槽傳輸所分配的時槽的數量;及/或為了多時槽傳輸中的每個時槽或所有時槽所分配的符號的數量。例如,在WTRU被半靜態地配置以被使用於HARQ ACK/NACK的PUCCH資源的情況下,如果WTRU被排程用於與PUCCH傳輸重疊的多時槽PUSCH傳輸,則WTRU可以基於用於多時槽PUSCH的排程資源塊/用於PUSCH的時槽數量,確定其是否可以在PUSCH上(例如,在多時槽PUSCH中揹負)傳輸多重PUCCH 。代替傳輸多重PUCCH,多時槽PUSCH可以攜帶在多時槽PUSCH中“揹負”的多重UCI。例如,如果多時槽PUSCH在時槽0、1、2和3中被排程,並且兩個PUCCH在時槽1和2中被配置,則WTRU可以傳輸具有在時槽1和2上揹負的UCI的多時槽PUSCH。
一些實現方式包含TBS確定。例如,在一些實現方式中,如果WTRU被配置成執行多時槽傳輸,則WTRU可以確定用於被配置的多時槽傳輸的TBS。在一些實現方式中,WTRU可以從DCI或半靜態配置接收用於多時槽傳輸的時槽以及PRB數量的配置。在一些實現方式中,當WTRU確定TBS時,WTRU可以接收用於其應該保留在多時槽傳輸中的每個時槽的實體資源開銷量(亦即,被假設對於資料傳輸為不可用的資源) (亦即,從上鏈授權排除實體資源開銷)的量的配置。在一些實現方式中,開銷參數從gNB傳訊到WTRU。在一些實現方式中,WTRU藉由從為了PUSCH所分配的資源數量減去開銷資源數量來確定用於資料的實體資源數量。在一些實現方式中,用於時槽中在PRB內PUSCH所分配的資源元件的數量可以由下式給出: 其中, , , , 以及 分別是PRB中用於PUSCH所分配的資源元件的數量、PRB中的頻域中的子載波的數量、時槽中用於PUSCH所分配的符號的數量、所分配的PUSCH持續時間中每PRB用於DM-RS的資源元件的數量、以及由較高層所配置的開銷。在一些實現方式中,可以基於由其它訊號或通道佔用的資源的數量及/或量,例如,基於時槽中的SRS或PUCCH傳輸的資源(其指示其它訊號或通道可以在時域或頻域中與PUSCH多工),確定開銷參數 。術語 、“開銷參數”和“開銷大小”可以互換使用。
在一些實現方式中,在多時槽傳輸中,WTRU可以接收指示以應用不同開銷參數數值用於每個時槽的 ,或者可以對多時槽傳輸中的所有時槽使用相同的開銷參數。在一些實現方式中,WTRU可以基於被配置用於多時槽傳輸的時槽的數量來確定開銷參數。例如,在一些實現方式中,WTRU可以基於以下方法中的至少一種為多時槽傳輸中的每個時槽確定 :WTRU可以包含開銷 於多時槽傳輸中的預配置時槽中;WTRU可以確定在多時槽傳輸中的所有時槽中使用相同的開銷大小;及/或WTRU可以藉由為了多時槽傳輸所配置的時槽數量來縮放開銷。
在WTRU包含開銷 於多時槽傳輸中的預配置時槽中的一些實現方式中,WTRU可以確定包含開銷於多時槽傳輸中的第一時槽中,並且針對多時槽傳輸中的其餘時槽,將開銷數值設定為零(即, =0)。在一些實現方式中,WTRU可以基於WTRU接收的DCI、RRC、或MAC控制元件(MAC-CE)來確定該開銷參數和時槽的關聯。時槽位置和開銷大小的指示可以由點陣圖和相關聯的開銷大小來指示。例如,在4個時槽多時槽傳輸中, 的開銷大小可以與點陣圖0111相關聯,並且 的開銷大小可以與點陣圖1000相關聯。該範例配置意味著多時槽傳輸中的第一時槽包含6個開銷的資源元件,並且多時槽傳輸中的第2、第3和第4時槽不包含任何開銷。
在另一個例子中,在WTRU確定在多時槽傳輸中的所有時槽中使用相同的開銷大小的一些實現方式中,如果PUSCH在多時槽傳輸中對於整個時槽(亦即,每時槽在PUSCH中的14個符號)被排程,則WTRU可以確定對於所有時槽設定 (亦即,指示每時槽沒有開銷)。如果WTRU被配置成在多時槽傳輸中履行PUSCH重複,則WTRU可以確定在所有時槽中包含開銷。
在一些實現方式中,WTRU可以在DCI、MAC-CE或RRC傳訊中接收履行上述開銷確定程序的至少一個的指示。在一些實現方式中,WTRU可以接收每個時槽或每個多時槽傳輸的開銷配置。在WTRU可以接收每個時槽或每個多時槽傳輸的開銷配置的一些實現方式中,WTRU可以對於多時槽傳輸中的所有時槽應用相同的開銷參數。
在一些實現方式中,WTRU可以從用於PUSCH時域資源分配的前述資訊元件確定開銷參數。在一些實現方式中,WTRU可以基於以下條件中的一個或複數來確定開銷參數:多時槽傳輸中的時槽是否是連續的;是否或多少個符號用於PUCCH或諸如SRS的參考訊號的符號被排程在多時槽傳輸中的時槽中;及/或是否DMRS捆紮(bundling)被賦能用於多時槽傳輸。
在WTRU從資訊元件確定開銷參數之後,WTRU可以使用幾種方法的一種或多種來確定在多時槽傳輸中的資源元件的總數量。在一些實現方式中,如果相同的開銷被應用於多時槽傳輸中的所有時槽,則WTRU可以確定多時槽傳輸中的資源元件的數量為 ,其中N是為了多時槽傳輸分配的時槽的數量。在一些情況下,WTRU不包含任何開銷,亦即, 。如果多重PRB被分配用於多時槽傳輸,則資源元件的總數量可以由 確定,其中K是為了多時槽傳輸分配的PRB的數量。在一些實現方式中,如果開銷被包含在時槽的預配置數量M中,則WTRU可以藉由 來確定多時槽傳輸中的資源元件的數量,其中 , 和N是不包含開銷的每時槽的資源元件的數量、包含開銷的每時槽的資源元件的數量、以及為該多時槽傳輸所分配的時槽的數量。如果多重PRB多時槽傳輸,則資源元件的總數量可以由 確定,其中K是被分配用於多時槽傳輸的PRB的數量。
在一些實現方式中,WTRU可從網路(例如,gNB)接收為了多時槽傳輸所分配的PRB數目量總是1的指示,例如以最小化頻域中的資源使用。可替換地,WTRU可以在多時槽傳輸被配置之後,確定PRB的數量預設為1。
在一些實現方式中,基於所確定的資源元件的總數量的數量和諸如調變或寫碼速率的其他傳輸相關資訊,WTRU可以基於查找表來確定TBS。
一些實現方式提供用於傳輸及/或重傳的標稱數量的時槽,以及用於傳輸及/或重傳的最大數量的附加時槽。用於傳輸及/或重傳的時槽的總數量(包含標稱數量和附加時槽)被稱為時槽的實際數量。例如,在一些實現方式中,WTRU可以被配置成具有用於多時槽上鏈(例如,PUSCH)傳輸或重傳的標稱數量的時槽。這種標稱數量的時槽可以是SLIV配置或時域資源配置(TDRA)配置的部分,或者可以由DCI排程、由啟動多時槽PUSCH傳輸或重傳、或者由用於所配置的授權傳輸的RRC配置來各自地指示。在一些實現方式中,在多時槽PUSCH傳輸或重傳沒有中斷的情況下,對WTRU,時槽的標稱數量指示用於多時槽PUSCH的時槽的數量。例如,在WTRU被配置成具有等於3個時槽的標稱數量的時槽的情況下,如果WTRU在多時槽PUSCH傳輸期間被中斷(例如,由於TDD配置而被DL時槽中斷),則WTRU可以在所指示數量的時槽的末端使用額外的時槽傳輸(亦即,在此範例中,WTRU可以使用第五時槽傳輸)。在一些實現方式中,WTRU可以(例如,基於其配置)確定可以使用用於多時槽PUSCH傳輸的附加時槽的最大數量。在一些實現方式中,用於多時槽PUSCH傳輸的附加時槽的最大數量是基於以下各項中的一個或複數或其組合:用於多時槽PUSCH傳輸的所分配資源的部分的速率匹配、打孔及/或截斷的指示;用於上鏈傳輸的無效時槽及/或符號的數量;及/或被配置用於多時槽PUSCH傳輸超過時槽的剩餘符號的剩餘符號的數量。
在一些實現方式中,其中附加時槽的最大數量(或者總的實際時槽數量)是基於為了多時槽PUSCH傳輸的分配資源的部分的速率匹配、打孔及/或截斷的指示來確定的,WTRU可以接收一指示,其指示將被在其周圍速率匹配、打孔或截斷的部分資源。在一些實現方式中,該指示可以被半靜態地配置。例如,WTRU可以使用RRC而被配置以用於LTE CRS的速率匹配模式。可替換地,該指示可以使用動態傳訊來傳輸。例如,在WTRU接收到一組指示中斷的公共DCI的情況下,WTRU可以使用附加時槽來傳輸多PUSCH傳輸。
在一些實現方式中,其中附加時槽的最大數量(或時槽的總、實際數量)是基於用於上鏈傳輸的無效時槽及/或符號的數量來確定的,WTRU可以基於TDD配置(例如,其包含TDD結構的動態重配置)來確定有效時槽及/或符號的數量。例如,WTRU可以接收改變或“翻轉”可撓時槽為下鏈時槽的時槽格式指示。基於該指示,WTRU可以確定一個時槽對於下鏈傳輸而言丟失了,並且可以因此在所配置的標稱數量的時槽的末端使用附加時槽用於多時槽上鏈傳輸。
在一些實現方式中,附加時槽的最大數量(或者時槽的總、實際數量)是基於被配置用於該多時槽PUSCH傳輸的剩餘符號的數量大於時槽中的剩餘符號的數量而被確定的。
圖4是示出了用於範例多時槽PUSCH 400的標稱和實際時槽的圖。在圖4的範例中,WTRU被配置成具有3個標稱時槽400的多時槽PUSCH傳輸。這裡,標稱時槽指的是傳輸PUSCH傳輸的所有符號所需的時槽的數量。在此範例中,WTRU確定時槽1和時槽2的部分402和404分別被DL傳輸佔用(例如,由於翻轉可撓時槽的一部分)。基於該確定,WTRU選擇時槽3來傳輸多時槽PUSCH傳輸的剩餘符號。WTRU確定在時槽3中可用的UL符號406不足以傳輸多時槽PUSCH傳輸的剩餘符號。這裡,“剩餘符號”是指不能在標稱時槽中傳輸的多時槽PUSCH傳輸的符號(亦即,時槽1和時槽2分別的部分402和404)。基於該確定,WTRU還選擇時槽4來傳輸多時槽PUSCH傳輸的剩餘符號,其中時槽4的UL符號408足以傳輸多時槽PUSCH傳輸的剩餘符號,產生5個實際時槽410的多時槽PUSCH。在一些實現方式中,WTRU可以使用所確定的時槽實際數量來傳輸多時槽PUSCH傳輸。在一些實現方式中,實際數量的時槽可以是相連的或非相連的,例如,取決於TDD配置。這裡,TDD配置指示用於下鏈、可撓和上鏈的該組時槽及/或符號。例如,一種配置可以是DDDUDDDU。在這種範例情況下,上鏈時槽是非相連的或非連續的。
一些實現方式包含在各別的HARQ程序上的已寫碼冗餘。一些這樣的實現方式包含TB拆解和正交寫碼。例如,對於由WTRU產生的單個MAC PDU,WTRU可以將該PDU拆解成多重已寫碼區段。WTRU可以將該已寫碼區段映射到與不同HARQ PID相關聯的不同PUSCH傳輸時機。WTRU可以使用DFT碼或類似的正交寫碼方案來產生已寫碼TB區段。WTRU可以使用外部碼或類似的塊寫碼方案來產生已寫碼TB區段。寫碼的選擇可以由網路被預先定義或配置。WTRU可以應用這種寫碼於從較高層接收的資訊位元(例如,MAC PDU)上、於通道寫碼之後的位元上、及/或於映射到傳輸資源之前的調變符號上。WTRU可以直接應用已寫碼序列於調變位元。WTRU可以選擇正交碼及/或序列長度作為位元數量及/或MCS的函數。
圖5是示出了包含在MAC和PHY之間的外部寫碼的範例實現方式500的方塊圖。在該範例中,一個MAC PDU不被包含在單個TB內,因為在該實現方式中,PDU被寫碼於多重PDU區段中,每個PDU區段包含一個TB。在該範例中,WTRU可以由編碼器550 (例如,使用外部寫碼、塊編碼或噴泉寫碼等)將MAC PDU 502分段為N個PDU區段504、506、508。每個區段504、506、508在實體層中被分別對待為TB 510、512、514,並且分別經受各別的實體層處理516、518、520以及各別的通道寫碼和調變522、524、526。此後,TB 510、512、514經受各別的調變528、530、532,並且WTRU可以分別在不同的PUSCH時機HARQ程序534、536、538上傳輸每個相應的調變TB 510、512、514。
在一些實現方式中,接收器(例如,gNB)可以配置、傳訊或指示區段的數量N、可應用的區段的數量、可應用的PUSCH時機、及/或可應用的HARQ PID的數量。例如,如果接收器成功地接收到PDU區段數量< = N,則接收器可以解碼PDU。gNB可以發出針對給定HARQ程序ID的重傳授權,藉此WTRU可以重傳與該HARQ程序ID相關聯的PDU區段(亦即,TB)。對於這種重傳,WTRU MAC可以將每個PDU區段/TB儲存在相關聯的HARQ緩衝器中,或者將整個PDU儲存在單個HARQ緩衝器中。如果重傳被調用,則WTRU MAC可以向PHY提供整個PDU,並且WTRU PHY可以重新產生所請求的區段/TB用於重傳,或者WTRU MAC可以僅向PHY提供所請求的PDU區段用於重傳。
圖6是示出了包含通道編碼之後的外部寫碼的範例實現方式600的方塊圖。在該範例中,MAC PDU 602經受實體層處理604和通道寫碼606。在這個階段,MAC PDU 602被含有在一個TB 610中。在通道寫碼606之後,WTRU使用塊編碼器618 (例如,使用外部寫碼、塊編碼或噴泉寫碼等)將TB 610分段成N個TB區段612、614、616。此後,WTRU可以使每個TB區段612、614、616經受各別的調變620、622、624,並且分別在不同的PUSCH時機和不同的HARQ程序626、628、630上傳輸每個調變的TB區段612、614、616。
在一些實現方式中,接收器(例如,gNB)可以配置、傳訊或指示區段的數量N、可應用的區段的數量、PUSCH時機、和HARQ PID。例如,如果接收器成功地接收到TB區段的數量< = N,則接收器可以解碼PDU。接收器(例如,gNB)可以針對給定的HARQ程序ID發出重傳授權,藉此WTRU可以重傳與該HARQ程序ID相關聯的TB區段。如果重傳被調用,WTRU PHY可以重新產生所請求的TB區段用於重傳,如果所請求的TB區段尚未儲存在相關聯的HARQ緩衝器中
圖7是示出了範例實現方式700的方塊圖,該範例實現方式包含在調變和通道編碼之後藉由對基礎序列或對OFDM符號輸出上操作的正交碼(例如,DFT碼)應用相位旋轉來的正交寫碼。
在該範例中,MAC PDU 702經受實體層處理704、通道寫碼706和調變608。在該階段,MAC PDU 702被含有在一個TB 710中。通道調變712在通道寫碼706之後被應用於MAC PDU,產生M個調變符號714。在調變712之後,WTRU可以使用正交擴展器716將擴展正交碼應用於M個調變符號714以產生J個符號718,其中J>M。WTRU可以在N個不同的PUSCH時機(或TTI)和HARQ程序720、722、724上傳輸該J個符號。WTRU可以基於符號到PUSCH時機映射功能(symbol-to-PUSCH occasion mapping function)726,將該J個符號718映射到該PUSCH時機和HARQ程序720、722、724。
圖8是示出了在通道已寫碼之後包含正交寫碼的範例實現方式800的方塊圖。在該範例中,MAC PDU 802經受實體層處理804和通道寫碼806,產生M個通道編碼位元808。在這個階段,MAC PDU 802被含有在一個TB 810中。在通道寫碼806之後,但是在調變812之前,WTRU可以將擴展正交碼814應用於M個通道編碼位元808以產生R個正交寫碼位元816,其中R>M。調變812被應用於該R個正交寫碼位元816以產生J個符號818。WTRU可以在不同的PUSCH時機(或TTI)和不同的HARQ程序820、822、824上傳輸該J個符號818。WTRU可以基於符號到PUSCH時機映射功能826,將該J個符號818映射到該PUSCH時機和HARQ程序820、822、824。
在關於圖7和圖8描述的範例中,接收器(例如,gNB)可以用傳訊及/或配置N、可應用的PUSCH時機和HARQ PID的數量、及/或編碼率。接收器(例如,gNB)可在相同資源上多工另一WTRU,例如使用來自相同基礎序列的不同碼。在一些實現方式中,映射功能(726或826)可以映射每PUSCH時機N的符號的數量J、可以藉由時間順序將該符號順序地映射到可應用的PUSCH時器中、或者可以首先藉由頻率順序然後由PUSCH時機來映射該符號。gNB可以針對給定HARQ程序ID或給定時槽發出重傳授權,藉此WTRU可以重傳與該時槽及/或HARQ程序ID相關聯的符號。如果重傳被調用,則WTRU PHY可以重新產生與在其上重傳被請求的HARQ程序及/或PUSCH時機相關聯的所請求符號,如果尚未儲存在相關聯的HARQ緩衝器中。
一些實現方式包含已寫碼的TB區段對與不同HARQ程序相關聯的不同TTI的映射。在一些實現方式中,WTRU可以在不同的PUSCH時機上分配每個區段。例如,對於多TTI授權(例如,3GPP NR R16多TTI授權),WTRU可以將每個已寫碼TB區段分配給由單個DCI所傳訊的多TTI授權的不同PUSCH時機,藉此每個TTI可以對應於不同的HARQ PID。可以將每個TB區段映射用於在不同的HARQ程序上的傳輸。
在一些實現方式中,WTRU可以在時域中及/或在不同的頻率區域/PRB上非持續地傳輸TB區段,例如用於額外的覆蓋增強(例如,用於對抗衰退、干擾及/或鏈路阻塞的分集)。WTRU可以在不同HARQ程序的CG時機上(例如,在對應於不同HARQ PID的不同時間時機上的相同CG上)傳輸已寫碼TB區段。例如,WTRU可以根據該CG的TBS的倍數來創建TB。此後,WTRU可以產生與該CG的TBS相同大小的已寫碼TB區段,藉此每個區段在CG時機上持續地被傳輸(例如,在不同的HARQ PID上)。
一些實現方式包含HARQ程序緩衝器的維持。例如,在一些實現方式中,WTRU可以使用被使用於傳輸第一TB區段的第一HARQ程序、或與TB相關聯的任何單個HARQ PID來儲存總TB或PDU。然而,WTRU可以根據與重傳授權相關聯的HARQ PID來重傳TB區段。在一些實現方式中,WTRU可以將每個已寫碼PDU區段儲存在其被傳輸的HARQ程序中。
在一些實現方式中,WTRU可以在確定與TB相關聯的任何HARQ程序的ACK之後,刷新所有相關聯的HARQ程序的HARQ緩衝器。WTRU可以以任何合適的方式(例如,藉由接收ACK、切換的NDI、計時器期滿等)確定HARQ程序的ACK。在確定了用於於被使用在將TB儲存在WTRU緩衝器中的HARQ程序ID的ACK之後,WTRU可以刷新所有相關聯的HARQ程序的HARQ緩衝器。在一些實現方式中,如果針對與TB相關聯的任何HARQ PID發出了重傳授權及/或NDI沒有切換,則WTRU可以假設該整個TB未被成功解碼(例如,可以確定NACK)。可替換地,WTRU可以為每個TB區段(例如,為每個相關聯的HARQ PID)維持HARQ-ACK。WTRU可以重傳(例如,僅重傳)與針對重傳授權而用傳訊的HARQ程序相關聯的TB區段,或者重傳與該重傳授權相關聯的TB區段。
在一些實現方式中,如果TB區段在不同CG時機上以不同HARQ程序被傳輸,則每次在被使用於傳輸該PDU區段的任何HARQ程序上進行的傳輸或重傳,WTRU可以啟動或重啟動CG計時器。如果針對與TB相關聯的任何HARQ PID發出了重傳授權及/或NDI沒有被切換,則WTRU可以為與該TB相關聯的所有HARQ程序重啟動CG計時器及/或CGRT。如果為整個PDU (亦即,為所有TB區段)確定了ACK,則WTRU可以停止用於與該TB相關聯的所有HARQ程序的CG計時器及/或CGRT。
一些實現方式包含單個HARQ程序內的已寫碼冗餘。在一些實現方式中,WTRU可以產生用於傳輸塊的至少一個已寫碼區段,例如,如本文所描述的。在一些實現方式中,WTRU可以使用RS的配置(其可以是特定於每個時槽者)而將每個已寫碼區段的調變符號映射到不同的時槽。
在一些實現方式中,WTRU可以為所有已寫碼區段確定單個HARQ程序。在一些實現方式中,WTRU可以在動態授權情況下從DCI、或者在所配置授權情況下從公式,確定可應用的HARQ程序。在所配置授權情況下,在一些實現方式中,該HARQ程序可以是當應用該公式時針對第一時槽或第一符號所獲得的HARQ程序。
圖9是示出了包含MAC和PHY之間的外部寫碼的範例實現方式900的方塊圖。在該範例中,WTRU可以由編碼器950 (例如,使用外部寫碼、塊編碼或噴泉編寫碼等)將MAC PDU 902分段為N個區段904、906、908。每個區段904、906、908在實體層中分別被對待為TB 910、912、914、並且分別經受各別的實體層處理916、918、920、以及分別經受各別的通道寫碼和調變922、924、926。此後,TB 910、912、914經受各別的調變928、930、932,並且WTRU可以在不同的PUSCH時機上但是分別使用相同的HARQ程序934、936、938來傳輸每個相應的調變的TB 910、912、914。
在一些實現方式中,接收器(例如,gNB)可以向WTRU傳訊數量N、可應用於PUSCH時機的區段的數量、以及可應用的HARQ PID。如果接收器成功地接收到PDU區段數量< = N,則接收器可以解碼PDU。gNB可以為給定的PDU區段發出重傳授權,藉此WTRU可以重傳與所指示的區段相關聯的PDU區段(亦即,TB)。對於這種重傳,WTRU MAC可以將整個PDU儲存在單個HARQ緩衝器中。如果重傳為了給定區段被調用,則WTRU MAC可以向PHY提供整個PDU,並且WTRU PHY可以重新產生所請求的區段/TB以用於重傳,或者WTRU MAC可以僅向PHY提供所請求的PDU區段以用於重傳。
圖10是示出了通道編碼之後包含外部寫碼的範例實現方式1000的方塊圖。在該範例中,MAC PDU 1002經受實體層處理1004和通道寫碼1006。在這個階段,MAC PDU 1002被含有在一個TB 1010中。在通道寫碼1006之後,WTRU使用塊編碼器1018 (例如,使用外部寫碼、塊編碼或噴泉寫碼等)將TB 1010分段成N個TB區段1012、1014、1016。此後,WTRU可以使每個TB區段1012、1014、1016經受各別的調變1020、1022、1024,並且在不同的PUSCH時機上但是分別使用相同的HARQ程序626、628、630來傳輸每個調變的TB區段1012、1014、1016。
在一些實現方式中,接收器(例如,gNB)可以配置、傳訊或指示區段的數量N、可應用的區段的數量、PUSCH時機、和可應用的HARQ PID。例如,如果接收器成功地接收到TB區段數量< = N,則接收器可以解碼PDU。接收器(例如,gNB)可以發出針對給定TB區段的重傳授權,藉此WTRU可以重傳與所指示的TB區段相關聯的TB區段。如果重傳被調用,則WTRU PHY可以重新產生所請求的TB區段用於重傳。
圖11是示出了在調變和通道編碼之後藉由對基礎序列或對在OFDM符號輸出上操作的碼(例如,DFT碼等)應用相位旋轉的範例正交寫碼的方塊圖。
在該範例中,MAC PDU 1102經受實體層處理1104、通道寫碼1106、和調變1108。在該階段,MAC PDU 1102被包有在一個TB 1110中。通道調變1112在通道寫碼1106之後被應用於MAC PDU,產生M個調變符號1114。在調變1112之後,WTRU可以使用正交擴展器1116將擴展正交碼應用於該M個調變符號1114以產生J個符號1118,其中J>M。WTRU可以在N個不同的PUSCH時機(或TTI)上但分別使用相同的HARQ程序1120、1122、1124來傳輸該J個符號。WTRU可以基於符號到PUSCH時機映射功能1126而將該J個符號1118映射到PUSCH時機。
圖12是示出了通道編碼之後的範例正交寫碼的方塊圖。在該範例中,MAC PDU 1202經過實體層處理1204和通道寫碼1206,產生M個通道編碼位元1208。在這個階段,MAC PDU 1202被含有在一個TB 1210內。在通道寫碼1206之後,但是在調變1212之前,WTRU可以將擴展正交碼1214應用於M個通道編碼位元1208以產生R個正交已寫碼位元1216,其中R > M。調變1212被應用於該R個正交已寫碼位元1216以產生J個符號1218。WTRU可以在不同的PUSCH時機(或TTI)但在相同的HARQ程序1220、1222、1224上傳輸該J個符號1218。WTRU可以基於符號到PUSCH時機映射功能1226,將該J個符號1218映射到PUSCH時機和HARQ程序1220、1222、1224。
對於圖11和圖12中所示的範例,接收器(例如,gNB)可以傳訊及/或配置N、可應用的PUSCH時機的數量、可應用的HARQ PID、及/或編碼率。接收器(例如,gNB)可在相同資源上多工另一WTRU,例如使用來自相同基礎序列的不同碼。在一些實現方式中,映射功能(1126,1226)可以映射每N個PUSCH時機的符號數量J,或者可以由時間順序將符號順序地映射到可應用的PUSCH時機中。gNB可以針對給定時槽或PUSCH時機發出重傳授權,藉此WTRU可以重傳與該時槽/PUSCH時機相關聯的符號。如果重傳被調用,則WTRU PHY可以重新產生與在其上請求重傳的PUSCH時機相關聯的所請求的符號。
一些實現方式包含將已寫碼TB區段映射到與相同的HARQ程序相關聯的不同TTI。在一些實現方式中,WTRU可以在PUSCH時機上分配每個區段。例如,對於具有時槽聚合的多TTI授權(例如,具有時槽聚合的3GPP R15多TTI授權),WTRU可以將每個已寫碼TB區段分配給由單個DCI傳訊的多TTI授權的不同PUSCH時機,藉此每個TTI可以對應於相同的HARQ PID。
在一些實現方式中,WTRU可以在時域中及/或在不同的頻率區域/PRB上非連續地傳輸TB區段,以用於額外的覆蓋增強(例如,用於針對衰退、干擾及/或鏈路阻塞的分集)。WTRU可以在相同HARQ PID的CG時機上(可能在相同CG上)傳輸已寫碼TB區段。WTRU可以假設相同的HARQ PID被使用於連續的時機,並且因此忽略用於後續TB區段傳輸的HARQ PID確定公式。
在一些實現方式中,如果重傳授權為了任何TB區段而發出,則WTRU可以假設整個TB未被成功解碼(例如,可以確定NACK)。WTRU可以為每個TB區段維持子HARQ-ACK狀態(即,ACK或NACK),其中子HARQ-ACK是指用於每個TB區段的不同HARQ-ACK狀態。在一些實現方式中,WTRU可以僅重傳與被使用於傳輸TB區段的相關聯的PUSCH時機相關聯的TB區段。
一些實現方式包含已寫碼和調變位元的分組。例如,在一些實現方式中,WTRU可以接收指示(例如,從gNB或其他網路裝置)以對傳輸塊的一組已寫碼和調變位元分組。例如,在一些實現方式中,WTRU可以被配置成將群組索引與所分組的已寫碼和調變位元相關聯。在一些實現方式中,WTRU可以基於在初始傳輸期間在其上該已寫碼和調變位元被映射的時槽;基於在初始傳輸期間在其上它們被映射的該組符號;及/或基於已寫碼和調變位元被映射到的資源的類型,對該已寫碼和調變位元分組。
在一些實現方式中,例如,其中在WTRU基於在初始傳輸期間在其上已寫碼和調變位元被映射的時槽,對該已寫碼和調變位元分組,WTRU可以基於新資料指示符(NDI)欄位來確定初始傳輸。
例如,在一些實現方式中,其中在WTRU基於在初始傳輸期間在其上已寫碼和調變位元被映射的該組符號對該已寫碼和調變位元分組,該組符號可以小於一時槽持續時間(亦即,14個符號)或大於該時槽持續時間,及/或該組符號的大小可以使用排程DCI被配置成被半靜態或動態地指示。
在一些實現方式中,例如,其中在WTRU基於在其上已寫碼和調變位元被映射到的資源的類型對該已寫碼和調變位元分組,該類型可以包含例如該已寫碼和調變位元是否被映射到可撓的單數時槽、複數時槽、單數符號、或複數符號中。例如,在一些實現方式中,WTRU可以被配置成具有TDD配置,該TDD配置由一組DL時槽/符號、一組可撓時槽及/或符號以及一組UL時槽及/或符號組成。當接收多時槽PUSCH授權時、或者在接收該多時槽PUSCH授權之後,WTRU可以將已寫碼和調變的位元分組為映射到可撓資源上的第一群組和映射到上鏈資源上的第二群組。
一些實現方式包含一群組的已寫碼和調變的位元的重傳。例如,在一些實現方式中,WTRU可以被配置成僅重傳在初始傳輸期間所傳送的一群組或複數群組的已寫碼和調變位元。在一些實現方式中,當接收到用於重傳的授權時或之後,WTRU可以接收DCI中的位元欄位,該位元欄位指示被請求用於重傳的索引群組。在一些實現方式中,可替換地,WTRU可以被配置成自主地確定用於重傳所需的群組。在一些實現方式中,WTRU可以確定一群組或複數群組將被重傳,如果WTRU不能最初地傳送該群組。在一些實現方式中,例如,一群組已寫碼和調變的位元最初地被映射到可撓的時槽及/或符號。在一些實現方式中,例如,在接收到UL授權之後,WTRU確定在可撓資源上不允許UL傳輸(例如,基於例如從例如gNB或其他網路裝置接收的指示或配置)。在一些實現方式中,例如,如果第二授權與未被指示作為第一組時槽的上鏈部分的時槽的大小及/或數量相匹配,則WTRU可以確定在第二組時槽上在第二授權中傳輸TB中未在可撓時槽上傳輸的部分(例如,由於未接收到指示該時槽為UL時槽的指示或時槽格式指示符(SFI))。
在一些實現方式中,WTRU可以接收用於重傳的UL授權,該UL授權具有比重傳一群組已寫碼和調變位元所需的資源更多的資源的數量。在一些實現方式中,WTRU可以被配置成重複該已寫碼和調變位元直到WTRU填充了所排程的資源。在一些實現方式中,例如,WTRU可以接收具有14個符號的UL授權以用於重傳。在一些實現方式中,WTRU可以確定對於所請求的用於重傳的群組,需要7個符號。在一些實現方式中,在確定需要7個符號之後,WTRU傳輸該群組兩次(亦即,使用14個符號以傳輸該群組兩次)。在其他實現方式中,WTRU可以被配置成在UL授權中傳輸附加冗餘版本位元用於重傳。在一些實現方式中,WTRU可以在映射所請求的群組之後基於剩餘的資源來確定將被傳輸的RV位元的數量。在一些實現方式中,WTRU可以被配置成將每時槽的一組已寫碼和調變位元進行分組。WTRU可以接收指示以重傳一群組或複數群組的已寫碼和調變位元。該指示可以由DCI傳訊,及/或可以伴隨重傳授權。該指示還可以指示時槽的數量(例如,時槽索引)。WTRU可以基於中斷的該組時槽來確定將被重傳的該群組或複數群組。WTRU可以接收指示以重傳該TB在所指示的時槽上被傳輸的部分。
一些實現方式包含各種程序方面。例如,一些實現方式包含關於序列選擇和資源分配的動態指示。在一些實現方式中,WTRU可以接收動態指示及/或傳訊,該動態指示及/或傳訊指示該TB在其上被傳輸的時槽的數量、是否TB分段被使用、重複類型、是否交織被使用、是否跳頻被使用、及/或相關聯的HARQ程序的識別的數量。
在一些實現方式中,WTRU可以根據排程時槽的數量、是否應用交織(例如,用於RS傳輸)、MCS、測量間隙及/或可應用於調變資料位元的傳輸的PUSCH時機的數量,選擇正交序列以寫碼調變的PUSCH位元。WTRU可以被半靜態地配置成將已寫碼冗餘應用於LCH的子集及/或CG的子集上。WTRU可以被半靜態地配置以用於CG的已寫碼冗餘參數,其包含一組可應用的HARQ程序、要使用的序列、RV模式、區段/已寫碼重複的數量等等。
一些實現方式包含針對不同的PDU的剩餘的排程PUSCH時機的再使用。例如,在一些實現方式中,WTRU可以使用與TB相關聯的剩餘的排程HARQ程序和PUSCH時機用於不同MAC PDU。例如,當成功解碼了數個區段時(例如,由WTRU接收或確定用於整個PDU的ACK以回應傳輸的PUSCH),WTRU可以使用與所確認的TB相關聯的剩餘的排程的HARQ程序和PUSCH時機用於不同MAC PDU。在一些實現方式中,WTRU可以映射不同的產生的TB或新的TB,如果該TB具有與所傳訊的相同的RV和TBS。
一些實現方式具有對較高層的影響。例如,一些實現方式具有對HARQ程序ID特定的計時器的影響。在一些實現方式中,WTRU MAC可以維持與單個HARQ程序相關聯的計時器。對於與多重HARQ PID相關聯的PDU (例如,根據以上關於各別的HARQ程序上的已寫碼冗餘的描述),WTRU可以以相同的方式對待用於與該PDU相關聯的所有HARQ PID的MAC計時器。例如,WTRU可以同時停止或啟動(或重啟)用於與該PDU相關聯的所有HARQ PID的計時器。
在一些實現方式中,如果PDU或PDU區段被傳輸(或重傳)、及/或如果為針對該PDU提供或確定了HARQ ACK,WTRU可以停止或啟動(或重啟)用於與該PDU相關聯的所有HARQ PID的DRX計時器。這可以包含例如drx-HARQ RTT計時器及/或drx-重傳計時器(drx-RetransmisisonTimer)參數等。
當PDU或PDU區段被傳輸或重傳時、及/或當針對PDU提供HARQ ACK時,WTRU可以停止或啟動(或重啟)與針對與該PDU相關聯的所有HARQ PID的所配置授權相關聯的計時器。這可以包含所配置授權(CG)計時器,或所配置授權重傳(CGRT)計時器等。
一些實現方式提供了與多時槽PUSCH傳輸多工的上鏈控制資訊(UCI)。例如,在一些實現方式中,WTRU可以被配置成以與多時槽PUSCH傳輸重疊的PUCCH傳輸。在這種情況下,WTRU可以被配置成在該多時槽PUSCH傳輸上傳輸該PUCCH傳輸的UCI。
一些實現方式提供了用於UCI多工的時槽選擇。例如,在一些實現方式中,WTRU可以被配置成從被配置用於PUSCH傳輸的多重時槽選擇一個時槽,在該時槽上多工該UCI。在一些實現方式中,WTRU可以被配置成基於該PUCCH傳輸的定時來選擇該時槽。在一些實現方式中,WTRU可以被配置成選擇該多時槽PUSCH傳輸的第一時槽,該第一時槽在所配置的PUCCH傳輸的持續時間T之後開始。在一些實現方式中,該持續時間T可以而被半靜態地配置至WTRU,例如使用RRC傳訊或規範中的固定值。在一些實現方式中,WTRU可以被配置成基於在時槽內所分配的上鏈符號的數量來選擇時槽。在一些實現方式中,WTRU可以被配置成選擇具有較大數量的上鏈符號的時槽。在一些實現方式中,WTRU可以被配置成選擇具有最小數量的中斷符號的時槽。在一些實現方式中,中斷的符號可以是被配置用於下鏈傳輸或用於包含其他WTRU傳輸的較高優先上鏈傳輸的符號。
一些實現方式提供了在多重時槽上擴展的UCI。例如,在一些實現方式中,WTRU可以被配置成在多時槽PUSCH傳輸的多重時槽上傳輸UCI。在一些實現方式中,WTRU可以在每個時槽上傳輸UCI位元的部分。在一些實現方式中,WTRU可以被配置成基於PUCCH傳輸的定時來選擇WTRU開始UCI傳輸所在的第一時槽。在一些實現方式中,WTRU可以選擇該多時槽PUSCH傳輸的第一時槽,其在所配置的PUCCH傳輸的持續時間T之後開始。在一些實現方式中,該持續時間T可以使用RRC傳訊或規範中的固定值而被半靜態地配置至WTRU。在一些實現方式中,WTRU可以被配置成選擇在時槽內為UCI所預留的資源量作為該時槽上可用上鏈符號的百分比。在一些實現方式中,對於為了UCI傳輸所選擇的多重時槽的每個時槽,WTRU使用相同百分比的可用上鏈符號。
在一些實現方式中,WTRU可以被配置成基於UCI的延遲要求來賦能或去能UCI在多重時槽上擴展。例如,在一些實現方式中,對於低延遲UCI要求,WTRU不被允許使用UCI在多重時槽上擴展。
一些實現方式提供在多重時槽上的UCI重複。例如,在一些實現方式中,WTRU可以被配置成在多時槽PUSCH傳輸的多重時槽上重複UCI。在一些實現方式中,具有多時槽PUSCH傳輸的重疊PUCCH的gNB配置可以是或包含UCI重複的隱式指示。在一些實現方式中,WTRU可以被配置成基於PUCCH傳輸的定時來選擇WTRU在其上開始UCI傳輸的第一時槽。在一些實現方式中,WTRU可以選擇多時槽PUSCH傳輸的第一時槽,其在所配置的PUCCH傳輸的持續時間T之後開始。在一些實現方式中,持續時間T可以被半靜態地配置至WTRU,例如使用RRC傳訊或規範中的固定值。在一些實現方式中,WTRU可以被配置成在比用於多時槽PUSCH傳輸的可用時槽的數量少的時槽數量上重複UCI。例如,在一些實現方式中,WTRU被配置成具有用於多時槽PUSCH傳輸的4個時槽以及在第一時槽上的重疊PUCCH傳輸。在一些實現方式中,WTRU確定多時槽PUSCH傳輸的第二時槽將被使用於第一UCI傳輸。在一些實現方式中,WTRU重複UCI兩次,並且僅使用該多時槽PUSCH傳輸的第二和第三時槽。在一些實現方式中,在多時槽PUSCH傳輸上用於UCI重複的時槽數量可以被半靜態地配置。附加地或可替換地,在一些實現方式中,在多時槽PUSCH傳輸上用於UCI重複的時槽數量可以被動態地指示給WTRU。例如,在一些實現方式中,排程該多時槽PUSCH傳輸的DCI可以指示用於UCI重複的時槽數量。在一些實現方式中,例如,在DCI中的新欄位(例如,新的位元欄位)可以被實現,或者DCI中的現有欄位(例如,現有的位元欄位)可以被再使用,以指示用於UCI重複的時槽的數量。例如,在一些實現方式中,下鏈指派指示(DAI)欄位可以被再使用以指示UCI重複的時槽數量。
一些實現方式提供了速率匹配適應。例如,在一些實現方式中,WTRU可以將所產生的傳輸塊的已寫碼位元拆解為子群組,並將該子群組映射到一組符號及/或傳輸時機(例如,其中傳輸時機是或包含一組符號及/或一組的一個或複數時槽)。在一些實現方式中,WTRU可以被配置成每時機履行已寫碼位元的子群組的速率匹配。在一些實現方式中,在每個時機開始時,WTRU排除UCI傳輸的資源元件和在可用資源上的速率匹配。可替換地或附加地,在一些實現方式中,WTRU可以對傳輸時機上已分配的資源打孔,以便為UCI傳輸預留資源。在一些實現方式中,WTRU可以被配置成首先假設每時機的一組資源元件(RE),並且履行第一輪的速率匹配。在一些實現方式中,在每個時槽的開始,如果UCI將在該時槽/傳輸時機上被傳輸,則WTRU可以履行第二回合的速率匹配。
圖13和圖14示出了在多重時槽上排程TB的範例。對於由WTRU在多重時槽上所傳輸的TB,如果稍後的授權指示重傳(例如,NDI未切換)、該授權為用於與被丟棄的時槽相同的時槽數量、並且授權大小足夠大,則WTRU確定使用相同的HARQ程序在該稍後的授權上傳輸或重傳被丟棄的TB區段。
圖13是示出了在時域雙工(TDD)情況下的範例傳輸1300的方塊圖。在圖中,標記為D的時槽是下鏈,以及標記為U的時槽是上鏈。在時槽1302中,WTRU接收DCI,該DCI包含用於在3個時槽1302、1304、1306上傳輸TB的上鏈授權。用於時槽1302和1304的SFI指示這些是上鏈時槽,並且用於時槽1306的SFI指示這不是上鏈時槽(例如,因為它是被翻轉到下鏈的可撓時槽)。因此,WTRU將TB分段成兩個區段。WTRU在上鏈授權的第一時槽1304和第二時槽1306中傳輸該TB的第一區段。由於SFI沒有指示該上鏈授權的下一個時槽1308是上鏈時槽,該TB的第二區段被丟棄。在時槽1310中,WTRU接收DCI,該DCI包含用於與在時槽1302中接收的授權相同的HARQ程序的重傳上鏈授權(在該範例中,其由未被切換的NDI指示)。該重傳授權也用於與用於在時槽1302中接收的授權而丟棄的相同的時槽數量。基於該資訊,WTRU確定在時槽1312中重傳該TB的第二區段。
圖14是示出了在頻域雙工(FDD)情況下的範例傳輸1400的方塊圖。在圖中,所有時槽被標記為上鏈(U)時槽。在時槽1402之前,WTRU接收下鏈符號中的DCI,該DCI包含用於在5個時槽1402、1404、1406、1408、1410上傳輸TB的上鏈授權。在TB (或整個TB)的傳輸之前,WTRU接收用於時槽1406、1408、1410的UL取消指示。相應地,WTRU將TB分段成兩個區段。WTRU傳輸上鏈授權的TB時槽1404和1406的第一區段,並且該TB的第二區段被丟棄。在第二區段被丟棄之後,WTRU接收下鏈符號中的DCI,該DCI包含用於與時槽1402之前接收的授權相同的HARQ程序的重傳上鏈授權(在該範例中,其由NDI未被切換來指示)。該重傳授權也用於與用於在時槽1402之前接收的授權而丟棄的相同的時槽數量。基於該資訊,WTRU確定在時槽1412、1414、1416中重傳該TB的第二區段。
圖15是示出了用於在多重時槽上傳輸TB的範例方法的流程圖。在步驟1502中,WTRU接收第一授權以在第一組時槽中傳輸TB。在所有該時槽對於上鏈為可用的條件1504下,在步驟1506中,WTRU在該第一組時槽中傳輸整個TB。在該第一組時槽的子集對於上鏈為不可用的條件1504下,在步驟1508中,WTRU將該TB分段為第一區段和第二區段。在一些實現方式中,該第一區段具有符合對於上鏈為可用的第一組時槽的第一子集的大小。在一些實現方式中,該第一區段的大小等於在該第一子集中可能傳輸的資料量。
在步驟1510中,WTRU在該第一組時槽的第一子集中傳輸該TB的第一區段。在接收到在第二組時槽中傳輸該TB的第二授權的情況1512下,在步驟1514中,WTRU傳輸該第二組時槽的第二區段。在一些實現方式中,如果第二授權用於與第一授權相同的HARQ程序(例如,NDI未被切換),WTRU確定第二授權是用於在第二組時槽中傳輸該TB,該第二授權提供等於或大於TB的第二區段的上鏈資源的量,及/或該第二授權是用於等於或大於對於上鏈為不可用的該第一組時槽的子集的上鏈時槽的數量。
儘管以上以特定的組合中描述了特徵和元件,本領域中具有通常知識者將理解,每個特徵或元件可以獨自使用或與其它特徵和元件任意組合使用。另外,本文描述的方法可以在併入電腦可讀媒體中由電腦或處理器執行的電腦程式、軟體或韌體中實現。電腦可讀媒體的範例包含電子訊號(藉由有線或無線連接所傳輸)和電腦可讀儲存媒體。電腦可讀儲存媒體的範例包含但不限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、快取記憶體、半導體記憶體裝置、諸如內部硬碟和可移碟等磁性媒體、磁光媒體、以及諸如CD-ROM碟和數位通用磁碟(DVD)等光媒體。與軟體相關聯的處理器可以被使用於實現在WTRU、UE、終端、基地台、RNC或任何主機電腦中使用的射頻收發器。
100:通訊系統 102、102a、102b、102c、102d、WTRU:無線傳輸/接收單元 104:無線電存取網路(RAN) 106:核心網路(CN) 108:公共交換電話網路(PSTN) 110:網際網路 112:其他網路 114a、114b:基地台 116:空中介面 118:處理器 120:收發器 122:傳輸/接收元件 124:揚聲器/麥克風 126:小鍵盤 128:顯示器/觸控板 130:非可移記憶體 132:可移記憶體 134:電源 136:全球定位系統(GPS)晶片組 138:週邊設備 160a、160b、160c:e節點B(eNB) 162:移動性管理實體(MME) 164:服務閘道(SGW) 166:封包資料網路(PDN)閘道(或PGW) 180a、180b、180c:gNB 182a、182b:存取及移動性管理功能(AMF) 183a、183b:對話管理功能(SMF) 184a、184b:使用者平面功能(UPF) 185a、185b:資料網路(DN) 200、PDU:協定資料單元 202、204、206:協定資料單元(PDU)塊 208、550、950、1018:塊編碼器 210、212、214、216:寫碼塊 400:多時槽PUSCH、3個標稱時槽 402、404:時槽的部分 406、408:UL符號 410:5個實際時槽 500、600、700、800、900、1000、1100、1200、1300、1400:方塊圖 502、602、702、802、902、1002、1102、1202:媒體存取控制協定資料單元(MAC PDU) 504、506、508、612、614、616、904、906、908、1012、1014、1016:區段 510、512、514、610、710、810、910、912、914、1010、1110、1210、TB:傳送塊 516、518、520、604、704、804、916、918、920、1004、1104、1204:實體層處理 522、524、526、922、924、926:通道寫碼和調變 528、530、532、620、622、624、712、812、928、930、932、1020、1022、1024、1112、1212:調變 534、536、538、626、628、630、720、722、724、820、822、824、934、936、938、1026、1028、1030、1120、1122、1124、1220、1222、1224:PUSCH時機HARQ程序 606、706、806、1006、1106、1206:通道寫碼 714、1114:M個調變符號 716、814、1116、1214:正交擴展器、正交擴展編碼器 718、818、1118、1218:J個符號 726、826、1126、1226:符號映射功能 808、1208:M個通道編碼位元 816、1216:R個正交寫碼位元 1302、1304、1306、1308、1310、1312、1402、1404、1406、1408、1410、1412、1414、1416:時槽 1502、1504、1506、1508、1510、1512、1514:步驟 D:下鏈標記 DCI:下鏈控制資訊 DL:下鏈 FDD:頻域雙工 HARQ:混合自動重複請求 MAC:媒體存取控制 N2、N3、N4、N6、N11、S1、X2、Xn:介面 NDI:新資料指示符 PHY:實體層 PID:程序識別符 PUSCH:實體上鏈共用通道 SFI:時槽格式指示符 TDD:時域雙工 U:上鏈標記 UE:使用者設備 UL:上鏈 VoIP:網際協定語音
從以下結合附圖以範例方式給出的描述中可以更詳細地理解本發明,其中附圖中相同的參考數字指示相同的元件,並且其中: 圖1A是示出可以實施一個或複數揭露的實施例的例示通訊系統的系統圖式; 圖1B是示出根據一個實施例的可以在圖1A所示的通訊系統內部使用的範例無線傳輸/接收單元(WTRU)的系統圖式; 圖1C是示出根據一個實施例的在圖1A所示出的通訊系統中可以使用的範例無線電存取網路(RAN)和範例核心網路(CN)的系統圖式; 圖1D是示出根據一個實施例的在圖1A所示出的通訊系統中可以使用的另一個範例RAN和另一個範例CN的系統圖式; 圖2是示出範例性方塊寫碼方案的方塊圖; 圖3是反映每個胞元的不同數目的VoIP使用者的胞元流通量的圖; 圖4是示出範例多時槽PUSCH的標稱和實際時槽的圖; 圖5是示出包含MAC和PHY之間的外部寫碼(outer coding)的範例實現方式的方塊圖; 圖6是示出包含在通道編碼之後的外部寫碼的範例實現方式的方塊圖; 圖7是示出包含在調變和通道編碼之後的正交寫碼的範例實現方式的方塊圖; 圖8是示出包含在通道編碼之後的正交寫碼的範例實現方式的方塊圖; 圖9是示出MAC和PHY之間的範例外部寫碼的方塊圖; 圖10是示出在通道編碼之後的範例外部寫碼的方塊圖; 圖11是示出在調變和通道編碼之後的範例正交寫碼的方塊圖; 圖12是示出在通道編碼之後的範例正交寫碼的方塊圖; 圖13是示出在時域雙工(TDD)情況下在多時槽上TB的範例性傳輸的方塊圖; 圖14是示出在頻域雙工(FDD)情況下在多時槽上TB的範例性傳輸的方塊圖;以及 圖15是示出用於在多時槽上傳輸TB的範例方法的流程圖。
1502、1504、1506、1508、1510、1512、1514:步驟
TB:傳送塊

Claims (20)

  1. 一種在一無線傳輸/接收單元(WTRU)中實施用於在多時槽上傳輸一傳送塊(TB)的方法,該方法包括: 接收一第一授權以在一第一組時槽中傳輸一TB,該第一授權與一混合自動重複請求(HARQ)程序相關聯; 確定該第一組時槽的一第一子集對於上鏈傳輸為可用,並且確定該第一組時槽的一第二子集對於上鏈傳輸為不可用; 回應於確定該第一組時槽的該第一子集對於上鏈傳輸為可用並且確定該第一組時槽的該第二子集對於上鏈傳輸為不可用,將該TB分段為一第一區段和一第二區段; 在該第一組時槽的該第一子集中傳輸該第一區段; 接收一第二授權以在一第二組時槽中傳輸該TB,該第二授權與該HARQ程序相關聯,其中該第二組時槽在數量上等於或大於該第二子集,並且其中該第二組時槽對於上鏈傳輸為可用;以及 回應於該第二授權為對於在數量上等於或大於該第二子集的一時槽數量、該第二授權為對於相同的該HARQ程序、以及該第二授權的一時槽數量對於上鏈為可用,在該第二組時槽中傳輸該TB的該第二區段。
  2. 如請求項1所述的方法,其中該第二授權包含一新資料指示符(NDI),該NDI在值上等於該第一授權的一NDI。
  3. 如請求項1所述的方法,進一步包括確定該TB的一組已寫碼位元用於在該第一組時槽的每個時槽上傳輸。
  4. 如請求項3所述的方法,進一步包括將對應該第二區段的該TB的該組已寫碼位元的一子集重新映射到該第二組時槽的資源。
  5. 如請求項1所述的方法,進一步包括:確定該TB的一組調變符號用於在該第一組時槽的每個時槽上傳輸。
  6. 如請求項5所述的方法,進一步包括將對應該第二區段的該TB的該組調變符號中的一子集重新映射到該第二組時槽的資源。
  7. 如請求項1所述的方法,其中該第一授權是在一第一下鏈控制資訊(DCI)中接收。
  8. 如請求項7所述的方法,其中該第二授權是在不同於該第一DCI的一第二DCI中接收。
  9. 如請求項1所述的方法,其中該第二組時槽與該第一組時槽在時間上不連續。
  10. 如請求項1所述的方法,其中由於上鏈時槽取消、由於上鏈時槽不可用性、或者由於可撓時槽從上鏈改變至下鏈,該第一組時槽的該第二子集對於上鏈傳輸為不可用。
  11. 一種被配置成在多時槽上傳輸一傳送塊(TB)的無線傳輸接收單元(WTRU),包括: 被配置為接收一第一授權以在一第一組時槽中傳輸一TB的電路,該第一授權與一混合自動重複請求(HARQ)程序相關聯; 被配置為確定該第一組時槽的一第一子集對於上鏈傳輸為可用、並且確定該第一組時槽的一第二子集對於上鏈傳輸為不可用的電路; 被配置為回應於確定該第一組時槽的該第一子集對於上鏈傳輸為可用並且確定該第一時組槽的該第二子集對於上鏈傳輸為不可用,而將該TB分段為一第一區段和一第二區段的電路; 被配置為在該第一組時槽的該第一子集中傳輸該第一區段的電路; 被配置為接收一第二授權以在一第二組時槽中傳輸該TB的的電路,該第二授權與該HARQ程序相關聯,其中該第二組時槽在數量上等於或大於該第二子集,並且其中該第二組時槽對於上鏈傳輸為可用;以及 被配置為回應於該第二授權為對於在數量上等於或大於該第二子集的一時槽數量、該第二授權為對於相同的該HARQ程序、以及該第二授權的一時槽數量對於上鏈為可用,而在該第二組時槽中傳輸該TB的該第二區段的電路。
  12. 如請求項11所述的WTRU,其中該第二授權包含一新資料指示符(NDI),該NDI在值上等於該第一授權的一NDI。
  13. 如請求項11所述的WTRU,還包括被配置成確定該TB的一組已寫碼位元用於在該第一組時槽的每個時槽上傳輸的電路。
  14. 如請求項13所述的WTRU,還包括被配置成將對應該第二區段的該TB的該組已寫碼位元的一子集重新映射到該第二組時槽的資源的電路。
  15. 如請求項11所述的WTRU,還包括被配置成確定該TB的一組調變符號用於在該第一組時槽的每個時槽上傳輸的電路。
  16. 如請求項15所述的WTRU,還包括被配置成將對應該第二區段的該TB的該組調變符號的一子集重新映射到該第二組時槽的資源的電路。
  17. 如請求項11所述的WTRU,還包括被配置成在一第一下鏈控制資訊(DCI)中接收該第一授權的電路。
  18. 如請求項17所述的WTRU,還包括被配置成在不同於該第一DCI的一第二DCI中接收該第二授權的電路。
  19. 如請求項11所述的WTRU,其中該第二組時槽與該第一組時槽在時間上不連續。
  20. 如請求項11所述的WTRU,其中該第一組時槽的該第二子集由於上鏈時槽取消、由於上鏈時槽不可用性、或者由於一可撓時槽從上鏈改變為下鏈而對於上鏈傳輸為不可用。
TW110128999A 2020-08-05 2021-08-05 時域及碼域覆蓋增強 TWI815157B (zh)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
US202063061491P 2020-08-05 2020-08-05
US63/061,491 2020-08-05
US202163136514P 2021-01-12 2021-01-12
US63/136,514 2021-01-12
US202163167883P 2021-03-30 2021-03-30
US63/167,883 2021-03-30
US202163185901P 2021-05-07 2021-05-07
US63/185,901 2021-05-07

Publications (2)

Publication Number Publication Date
TW202220403A TW202220403A (zh) 2022-05-16
TWI815157B true TWI815157B (zh) 2023-09-11

Family

ID=77595619

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110128999A TWI815157B (zh) 2020-08-05 2021-08-05 時域及碼域覆蓋增強

Country Status (7)

Country Link
US (1) US20230308228A1 (zh)
EP (1) EP4193531A1 (zh)
JP (1) JP2023536724A (zh)
CN (1) CN116114201A (zh)
BR (1) BR112023002193A2 (zh)
TW (1) TWI815157B (zh)
WO (1) WO2022031962A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210359816A1 (en) * 2018-10-17 2021-11-18 Apple Inc. Downlink phase-tracking reference signal resource mapping
US12004225B2 (en) * 2022-01-07 2024-06-04 Qualcomm Incorporated Initial access random access occasion-caused interference
WO2024000407A1 (en) * 2022-06-30 2024-01-04 Qualcomm Incorporated Power control for multi-transmission scheduling
WO2024031249A1 (en) * 2022-08-08 2024-02-15 Apple Inc. Method and apparatus for pdu set based scheduling

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201926931A (zh) * 2012-01-24 2019-07-01 美商內數位專利控股公司 無憲傳輸/接收單元、在無線傳輸/接收單元中實施的方法以及網路節點

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201926931A (zh) * 2012-01-24 2019-07-01 美商內數位專利控股公司 無憲傳輸/接收單元、在無線傳輸/接收單元中實施的方法以及網路節點

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
網路文獻 Ericsson PUSCH Enhancements for NR URLLC 3GPP TSG RAN WG1 Meeting #96 2019/02/16 R1-1901595,https://www.3gpp.org/ftp/TSG_RAN/WG1_RL1/TSGR1_96/Docs/ *

Also Published As

Publication number Publication date
US20230308228A1 (en) 2023-09-28
TW202220403A (zh) 2022-05-16
BR112023002193A2 (pt) 2023-04-25
EP4193531A1 (en) 2023-06-14
WO2022031962A1 (en) 2022-02-10
CN116114201A (zh) 2023-05-12
JP2023536724A (ja) 2023-08-29

Similar Documents

Publication Publication Date Title
CN111034097B (zh) 可靠控制信令
TWI786389B (zh) 用於nr sl psfch傳輸及監視的裝置及方法
US20230262717A1 (en) 5g nr data delivery for flexible radio services
US20240163025A1 (en) Sidelink resource sensing using feedback channels
JP7138170B2 (ja) 無線システムにおける補助的なアップリンク送信
US20210184801A1 (en) Method and apparatus for harq-ack codebook size determination and resource selection in nr
TW201937880A (zh) 未授權頻譜相關之資料傳輸及harq-ack
TWI815157B (zh) 時域及碼域覆蓋增強
TW202147799A (zh) 動態解調信號資源分配
US20240032031A1 (en) Hybrid Automatic Repeat Request Codebook Determination for Multi-Physical Downlink Shared Channel Scheduling
US20240163011A1 (en) Methods for dynamic data transmissions in wireless systems
CN115606127A (zh) 用于改善语音覆盖的方法和装置
TW202408198A (zh) 在雙工中之時序對準
TW202220492A (zh) 受控環境中的所配置授權傳輸
TW202415124A (zh) 用於控制通道之同時上行鏈路傳輸的方法及設備
WO2023086445A1 (en) Methods on enhancing reliability and supporting mixed priority traffic in high frequency communications
TW202344122A (zh) 上行鏈路載波優先化
CN117356053A (zh) 用于无线***中的动态数据传输的方法
CN116918283A (zh) 用于超可靠低延迟通信复用的方法