TWI814596B - Method of obtaining parameter of synchronous motor - Google Patents

Method of obtaining parameter of synchronous motor Download PDF

Info

Publication number
TWI814596B
TWI814596B TW111137179A TW111137179A TWI814596B TW I814596 B TWI814596 B TW I814596B TW 111137179 A TW111137179 A TW 111137179A TW 111137179 A TW111137179 A TW 111137179A TW I814596 B TWI814596 B TW I814596B
Authority
TW
Taiwan
Prior art keywords
current
motor
axis
value
inductance
Prior art date
Application number
TW111137179A
Other languages
Chinese (zh)
Other versions
TW202416652A (en
Inventor
陳彥仰
曾仁志
邢雷鍾
Original Assignee
台達電子工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台達電子工業股份有限公司 filed Critical 台達電子工業股份有限公司
Priority to TW111137179A priority Critical patent/TWI814596B/en
Application granted granted Critical
Publication of TWI814596B publication Critical patent/TWI814596B/en
Publication of TW202416652A publication Critical patent/TW202416652A/en

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

A method of obtaining a parameter of a synchronous motor is disclosed and includes: setting an operating current of the motor; providing a positive fixed voltage to the motor and monitoring a feedback current from the motor; recording a triggering time for the feedback current to reach the operating current; providing a negative fixed voltage to the motor for the triggering time; obtaining a square-wave voltage with a fixed frequency based on the positive fixed voltage and the negative fixed voltage being provided; providing the square-wave voltage with the fixed frequency to one axis of the motor; transforming three-phase current from the motor into an axial current; computing an inductance value of this axis based on the fixed frequency, the square-wave voltage and the axial current; and, creating an inductance-current parameter table based on a plurality of the inductance values and the axial currents correspondingly.

Description

獲取同步馬達參數的方法 How to obtain synchronous motor parameters

本發明涉及馬達,尤其涉及一種獲取馬達參數的方法。 The present invention relates to a motor, and in particular, to a method for obtaining motor parameters.

一般來說,為了能夠使用變頻器來妥善地對系統進行控制,必須要先針對變頻器搭配使用的馬達進行自學習(auto-tuning),以調整變頻器在控制馬達時所使用的各種參數,例如電阻值及電感值等。 Generally speaking, in order to use an inverter to properly control the system, you must first perform auto-tuning on the motor used with the inverter to adjust the various parameters used by the inverter to control the motor. For example, resistance value and inductance value, etc.

為了達到上述目的,變頻器一般需要針對馬達建立完整的電感參數模型,以記錄不同電流點與電感值之間的對應關係。 In order to achieve the above purpose, the frequency converter generally needs to establish a complete inductance parameter model for the motor to record the corresponding relationship between different current points and inductance values.

相關技術對於馬達的電感值的量測方式,是由變頻器在馬達的已知轉子位置上施打弦波電壓,使得電流慢慢上昇到所要觀察的電流點時,再透過電阻法計算此電流點所對應的電感值。透過從小電流開始往上逐步觀察與計算,變頻器即可建立上述電流與電感的對應關係。 The related art method for measuring the inductance value of a motor is to use a frequency converter to apply a sinusoidal voltage at a known rotor position of the motor, so that when the current slowly rises to the current point to be observed, the current is then calculated through the resistance method. The inductance value corresponding to the point. By gradually observing and calculating starting from a small current and working upwards, the frequency converter can establish the corresponding relationship between the above current and the inductance.

然而,透過上述方式來建立馬達的電流與電感的對應關係,則在較大的電流範圍下(即,電流點的解析度較高),所需耗費的測量時間較長。例如,若等待電流上昇到要觀察的電流點需要耗時3秒,則若要記錄100個電流點及這些電流點所對應的電感值,就需要耗費300秒的時間。 However, establishing the corresponding relationship between the motor's current and the inductance through the above method requires a longer measurement time in a larger current range (that is, the resolution of the current point is higher). For example, if it takes 3 seconds to wait for the current to rise to the current point to be observed, then it will take 300 seconds to record 100 current points and the inductance values corresponding to these current points.

另外,在變頻器逐步增加所施加的電流的過程中,亦可能造成馬達內部的轉子震動,而影響對電感值的測量結果的準確性。 In addition, when the frequency converter gradually increases the applied current, it may also cause the rotor inside the motor to vibrate, affecting the accuracy of the measurement results of the inductance value.

本發明的主要目的,在於提供一種獲取同步馬達參數的方法,可以在極短的時間完成電流-電感參數表單的建立程序。 The main purpose of the present invention is to provide a method for obtaining synchronous motor parameters, which can complete the creation process of the current-inductance parameter form in a very short time.

於本發明的一個實施例中,所述獲取同步馬達參數的方法包括下列步驟:a)設定一馬達的一操作電流值;b)由一變頻器持續對該馬達提供一正固定電壓並偵測該馬達的一回授電流;c)於該回授電流觸及該操作電流值時記錄一觸及時間,並持續對該馬達提供一負固定電壓達到該觸及時間;d)基於該正固定電壓及該負固定電壓獲得一固定頻率的一方波電壓;e)對該馬達的一第一軸向施加該固定頻率的該方波電壓;f)偵測該馬達回授的三相電流並轉換為該第一軸向的一軸向電流;g)基於該固定頻率、該方波電壓的電壓值及該軸向電流的電流值計算該第一軸向的一第一電感值;及h)依據該第一電感值及其對應的該電流值建立並儲存電感對電流的一參數表單。 In one embodiment of the present invention, the method for obtaining parameters of a synchronous motor includes the following steps: a) setting an operating current value of a motor; b) continuously providing a positive fixed voltage to the motor by a frequency converter and detecting A feedback current of the motor; c) Record a touch time when the feedback current touches the operating current value, and continue to provide a negative fixed voltage to the motor for the touch time; d) Based on the positive fixed voltage and the A negative fixed voltage obtains a square wave voltage of a fixed frequency; e) applies the square wave voltage of the fixed frequency to a first axis of the motor; f) detects the three-phase current fed back by the motor and converts it into the third an axial current in an axial direction; g) calculating a first inductance value in the first axial direction based on the fixed frequency, the voltage value of the square wave voltage and the current value of the axial current; and h) based on the first An inductor value and its corresponding current value create and store a parameter table of inductor versus current.

於本發明的另一個實施例中,所述獲取同步馬達參數的方法包括下列步驟:a1)由一變頻器對一馬達的直軸注入一直流電流,以令該馬達的轉子位於一測量位置;a2)對該馬達的直軸提供具有一固定頻率的一方波電壓;a3)偵測該馬達回授的三相電流並轉換為一直軸電流;a4)基於該固定頻率、該方波電壓的電壓值及該直軸電流的電流值計算的一直軸自感值;a5)於一預設週期數量或一預設時間經過前持續執行該步驟a1)至該步驟a4);a6)於該預設週期數量或該預設時間經過後,依據複數該直軸自感值及各該直軸自感值對應的該電流值建立並儲存一直軸自感參數表單;b1)於該步驟a6)後,由該變頻器對該馬達的直軸注入該直流電流,以令該馬達的轉子位於該測量位置;b2)對該馬達的交軸提供具有該固定頻率的該方波電壓;b3)偵測該馬達回授的三相電流並轉換為一交軸電流;b4)基於該固定頻率、該方波電壓的電壓值及該交軸電流的電流值計算的一交軸自感值;b5)於該預設週期數量或該預設時間經過前持續執行該步驟b1)至該步驟b4);及b6)於該預設週期數量或該預設時間經過後,依據複數該交軸自感值及各該交軸自感值對應的該電流值建立並儲存一交軸自感參數表單。 In another embodiment of the present invention, the method for obtaining parameters of a synchronous motor includes the following steps: a1) injecting a direct current into the direct axis of a motor from a frequency converter to position the rotor of the motor at a measurement position; a2) Provide a square wave voltage with a fixed frequency to the direct axis of the motor; a3) Detect the three-phase current fed back by the motor and convert it into a direct axis current; a4) A voltage based on the fixed frequency and the square wave voltage The direct axis self-inductance value calculated from the value and the current value of the direct axis current; a5) Continue to perform step a1) to step a4) before a preset number of cycles or a preset time elapses; a6) Before the preset number of cycles or a preset time elapses, After the number of cycles or the preset time has elapsed, a direct-axis self-inductance parameter table is created and stored based on the plurality of direct-axis self-inductance values and the current value corresponding to each direct-axis self-inductance value; b1) after step a6), The frequency converter injects the DC current into the direct axis of the motor so that the rotor of the motor is at the measurement position; b2) provides the square wave voltage with the fixed frequency to the quadrature axis of the motor; b3) detects the The three-phase current fed back by the motor is converted into a quadrature-axis current; b4) a quadrature-axis self-inductance value calculated based on the fixed frequency, the voltage value of the square wave voltage and the current value of the quadrature-axis current; b5) in the Continue to execute step b1) to step b4) before the preset number of cycles or the preset time elapses; and b6) after the preset number of cycles or the preset time elapses, based on the plurality of quadrature self-inductance values and each The current value corresponding to the quadrature-axis self-inductance value creates and stores a quadrature-axis self-inductance parameter table.

本發明相較於相關技術所能達到的技術功效在於,變頻器可以在極短時間內為馬達建立電流-電感參數表單。藉此,變頻器在對馬達進行控制時,可以獲得更好的控制性能,並同時解決電流振盪的問題。 Compared with related technologies, the technical effect achieved by the present invention is that the frequency converter can establish a current-inductance parameter table for the motor in a very short time. In this way, the frequency converter can obtain better control performance when controlling the motor and solve the problem of current oscillation at the same time.

1:變頻器 1: Frequency converter

11:微控制單元 11:Micro control unit

12:參數表單 12:Parameter form

2:馬達 2: Motor

3:回授電流 3: Feedback current

30:操作電流值 30: Operating current value

4:方波電壓 4: Square wave voltage

41:正固定電壓 41: Positive fixed voltage

42:負固定電壓 42: Negative fixed voltage

50:測量波形 50: Measure waveform

51:直軸自感學習實驗波形 51: Direct axis self-induction learning experimental waveform

52:交軸自感學習實驗波形 52: Quadrature axis self-induction learning experimental waveform

53:直軸互感學習實驗波形 53: Direct axis mutual inductance learning experimental waveform

54:交軸互感學習實驗波形 54: Cross-axis mutual inductance learning experimental waveform

55:轉子對位實驗波形 55: Rotor alignment experimental waveform

6:回授電流 6:Feedback current

7:電流-電感對應關係 7: Current-inductance correspondence relationship

S10~S20:自學習步驟 S10~S20: Self-learning steps

S30~S50、S60~S70:測量步驟 S30~S50, S60~S70: Measurement steps

圖1為本發明的控制架構示意圖的具體實施例。 Figure 1 is a specific embodiment of a schematic diagram of the control architecture of the present invention.

圖2為本發明的自學習流程圖的具體實施例。 Figure 2 is a specific embodiment of the self-learning flow chart of the present invention.

圖3為本發明的測量流程圖的第一具體實施例。 Figure 3 is a first specific embodiment of the measurement flow chart of the present invention.

圖4為本發明的測量流程圖的第二具體實施例。 Figure 4 is a second specific embodiment of the measurement flow chart of the present invention.

圖5為本發明的方波電壓示意圖的具體實施例。 Figure 5 is a specific embodiment of the square wave voltage schematic diagram of the present invention.

圖6為本發明的回授電流示意圖的第一具體實施例。 FIG. 6 is a schematic diagram of the feedback current according to the first specific embodiment of the present invention.

圖7為本發明的回授電流示意圖的第二具體實施例。 Figure 7 is a second specific embodiment of the feedback current schematic diagram of the present invention.

圖8為本發明的自學習波形示意圖的具體實施例。 Figure 8 is a specific embodiment of the self-learning waveform schematic diagram of the present invention.

圖9為本發明的電流-電感參數示意圖的具體實施例。 Figure 9 is a specific embodiment of the current-inductance parameter diagram of the present invention.

茲就本發明之一較佳實施例,配合圖式,詳細說明如後。 A preferred embodiment of the present invention is described in detail below with reference to the drawings.

首請參閱圖1,為本發明的控制架構示意圖的具體實施例。本發明揭露了一種獲取同步馬達參數的方法,所述方法主要應用在對馬達2進行控制的驅動器或變頻器1中。為便於理解,下面將以利用變頻器1來實現本發明的方法為例,進行說明。 First, please refer to FIG. 1 , which is a schematic diagram of the control architecture of a specific embodiment of the present invention. The present invention discloses a method for obtaining parameters of a synchronous motor. The method is mainly used in a driver or frequency converter 1 that controls a motor 2 . For ease of understanding, the method of implementing the present invention using the frequency converter 1 will be taken as an example for description below.

藉由在對馬達2進行控制前先透過測量來獲得馬達2的參數(本發明以電感值為例),變頻器1在實際控制馬達2時,可參考測量所得的參數,藉此達到更好的控制性能(容後詳述)。 By obtaining the parameters of motor 2 through measurement before controlling motor 2 (the present invention takes the inductance value as an example), inverter 1 can refer to the measured parameters when actually controlling motor 2, thereby achieving better results. control performance (described in detail later).

值得一提的是,本發明的方法可透過變頻器1來應用在各式的同步馬達上,而不限於馬達的形式。 It is worth mentioning that the method of the present invention can be applied to various synchronous motors through the frequency converter 1, and is not limited to the form of the motor.

本發明的方法是控制變頻器1於馬達2上已知的轉子位置注入具有固定頻率的方波電壓,並監控馬達2的回授電流,最後再透過方程式計算出對應的電感值。為了實現在變頻器1上,本發明的方法主要可透過電腦可讀取程式碼來實現,並且記錄於變頻器1的微控制單元11中。當變頻器1透過微控制單元11執行所述電腦可讀取程式碼後,即可控制當前所搭配的馬達2來共同實現本發明的方法。 The method of the present invention is to control the frequency converter 1 to inject a square wave voltage with a fixed frequency at a known rotor position on the motor 2, monitor the feedback current of the motor 2, and finally calculate the corresponding inductance value through the equation. In order to be implemented on the frequency converter 1 , the method of the present invention can be mainly implemented through a computer readable program code and recorded in the micro control unit 11 of the frequency converter 1 . When the frequency converter 1 executes the computer-readable program code through the micro control unit 11, it can control the currently matched motor 2 to jointly implement the method of the present invention.

續請參閱圖2,為本發明的自學習流程圖的具體實施例。如上所述,本發明的技術方案是由變頻器1在確定了一個符合條件的頻率(下面稱為固定頻率)後,對馬達2提供具有這個固定頻率的方波電壓,並且在提供方波電壓的期間持續偵測馬達2的回授電流,並且基於同一週期內的頻率、電壓值及電流值來計算出對應的電感值。於本發明中,將上述程序稱為電感的自學習(Auto-tuning)程序。 Please continue to refer to Figure 2, which is a specific embodiment of the self-learning flow chart of the present invention. As mentioned above, the technical solution of the present invention is that after the frequency converter 1 determines a qualified frequency (hereinafter referred to as a fixed frequency), it provides a square wave voltage with this fixed frequency to the motor 2, and then provides the square wave voltage. During the period, the feedback current of the motor 2 is continuously detected, and the corresponding inductance value is calculated based on the frequency, voltage value and current value within the same period. In the present invention, the above procedure is called an inductor auto-tuning procedure.

一般來說,馬達2具備有直軸(又稱為D軸)以及交軸(又稱為Q軸)。於圖2的實施例中,變頻器1先透過本發明的方法對馬達2執行直軸自感學習程序(步驟S10)。於記錄了所需數值範圍或數量的直軸自感值(D-axis self-inductance)後,變頻器1再透過相同方法對馬達2執行交軸自感學習程 序(步驟S12),以記錄所需數值範圍或數量的交軸自感值(Q-axis self-inductance)。 Generally speaking, the motor 2 has a direct axis (also called a D-axis) and a quadrature axis (also called a Q-axis). In the embodiment of FIG. 2 , the frequency converter 1 first performs the direct-axis self-inductance learning process on the motor 2 through the method of the present invention (step S10 ). After recording the required value range or number of direct-axis self-inductance values (D-axis self-inductance), inverter 1 then performs the quadrature-axis self-inductance learning process on motor 2 through the same method. Step S12) to record the Q-axis self-inductance value in the required value range or number.

於上述的自感學習程序(包括直軸自感學習程序及交軸自感學習程序)完成後,變頻器1基於內部設定值來判斷是否需要執行互感學習程序(步驟S14)。 After the above-mentioned self-inductance learning program (including the direct-axis self-inductance learning program and the quadrature-axis self-inductance learning program) is completed, the inverter 1 determines whether it is necessary to execute the mutual inductance learning program based on the internal setting value (step S14).

具體地,部分馬達的互感效應不強,即使未獲得互感對應參數,在對馬達進行控制時亦不會對效能產生太大影響。於此情況下,使用者可以對變頻器1的設定值進行設定,使得變頻器1不執行互感學習程序。 Specifically, the mutual inductance effect of some motors is not strong. Even if the mutual inductance corresponding parameters are not obtained, the performance will not be greatly affected when the motor is controlled. In this case, the user can set the setting value of the frequency converter 1 so that the frequency converter 1 does not execute the mutual inductance learning process.

若變頻器1基於當前搭配的馬達2的特性或資料或是內部設定值,判斷需要執行互感學習程序,則變頻器1會先對馬達2執行直軸互感學習程序(步驟S16),以獲得所需數值範圍或數量的直軸互感值(D-axis mutual inductance),接著再對馬達2執行交軸互感學習程序(步驟S18),以獲得所需數值範圍或數量的交軸互感值(Q-axis mutual inductance)。 If the frequency converter 1 determines that it needs to execute the mutual inductance learning program based on the characteristics or data of the currently matched motor 2 or the internal setting value, the frequency converter 1 will first execute the direct-axis mutual inductance learning program for the motor 2 (step S16) to obtain the required values. A required numerical range or number of direct-axis mutual inductance values (D-axis mutual inductance) is then performed on the motor 2 (step S18) to obtain the required numerical range or number of quadrature-axis mutual inductance values (Q- axis mutual inductance).

如前文所述,本發明在將方波電壓注入馬達2以執行上述學習程序前,還需要先注入特定的直流電流給馬達2,以令馬達2的轉子可以位於所需的測量位置上。換句話說,需要對馬達2的轉子位置進行估測,以確定馬達2的轉子確實位於所需的測量位置上。因此,在上述自感學習程序與互感學習程序皆完成後,變頻器1對馬達2執行轉子對位程序(步驟S20),以令轉子恢復至初始位置。 As mentioned above, before injecting the square wave voltage into the motor 2 to perform the above learning procedure, the present invention also needs to inject a specific DC current into the motor 2 so that the rotor of the motor 2 can be located at the required measurement position. In other words, the position of the rotor of the motor 2 needs to be estimated to confirm that the rotor of the motor 2 is indeed at the required measurement position. Therefore, after the above-mentioned self-inductance learning procedure and mutual inductance learning procedure are completed, the inverter 1 performs the rotor alignment procedure (step S20) on the motor 2 to restore the rotor to the initial position.

於步驟S20後,變頻器1即可參考經由上述直軸自感學習程序、交軸自感學習程序、直軸互感學習程序以及交軸互感學習程序所獲得的直軸自 感值、交軸自感值、直軸互感值及交軸互感值來對馬達2進行控制,以提昇控制效能。 After step S20, the frequency converter 1 can refer to the direct axis self-inductance learning procedure, the quadrature axis self-inductance learning procedure, the direct axis mutual inductance learning procedure and the quadrature axis mutual inductance learning procedure. The motor 2 is controlled by the inductance value, the quadrature axis self-inductance value, the direct axis mutual inductance value and the quadrature axis mutual inductance value to improve the control efficiency.

具體地,本發明主要是由變頻器1執行相近似的步驟,來分別實現所述直軸自感學習程序、交軸自感學習程序、直軸互感學習程序及交軸互感學習程序,差異在於變頻器1需要提供方波電壓至馬達2的直軸或是交軸,以及在提供方波電壓至馬達2的其中一軸(直軸或是交軸)前,是否需要先對另一軸進行激磁(容後詳述)。並且,在執行上述學習程序時,變頻器1需要對當前搭配的馬達2進行測量,以獲得要在學習程序中使用的方波電壓,以及方波電壓需採用的固定頻率。 Specifically, the present invention mainly uses the frequency converter 1 to perform similar steps to respectively implement the direct axis self-inductance learning program, the quadrature axis self-inductance learning program, the direct axis mutual inductance learning program and the quadrature axis mutual inductance learning program. The difference is that Inverter 1 needs to provide square wave voltage to the direct axis or quadrature axis of motor 2, and before providing square wave voltage to one of the axes of motor 2 (direct axis or quadrature axis), does it need to excite the other axis first ( More details later). Moreover, when executing the above learning program, the frequency converter 1 needs to measure the currently matched motor 2 to obtain the square wave voltage to be used in the learning program and the fixed frequency that the square wave voltage needs to use.

請參閱圖3,為本發明的測量流程圖的第一具體實施例。圖3揭露了本發明的方法的具體實施步驟,這些步驟主要以電腦可執行程式碼的方式記錄於變頻器1的微控制單元11中。當微控制單元11執行了電腦可執行程式碼後,可控制馬達2來執行圖3所示的各步驟。 Please refer to Figure 3, which is a first specific embodiment of the measurement flow chart of the present invention. Figure 3 discloses the specific implementation steps of the method of the present invention. These steps are mainly recorded in the micro control unit 11 of the frequency converter 1 in the form of computer executable program code. After the micro control unit 11 executes the computer executable program code, it can control the motor 2 to execute each step shown in FIG. 3 .

如圖3所示,在要執行馬達2的學習程序前,變頻器1需先設定馬達2的操作電流值(步驟S30)。於一實施例中,所述操作電流值指的是馬達2的最大可操作電流值。 As shown in Figure 3, before executing the learning program of motor 2, inverter 1 needs to set the operating current value of motor 2 (step S30). In one embodiment, the operating current value refers to the maximum operable current value of the motor 2 .

具體地,不同的馬達具有不同的轉數、瓦數及極數等參數,使用者可以依據自己想要實現的操控方式來設定馬達2的最大可操作電流值。於一實施例中,所述最大可操作電流值可與變頻器1的電流限制正相關,並可依據變頻器1及馬達2所在環境的工況及實際需求而定。於另一實施例中,所述最大可操作電流值可例如設定為變頻器1額定電流的170%,但不以此為限。 Specifically, different motors have different parameters such as rotational speed, wattage, and pole number. The user can set the maximum operable current value of the motor 2 according to the control method he wants to achieve. In one embodiment, the maximum operable current value may be directly related to the current limit of the frequency converter 1 and may be determined based on the operating conditions and actual needs of the environment where the frequency converter 1 and the motor 2 are located. In another embodiment, the maximum operable current value may be set to, for example, 170% of the rated current of the frequency converter 1, but is not limited to this.

在確定了馬達2的操作電流值後,變頻器1接著持續對馬達2提供正固定電壓,並且於提供正固定電壓的期間持續偵測馬達2的回授電流(步驟S32)。 After determining the operating current value of the motor 2, the inverter 1 then continues to provide a positive fixed voltage to the motor 2, and continues to detect the feedback current of the motor 2 during the period of providing the positive fixed voltage (step S32).

馬達2在接受正固定電壓的期間,其回授電流會持續提昇。此時,變頻器1持續判斷馬達2的回授電流是否觸及預先設定的操作電流值(步驟S34)。在馬達2的回授電流觸及操作電流值前,變頻器1持續執行步驟S32,以持續提供正固定電壓並持續偵測馬達2的回授電流。 While motor 2 receives a positive fixed voltage, its feedback current will continue to increase. At this time, the inverter 1 continues to determine whether the feedback current of the motor 2 reaches the preset operating current value (step S34). Before the feedback current of the motor 2 reaches the operating current value, the inverter 1 continues to execute step S32 to continue to provide a positive fixed voltage and continue to detect the feedback current of the motor 2 .

於判斷馬達2的回授電流觸及到操作電流值時,變頻器1記錄馬達2從變頻器1開始提供正固定電壓直到其回授電流觸及操作電流值之間的一段觸及時間(步驟S36)。接著,變頻器1停止提供正固定電壓給馬達2,並且轉而提供負固定電壓給馬達2,並且令提供負固定電壓的時間達到在步驟S36中記錄的觸及時間(步驟S38)。 When it is determined that the feedback current of the motor 2 reaches the operating current value, the inverter 1 records a touch time from when the inverter 1 starts to provide a positive fixed voltage until the feedback current of the motor 2 reaches the operating current value (step S36). Next, the inverter 1 stops providing the positive fixed voltage to the motor 2, and instead supplies the negative fixed voltage to the motor 2, and the time for providing the negative fixed voltage reaches the touch time recorded in step S36 (step S38).

本發明中,正固定電壓與負固定電壓為大小相同、相位相反的電壓。於一實施例中,正固定電壓與負固定電壓的電壓絕對值相等於變頻器1的相電壓最大值。 In the present invention, the positive fixed voltage and the negative fixed voltage are voltages with the same magnitude and opposite phases. In one embodiment, the absolute values of the positive fixed voltage and the negative fixed voltage are equal to the maximum phase voltage of the frequency converter 1 .

具體地,所述相電壓最大值與變頻器1的使用環境相關,例如不同的工廠可以提供給變頻器1的交流入力電壓皆不同,是以,不同的使用環境以及不同類型的變頻器1,可能會有不同的相電壓最大值,故而所述正固定電壓與負固定電壓也就不同。交流入力電壓與相電壓的轉換手段為本技術領域的通常知識,於此不再贅述。 Specifically, the maximum value of the phase voltage is related to the use environment of the frequency converter 1. For example, different factories can provide different AC input voltages to the frequency converter 1. Therefore, different use environments and different types of frequency converters 1, There may be different maximum phase voltages, so the positive fixed voltage and the negative fixed voltage are also different. The means for converting the AC input voltage and the phase voltage are common knowledge in the technical field and will not be described in detail here.

於步驟S38後,變頻器1即可基於提供給馬達2的正固定電壓以及負固定電壓來獲得一個方波電壓,並且基於正固定電壓以及負固定電壓的提 供時間長度(即上述的觸及時間)來獲得方波電壓的固定頻率(步驟S40)。其中,方波電壓的電壓值對應至正固定電壓與負固定電壓的電壓值,而固定頻率為所述觸及時間的兩倍之倒數。 After step S38, the frequency converter 1 can obtain a square wave voltage based on the positive fixed voltage and the negative fixed voltage provided to the motor 2, and based on the positive fixed voltage and the negative fixed voltage. A length of time (ie, the above-mentioned touch time) is provided to obtain the fixed frequency of the square wave voltage (step S40). The voltage value of the square wave voltage corresponds to the voltage value of the positive fixed voltage and the negative fixed voltage, and the fixed frequency is the reciprocal of twice the touch time.

請同時參閱圖5,為本發明的方波電壓示意圖的具體實施例。於圖5的實施例中,正固定電壓41為+266V,負固定電壓42為-266V。 Please also refer to FIG. 5 , which is a specific embodiment of the square wave voltage schematic diagram of the present invention. In the embodiment of FIG. 5 , the positive fixed voltage 41 is +266V, and the negative fixed voltage 42 is -266V.

如圖5所示,變頻器1開始提供正固定電壓41給馬達2後,馬達2的回授電流3開始上昇。當馬達2的回授電流3上昇至預設定的操作電流值30時,變頻器1記錄回授電流3達到操作電流值30所耗費的觸及時間(圖5中以4.6ms為例)。同時,變頻器1停止提供正固定電壓41,並且開始提供負固定電壓42給馬達2。 As shown in Figure 5, after the inverter 1 starts to provide a positive fixed voltage 41 to the motor 2, the feedback current 3 of the motor 2 starts to rise. When the feedback current 3 of the motor 2 rises to the preset operating current value 30, the frequency converter 1 records the time it takes for the feedback current 3 to reach the operating current value 30 (take 4.6ms as an example in Figure 5). At the same time, the frequency converter 1 stops providing the positive fixed voltage 41 and starts to provide the negative fixed voltage 42 to the motor 2 .

本發明中,變頻器1提供負固定電壓42的時間長度相同於提供正固定電壓41的時間長度,於圖5的實施例中是以4.6ms為例。藉此,變頻器1可基於正固定電壓41與負固定電壓42來獲得一個完整的方波電壓4,並且方波電壓4的頻率為所述觸及時間的兩倍之倒數,於圖5的實施例中約為108.7Hz(1/(4.6ms+4.6ms))。後續變頻器1在進行馬達2的電感值的測量時,都會施加具有這個頻率的方波電壓4至馬達2中。 In the present invention, the time length for which the frequency converter 1 provides the negative fixed voltage 42 is the same as the time length for providing the positive fixed voltage 41. In the embodiment of FIG. 5, 4.6 ms is taken as an example. Thereby, the frequency converter 1 can obtain a complete square wave voltage 4 based on the positive fixed voltage 41 and the negative fixed voltage 42, and the frequency of the square wave voltage 4 is the reciprocal of twice the touch time. In the implementation of FIG. 5 In the example, it is about 108.7Hz (1/(4.6ms+4.6ms)). When subsequent inverter 1 measures the inductance value of motor 2, it will apply a square wave voltage 4 with this frequency to motor 2.

回到圖3。於步驟S40後,變頻器1獲得了一個適用於此馬達2的方波電壓4及其固定頻率。接著,變頻器1對馬達2的兩軸中的第一軸向施加具有此固定頻率的方波電壓4(步驟S42),並且於施加期間持續偵測馬達2回授的三相電流,並且將三相電流轉換為第一軸向的軸向電流(步驟S44)。 Return to Figure 3. After step S40, the frequency converter 1 obtains a square wave voltage 4 suitable for the motor 2 and its fixed frequency. Then, the frequency converter 1 applies the square wave voltage 4 with the fixed frequency to the first axis of the two axes of the motor 2 (step S42), and during the application period, the inverter 1 continues to detect the three-phase current fed back by the motor 2, and The three-phase current is converted into an axial current in the first axial direction (step S44).

上述第一軸向可為馬達2的直軸或交軸,但不加以限定。 The above-mentioned first axial direction may be the direct axis or the orthogonal axis of the motor 2, but is not limited thereto.

於一組方波電壓4施加完畢後(即,固定頻率經過後),變頻器1基於固定頻率、方波電壓的電壓值以及軸向電流的電流值來計算第一軸向的第一電感值(步驟S46)。並且,變頻器1可以依據第一電感值以及其所對應的軸向電流的電流值來建立電感對電流的參數表單,並記錄於記憶體中(例如圖1所示的參數表單12)。若變頻器1是針對馬達2的直軸執行學習程序,則所述第一軸向為直軸,第一電感值為直軸電感值。若變頻器1是針對馬達2的交軸執行學習程序,則所述第一軸向為交軸,第一電感值為交軸電感值。 After a set of square wave voltages 4 is applied (that is, after the fixed frequency has passed), the frequency converter 1 calculates the first inductance value in the first axis based on the fixed frequency, the voltage value of the square wave voltage, and the current value of the axial current. (Step S46). Moreover, the frequency converter 1 can establish a parameter table of the inductor versus the current based on the first inductance value and its corresponding current value of the axial current, and record it in the memory (for example, the parameter table 12 shown in FIG. 1 ). If the frequency converter 1 executes the learning procedure for the direct axis of the motor 2, the first axis is the direct axis, and the first inductance value is the direct axis inductance value. If the frequency converter 1 executes the learning procedure for the quadrature axis of the motor 2, the first axis is the quadrature axis, and the first inductance value is the quadrature axis inductance value.

本發明中,變頻器1於一段測量時間(例如0.5秒)中持續向馬達2的第一軸向提供固定頻率的方波電壓4。若以圖5的實施例為例(即,一個週期為9.2ms),則於所述測量時間內,變頻器1可提供至少54次的方波電壓4。 In the present invention, the frequency converter 1 continues to provide a square wave voltage 4 of a fixed frequency to the first axial direction of the motor 2 during a measurement period (for example, 0.5 seconds). Taking the embodiment of FIG. 5 as an example (that is, one cycle is 9.2 ms), during the measurement time, the frequency converter 1 can provide at least 54 square wave voltages 4 .

隨著方波電壓4的注入,馬達2的回授電流3會慢慢提高,最後收斂至一個穩態的值。因此,藉由在測量時間中持續提供方波電壓4,變頻器1可以獲得一個區段內的多個電流點,進而可透過方程式計算各個電流點所對應的電感值。相較於相關技術需要針對所需的多個電流點分別進行測量的方式,本發明的方法可以有效縮短整體的測量時間(例如縮短至上述的0.5秒)。 With the injection of the square wave voltage 4, the feedback current 3 of the motor 2 will gradually increase and finally converge to a steady-state value. Therefore, by continuously providing the square wave voltage 4 during the measurement time, the frequency converter 1 can obtain multiple current points in a section, and then the inductance value corresponding to each current point can be calculated through the equation. Compared with related technologies that require separate measurements of multiple required current points, the method of the present invention can effectively shorten the overall measurement time (for example, to the above-mentioned 0.5 seconds).

在步驟S46後(即,一個週期結束),變頻器1判斷預設週期數量(例如50個週期或100個週期等)或預設時間(例如上述的0.5秒)是否經過(步驟S48)。若預設週期數量或預設時間尚未經過,則變頻器1回到步驟S42,以持續對馬達2的第一軸向提供固定頻率的方波電壓、偵測馬達2回授的三相電流並轉換為軸向電流,並且計算對應的第一電感值。如上所述,由於馬達2的回授電流會持續提昇最後收斂,因此變頻器1在每一個週期中偵測到的軸向電流都會不同,而計算所得的第一電感值也會不同。 After step S46 (that is, one cycle ends), the frequency converter 1 determines whether the preset number of cycles (for example, 50 cycles or 100 cycles, etc.) or the preset time (for example, the above-mentioned 0.5 seconds) has passed (step S48). If the preset number of cycles or the preset time has not passed, the frequency converter 1 returns to step S42 to continue to provide a square wave voltage of a fixed frequency to the first axis of the motor 2, detect the three-phase current fed back by the motor 2, and Convert to axial current, and calculate the corresponding first inductance value. As mentioned above, since the feedback current of motor 2 will continue to increase and finally converge, the axial current detected by inverter 1 will be different in each cycle, and the calculated first inductance value will also be different.

若於步驟S48中判斷預設週期數量或預設時間已經過,則變頻器1可以依據計算所得的複數筆第一電感值以及各個第一電感值所對應的電流值來建立電感對電流的參數表單12(步驟S50)。本發明中,所述參數表單12中記錄的複數第一電感值會隨著對應的電流點而形成一個曲線變化(例如圖9所示),也就是說每一個被測量過的電流點都會記錄有一個對應的電感值。 If it is determined in step S48 that the preset number of cycles or the preset time has elapsed, the frequency converter 1 can establish the parameters of the inductance versus current based on the calculated plurality of first inductance values and the current values corresponding to each first inductance value. Form 12 (step S50). In the present invention, the plurality of first inductance values recorded in the parameter table 12 will form a curve change with the corresponding current point (for example, as shown in Figure 9), that is to say, each measured current point will be recorded There is a corresponding inductance value.

於一實施例中,變頻器1於步驟S46中主要是基於方波電壓4的固定頻率、方波電壓4的電壓值以及軸向電流的電流值執行阻抗法(Electrochemistry Impedance Spectroscopy,EIS),以計算馬達2在的第一軸相對於這個軸向電流的第一電感值。 In one embodiment, in step S46, the frequency converter 1 mainly performs the impedance method (Electrochemistry Impedance Spectroscopy, EIS) based on the fixed frequency of the square wave voltage 4, the voltage value of the square wave voltage 4 and the current value of the axial current, so as to Calculate the first inductance value of the first axis of the motor 2 relative to this axial current.

值得一提的是,所述阻抗法的相關計算方程式主要是應用於弦波的情境,本發明中變頻器1是提供方波電壓4給馬達2,因此計算方式與弦波具有些許落差。於一實施例中,變頻器1於步驟S46中是基於方波電壓4的固定頻率、方波電壓4的電壓值、軸向電流的電流值以及一個調整增益(Adjustment Gain,AG)來執行阻抗法,以計算馬達2的第一軸相對於這個軸向電流的第一電感值。其中,所述調整增益用來將方波參數轉換為弦波參數,使得所述阻抗法可以被有效應用在本發明的方法中。 It is worth mentioning that the relevant calculation equations of the impedance method are mainly applied to the situation of sinusoidal waves. In the present invention, the frequency converter 1 provides a square wave voltage 4 to the motor 2, so the calculation method is slightly different from that of sinusoidal waves. In one embodiment, the frequency converter 1 performs impedance adjustment based on the fixed frequency of the square wave voltage 4 , the voltage value of the square wave voltage 4 , the current value of the axial current and an adjustment gain (Adjustment Gain, AG) in step S46 Method to calculate the first inductance value of the first axis of the motor 2 relative to this axial current. Wherein, the adjusting gain is used to convert square wave parameters into sinusoidal wave parameters, so that the impedance method can be effectively applied in the method of the present invention.

於一實施例中,變頻器1透過下列第一公式計算第一電感值:

Figure 111137179-A0305-02-0013-1
In one embodiment, the frequency converter 1 calculates the first inductance value through the following first formula:
Figure 111137179-A0305-02-0013-1

於上述第一公式中,Z為馬達2的阻抗、Vrms為方波電壓4的均方根值、Irms為軸向電流的均方根值、AG為調整增益、Rs為電阻值、w為方波電壓4的固定頻率,而L為第一電感值。 In the above first formula, Z is the impedance of the motor 2, Vrms is the root mean square value of the square wave voltage 4, Irms is the root mean square value of the axial current, AG is the adjustment gain, Rs is the resistance value, and w is the square The fixed frequency of the wave voltage 4, and L is the first inductance value.

若以Vrms為273.5V、Irms為0.7523A、Rs為6.04、觸及時間為4.4ms,而AG為

Figure 111137179-A0305-02-0014-5
為例,變頻器1可依據下列方程式解出此軸向電流所對應的第一電感值。
Figure 111137179-A0305-02-0014-2
If Vrms is 273.5V, Irms is 0.7523A, Rs is 6.04, touch time is 4.4ms, and AG is
Figure 111137179-A0305-02-0014-5
For example, the frequency converter 1 can solve the first inductance value corresponding to the axial current according to the following equation.
Figure 111137179-A0305-02-0014-2

Figure 111137179-A0305-02-0014-3
Figure 111137179-A0305-02-0014-3

Figure 111137179-A0305-02-0014-4
Figure 111137179-A0305-02-0014-4

惟,上述僅為本發明的其中一個具體實施範例。 However, the above is only one specific implementation example of the present invention.

值得一提的是,無論是對馬達2執行直軸自感學習程序或是交軸自感學習程序,變頻器1都是使用相同的方法(即,圖3所示的各步驟),差異在於在步驟S42中是對直軸提供方波電壓4還是對交軸提供方波電壓4,以及將在步驟S44中是將馬達2的三相電流轉換為直軸電流或交軸電流。 It is worth mentioning that whether the direct-axis self-inductance learning program or the quadrature-axis self-induction learning program is performed on motor 2, inverter 1 uses the same method (i.e., the steps shown in Figure 3). The difference is that In step S42, whether to provide the square wave voltage 4 to the direct axis or to the quadrature axis, and in step S44, whether to convert the three-phase current of the motor 2 into a direct axis current or a quadrature axis current.

請參閱圖6及圖7,其中圖6為本發明的回授電流示意圖的第一具體實施例,圖7為本發明的回授電流示意圖的第二具體實施例。圖6揭示了將±273.5的方波電壓4提供至馬達2的直軸達8.8ms後所獲得的電流波形圖,圖7則揭示了將±273.5的方波電壓4提供至馬達2的交軸達4.8ms後所獲得的電流波形圖。 Please refer to FIGS. 6 and 7 , where FIG. 6 is a first specific embodiment of a feedback current schematic diagram of the present invention, and FIG. 7 is a second specific embodiment of a feedback current schematic diagram of the present invention. Figure 6 reveals the current waveform obtained after supplying a square wave voltage 4 of ±273.5 to the direct axis of the motor 2 for 8.8ms, and Figure 7 reveals a square wave voltage 4 of ±273.5 being supplied to the quadrature axis of the motor 2 The current waveform obtained after reaching 4.8ms.

由圖6及圖7可看出,當變頻器1對馬達2的直軸提供方波電壓4時,可以從馬達2的直軸偵測到以三角波形式呈現的回授電流6。而當變頻器1對馬達2的交軸提供方波電壓4時,可以從馬達2的交軸偵測到以三角波形式呈現的回授電流6。 It can be seen from Figure 6 and Figure 7 that when the frequency converter 1 provides a square wave voltage 4 to the direct axis of the motor 2, a feedback current 6 in the form of a triangular wave can be detected from the direct axis of the motor 2. When the frequency converter 1 provides a square wave voltage 4 to the quadrature axis of the motor 2, a feedback current 6 in the form of a triangular wave can be detected from the quadrature axis of the motor 2.

如上所述,由於變頻器1提供的是方波電壓4,因此回授電流6的形式以三角波的樣態呈現。若要透過上述阻抗法來計算直軸電流/交軸電流所對應的直軸自感值與交軸自感值,則變頻器1必須於上述方程式中乘上將方波參數轉換為弦波參數的調整增益。 As mentioned above, since the frequency converter 1 provides a square wave voltage 4, the feedback current 6 is in the form of a triangular wave. To calculate the direct-axis self-inductance value and the quadrature-axis self-inductance value corresponding to the direct-axis current/quadrature-axis current through the above impedance method, the frequency converter 1 must multiply the square wave parameters into sinusoidal wave parameters in the above equation adjustment gain.

另,當變頻器1透過方波電壓4對馬達2執行直軸互感學習程序與交軸互感學習程序時,亦可獲得與圖6及圖7相似的波形圖,故於此處不再贅述。 In addition, when the frequency converter 1 performs the direct-axis mutual inductance learning procedure and the quadrature-axis mutual inductance learning procedure on the motor 2 through the square wave voltage 4, waveform diagrams similar to those in Figures 6 and 7 can also be obtained, so they will not be described again here.

如前文所述,本發明是在馬達2的已知轉子位置注入方波電壓4,並藉由每一個週期取得的回授電流來計算對應的電感值。若變頻器1在不激磁交軸的情況下對直軸提供方波電壓4,就可以經由計算獲得直軸的自感值;若變頻器1在不激磁直軸的情況下對交軸提供方波電壓4,就可以經由計算獲得交軸的自感值。另一方面,若變頻器1先對馬達2的另一軸進行激磁後,再對主要軸向提供方波電壓4,則變頻器1還可以經由計算來獲得馬達2的直軸互感值與交軸互感值。 As mentioned above, the present invention injects a square wave voltage 4 at a known rotor position of the motor 2, and calculates the corresponding inductance value based on the feedback current obtained in each cycle. If the frequency converter 1 provides square wave voltage 4 to the direct axis without exciting the quadrature axis, the self-inductance value of the direct axis can be obtained through calculation; if the frequency converter 1 provides square wave voltage 4 to the quadrature axis without exciting the direct axis, If the wave voltage is 4, the self-inductance value of the quadrature axis can be obtained through calculation. On the other hand, if the frequency converter 1 first excites the other axis of the motor 2 and then provides the square wave voltage 4 to the main axis, the frequency converter 1 can also obtain the direct axis mutual inductance value and the quadrature axis value of the motor 2 through calculation. Mutual inductance value.

續請參閱圖4,為本發明的測量流程圖的第二具體實施例。圖4揭露了變頻器1在對馬達2進行電感值的測量時的具體步驟,並且圖4所示的步驟同時適用於測量馬達2的直軸自感值、交軸自感值、直軸互感值及交軸互感值。 Please continue to refer to Figure 4, which is a second specific embodiment of the measurement flow chart of the present invention. Figure 4 reveals the specific steps of inverter 1 when measuring the inductance value of motor 2, and the steps shown in Figure 4 are also applicable to measuring the direct-axis self-inductance value, quadrature-axis self-inductance value, and direct-axis mutual inductance of motor 2 value and the cross-axis mutual inductance value.

如圖4所示,本發明在進行測量時,是由變頻器1於馬達2的已知轉子位置上注入方波電壓4,因此首先,變頻器1需對馬達2的主要軸向(下稱第一軸向)注入直流電流,以令馬達2的轉子位於所需的一個測量位置(步驟S60)。於一實施例中,馬達2的轉子只有一個測量位置,因此無論變頻器1本次 是要測量馬達2的直軸自感值、交軸自感值、直軸互感值或交軸互感值,變頻器1於步驟S60中都是對馬達2的直軸注入直流電流。 As shown in Figure 4, when the present invention performs measurement, the frequency converter 1 injects a square wave voltage 4 at the known rotor position of the motor 2. Therefore, first, the frequency converter 1 needs to measure the main axial direction of the motor 2 (hereinafter referred to as Direct current is injected into the first axis (direction) to position the rotor of the motor 2 at a required measurement position (step S60). In one embodiment, the rotor of the motor 2 has only one measurement position, so no matter the frequency converter 1 is It is to measure the direct axis self-inductance value, the quadrature axis self-inductance value, the direct axis mutual inductance value or the quadrature axis mutual inductance value of the motor 2. In step S60, the inverter 1 injects DC current into the direct axis of the motor 2.

接著,變頻器1判斷本次是要執行自感學習程序或互感學習程序(步驟S62),意即,判斷本次要測量自感值或是互感值。 Next, the frequency converter 1 determines whether the self-inductance learning program or the mutual inductance learning program is to be executed this time (step S62), that is, it determines whether the self-inductance value or the mutual inductance value is to be measured this time.

值得一提的是,變頻器1執行自感學習程序與互感學習程序的動作可以是一樣的,差異在於在執行互感學習程序時,需要先對馬達2的另一個軸向進行激磁。 It is worth mentioning that the actions of the inverter 1 when executing the self-inductance learning program and the mutual inductance learning program can be the same. The difference is that when executing the mutual inductance learning program, the other axis of the motor 2 needs to be excited first.

如圖4所示,在步驟S60後,變頻器1判斷當前要執行的是自感學習程序或互感學習程序(步驟S62)。若是要執行互感學習程序,則變頻器1在提供方波電壓4給馬達2的第一軸向前,會先對馬達2的次要軸向(下稱第二軸向)注入激磁電流,以激磁第二軸向(步驟S64)。若是要執行自感學習程序,則變頻器1不需要激磁馬達2的第二軸向,意即,不需要執行步驟S64。 As shown in Figure 4, after step S60, the inverter 1 determines whether the self-inductance learning program or the mutual inductance learning program is currently being executed (step S62). If the mutual inductance learning program is to be executed, before inverter 1 provides the square wave voltage 4 to the first axis of motor 2, it will first inject the excitation current into the secondary axis of motor 2 (hereinafter referred to as the second axis) to The second axis is excited (step S64). If the self-inductance learning program is to be executed, the inverter 1 does not need to excite the second axis of the motor 2, that is, step S64 does not need to be executed.

舉例來說,若變頻器1要執行馬達2的直軸自感值或是交軸自感值的學習程序,則不需要執行步驟S64。若變頻器1要執行馬達2的直軸互感值的學習程序,則在步驟S64中會對馬達2的交軸注入直流電流以激磁交軸。若變頻器1要執行馬達2的交軸互感值的學習程序,則在步驟S64中會對馬達2的直軸注入直流電流以激磁直軸。 For example, if the frequency converter 1 wants to execute the learning procedure of the direct-axis self-inductance value or the quadrature-axis self-inductance value of the motor 2, step S64 does not need to be executed. If the frequency converter 1 wants to execute the learning procedure of the direct axis mutual inductance value of the motor 2, then in step S64, a direct current will be injected into the quadrature axis of the motor 2 to excite the quadrature axis. If the frequency converter 1 wants to execute the learning procedure of the quadrature-axis mutual inductance value of the motor 2, then in step S64, a direct current will be injected into the direct axis of the motor 2 to excite the direct axis.

接著,變頻器1對馬達2的第一軸向提供前述具有固定頻率的方波電壓4(步驟S66),並且記錄馬達2的回授電流(步驟S68)。藉此,變頻器1可以在每一個週期中依據頻率、電壓值及電流值計算出對應的電感值(步驟S70)。 Next, the inverter 1 provides the aforementioned square wave voltage 4 with a fixed frequency to the first axial direction of the motor 2 (step S66), and records the feedback current of the motor 2 (step S68). In this way, the frequency converter 1 can calculate the corresponding inductance value according to the frequency, voltage value and current value in each cycle (step S70).

本發明中,變頻器1在每一個週期中都會完整執行一次圖4所示的步驟S60至步驟S70。並且,如同圖3的步驟S42至步驟S48所示,變頻器1 經過多個週期的動作後,即可獲得多個電流點所對應的多個電感值,進而可以建立並儲存一個電感對電流的參數表單12。 In the present invention, the frequency converter 1 will completely execute step S60 to step S70 shown in Figure 4 once in each cycle. Moreover, as shown in steps S42 to S48 in Figure 3, the inverter 1 After multiple cycles of actions, multiple inductance values corresponding to multiple current points can be obtained, and then a parameter list 12 of inductance versus current can be created and stored.

於一實施例中,變頻器1在對馬達2進行控制前必須先執行自感學習程序,並且選擇性地執行互感學習程序。在執行自感學習程序時,較佳係先針對馬達2的直軸執行自感學習程序以建立直軸自感參數表單,接著再針對馬達2的交軸執行自感學習程序以建立交軸自感參數表單。 In one embodiment, the frequency converter 1 must first execute a self-inductance learning procedure and selectively execute a mutual inductance learning procedure before controlling the motor 2 . When executing the self-inductance learning program, it is best to first execute the self-induction learning program for the direct axis of motor 2 to establish the direct axis self-inductance parameter table, and then execute the self-induction learning program for the quadrature axis of motor 2 to establish the quadrature axis self-inductance parameter table. Sense parameter form.

具體地,若將變頻器1的實際執行動作套入圖4所示的流程圖中,則變頻器1會依序執行下列步驟: Specifically, if the actual execution actions of the frequency converter 1 are put into the flow chart shown in Figure 4, the frequency converter 1 will execute the following steps in sequence:

1.由變頻器1對馬達2的直軸注入直流電流,以令馬達2的轉子位於所需的測量位置。 1. The inverter 1 injects DC current into the direct axis of the motor 2 so that the rotor of the motor 2 is at the required measurement position.

2.由變頻器1判斷目前執行的是針對直軸的自感學習程序。 2. The inverter 1 determines that the self-induction learning program for the direct axis is currently being executed.

3.由變頻器1持續對馬達2的直軸提供具有固定頻率的方波電壓4,其中固定頻率是依據圖3所示的步驟S30至步驟S40的技術手段測量所得。 3. The frequency converter 1 continues to provide a square wave voltage 4 with a fixed frequency to the direct axis of the motor 2, where the fixed frequency is measured according to the technical means of steps S30 to S40 shown in Figure 3.

4.由變頻器1在提供方波電壓4的同時,持續偵測馬達2回授的三相電流,並且將三相電流轉換為針對直軸的直軸電流。 4. While the frequency converter 1 provides the square wave voltage 4, it continuously detects the three-phase current fed back by the motor 2, and converts the three-phase current into a direct-axis current for the direct axis.

5.於本週期結束時,基於固定頻率、方波電壓4的電壓值(Vrms)及直軸電流的電流值(Irms)計算對應的直軸自感值。 5. At the end of this cycle, calculate the corresponding direct-axis self-inductance value based on the fixed frequency, the voltage value (Vrms) of the square wave voltage 4 and the current value (Irms) of the direct-axis current.

6.由變頻器1判斷預設週期數量(例如100個週期)或是預設時間(例如0.5秒)是否經過。若預設週期數量或是預設時間尚未經過,則於下一個週期中再次執行上述步驟1至步驟5;於預設週期數量或是預設時間經過後,於下一個週期中執行下述步驟7。 6. The inverter 1 determines whether the preset number of cycles (for example, 100 cycles) or the preset time (for example, 0.5 seconds) has passed. If the preset number of cycles or the preset time has not elapsed, perform the above steps 1 to 5 again in the next cycle; after the preset number of cycles or the preset time has elapsed, perform the following steps in the next cycle 7.

7.由變頻器1依據複數筆的直軸自感值以及各個直軸自感值對應的電流值建立直軸自感參數表單,並將直軸自感參數表單儲存於變頻器1的記憶體中。 7. The inverter 1 establishes a direct-axis self-inductance parameter table based on the direct-axis self-inductance values of the plurality of pens and the current values corresponding to each direct-axis self-inductance value, and stores the direct-axis self-inductance parameter table in the memory of the inverter 1 middle.

8.於直軸自感參數表單建立完畢後,變頻器1對馬達2的直軸注入直流電流,以令馬達2的轉子位於所需的測量位置。 8. After the direct axis self-inductance parameter form is created, inverter 1 injects DC current into the direct axis of motor 2 so that the rotor of motor 2 is at the required measurement position.

9.變頻器1判斷目前要執行的是針對交軸的自感學習程序。 9. Frequency converter 1 determines that it is currently executing a self-induction learning program for the quadrature axis.

10.變頻器1持續對馬達2的交軸提供具有固定頻率的方波電壓4。 10. The frequency converter 1 continues to provide a square wave voltage 4 with a fixed frequency to the quadrature axis of the motor 2.

11.由變頻器1在提供方波電壓4的同時,持續偵測馬達2回授的三相電流,並且將三相電流轉換為針對交軸的交軸電流。 11. While the frequency converter 1 provides the square wave voltage 4, it continuously detects the three-phase current fed back by the motor 2, and converts the three-phase current into a quadrature-axis current for the quadrature axis.

12.於本週期結束時,基於固定頻率、方波電壓4的電壓值(Vrms)及交軸電流的電流值(Irms)計算對應的交軸自感值。 12. At the end of this cycle, calculate the corresponding quadrature-axis self-inductance value based on the fixed frequency, the voltage value (Vrms) of the square wave voltage 4 and the current value (Irms) of the quadrature-axis current.

13.由變頻器1判斷預設週期數量或是預設時間是否經過。若預設週期數量或是預設時間尚未經過,則於下一個週期中再次執行上述步驟8至步驟12;於預設週期數量或是預設時間經過後,於下一個週期中執行下述步驟14。 13. The inverter 1 determines whether the preset cycle number or the preset time has passed. If the preset number of cycles or the preset time has not elapsed, perform the above steps 8 to 12 again in the next cycle; after the preset number of cycles or the preset time has elapsed, perform the following steps in the next cycle 14.

14.由變頻器1依據複數筆的交軸自感值以及各個交軸自感值對應的電流值建立交軸自感參數表單,並且將交軸自感參數表單儲存於變頻器1的記憶體中。 14. The inverter 1 creates a quadrature self-inductance parameter form based on the quadrature self-inductance values of the plurality of pens and the current values corresponding to each quadrature self-inductance value, and stores the quadrature self-inductance parameter form in the memory of the inverter 1 middle.

如前文中所述,部分馬達的互感效應不強,變頻器1可以不透過互感學習程序來取得馬達2的直軸互感值與交軸互感值。若變頻器1需要執行 互感學習程序,則如圖2所示,變頻器1會在完成直軸自感學習程序以及交軸自感學習程序後,再接著執行直軸互感學習程序以及交軸互感學習程序。 As mentioned above, the mutual inductance effect of some motors is not strong, and the inverter 1 can obtain the direct-axis mutual inductance value and the quadrature-axis mutual inductance value of the motor 2 without going through the mutual inductance learning process. If inverter 1 needs to execute The mutual inductance learning program is as shown in Figure 2. After completing the direct axis self-inductance learning program and the quadrature axis self-inductance learning program, the frequency converter 1 will then execute the direct axis mutual inductance learning program and the quadrature axis mutual inductance learning program.

具體地,若將變頻器1的實際執行動作套入圖4所示的流程圖中,則變頻器1會依序執行下列步驟: Specifically, if the actual execution actions of the frequency converter 1 are put into the flow chart shown in Figure 4, the frequency converter 1 will execute the following steps in sequence:

15.於交軸自感參數表單建立完畢後,變頻器1對馬達2的直軸注入直流電流,以令馬達2的轉子位於所需的測量位置。 15. After the quadrature axis self-inductance parameter form is established, inverter 1 injects DC current into the direct axis of motor 2 to make the rotor of motor 2 located at the required measurement position.

16.由變頻器1判斷目前要執行的是針對直軸的互感學習程序。 16. The inverter 1 determines that the mutual inductance learning program for the direct axis is currently being executed.

17.由變頻器1對馬達2的交軸注入激磁電流。 17. The inverter 1 injects excitation current into the quadrature axis of the motor 2.

18.由變頻器1持續對馬達2的直軸提供具有固定頻率的方波電壓4。 18. The frequency converter 1 continuously provides a square wave voltage 4 with a fixed frequency to the direct axis of the motor 2.

19.由變頻器1在提供方波電壓4的同時,持續偵測馬達2回授的三相電流,並且將三相電流轉換為針對直軸的直軸電流。 19. While the frequency converter 1 provides the square wave voltage 4, it continuously detects the three-phase current fed back by the motor 2, and converts the three-phase current into a direct-axis current for the direct axis.

20.於本週期結束時,基於固定頻率、方波電壓4的電壓值(Vrms)及直軸電流的電流值(Irms)計算對應的直軸互感值。 20. At the end of this cycle, calculate the corresponding direct-axis mutual inductance value based on the fixed frequency, the voltage value (Vrms) of the square wave voltage 4 and the current value (Irms) of the direct-axis current.

21.由變頻器1判斷預設週期數量或是預設時間是否經過。若預設週期數量或是預設時間尚未經過,則於下一個週期中再次執行上述步驟15至步驟20;於預設週期數量或是預設時間經過後,於下一個週期中執行下述步驟22。 21. The inverter 1 determines whether the preset cycle number or the preset time has passed. If the preset number of cycles or the preset time has not elapsed, perform the above steps 15 to step 20 again in the next cycle; after the preset number of cycles or the preset time has elapsed, perform the following steps in the next cycle twenty two.

22.由變頻器1依據複數筆的直軸互感值以及各個直軸互感值對應的電流值建立直軸互感參數表單,並且將直軸互感參數表單儲存於變頻器1的記憶體中。 22. The frequency converter 1 establishes a direct-axis mutual inductance parameter table based on the direct-axis mutual inductance values of the plurality of pens and the current values corresponding to each direct-axis mutual inductance value, and stores the direct-axis mutual inductance parameter table in the memory of the frequency converter 1.

23.於直軸互感參數表單建立完畢後,變頻器1對馬達2的直軸注入直流電流,以令馬達2的轉子位於所需的測量位置。 23. After the direct axis mutual inductance parameter form is established, inverter 1 injects DC current into the direct axis of motor 2 to make the rotor of motor 2 located at the required measurement position.

24.變頻器1判斷目前要執行的是針對交軸的互感學習程序。 24. Frequency converter 1 determines that the mutual inductance learning program for the quadrature axis is currently being executed.

25.由變頻器1對馬達2的直軸注入激磁電流。 25. The inverter 1 injects excitation current into the direct axis of the motor 2.

26.變頻器1轉為持續對馬達2的交軸提供具有固定頻率的方波電壓4。 26. The frequency converter 1 switches to continuously provide a square wave voltage 4 with a fixed frequency to the quadrature axis of the motor 2.

27.由變頻器1在提供方波電壓4的同時,持續偵測馬達2回授的三相電流,並且將三相電流轉換為針對交軸的交軸電流。 27. While the frequency converter 1 provides the square wave voltage 4, it continuously detects the three-phase current fed back by the motor 2, and converts the three-phase current into a quadrature-axis current for the quadrature axis.

28.於本週期結束時,基於固定頻率、方波電壓4的電壓值(Vrms)及交軸電流的電流值(Irms)計算對應的交軸互感值。 28. At the end of this cycle, calculate the corresponding quadrature-axis mutual inductance value based on the fixed frequency, the voltage value (Vrms) of the square wave voltage 4 and the current value (Irms) of the quadrature-axis current.

29.由變頻器1判斷預設週期數量或是預設時間是否經過。若預設週期數量或是預設時間尚未經過,則於下一個週期中再次執行上述步驟23至步驟28;於預設週期數量或是預設時間經過後,於下一個週期中執行下述步驟30。 29. The inverter 1 determines whether the preset cycle number or the preset time has passed. If the preset number of cycles or the preset time has not elapsed, perform the above steps 23 to 28 again in the next cycle; after the preset number of cycles or the preset time has elapsed, perform the following steps in the next cycle 30.

30.由變頻器1依據複數筆的交軸互感值以及各個交軸互感值對應的電流值建立交軸互感參數表單,並且將交軸互感參數表單儲存於變頻器1的記憶體中。 30. The frequency converter 1 establishes a quadrature-axis mutual inductance parameter table based on the quadrature-axis mutual inductance values of the plurality of pens and the current values corresponding to each quadrature-axis mutual inductance value, and stores the quadrature-axis mutual inductance parameter table in the memory of the frequency converter 1.

請參閱圖8,為本發明的自學習波形示意圖的具體實施例。圖8依序揭示了變頻器1在執行直軸自感學習程序時基於電流觀測到的直軸自感學習實驗波形51、執行交軸自感學習程序時基於電流觀測到的交軸自感學習實驗波形52、執行直軸互感學習程序時基於電流觀測到的直軸互感學習實驗波形53以及執行交軸互感學習程序時基於電流觀測到的交軸互感學習實驗波形54。 Please refer to FIG. 8 , which is a specific embodiment of the self-learning waveform schematic diagram of the present invention. Figure 8 sequentially reveals the direct-axis self-inductance learning experimental waveform 51 observed based on the current when the frequency converter 1 executes the direct-axis self-inductance learning program, and the quadrature-axis self-inductance learning based on the current observation when executing the quadrature axis self-inductance learning program. Experimental waveform 52, direct-axis mutual inductance learning experimental waveform 53 based on current observation when executing the direct-axis mutual inductance learning program, and quadrature-axis mutual inductance learning experimental waveform 54 based on current observation when executing the quadrature-axis mutual inductance learning program.

由圖8可看出,上述各個波形51-54分別包括前段部分及後段部分。前段部分呈現在變頻器1注入直流電流至馬達2後,電流慢慢收斂至一個穩態的值的態樣,其中此直流電流用來估測馬達2的轉子位置;後段部分則呈現變頻器1將方波電壓4注入馬達2後,從馬達2偵測到的回授電流狀態。 It can be seen from Figure 8 that each of the above-mentioned waveforms 51-54 includes a front part and a back part respectively. The first part shows that after the inverter 1 injects DC current into the motor 2, the current slowly converges to a steady-state value. This DC current is used to estimate the rotor position of the motor 2; the latter part shows that the inverter 1 will After the square wave voltage 4 is injected into the motor 2, the feedback current state detected from the motor 2.

如圖2的實施例所示,在直軸自感學習程序、交軸自感學習程序、直軸互感學習程序及交軸互感學習程序皆完成後,變頻器1還會進一步將一筆直流電流注入馬達2以對馬達2執行轉子對位程序,藉此令轉子回到初始位置。圖8中的轉子對位實驗波形55呈現了變頻器1執行轉子對位程序時從馬達2觀測到的電流狀態。 As shown in the embodiment of Figure 2, after the direct axis self-inductance learning program, the quadrature axis self-inductance learning program, the direct axis mutual inductance learning program and the quadrature axis mutual inductance learning program are all completed, the frequency converter 1 will further inject a DC current. Motor 2 performs a rotor alignment procedure on motor 2, thereby returning the rotor to its initial position. The rotor alignment experiment waveform 55 in Figure 8 presents the current state observed from the motor 2 when the inverter 1 performs the rotor alignment procedure.

在估測馬達2的轉子位置時需要將直流電流注入馬達2,並需參考電感值和電阻值等參數。然而,在第一次注入直流電流時,變頻器1對於所述參數的初始值的掌握度可能會不夠精準,因而導致所估測的轉子位置不準確。本發明中,變頻器1可以先第一次將直流電流注入馬達2並觀察一個測量波形50,接著依據測量波形50再次將直流電流注入馬達2中以估測馬達2的轉子位置。如此一來,可以讓變頻器1對於馬達2的轉子位置的估測更為準確。 When estimating the rotor position of motor 2, DC current needs to be injected into motor 2, and parameters such as inductance value and resistance value need to be referred to. However, when the DC current is injected for the first time, the frequency converter 1 may not be accurate enough in grasping the initial values of the parameters, thus causing the estimated rotor position to be inaccurate. In the present invention, the frequency converter 1 can first inject DC current into the motor 2 and observe a measurement waveform 50, and then inject DC current into the motor 2 again based on the measurement waveform 50 to estimate the rotor position of the motor 2. In this way, the inverter 1 can estimate the rotor position of the motor 2 more accurately.

如前文中所述,變頻器1在執行直軸自感學習程序、交軸自感學習程序、直軸互感學習程序與交軸互感學習程序時,是分別在每一個週期提供一個方波電壓4給馬達2,以獲得對應的回授電流並計算對應的電感值。於一實施例中,所述方波電壓4的固定頻率可設定在100Hz至200Hz之間。若以一個學習程序執行0.5秒來計算,每一個學習程序約可獲得100筆左右的電感值(直軸自感值、直軸互感值、交軸自感值或交軸互感值)。 As mentioned above, when the frequency converter 1 executes the direct axis self-inductance learning program, the quadrature axis self-inductance learning program, the direct axis mutual inductance learning program and the quadrature axis mutual inductance learning program, it provides a square wave voltage 4 in each cycle. Give motor 2 to obtain the corresponding feedback current and calculate the corresponding inductance value. In one embodiment, the fixed frequency of the square wave voltage 4 can be set between 100Hz and 200Hz. If a learning program is executed for 0.5 seconds, each learning program can obtain about 100 inductance values (direct axis self-inductance value, direct axis mutual inductance value, quadrature axis self-inductance value or quadrature axis mutual inductance value).

參閱圖9,為本發明的電流-電感參數示意圖的具體實施例。本發明中,在完成了直軸自感學習程序、交軸自感學習程序、直軸互感學習程序與交軸互感學習程序後,變頻器1的記憶體中即儲存有直軸自感參數表單、交軸自感參數表單、直軸互感參數表單及交軸互感參數表單。 Refer to FIG. 9 , which is a specific embodiment of the current-inductance parameter diagram of the present invention. In the present invention, after completing the direct axis self-inductance learning program, the quadrature axis self-inductance learning program, the direct axis mutual inductance learning program and the quadrature axis mutual inductance learning program, the direct axis self-inductance parameter form is stored in the memory of the frequency converter 1 , quadrature axis self-inductance parameter form, direct axis mutual inductance parameter form and quadrature axis mutual inductance parameter form.

如圖9所示,直軸自感參數表單記錄複數電流點及各個電流點所對應的直軸自感值,交軸自感參數表單記錄複數電流點及各個電流點所對應的交軸自感值、直軸互感參數表單記錄複數電流點及各個電流點所對應的直軸互感值,而交軸互感參數表單記錄複數電流點及各個電流點所對應的交軸互感值。 As shown in Figure 9, the direct-axis self-inductance parameter form records complex current points and the direct-axis self-inductance values corresponding to each current point, and the quadrature-axis self-inductance parameter form records complex current points and the quadrature-axis self-inductance corresponding to each current point. The value and direct-axis mutual inductance parameter forms record complex current points and the direct-axis mutual inductance values corresponding to each current point, while the quadrature-axis mutual inductance parameter form records complex current points and the quadrature-axis mutual inductance values corresponding to each current point.

在透過變頻器1對馬達2進行控制時,若讓馬達2維持在固定轉速,並且令負載持續提升,則變頻器1注入的電流將會持續上升,最後產生發散。此時,就會發生電流振盪效應。若在透過變頻器1對馬達2進行控制時,同時參考透過本發明的方法所建立的參數表單12中記錄的電感值,則在進行電流控制時可以基於更正確的數值來提供增益,藉此降低電流發散的現象。 When controlling motor 2 through inverter 1, if motor 2 is maintained at a fixed speed and the load continues to increase, the current injected by inverter 1 will continue to rise and eventually diverge. At this time, the current oscillation effect will occur. If the inductance value recorded in the parameter table 12 established by the method of the present invention is referenced when controlling the motor 2 through the frequency converter 1, the gain can be provided based on a more correct value when performing current control, thereby Reduce the phenomenon of current divergence.

而在互感部分,以無速度位置感測器為例,典型的如高頻注入(High Frequency Injection,HFI)、磁通估測器(Flux Observer)及延伸型電動勢(Extend Electromotive Force,EEMF)等位置估測器都會因為使用了透過本發明的方法所建立的參數表單12中記錄的互感值,而達到更好的轉矩性能。 In the mutual inductance part, take speedless position sensors as an example, typical ones such as High Frequency Injection (HFI), Flux Observer and Extended Electromotive Force (EEMF), etc. The position estimator will achieve better torque performance by using the mutual inductance value recorded in the parameter table 12 established by the method of the present invention.

以上所述僅為本發明之較佳具體實例,非因此即侷限本發明之專利範圍,故舉凡運用本發明內容所為之等效變化,均同理皆包含於本發明之範圍內,合予陳明。 The above descriptions are only preferred specific examples of the present invention, which do not limit the patent scope of the present invention. Therefore, all equivalent changes made by applying the content of the present invention are equally included in the scope of the present invention, and are hereby stated. bright.

S30~S50:測量步驟 S30~S50: Measurement steps

Claims (12)

一種獲取同步馬達參數的方法,應用於一變頻器,包括:a)設定該馬達的一操作電流值;b)由該變頻器持續對該馬達提供一正固定電壓並偵測該馬達的一回授電流;c)於該回授電流觸及該操作電流值時記錄一觸及時間,並持續對該馬達提供一負固定電壓達到該觸及時間,其中該正固定電壓與該負固定電壓為大小相同、相位相反的電壓;d)基於該正固定電壓及該負固定電壓獲得一固定頻率的一方波電壓;e)對該馬達的一第一軸向施加該固定頻率的該方波電壓;f)偵測該馬達回授的三相電流並轉換為該第一軸向的一軸向電流;g)基於該固定頻率、該方波電壓的電壓值及該軸向電流的電流值計算該第一軸向的一第一電感值;及h)依據該第一電感值及其對應的該電流值建立並儲存電感對電流的一參數表單。 A method of obtaining parameters of a synchronous motor, applied to a frequency converter, including: a) setting an operating current value of the motor; b) continuously providing a positive fixed voltage to the motor by the frequency converter and detecting a cycle of the motor transfer current; c) record a touch time when the feedback current touches the operating current value, and continue to provide a negative fixed voltage to the motor until the touch time, wherein the positive fixed voltage and the negative fixed voltage are the same in magnitude, Voltages with opposite phases; d) obtaining a square wave voltage of a fixed frequency based on the positive fixed voltage and the negative fixed voltage; e) applying the square wave voltage of the fixed frequency to a first axis of the motor; f) detecting Measure the three-phase current fed back by the motor and convert it into an axial current in the first axis direction; g) Calculate the first axis based on the fixed frequency, the voltage value of the square wave voltage and the current value of the axial current a first inductance value in the direction; and h) establishing and storing a parameter table of inductance versus current based on the first inductance value and its corresponding current value. 如請求項1所述的方法,其中該操作電流值是該馬達的最大可操作電流值。 The method of claim 1, wherein the operating current value is the maximum operable current value of the motor. 如請求項1所述的方法,其中該步驟g)是基於該固定頻率、該方波電壓的電壓值及該軸向電流的電流值執行一阻抗法以計算該第一軸向的該第一電感值。 The method of claim 1, wherein the step g) is to perform an impedance method based on the fixed frequency, the voltage value of the square wave voltage and the current value of the axial current to calculate the first axial current in the first axis. Inductance value. 如請求項3所述的方法,其中該步驟g)是基於該固定頻率、該方波電壓的電壓值、該軸向電流的電流值以及一調整增益執行該阻抗法,其中該調整增益用以將方波參數轉換為弦波參數。 The method of claim 3, wherein the step g) is to perform the impedance method based on the fixed frequency, the voltage value of the square wave voltage, the current value of the axial current and an adjustment gain, wherein the adjustment gain is used to Convert square wave parameters to sine wave parameters. 如請求項1所述的方法,其中更包括:g1)該步驟g)後,判斷一預設週期數量或一預設時間是否經過;g2)若該預設週期數量或該預設時間尚達經過,由該變頻器重覆執行該步驟e)、該步驟f)及該步驟g);及g3)於該預設週期數量或該預設時間經過時,由該變頻器依據複數該第一電感值及各該第一電感值對應的該電流值執行該步驟h)。 The method described in claim 1, further comprising: g1) after step g), determining whether a preset number of cycles or a preset time has elapsed; g2) if the preset number of cycles or the preset time has not yet reached After that, the frequency converter repeatedly executes the step e), the step f) and the step g); and g3) when the preset number of cycles or the preset time elapses, the frequency converter performs the steps according to the plurality of first inductors. Perform step h) according to the value and the current value corresponding to each first inductance value. 如請求項1所述的方法,其中該步驟e)之前更包括一步驟e0):持續對該馬達的該第一軸向注入一直流電流,以令該馬達的轉子位於一測量位置。 The method of claim 1, wherein the step e) further includes a step e0) of continuously injecting a direct current into the first axial direction of the motor to position the rotor of the motor at a measurement position. 如請求項1所述的方法,其中該步驟e)之前更包括:e01)由該變頻器判斷要執行一自感學習程序或一互感學習程序;e02)於要執行該自感學習程序時直接執行該步驟e);及e03)於要執行該互感學習程序時,先對該馬達的該第一軸向注入一直流電流後,再執行該步驟e),其中該第一軸向為該馬達的直軸。 The method as described in claim 1, wherein the step e) further includes: e01) judging by the frequency converter that a self-inductance learning program or a mutual inductance learning program is to be executed; e02) directly when the self-induction learning program is to be executed When executing the step e); and e03) to execute the mutual inductance learning procedure, first inject a direct current into the first axial direction of the motor, and then execute the step e), wherein the first axial direction is the motor. of straight axis. 如請求項1所述的方法,其中該步驟h)後更包括:i)對該馬達的一第二軸向施加該固定頻率的該方波電壓;j)偵測該馬達回授的三相電流並轉換為該第二軸向的該軸向電流;k)基於該固定頻率、該方波電壓的電壓值及該第二軸向的該軸向電流的電流值計算該第二軸向的一第二電感值;及l)依據該第二電感值及其對應的該電流值建立並儲存電感對電流的該參數表單。 The method of claim 1, wherein step h) further includes: i) applying the square wave voltage of the fixed frequency to a second axis of the motor; j) detecting the three phases of feedback from the motor The current is converted into the axial current in the second axial direction; k) calculating the second axial current based on the fixed frequency, the voltage value of the square wave voltage and the current value of the axial current in the second axial direction. a second inductance value; and 1) establishing and storing the parameter table of inductance versus current based on the second inductance value and its corresponding current value. 如請求項8所述的方法,其中更包括: m)該步驟l)後,由該變頻器判斷是否要執行一互感學習程序;n)於要執行該互感學習程序時,先對該第一軸向注入一直流電流,並再次執行該步驟e)至該步驟h);o)該步驟n)後,先對該第一軸向注入該直流電流,並再次執行該步驟i)至該步驟l);及p)於該步驟o)後,由該變頻器對該馬達執行一轉子對位程序。 The method described in request item 8, which further includes: m) After step l), the frequency converter determines whether to execute a mutual inductance learning procedure; n) when the mutual inductance learning procedure is to be executed, first inject a DC current into the first axis, and execute step e again ) to step h); o) after step n), first inject the DC current into the first axial direction, and perform steps i) to step l) again; and p) after step o), The frequency converter executes a rotor alignment procedure on the motor. 一種獲取同步馬達參數的方法,應用於一變頻器,包括:a1)由該變頻器對該馬達的直軸注入一直流電流,以令該馬達的轉子位於一測量位置;a2)對該馬達的直軸提供具有一固定頻率的一方波電壓;a3)偵測該馬達回授的三相電流並轉換為一第一直軸電流;a4)基於該固定頻率、該方波電壓的電壓值及該第一直軸電流的電流值計算的一直軸自感值;a5)於一預設週期數量或一預設時間經過前持續執行該步驟a1)至該步驟a4);a6)於該預設週期數量或該預設時間經過後,依據複數該直軸自感值及各該直軸自感值對應的該電流值建立並儲存一直軸自感參數表單;b1)於該步驟a6)後,由該變頻器對該馬達的直軸注入該直流電流,以令該馬達的轉子位於該測量位置;b2)對該馬達的交軸提供具有該固定頻率的該方波電壓;b3)偵測該馬達回授的三相電流並轉換為一第一交軸電流; b4)基於該固定頻率、該方波電壓的電壓值及該第一交軸電流的電流值計算的一交軸自感值;b5)於該預設週期數量或該預設時間經過前持續執行該步驟b1)至該步驟b4);及b6)於該預設週期數量或該預設時間經過後,依據複數該交軸自感值及各該交軸自感值對應的該電流值建立並儲存一交軸自感參數表單。 A method of obtaining parameters of a synchronous motor, applied to a frequency converter, including: a1) injecting a direct current into the direct axis of the motor from the frequency converter to position the rotor of the motor at a measurement position; a2) The direct axis provides a square wave voltage with a fixed frequency; a3) detects the three-phase current fed back by the motor and converts it into a first direct axis current; a4) based on the fixed frequency, the voltage value of the square wave voltage and the The direct-axis self-inductance value calculated from the current value of the first direct-axis current; a5) continue to perform step a1) to step a4) before a preset number of cycles or a preset time elapses; a6) during the preset cycle After the quantity or the preset time has elapsed, a direct-axis self-inductance parameter table is created and stored based on the plurality of direct-axis self-inductance values and the current value corresponding to each direct-axis self-inductance value; b1) after step a6), by The frequency converter injects the DC current into the direct axis of the motor so that the rotor of the motor is at the measurement position; b2) provides the square wave voltage with the fixed frequency to the quadrature axis of the motor; b3) detects the motor The fed back three-phase current is converted into a first quadrature axis current; b4) A quadrature-axis self-inductance value calculated based on the fixed frequency, the voltage value of the square wave voltage and the current value of the first quadrature-axis current; b5) Continue to execute before the preset number of cycles or the preset time elapses The step b1) to the step b4); and b6) after the preset number of cycles or the preset time has elapsed, establish and combine the quadrature axis self-inductance values based on the plurality of quadrature axis self-inductance values and the current values corresponding to the quadrature axis self-inductance values. Store a cross-axis self-inductance parameter form. 如請求項10所述的方法,其中該步驟a)之前更包括:a01)設定該馬達的一操作電流值;a02)由該變頻器持續對該馬達提供一正固定電壓並偵測該馬達的一回授電流;a03)於該回授電流觸及該操作電流值時記錄一觸及時間,並持續對該馬達提供一負固定電壓達到該觸及時間;及a04)基於該正固定電壓及該負固定電壓獲得具有該固定頻率的該方波電壓。 The method of claim 10, wherein step a) further includes: a01) setting an operating current value of the motor; a02) using the frequency converter to continuously provide a positive fixed voltage to the motor and detecting the voltage of the motor. A feedback current; a03) record a touch time when the feedback current touches the operating current value, and continue to provide a negative fixed voltage to the motor for the touch time; and a04) based on the positive fixed voltage and the negative fixed voltage The voltage gets this square wave voltage with this fixed frequency. 如請求項10所述的方法,其中更包括:c1)於該步驟b6)之後,由該變頻器對該馬達的直軸注入該直流電流,以令該馬達的轉子位於該測量位置;c2)對該馬達的交軸注入一激磁電流;c3)對該馬達的直軸提供具有該固定頻率的該方波電壓;c4)偵測該馬達回授的三相電流並轉換為一第二直軸電流;c5)基於該固定頻率、該方波電壓的電壓值及該第二直軸電流的電流值計算的一直軸互感值; c6)於該預設週期數量或該預設時間經過前持續執行該步驟c1)至該步驟c5);c7)於該預設週期數量或該預設時間經過後,依據複數該直軸互感值及各該直軸互感值對應的該電流值建立並儲存一直軸互感參數表單;d1)於該步驟c7)後,由該變頻器對該馬達的直軸注入該直流電流,以令該馬達的轉子位於該測量位置;d2)對該馬達的直軸注入該激磁電流;d3)對該馬達的交軸提供具有該固定頻率的該方波電壓;d4)偵測該馬達回授的三相電流並轉換為一第二交軸電流;d5)基於該固定頻率、該方波電壓的電壓值及該第二交軸電流的電流值計算的一交軸互感值;d6)於該預設週期數量或該預設時間經過前持續執行該步驟d1)至該步驟d5);及d7)於該預設週期數量或該預設時間經過後,依據複數該交軸互感值及各該交軸互感值對應的該電流值建立並儲存一交軸互感參數表單。 The method as described in claim 10, further comprising: c1) after step b6), injecting the DC current into the direct axis of the motor by the frequency converter so that the rotor of the motor is located at the measurement position; c2) Inject an excitation current into the quadrature axis of the motor; c3) provide the square wave voltage with the fixed frequency to the direct axis of the motor; c4) detect the three-phase current fed back by the motor and convert it into a second direct axis Current; c5) The direct-axis mutual inductance value calculated based on the fixed frequency, the voltage value of the square wave voltage, and the current value of the second direct-axis current; c6) Continue to perform step c1) to step c5) before the preset number of cycles or the preset time elapses; c7) After the preset number of cycles or the preset time elapses, based on the plurality of direct axis mutual inductance values and the current value corresponding to each direct axis mutual inductance value creates and stores a direct axis mutual inductance parameter table; d1) After step c7), the frequency converter injects the DC current into the direct axis of the motor, so that the motor's The rotor is located at the measurement position; d2) inject the excitation current into the direct axis of the motor; d3) provide the square wave voltage with the fixed frequency to the quadrature axis of the motor; d4) detect the three-phase current fed back by the motor and converted into a second quadrature-axis current; d5) a quadrature-axis mutual inductance value calculated based on the fixed frequency, the voltage value of the square wave voltage and the current value of the second quadrature-axis current; d6) in the preset period number Or continue to execute step d1) to step d5) before the preset time elapses; and d7) after the preset period number or the preset time elapses, based on the plurality of the quadrature mutual inductance values and each of the quadrature mutual inductance values A cross-axis mutual inductance parameter table is created and stored corresponding to the current value.
TW111137179A 2022-09-30 2022-09-30 Method of obtaining parameter of synchronous motor TWI814596B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111137179A TWI814596B (en) 2022-09-30 2022-09-30 Method of obtaining parameter of synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111137179A TWI814596B (en) 2022-09-30 2022-09-30 Method of obtaining parameter of synchronous motor

Publications (2)

Publication Number Publication Date
TWI814596B true TWI814596B (en) 2023-09-01
TW202416652A TW202416652A (en) 2024-04-16

Family

ID=88965864

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111137179A TWI814596B (en) 2022-09-30 2022-09-30 Method of obtaining parameter of synchronous motor

Country Status (1)

Country Link
TW (1) TWI814596B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201342792A (en) * 2012-04-11 2013-10-16 cheng-kai Lin A predictive current control method for interior permanent magnet synchronous motor and synchronous reluctance motor drive systems using current change detection technique
CN103444073A (en) * 2011-03-11 2013-12-11 施耐德东芝换流器欧洲公司 Control method implemented in a power converter and intended for identifying parameters linked to the magnetic saturation of an electric motor
US20200373864A1 (en) * 2018-01-12 2020-11-26 Mitsubishi Electric Corporation Rotary machine control device
CN113676086A (en) * 2021-09-23 2021-11-19 西安清泰科新能源技术有限责任公司 Permanent magnet synchronous motor parameter self-identification device and method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103444073A (en) * 2011-03-11 2013-12-11 施耐德东芝换流器欧洲公司 Control method implemented in a power converter and intended for identifying parameters linked to the magnetic saturation of an electric motor
TW201342792A (en) * 2012-04-11 2013-10-16 cheng-kai Lin A predictive current control method for interior permanent magnet synchronous motor and synchronous reluctance motor drive systems using current change detection technique
US20200373864A1 (en) * 2018-01-12 2020-11-26 Mitsubishi Electric Corporation Rotary machine control device
CN113676086A (en) * 2021-09-23 2021-11-19 西安清泰科新能源技术有限责任公司 Permanent magnet synchronous motor parameter self-identification device and method

Also Published As

Publication number Publication date
TW202416652A (en) 2024-04-16

Similar Documents

Publication Publication Date Title
EP2453248B1 (en) Method and arrangement for determining inductances of synchronous reluctance machine
JP3282541B2 (en) Motor control device
JP4685509B2 (en) AC motor drive control device and drive control method
CN107154763B (en) Permanent magnet synchronous motor dead beat direct Torque Control and control method
CN110943660B (en) Synchronous motor inductance detection method and device
KR20000028798A (en) Commutation method and apparatus for switched reluctance motor
TWI814596B (en) Method of obtaining parameter of synchronous motor
CN110572032B (en) Self-correction-dead-beat current control method of Boost converter
JP2009232573A (en) Inductance measuring method of pm motor
CN113794419A (en) Deadbeat current prediction robust control method based on incremental motor model
CN117849609A (en) Method for obtaining synchronous motor parameters
JP6038399B1 (en) Power consumption estimation device
CN108258962B (en) Permanent magnet motor inductance parameter identification method and system
Comanescu et al. Development of a flux, speed and rotor time constant estimation scheme for the sensorless induction motor drive
CN113691187B (en) Dead beat prediction rotating speed servo permanent magnet motor control method and system
CN115580190A (en) Motor control method and device, model building method and electrical equipment
KR102672747B1 (en) Off-line parameter estimation apparatus and method of induction motor
CN109302109B (en) Flux weakening control method and control device for permanent magnet synchronous motor
Bao et al. Synchronous reluctance motor flux linkage saturation modeling based on stationary identification and neural networks
TWI431300B (en) Method for parameter identification of induction machine
Urbanski Position estimation for PMSM drive equipped with the motor choke
TW441161B (en) Apparatus and methods with on-line parameters adaption for sensorless speed control of induction motors
TW565992B (en) On-line parameter estimation method of induction motor
JPH0787800A (en) Automatic torque boost control of inverter and slip compensation controller
CN111740677B (en) Automatic software tool for adjusting motor control parameters