TWI809871B - Optical system and method for operating the same - Google Patents

Optical system and method for operating the same Download PDF

Info

Publication number
TWI809871B
TWI809871B TW111118088A TW111118088A TWI809871B TW I809871 B TWI809871 B TW I809871B TW 111118088 A TW111118088 A TW 111118088A TW 111118088 A TW111118088 A TW 111118088A TW I809871 B TWI809871 B TW I809871B
Authority
TW
Taiwan
Prior art keywords
overlay
optical
component
patterned layer
computer
Prior art date
Application number
TW111118088A
Other languages
Chinese (zh)
Other versions
TW202335071A (en
Inventor
劉建賢
Original Assignee
南亞科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/680,684 external-priority patent/US20230273590A1/en
Priority claimed from US17/680,514 external-priority patent/US11829078B2/en
Application filed by 南亞科技股份有限公司 filed Critical 南亞科技股份有限公司
Application granted granted Critical
Publication of TWI809871B publication Critical patent/TWI809871B/en
Publication of TW202335071A publication Critical patent/TW202335071A/en

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Optical Communication System (AREA)
  • Prostheses (AREA)

Abstract

The present application provides an optical system and a method of operating the optical system. The optical system includes a device and an overlay measuring apparatus. The device includes a first patterned layer, a second patterned layer and a first passivation film. The second patterned layer is disposed above the first patterned layer, and the first passivation film covers the first patterned layer. The overlay measuring apparatus for determining relative position of first and second patterned layers includes a stage and an imaging assembly. The device is placed on the stage. The imaging assembly comprises a plurality of optical heads and a plurality of overlay marks. The plurality of optical heads are configured to record at least one image of the device. The plurality of overlay marks are assembled on the plurality of optical heads, respectively. The relative position of the first and second patterned layers are determined using light reflected from the device and passing through the respective overlay mark mounted on the optical head.

Description

光學系統及其操作方法Optical system and method of operation thereof

本申請案主張美國第17/680,514及17/680,684號專利申請案之優先權(即優先權日為「2022年2月25日」),其內容以全文引用之方式併入本文中。This application claims priority to US Patent Application Nos. 17/680,514 and 17/680,684 (ie, the priority date is "February 25, 2022"), the contents of which are incorporated herein by reference in their entirety.

本揭露關於一種光學系統及其操作方法,其使用在多個半導體製造程序中。特別是有關於一種光學系統及其操作方法,用於測量一半導體晶圓堆疊在不同層之間或是在一相同層的不同圖案之間的一對準誤差。The present disclosure relates to an optical system and method of operation thereof, which are used in various semiconductor manufacturing processes. More particularly, it relates to an optical system and method of operation thereof for measuring an alignment error between different layers of a semiconductor wafer stack or between different patterns of the same layer.

儲存記憶體元件的半導體元件通常藉由應用於一樣本的一系列處理步驟來進行製造。該等半導體元件的各種特徵以及多個結構層級的製作技術包含這些處理步驟。舉例來說,其中,微影是包含產生一圖案在一半導體晶圓上的其中一個半導體製造程序。該等半導體製造程序的額外例子包括離子植入(摻雜)、沉積、蝕刻、金屬化、氧化以及化學機械研磨,但並不以此為限。多個半導體元件可製造在一單個半導體晶圓上,然後藉由例如切割(dicing)或鋸切(sawing)的一技術而分隔成多個單獨半導體元件。Semiconductor devices for storing memory devices are usually manufactured by a series of processing steps applied to a sample. Various features of the semiconductor devices and fabrication techniques at various structural levels involve these processing steps. For example, among others, lithography is one of the semiconductor manufacturing processes that involves creating a pattern on a semiconductor wafer. Additional examples of such semiconductor fabrication processes include, but are not limited to, ion implantation (doping), deposition, etching, metallization, oxidation, and chemical mechanical polishing. Multiple semiconductor devices can be fabricated on a single semiconductor wafer and then separated into individual semiconductor devices by a technique such as dicing or sawing.

該等半導體元件通常藉由沉積一系列的層在一基底上所製造。該等層的一些或全部包括不同的圖案化結構。在一層內以及在多層之間的多個結構之該等相對位置對於完成之多個電子元件的效能是至關重要的。疊對是指在一晶圓的同一層或不同層上之重疊或交錯結構的相對位置。疊對誤差是指與該等重疊或交錯結構之一象徵相對位置的偏差。一較大的疊對誤差導致該等結構之較大的未對準(misalignment)。若是該疊對誤差太大的話,則製造的該電子元件之效能可能會受到影響。The semiconductor devices are usually fabricated by depositing a series of layers on a substrate. Some or all of the layers include different patterned structures. The relative positions of structures within a layer and between layers are critical to the performance of the finished electronic device. Overlay refers to the relative position of overlapping or interlaced structures on the same layer or on different layers of a wafer. Overlay error refers to a deviation from the symbolic relative position of one of the overlapping or interlaced structures. A larger overlay error results in a larger misalignment of the structures. If the overlay error is too large, the performance of the manufactured electronic device may be affected.

基於影像的疊對(IBO)測量是在積體電路製造中用於提取多個疊對誤差值的一種非常普遍的技術。該疊對誤差是使用多個專用疊對目標所測量,這些目標經過最佳化以提高疊對精確度以及解析度。然而,該等專用疊對目標甚大於該積體電路的多個產品特性。該IBO測量是基於該等專用目標而不是該等產品特性,因為目前主要基於光學的疊對測量解決方法並無法使用該等產品特性來提供足夠的解析度。Image-based overlay (IBO) measurement is a very common technique used in integrated circuit manufacturing to extract multiple overlay error values. The overlay error is measured using a number of dedicated overlay targets optimized for overlay accuracy and resolution. However, the specific overlay targets are much larger than the product characteristics of the IC. The IBO measurements are based on the dedicated targets rather than the product characteristics, as current overlay measurement solutions, which are primarily optical based, do not provide sufficient resolution using these product characteristics.

上文之「先前技術」說明僅係提供背景技術,並未承認上文之「先前技術」說明揭示本揭露之標的,不構成本揭露之先前技術,且上文之「先前技術」之任何說明均不應作為本案之任一部分。The above "prior art" description is only to provide background technology, and does not acknowledge that the above "prior art" description discloses the subject of this disclosure, and does not constitute the prior art of this disclosure, and any description of the above "prior art" shall not form part of this case.

本揭露之一實施例提供一種疊對測量設備,用於確定一元件之二或多個連續圖案化層的相對位置。該疊對測量設備包括一平台以及一成像組件,該成像組件經配置以記錄置放在該平台上之該元件的多個影像。該成像組件包括複數個光學頭,經配置以擷取該元件的該等影像;以及複數個疊對標記,分別組裝在該複數個光學頭上。該元件之該等連續圖案化層的該等相對位置使用從該元件所反射且穿經安裝在相對應之該光學頭上之該疊對標記的光來確定。An embodiment of the present disclosure provides an overlay measurement device for determining the relative position of two or more consecutive patterned layers of a device. The overlay measurement device includes a platform and an imaging component configured to record a plurality of images of the component placed on the platform. The imaging component includes a plurality of optical heads configured to capture the images of the component; and a plurality of overlay marks assembled on the plurality of optical heads respectively. The relative positions of the successively patterned layers of the element are determined using light reflected from the element and passing through the overlay mark mounted on the corresponding optical head.

在一些實施例中,該疊對測量設備還包括一電腦,經配置以執行多個演算,其從藉由該光學頭所記錄之該影像所傳送的多個電訊號而計算該等連續圖案化層的一相對位移。In some embodiments, the overlay measurement apparatus further includes a computer configured to perform algorithms for calculating the successive patterning patterns from electrical signals transmitted by the image recorded by the optical head. A relative displacement of the layer.

在一些實施例中,為了獲得在該元件上之該等圖案化層的該相對位移,該電腦分析藉由該元件所反射的光的一預定強度分布與藉由該元件所反射且穿經相對應的該疊對標記的一獨特強度分布之間的一差距。In some embodiments, in order to obtain the relative displacement of the patterned layers on the element, the computer analyzes a predetermined intensity distribution of light reflected by the element with respect to light reflected by and passing through the element. A gap between a unique intensity distribution corresponding to the overlay marks.

在一些實施例中,該電腦經配置以控制該平台的一運動,且經配置以選擇該光學頭而記錄該影像。In some embodiments, the computer is configured to control a movement of the platform, and is configured to select the optical head to record the image.

在一些實施例中,該成像組件還包括一光源,經配置以產生光而照明該元件。In some embodiments, the imaging assembly further includes a light source configured to generate light to illuminate the element.

在一些實施例中,該成像組件還包括一光束分離器,設置在該光源與該光學頭之各軸線的一交叉處,其中該光束分離器反射從該光源所產生的光,且從該元件所反射的光穿經該光束分離器與相對應的該疊對標記且入射到相對應的該光學頭上。In some embodiments, the imaging component further includes a beam splitter disposed at an intersection of the light source and each axis of the optical head, wherein the beam splitter reflects the light generated from the light source and transmits light from the element The reflected light passes through the beam splitter and the corresponding overlay mark and is incident on the corresponding optical head.

在一些實施例中,該疊對測量設備還包括一第一透鏡,設置在該光束分離器與該元件之間;以及一第二透鏡,設置在該光束分離器與該光學頭之間。In some embodiments, the overlay measurement device further includes a first lens disposed between the beam splitter and the component; and a second lens disposed between the beam splitter and the optical head.

在一些實施例中,該疊對標記包括複數個微結構,呈一同心配置進行排列。In some embodiments, the overlay mark includes a plurality of microstructures arranged in a concentric configuration.

在一些實施例中,該等微結構包括多個圓形。In some embodiments, the microstructures include a plurality of circles.

在一些實施例中,該等微結構包括多個正方形。In some embodiments, the microstructures include a plurality of squares.

在一些實施例中,該等微結構還包括二條線,交叉在該等正方形的一中心處並將該等正方形分割成四等分。In some embodiments, the microstructures further include two lines that intersect at a center of the squares and divide the squares into quarters.

在一些實施例中,該等微結構包括多個菱形。In some embodiments, the microstructures include a plurality of rhomboids.

在一些實施例中,該等微結構還包括四條線,從最外面的一個菱形之各側邊的各中心朝外延伸。In some embodiments, the microstructures further include four lines extending outward from each center of each side of the outermost rhombus.

在一些實施例中,該等微結構還包括複數條線,以一第一間距而與最外面的一個菱形分隔開,且該第一間距大於在相互鄰近的其中兩個菱形之間的一第二間距。In some embodiments, the microstructures further include a plurality of lines separated from the outermost rhombus by a first distance greater than a distance between two adjacent rhombuses. second spacing.

在一些實施例中,該疊對標記是由重複的多個微結構所構成。In some embodiments, the overlay mark is composed of repeated microstructures.

在一些實施例中,該疊對標記是一菱形且由複數個長菱形微結構所構成。In some embodiments, the overlay mark is a rhombus and is composed of a plurality of rhombohedral microstructures.

在一些實施例中,該等微結構為矩形,並以一連續的接合配置進行排列。In some embodiments, the microstructures are rectangular and arranged in a continuous bonded configuration.

在一些實施例中,該疊對標記包括長菱形或六角形微結構。In some embodiments, the overlay marks include rhomboid or hexagonal microstructures.

在一些實施例中,該等微結構具有一由四個Γ所組成的十字形(卍)。In some embodiments, the microstructures have a cross shape (swastika) composed of four Γ.

在一些實施例中,該疊對標記包括相互交替交錯的複數個梯形微結構以及複數個倒梯形微結構。In some embodiments, the overlay mark includes a plurality of trapezoidal microstructures and a plurality of inverted trapezoidal microstructures that alternate with each other.

在一些實施例中,該疊對標記包括多個鋸齒形微結構。In some embodiments, the overlay mark includes a plurality of zigzag microstructures.

在一些實施例中,該疊對標記包括多個重疊正方形微結構,且每一個重疊正方形微結構由四個小正方形所構成。In some embodiments, the overlapping mark includes a plurality of overlapping square microstructures, and each overlapping square microstructure is composed of four small squares.

在一些實施例中,該疊對測量設備還包括一鈍化膜,覆蓋該複數個疊對標記。In some embodiments, the overlay measurement device further includes a passivation film covering the plurality of overlay marks.

本揭露之一實施例提供一種光學系統。該光學系統包括一元件以及一疊對測量設備。該元件包括一第一圖案化層、一第二圖案化層以及一第一鈍化膜。該第二圖案化層設置在該第一圖案層上,且該第一鈍化膜覆蓋該第一圖案化層。該疊對測量設備,用以確定該第一與第二圖案化層的相對位置,該疊對測量設備用以確定該第一與第二圖案化層的相對位置,其包括一平台以及一成像組件。該元件置放在該平台上。該成像組件包括複數個光學頭以及複數個疊對標記。該複數個光學頭經配置以記錄該元件的至少一影像。該複數個疊對標記分別組裝到該複數個光學頭上。該元件之該第一與第二圖案化層的該等相對位置使用從該元件所反射且穿經安裝在相對應之該光學頭上之該疊對標記的光來確定。An embodiment of the present disclosure provides an optical system. The optical system includes a component and a pair of measuring devices. The element includes a first patterned layer, a second patterned layer and a first passivation film. The second patterned layer is disposed on the first patterned layer, and the first passivation film covers the first patterned layer. The overlay measurement device is used to determine the relative positions of the first and second patterned layers, and the overlay measurement device is used to determine the relative positions of the first and second patterned layers, which includes a platform and an imaging components. The component is placed on the platform. The imaging component includes a plurality of optical heads and a plurality of overlay marks. The plurality of optical heads are configured to record at least one image of the component. The plurality of overlay marks are respectively assembled on the plurality of optical heads. The relative positions of the first and second patterned layers of the element are determined using light reflected from the element and passing through the overlay mark mounted on the corresponding optical head.

在一些實施例中,該元件還包括一第二鈍化膜,覆蓋該第二圖案化層。In some embodiments, the device further includes a second passivation film covering the second patterned layer.

在一些實施例中,該元件還包括至少一半導體層,設置在該第一鈍化膜與該第二圖案化層之間,且該第二圖案化層經配置以在蝕刻期間圖案化該半導體層。In some embodiments, the device further includes at least one semiconductor layer disposed between the first passivation film and the second patterned layer, and the second patterned layer is configured to pattern the semiconductor layer during etching .

在一些實施例中,該疊對測量設備還包括一電腦,經配置以執行多個演算,其從藉由該光學頭所記錄之該影像所傳送的多個電訊號而計算該第一與第二圖案化層的一相對位移。In some embodiments, the overlay measurement device further includes a computer configured to perform algorithms for calculating the first and second A relative displacement of the two patterned layers.

在一些實施例中,該疊對標記包括複數個微結構,呈一同心配置進行排列。In some embodiments, the overlay mark includes a plurality of microstructures arranged in a concentric configuration.

在一些實施例中,該疊對標記由重複的多個微結構所構成。In some embodiments, the overlay mark is composed of repeated microstructures.

本揭露之一實施例提供一種疊對測量設備的操作方法。該方法包括提供複數個光學頭;將複數個疊對標記分別組裝到該複數個光學頭上;將待測量的一元件置放到一平台上;將其中一個光學頭與該元件對準;以及記錄該元件的至少一影像。An embodiment of the present disclosure provides an operation method of an overlay measurement device. The method includes providing a plurality of optical heads; assembling a plurality of alignment marks onto the plurality of optical heads respectively; placing a component to be measured on a platform; aligning one of the optical heads with the component; and recording At least one image of the element.

在一些實施例中,該操作方法還包括依據該至少一影像計算在該元件上之多個圖案的一相對位移。In some embodiments, the operating method further includes calculating a relative displacement of the patterns on the device according to the at least one image.

在一些實施例中,藉由電性耦接到該成像組件的一電腦而執行該計算。In some embodiments, the calculation is performed by a computer electrically coupled to the imaging device.

在一些實施例中,該電腦電性耦接到該平台以控制該平台的一運動。In some embodiments, the computer is electrically coupled to the platform to control a movement of the platform.

在一些實施例中,該操作方法還包括提供一光源以照明該元件。In some embodiments, the method of operating further includes providing a light source to illuminate the component.

在一些實施例中,該操作方法還包括提供一光束分離器並將該光束分離器定位在該光軸與該光學頭之各軸線的一交叉處,以記錄該元件的該影像。In some embodiments, the method of operating further includes providing a beam splitter and positioning the beam splitter at an intersection of the optical axis and axes of the optical head to record the image of the device.

在一些實施例中,該疊對標記包括一週期性結構。In some embodiments, the overlay mark includes a periodic structure.

藉由上述疊對測量裝置的配置,該疊對標記的該測試圖案安裝在該光學頭上,並且在該測量期間是可以替換的;因此,所記錄的影像可具有一較佳的解析度,也因此改善測量的準確性。With the configuration of the overlay measurement device described above, the test pattern of the overlay mark is mounted on the optical head and is replaceable during the measurement; therefore, the recorded image can have a better resolution and also The accuracy of the measurement is thus improved.

上文已相當廣泛地概述本揭露之技術特徵及優點,俾使下文之本揭露詳細描述得以獲得較佳瞭解。構成本揭露之申請專利範圍標的之其它技術特徵及優點將描述於下文。本揭露所屬技術領域中具有通常知識者應瞭解,可相當容易地利用下文揭示之概念與特定實施例可作為修改或設計其它結構或製程而實現與本揭露相同之目的。本揭露所屬技術領域中具有通常知識者亦應瞭解,這類等效建構無法脫離後附之申請專利範圍所界定之本揭露的精神和範圍。The technical features and advantages of the present disclosure have been broadly summarized above, so that the following detailed description of the present disclosure can be better understood. Other technical features and advantages constituting the subject matter of the claims of the present disclosure will be described below. Those skilled in the art of the present disclosure should understand that the concepts and specific embodiments disclosed below can be easily used to modify or design other structures or processes to achieve the same purpose as the present disclosure. Those with ordinary knowledge in the technical field to which the disclosure belongs should also understand that such equivalent constructions cannot depart from the spirit and scope of the disclosure defined by the appended claims.

現在使用特定語言描述附圖中所示之本揭露的實施例或例子。應當理解,本揭露的範圍無意由此受到限制。所描述之實施例的任何修改或改良,以及本文件中描述之原理的任何進一步應用,所屬技術領域中具有通常知識者都認為是通常會發生的。元件編號可以在整個實施例中重複,但這並不一定意味著一個實施例的特徵適用於另一實施例,即使它們共享相同的元件編號。Embodiments or examples of the present disclosure shown in the drawings will now be described using specific language. It should be understood that the scope of the present disclosure is not intended to be limited thereby. Any modification or improvement of the described embodiments, and any further application of the principles described in this document, would occur as would normally occur to one of ordinary skill in the art. Element numbers may be repeated throughout the embodiments, but this does not necessarily mean that features of one embodiment apply to another, even if they share the same element number.

應當理解,雖然用語「第一(first)」、「第二(second)」、「第三(third)」等可用於本文中以描述不同的元件、部件、區域、層及/或部分,但是這些元件、部件、區域、層及/或部分不應受這些用語所限制。這些用語僅用於從另一元件、部件、區域、層或部分中區分一個元件、部件、區域、層或部分。因此,以下所討論的「第一裝置(first element)」、「部件(component)」、「區域(region)」、「層(layer)」或「部分(section)」可以被稱為第二裝置、部件、區域、層或部分,而不背離本文所教示。It should be understood that although the terms "first", "second", "third" etc. may be used herein to describe various elements, components, regions, layers and/or sections, These elements, components, regions, layers and/or sections should not be limited by these terms. These terms are only used to distinguish one element, component, region, layer or section from another element, component, region, layer or section. Therefore, a "first element", "component", "region", "layer" or "section" discussed below may be referred to as a second device , component, region, layer or section without departing from the teachings herein.

本文中使用之術語僅是為了實現描述特定實施例之目的,而非意欲限制本發明。如本文中所使用,單數形式「一(a)」、「一(an)」,及「該(the)」意欲亦包括複數形式,除非上下文中另作明確指示。將進一步理解,當術語「包括(comprises)」及/或「包括(comprising)」用於本說明書中時,該等術語規定所陳述之特徵、整數、步驟、操作、元件,及/或組件之存在,但不排除存在或增添一或更多個其他特徵、整數、步驟、操作、元件、組件,及/或上述各者之群組。The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms "a", "an", and "the" are intended to include the plural forms as well, unless the context clearly dictates otherwise. It will be further understood that when the terms "comprises" and/or "comprising" are used in this specification, these terms specify the stated features, integers, steps, operations, elements, and/or components. Presence, but not excluding the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups of the above.

圖1是結構示意圖,例示本揭露一些實施例的光學系統10。請參考圖1,光學系統10包括一疊對測量設備20以及一元件30。疊對測量設備20用於提供不同層之間或是元件30之相同一層上的不同圖案之間的疊對之資訊。在一些實施例中,疊對測量設備20是使用在多個半導體製造程序中,且用於確定元件30的一第一圖案化層310(如圖2所示)與設置在第一圖案化層310上方或下方的一第二圖案化層320是如何精確地對準的。替代地,疊對測量設備20可用於確定在元件30上的一第一圖案與設置在相同層上之元件30上的一第二圖案是如何精確地對準的。元件30可包括不同元件,例如半導體元件、雙極性接面電晶體、電阻器、電容器、二極體、熔絲等等,但進行簡化以更好理解本揭露的概念。FIG. 1 is a structural schematic diagram illustrating an optical system 10 of some embodiments of the present disclosure. Please refer to FIG. 1 , the optical system 10 includes a stack of measuring devices 20 and an element 30 . The overlay measurement device 20 is used to provide information on the overlay between different layers or between different patterns on the same layer of the device 30 . In some embodiments, the overlay measurement device 20 is used in multiple semiconductor manufacturing processes, and is used to determine a first patterned layer 310 (as shown in FIG. 2 ) of the device 30 How a second patterned layer 320 above or below 310 is precisely aligned. Alternatively, overlay measurement apparatus 20 may be used to determine how precisely a first pattern on component 30 is aligned with a second pattern on component 30 disposed on the same layer. The element 30 may include various elements, such as semiconductor elements, bipolar junction transistors, resistors, capacitors, diodes, fuses, etc., but are simplified for better understanding of the concepts of the present disclosure.

請參考圖1及圖2,經配置以確定元件30之第一圖案化層310與第二圖案化層320之間的一相對移動之疊對測量設備20,主要包括一平台110以及一成像組件120,平台110能夠水平運動與垂直運動,成像組件120用於記錄設置在平台110上之元件30的多個影像。在一些實施例中,平台110在直角坐標(Cartesian coordinate)或是極座標(polar coordinate)任一個是可移動的。Please refer to FIG. 1 and FIG. 2 , the overlay measurement device 20 configured to determine a relative movement between the first patterned layer 310 and the second patterned layer 320 of the component 30 mainly includes a platform 110 and an imaging component 120 , the platform 110 can move horizontally and vertically, and the imaging component 120 is used to record multiple images of the components 30 disposed on the platform 110 . In some embodiments, the platform 110 is movable in either Cartesian coordinates or polar coordinates.

成像組件120包括複數個光學頭122以及複數個疊對標記124,複數個光學頭122用於擷取積體電路之元件30的多個影像,複數個疊對標記124組裝到該等光學頭122上。安裝在該等光學頭122上的該等疊對標記124具有多個測試圖案。尤其是,用於監測第一圖案化層310與第二圖案化層320之間的疊對偏差之該等疊對標記124是光學可穿透的,並允許光穿經而沒有明顯的光散射。The imaging component 120 includes a plurality of optical heads 122 and a plurality of overlay marks 124, the plurality of optical heads 122 are used to capture multiple images of the components 30 of the integrated circuit, and the plurality of overlay marks 124 are assembled to the optical heads 122 superior. The overlay marks 124 installed on the optical heads 122 have a plurality of test patterns. In particular, the overlay marks 124 for monitoring the overlay deviation between the first patterned layer 310 and the second patterned layer 320 are optically transparent and allow light to pass through without significant light scattering .

在元件30之右上方的光學頭122可接收從元件30反射且穿經相對應之疊對標記124的光,並可將具有一獨特強度分布的光轉換成相對應的多個電訊號,該等電訊號發送到一電腦100並可被電腦100所使用。。在一些實施例中,電腦100包括一標準化操作系統,能夠執行通用應用軟體(general-purpose application software),而該通用應用軟體用於輔助製程效能資料的分析,且用於經由其多個通訊埠而與平台110以及光學頭122進行通訊。電腦100可監測成像組件120的狀態,然後依據多個監測結果提供指令給成像組件120。The optical head 122 on the upper right of the component 30 can receive the light reflected from the component 30 and pass through the corresponding overlay mark 124, and can convert the light with a unique intensity distribution into a corresponding plurality of electrical signals. The isoelectric signal is sent to a computer 100 and can be used by the computer 100 . . In some embodiments, the computer 100 includes a standardized operating system capable of executing general-purpose application software, and the general-purpose application software is used to assist in the analysis of process performance data and is used to communicate through its multiple communication ports. And communicate with the platform 110 and the optical head 122 . The computer 100 can monitor the state of the imaging component 120 , and then provide instructions to the imaging component 120 according to a plurality of monitoring results.

在接收該等電訊號之後,電腦100執行多個分析演算,其依據所擷取的影像而計算第一圖案化層310與第二圖案化層320之間的一相對位移。與藉由光學頭122所測量之多個狀況相關聯的資訊是傳送到電腦100,而電腦100執行即時(real-time)及/或測量後(post-measurement)分析,以預測元件30的一品質。After receiving the electrical signals, the computer 100 executes a plurality of analysis calculations to calculate a relative displacement between the first patterned layer 310 and the second patterned layer 320 according to the captured images. Information associated with the various conditions measured by the optical head 122 is transmitted to the computer 100, and the computer 100 performs real-time and/or post-measurement analysis to predict a performance of the component 30. quality.

通常,藉由元件30所反射的光具有一預定強度分布,且藉由元件所反射以及穿經疊對標記124之該等測試圖案的光具有該獨特強度分布;電烤100可分析該預定強度分布與該獨特強度分布之間的差距,以獲得元件30之第一圖案化層310與第二圖案化層320的該相對位移。在一些實施例中,該預定強度分布可從一參數化數學模型而進行估算或模擬。替代地,若是該等疊對標記124是可拆卸的話,則未組裝疊對標記124的光學頭122可接收直接從元件30所反射的光,並可將具有該預定強度分布的光轉換成多個相對應的電訊號。該等電訊號發送到電腦100,並可被電腦100所使用。Typically, the light reflected by the element 30 has a predetermined intensity distribution, and the light reflected by the element and passing through the test patterns of the overlay marks 124 has the unique intensity distribution; the electric oven 100 can analyze the predetermined intensity distribution and the unique intensity distribution to obtain the relative displacement of the first patterned layer 310 and the second patterned layer 320 of the device 30 . In some embodiments, the predetermined intensity distribution can be estimated or simulated from a parametric mathematical model. Alternatively, if the overlay marks 124 are detachable, the optical head 122 without the overlay marks 124 can receive the light reflected directly from the component 30, and can convert the light having the predetermined intensity distribution into multiple a corresponding electrical signal. These electrical signals are sent to the computer 100 and can be used by the computer 100 .

舉例來說,電腦100是一工作站、一個人電腦或是一中央處理單元。在一些實施例中,電腦100不僅電性耦接到光學頭122,還電性連接到平台110,以控制固定元件30之平台110的運動。在一些實施例中,電腦100可經配置以追踪與平台110及該等光學頭122的記錄影像以及操作有關的資料,並將該資料儲存在一電腦可讀取媒體中。舉例來說,使用在本揭露中之該電腦可讀取媒體的一些常見形式可包括軟碟、磁片(flexible disk)、硬碟、磁帶(magnetic tape)、任何其他的磁性媒體、緊密光碟唯讀記憶體(compact disc read-only memory,CD-ROM)、任何其 光學媒體、打孔卡片(punch card)、紙帶、任何其他具有孔圖案的實體媒體、隨機存取記憶體(random access memory,RAM)、可程式化唯讀記憶體(programmable read-only memory,PROM)、可抹除可程式化唯讀記憶體(erasable programmable read-only memory,EPROM)、快閃-可抹除可程式化唯讀記憶體(flash -EPROM)、任何其他記憶體晶片或記憶體匣、載波(carrier wave)或是合於一電腦讀取的任何其他媒體。For example, the computer 100 is a workstation, a personal computer or a central processing unit. In some embodiments, the computer 100 is not only electrically coupled to the optical head 122 but also electrically connected to the platform 110 to control the movement of the platform 110 of the fixing element 30 . In some embodiments, the computer 100 can be configured to track data related to the recorded images and operations of the platform 110 and the optical heads 122 and store the data on a computer-readable medium. Some common forms of computer-readable media used in this disclosure may include, for example, floppy disks, flexible disks, hard disks, magnetic tape, any other magnetic media, compact discs, Compact disc read-only memory (CD-ROM), any other optical media, punch card, paper tape, any other physical media with a pattern of holes, random access memory , RAM), programmable read-only memory (programmable read-only memory, PROM), erasable programmable read-only memory (erasable programmable read-only memory, EPROM), flash-erasable programmable flash-EPROM, any other memory chip or memory cartridge, carrier wave (carrier wave) or any other medium suitable for a computer to read.

該等疊對標記124的該等測試圖案可包括一週期性結構。該等測試圖案可由複數個微結構所構成,其可增加可用於測量多個疊對誤差之資訊的一數量,且其可進行廣泛修改以減少某些製程對該疊加測量的影響。在一些實施例中,該等微結構的尺寸與間距與實際之多個積體電路的結構大致相同。藉由形成用尺寸更接近實際電路尺寸之該等微結構的每一個週期性結構,可獲得在此電路中之任何對準誤差的一更準確地測量。該等疊對標記124可具有呈一同心配置之排列的多個微結構,如圖3到圖9所示。在一些替代的實施例中,該等疊對標記124可由重複的多個微結構所構成,如圖10到圖18所示。The test patterns of the overlay marks 124 may include a periodic structure. The test patterns can be composed of multiple microstructures, which can increase the amount of information available for measuring overlay errors, and can be extensively modified to reduce the effect of certain processes on the overlay measurement. In some embodiments, the size and pitch of the microstructures are substantially the same as those of actual integrated circuit structures. By forming each periodic structure of the microstructures with dimensions closer to the actual circuit dimensions, a more accurate measure of any alignment errors in the circuit can be obtained. The overlay marks 124 may have a plurality of microstructures arranged in a concentric arrangement, as shown in FIGS. 3 to 9 . In some alternative embodiments, the overlay marks 124 may be composed of repeated microstructures, as shown in FIGS. 10 to 18 .

請參考圖3到圖5,在疊對標記124上的該等微結構為多個同心圓形、多個同心正方形或是多個同心菱形。在圖6及圖7中的疊對標記124包括多個同心正方形以及兩條線,而該兩條線交叉在該等同心正方形的一中間處並將該等同心正方形分隔成四等分;在圖6中的該等條線跨經該等正方形的各側邊,同時在圖7中的該等條線是多個對角線。Please refer to FIG. 3 to FIG. 5 , the microstructures on the overlay mark 124 are a plurality of concentric circles, a plurality of concentric squares or a plurality of concentric rhombuses. Overlay marks 124 in FIGS. 6 and 7 include concentric squares and two lines that intersect at a middle of the concentric squares and divide the concentric squares into quarters; The lines in FIG. 6 span the sides of the squares, while the lines in FIG. 7 are diagonals.

參考圖8到圖9,疊對標記124的該等微結構包括複數個同心菱形以及複數條線。詳而言之,在圖8中的該等微結構還包括四條線,從最外面的該等菱形之各側邊的各中心朝外延伸。在圖9中,該等微結構還包括以一第一間距P1與該等最外面之該等菱形分隔開的複數條線,而第一間距P1大於在該等同心菱形之間的一第二間距P2;該等條線平行於該等同心菱形的各側邊。Referring to FIGS. 8 to 9 , the microstructures of the overlay mark 124 include a plurality of concentric rhombuses and a plurality of lines. In detail, the microstructures in FIG. 8 also include four lines extending outward from the centers of the sides of the outermost rhombuses. In FIG. 9, the microstructures further include a plurality of lines separated from the outermost rhombuses by a first pitch P1 greater than a first pitch P1 between the concentric rhombuses. Two pitches P2; the lines are parallel to the sides of the concentric rhombuses.

請參考圖10,疊對標記124是一菱形並由複數個長菱形微結構所構成。如圖11所示的疊對標記124包括呈一連續接合配置之排列的多個矩形微結構。請參考圖12及圖13,該等疊對標記124分別由重複的多個長菱形與六角形微結構所構成。Please refer to FIG. 10 , the overlay mark 124 is a rhombus and is composed of a plurality of rhomboid microstructures. The overlay mark 124 as shown in FIG. 11 includes a plurality of rectangular microstructures arranged in a continuous bonded configuration. Please refer to FIG. 12 and FIG. 13 , the overlay marks 124 are respectively composed of repeated rhomboid and hexagonal microstructures.

在圖14中,疊對標記124包括相互交錯的多個梯形以及倒梯形微結構。在圖15中,疊對標記124包括相互分隔開的複數個圓形微結構。在圖16中,疊對標記124包括多個鋸齒狀微結構。在圖17中,疊對標記124包括由四個Γ所組成之十字形(卍或是卐)的多個微結構。在一些實施例中,由四個Γ所組成之十字形是在一右手方向。在圖18中,疊對標記124包括多個重疊正方形微結構,其由四個小正方形所構成。本揭露的該等疊對標記124並不以上述的該等實施例為限,並可具有其他不同的實施例。In FIG. 14 , the overlay mark 124 includes a plurality of interlaced trapezoidal and inverted trapezoidal microstructures. In FIG. 15 , the overlay mark 124 includes a plurality of circular microstructures spaced apart from each other. In FIG. 16, the overlay mark 124 includes a plurality of indented microstructures. In FIG. 17 , the overlay mark 124 includes a plurality of cross-shaped (swastika or swastika) microstructures composed of four Γ. In some embodiments, the cross shape composed of four Γ is in a right-hand direction. In FIG. 18 , the overlay mark 124 includes a plurality of overlapping square microstructures, which are composed of four small squares. The overlapping marks 124 of the present disclosure are not limited to the above-mentioned embodiments, and may have other different embodiments.

請再參考圖2,元件30還可包括一第一鈍化膜330,設置在第一圖案化層310與第二圖案化層320之間。覆蓋第一圖案化層310的第一鈍化膜330可對第一圖案化層310提供結構強度,其可能需要適應壓縮力(compression forces)(例如來自沉積及/或鍍覆製程)及/或剪切力(shear force)(例如來自化學機械研磨製程)。第一鈍化膜330是一共形層,其具有一大致平坦的厚度。在第二圖案化層320的沉積之前,第一鈍化膜330可使用一鍍覆製程或是例如一化學氣相沉積(CVD)製程或是一物理氣相沉積(PVD)製程的多個沉積製程而形成在第一圖案層310上。在一些實施例中,舉例來說,第一鈍化膜330是一類鑽石碳(DLC)膜或是一奈米複合膜。Referring to FIG. 2 again, the device 30 may further include a first passivation film 330 disposed between the first patterned layer 310 and the second patterned layer 320 . The first passivation film 330 covering the first patterned layer 310 can provide structural strength to the first patterned layer 310, which may need to accommodate compression forces (eg, from deposition and/or plating processes) and/or shear. Shear force (eg, from a chemical mechanical polishing process). The first passivation film 330 is a conformal layer with a substantially flat thickness. Prior to the deposition of the second patterned layer 320, the first passivation film 330 may be deposited using a plating process or multiple deposition processes such as a chemical vapor deposition (CVD) process or a physical vapor deposition (PVD) process. And formed on the first pattern layer 310 . In some embodiments, for example, the first passivation film 330 is a type of diamond carbon (DLC) film or a nanocomposite film.

在一些實施例中,元件30還可包括一或多個半導體層350a與350b,設置在第一鈍化膜330與第二圖案化層320之間,其中在半導體層350a與350b沉積之前,形成第一鈍化膜330以覆蓋第一圖案化層310。半導體層350a與350b是光學可穿透的,因此允許藉由第一圖案化層310所描述的光經由半導體層350a與350b而傳送,並入射到光學頭122上。In some embodiments, the device 30 may further include one or more semiconductor layers 350a and 350b disposed between the first passivation film 330 and the second patterned layer 320, wherein before the deposition of the semiconductor layers 350a and 350b, the first A passivation film 330 covers the first patterned layer 310 . The semiconductor layers 350 a and 350 b are optically transparent, thus allowing the light described by the first patterned layer 310 to be transmitted through the semiconductor layers 350 a and 350 b and incident on the optical head 122 .

以適合的機制設計該等光學頭122以有效地擷取從元件30所反射的光。在一些實施例中,現場技術人員(on-site technician)可藉由機械地旋轉光學頭122而對該等疊對標記124進行充電以測量元件30。替代地,電腦100可控制該等光學頭122的旋轉,因此疊對標記124的該等測試圖案用以測量疊對誤差。舉例來說,該等光學頭122可為電荷耦合元件(CCDs)或是互補式金屬氧化物半導體(CMOS)感測器。在該測量之後,若是由光學頭122提供之所記錄的該等影像無法符合預期的話,則現場技術人員可對該等疊對標記124進行充電,然後執行其他測量。The optical heads 122 are designed with suitable mechanisms to efficiently capture the light reflected from the device 30 . In some embodiments, an on-site technician can charge the overlay markers 124 by mechanically rotating the optical head 122 to measure the device 30 . Alternatively, the computer 100 can control the rotation of the optical heads 122 so that the test patterns of the overlay marks 124 are used to measure the overlay error. For example, the optical heads 122 can be charge coupled devices (CCDs) or complementary metal oxide semiconductor (CMOS) sensors. After the measurement, if the recorded images provided by the optical head 122 are not as expected, the field technician can charge the overlay marks 124 and then perform other measurements.

例如遮蔽以及光波長的一些製程條件亦可影像訊號品質。因此,成像組件120還包括一光源130,適合於發射光以照明元件30。光源130提供入射在元件30上的光以最佳化影像解析度並最小化光學像差(optical aberrations)。光源130可經配置以提供一均勻強度的照明。光源130可提供所選擇之波長的光,包括非同調或同調波長。用於照明元件30的光可藉由電磁輻射所產生,例如雷射、發光二極體(LED)或是寬帶輻射。替代地,光可藉由燈泡所產生。在一些實施例中,光源130可為一可調光源,其可操作於產生具有不同波長的光束以達到多波長疊對測量。此外,光源130可產生可見光或不可見光,包括紅外光、近紅外(NIR)光或是遠紅外(FIR)光。Some process conditions such as shadowing and light wavelength can also affect image signal quality. Therefore, the imaging component 120 further includes a light source 130 suitable for emitting light to illuminate the element 30 . The light source 130 provides light incident on the device 30 to optimize image resolution and minimize optical aberrations. Light source 130 may be configured to provide a uniform intensity of illumination. Light source 130 may provide light at selected wavelengths, including non-coherent or coherent wavelengths. The light for the lighting element 30 can be generated by electromagnetic radiation, such as lasers, light emitting diodes (LEDs) or broadband radiation. Alternatively, light can be generated by light bulbs. In some embodiments, the light source 130 may be a tunable light source operable to generate light beams with different wavelengths to achieve multi-wavelength overlay measurements. In addition, the light source 130 can generate visible light or invisible light, including infrared light, near infrared (NIR) light or far infrared (FIR) light.

疊對測量設備20還可包括一顯示器102,用以與疊對測量設備20的效能與操作相關的資料顯示給現場技術人員。顯示器102還經配置以接受來自現場技術人員所輸入的資料。換言之,顯示器102設置有直接到電腦100的一通訊鏈結(communications link),以藉由現場技術人員提供疊對測量設備20的多個即時控制功能,特別是在需要現場技術人員干預的情況下。The overlay measurement device 20 may further include a display 102 for displaying information related to the performance and operation of the overlay measurement device 20 to field technicians. Display 102 is also configured to accept input from field technicians. In other words, the display 102 is provided with a communications link directly to the computer 100 to provide multiple real-time control functions of the overlay measurement device 20 by the field technician, especially in situations where intervention by the field technician is required. .

疊對測量設備20還可包括電腦100、平台110、該等光學頭124、光源130以及其他周邊元件之間的操作介面通訊鏈結,並使操作介面能夠監控電腦100、平台110、該等光學頭124以及光源130之多個診斷功能的操作的一程序序列;觸發關於該等光學頭124以及光源130之狀況的聲音及/或光警報;接收來自該等光學頭124的效能資料;以及接收來自包括顯示器102與一鍵盤之一或多個輸入裝置的輸入資料。顯示器102亦經配置以顯示疊對測量設備20的一測量結果,以提供可視化的測量結果給現場技術人員。The overlay measurement device 20 may also include an operation interface communication link between the computer 100, the platform 110, the optical heads 124, the light source 130 and other peripheral components, and enable the operation interface to monitor the computer 100, the platform 110, the optical A sequence of procedures for the operation of diagnostic functions of the heads 124 and light sources 130; triggering audible and/or optical alarms about the status of the heads 124 and light sources 130; receiving performance data from the heads 124; and receiving Input data from one or more input devices including display 102 and a keyboard. The display 102 is also configured to display a measurement result of the overlay measurement device 20 to provide visual measurement results to field technicians.

在圖1中,藉由光源130所產生的光沿著一水平方向直線行進,且並未照明元件30;因此,使用能夠定向光的一光束分離器132以將光導向元件30。光束分離器132可定位在光源130的一光軸A1與記錄元件30之影像的其中一個光學頭122之一光軸A2的一交叉處。藉由使用光束分離器132,從光源130所輸出的光藉由光束分離器132所反射,且其傳送路徑導向元件30;從元件30所反射的光可穿經光束分離器132,並傳送到記錄元件30之影像的其中一個光學頭122。在圖1中,光束分離器132是一立方體配置;然而,光束分離器132可具有一板體(plate)或薄膜(pellicle)配置。In FIG. 1 , the light generated by the light source 130 travels straight along a horizontal direction and does not illuminate the element 30 ; therefore, a beam splitter 132 capable of directing the light is used to direct the light to the element 30 . The beam splitter 132 can be positioned at an intersection of an optical axis A1 of the light source 130 and an optical axis A2 of one of the optical heads 122 of the image recording device 30 . By using the beam splitter 132, the light output from the light source 130 is reflected by the beam splitter 132, and its transmission path guides the element 30; the light reflected from the element 30 can pass through the beam splitter 132, and is transmitted to One of the optical heads 122 for recording the image of the element 30 . In FIG. 1, the beam splitter 132 is a cube configuration; however, the beam splitter 132 may have a plate or pellicle configuration.

成像組件120亦可包括一第一透鏡134以及一第二透鏡136;第一透鏡134設置在光束分離器132與元件30之間,而第二透鏡136設置在光束分離器132與該等光學頭122之間。藉由光束分離器132所反射的光藉由第一透鏡134而聚焦在元件30,同時穿經光束分離器132的光藉由第二透鏡136而聚焦在光學頭122上。The imaging component 120 can also include a first lens 134 and a second lens 136; the first lens 134 is arranged between the beam splitter 132 and the element 30, and the second lens 136 is arranged between the beam splitter 132 and the optical heads Between 122. The light reflected by the beam splitter 132 is focused on the device 30 by the first lens 134 , and the light passing through the beam splitter 132 is focused on the optical head 122 by the second lens 136 .

圖19是結構示意圖,例示本揭露一些實施例的光學系統10。請參考圖19,光學系統10包括一疊對測量設備20以及一元件30。疊對測量設備20是使用在多個半導體製造程序中,且用於確定元件30的一疊對誤差。疊對測量設備20包括一電腦100、一平台110以及一成像組件120;電腦100與平台110以及成像組件120是相關聯的,且經配置以確定該疊對誤差是否存在。FIG. 19 is a structural schematic diagram illustrating an optical system 10 according to some embodiments of the present disclosure. Please refer to FIG. 19 , the optical system 10 includes a stack of measuring devices 20 and a component 30 . The overlay measurement device 20 is used in various semiconductor manufacturing processes and is used to determine an overlay error of the device 30 . The overlay measurement device 20 includes a computer 100, a platform 110, and an imaging component 120; the computer 100 is associated with the platform 110 and the imaging component 120, and is configured to determine whether the overlay error exists.

圖20是剖視示意圖,例示本揭露一些實施例的元件30。請參考圖20,元件30包括一第一圖案化層310、一第二圖案化層320、一第一鈍化膜330以及一第二鈍化膜340,第二圖案化層320設置在第一圖案化層310上,第一鈍化膜330設置在第一圖案化層310與第二圖案化層320之間,第二鈍化膜340覆蓋第二圖案化層320。第一鈍化膜330與第二鈍化膜340可分別對第一圖案化層310與第二圖案化層320提供結構支撐。在一些實施例中,第一鈍化膜330與第二鈍化膜340是DLC膜或是奈米複合膜。FIG. 20 is a schematic cross-sectional view illustrating an element 30 of some embodiments of the present disclosure. Please refer to FIG. 20, the element 30 includes a first patterned layer 310, a second patterned layer 320, a first passivation film 330 and a second passivation film 340, the second patterned layer 320 is arranged on the first patterned layer On the layer 310 , the first passivation film 330 is disposed between the first patterned layer 310 and the second patterned layer 320 , and the second passivation film 340 covers the second patterned layer 320 . The first passivation film 330 and the second passivation film 340 can respectively provide structural support for the first patterned layer 310 and the second patterned layer 320 . In some embodiments, the first passivation film 330 and the second passivation film 340 are DLC films or nanocomposite films.

第二圖案化層320可包括光阻材料,並使用一微影製程所形成。第二圖案化層320可為一圖案,其用於在蝕刻期間保護半導體層350b的一些部分。通常,在一曝光製程之後,檢查該等疊對誤差。一般而言,藉由移除與重新沉積該光阻層以重工並重新曝光具有對於特定製造步驟之不可接受的疊對誤差的元件30。在一些實施例中,電腦100可執行資料分析並計算該疊對誤差,然後為了消除或減少該疊對誤差,則經由網路而提供不同指令給現場技術人員,例如調整層形成條件的指令,或是調整微影條件的指令。在一些實施例中,電腦100可發送多個指令到平台100以調整元件30而傾斜、轉動、移動,進而減少該疊對誤差。The second patterned layer 320 may include photoresist material and is formed by a photolithography process. The second patterned layer 320 may be a pattern for protecting some portions of the semiconductor layer 350b during etching. Typically, the overlay errors are checked after an exposure process. Typically, devices 30 with unacceptable overlay errors for a particular fabrication step are reworked and re-exposed by removing and redepositing the photoresist layer. In some embodiments, the computer 100 can perform data analysis and calculate the overlay error, and then in order to eliminate or reduce the overlay error, provide different instructions to field technicians via the network, such as instructions for adjusting layer formation conditions, Or an instruction to adjust the lithography conditions. In some embodiments, the computer 100 can send a plurality of commands to the platform 100 to adjust the component 30 to tilt, rotate, and move, thereby reducing the overlay error.

成像組件120是用於擷取元件30的多個影像。元件30包括置放在平台110上之待測量的第一圖案化層310與第二圖案化層320,平台110通常在電腦100的控制下由馬達所驅動。電腦100亦執行依據從成像組件120所接收的資料執行實際計算。在一些實施例中,電腦100包括一標準化操作系統,能夠執行通用應用軟體(general-purpose application software),而該通用應用軟體用於輔助製程效能資料的分析,且用於經由其多個通訊埠而與平台110以及光學頭122進行通訊。The imaging component 120 is used to capture a plurality of images of the device 30 . The device 30 includes a first patterned layer 310 and a second patterned layer 320 placed on a platform 110 to be measured. The platform 110 is usually driven by a motor under the control of the computer 100 . The computer 100 also performs actual calculations based on the data received from the imaging unit 120 . In some embodiments, the computer 100 includes a standardized operating system capable of executing general-purpose application software, and the general-purpose application software is used to assist in the analysis of process performance data and is used to communicate through its multiple communication ports. And communicate with the platform 110 and the optical head 122 .

成像組件120包括複數個光學頭122以及複數個疊對標記124;該等光學頭用於擷取元件30的多個影像,且該等疊對標記124組裝到該等光學頭122上。每一個疊對標記124安裝到該等光學頭124上、是光學可穿透的,且包括一測試圖案。該等疊對標記124可用於測量元件30之第一圖案化層310相對於其第二圖案化層320的對準。此外,疊對標記124可用於測量元件30的一第一圖案相對於其一第二圖案的對準,其中該第一圖案與該第二圖案是形成在相同半導體層上的連續圖案。The imaging component 120 includes a plurality of optical heads 122 and a plurality of alignment marks 124 ; the optical heads are used to capture multiple images of the device 30 , and the alignment marks 124 are assembled on the optical heads 122 . Each overlay mark 124 is mounted on the optical heads 124, is optically transparent, and includes a test pattern. The overlay marks 124 can be used to measure the alignment of the first patterned layer 310 of the device 30 relative to the second patterned layer 320 thereof. In addition, the overlay marks 124 can be used to measure the alignment of a first pattern of the device 30 relative to a second pattern thereof, wherein the first pattern and the second pattern are continuous patterns formed on the same semiconductor layer.

光學頭122可接收指向到元件30、從元件30所反射以及穿經相對應之疊對標記124的該測試圖案的光。然後,光學頭122將具有預定強度分布之所接收的光轉換成相對應的多個電訊號,並傳送將該等電訊號到電腦100。電腦100可執行多個分析演算,其依據所擷取的影像計算在元件30上之多個圖案的一相對位移。電腦100可為一桌上型電腦、筆記型電腦(laptop computer)或是平板電腦(tablet computer)。此外,電腦100與該等光學頭122可使用有線鏈結、無線鏈結、其組合或任何其他已知的或以後開發的元件而進行交互作用,該等以後開發的元件能夠向所連接的電腦100與該等光學頭122提供資料及/或從電腦100與該等光學頭122傳送資料。The optical head 122 can receive the light of the test pattern directed to the component 30 , reflected from the component 30 , and passed through the corresponding overlay mark 124 . Then, the optical head 122 converts the received light having a predetermined intensity distribution into corresponding electrical signals, and transmits the electrical signals to the computer 100 . The computer 100 can execute a plurality of analysis algorithms, which calculate a relative displacement of a plurality of patterns on the device 30 according to the captured images. The computer 100 can be a desktop computer, a laptop computer or a tablet computer. In addition, the computer 100 and the optical heads 122 may interact using a wired link, a wireless link, a combination thereof, or any other known or later-developed element that enables communication with the connected computer. 100 and the optical heads 122 provide data and/or transmit data from the computer 100 and the optical heads 122 .

舉例來說,用作多個鏈結的傳輸媒體可為用於該等電訊號之任何適合的載體,包括同軸電纜、銅線和光纖,並且可以採用聲波或光波的形式,例如在無線電波以及紅外資料通訊期間所產生的那些。電腦100可在一網路上直接與該等光學頭122進行通訊;舉例來說,一Wi-Fi網路或是例如藍芽的其他區域無線網路。替代地,電腦100亦可在例如網際網路(Internet)的一網路上間接地與該等光學頭122進行通訊。在一些實施例中,電腦100可包括一電腦平台,可操作於執行多個應用程式,其可與該等光學頭122進行交互作用。For example, the transmission medium used for the multiple links may be any suitable carrier for such electrical signals, including coaxial cables, copper wire, and fiber optics, and may take the form of sound or light waves, such as in radio waves and Those generated during infrared data communications. The computer 100 can communicate directly with the optical heads 122 over a network; for example, a Wi-Fi network or other local area wireless network such as Bluetooth. Alternatively, the computer 100 can also communicate with the optical heads 122 indirectly on a network such as the Internet. In some embodiments, the computer 100 may include a computer platform operable to execute a plurality of application programs, which may interact with the optical heads 122 .

光源130適於產生光以在執行測量期間照明元件30。在圖19中,藉由光源130所產生的光直接朝向元件30進行輻射,藉由元件30所反射的光傳送到在元件30右上方之光學頭122。意即,在一入射光與反射光之間的一夾角α是一銳角。在一些實施例中,光源130的照度(luminance)可藉由電腦100進行控制。The light source 130 is adapted to generate light to illuminate the element 30 during the performance of a measurement. In FIG. 19 , the light generated by the light source 130 is radiated directly toward the element 30 , and the light reflected by the element 30 is transmitted to the optical head 122 on the upper right of the element 30 . That is, an angle α between an incident light and a reflected light is an acute angle. In some embodiments, the luminance of the light source 130 can be controlled by the computer 100 .

圖21是結構示意圖,例示本揭露一些實施例的光學系統10。請參考圖21,光學系統10包括一疊對測量設備20以及一元件30。疊對測量設備20適於確定一疊對誤差是否存在元件30中。疊對測量設備20包括一電腦100、一平台110以及一成像組件120。平台110與成像組件120可藉由電腦100進行控制。FIG. 21 is a structural schematic diagram illustrating an optical system 10 according to some embodiments of the present disclosure. Please refer to FIG. 21 , the optical system 10 includes a stack of measuring devices 20 and a component 30 . The overlay measurement device 20 is adapted to determine whether an overlay error exists in the component 30 . The overlay measurement device 20 includes a computer 100 , a platform 110 and an imaging component 120 . The platform 110 and the imaging component 120 can be controlled by the computer 100 .

固定元件30且能夠水平運動與垂直運動的平台110通常在電腦100的控制下由馬達所驅動。提供於與電腦100執行實際測量的成像組件120可記錄元件30的多個影像並產生影像資訊給電腦100。電腦100可依據該影像資訊而確定該疊對誤差是否存在。電腦100可包括一標準化操作系統,能夠執行通用應用軟體(general-purpose application software),而該通用應用軟體用於輔助製程效能資料的分析,且用於經由其多個通訊埠而與平台110以及光學頭122進行通訊。The platform 110 that fixes the component 30 and can move horizontally and vertically is usually driven by a motor under the control of the computer 100 . The imaging component 120 provided with the computer 100 for actual measurement can record multiple images of the device 30 and generate image information to the computer 100 . The computer 100 can determine whether the overlay error exists according to the image information. The computer 100 may include a standardized operating system capable of executing general-purpose application software for assisting in the analysis of process performance data and for communicating with the platform 110 and the The optical head 122 communicates.

成像組件120包括複數個光學頭122、複數個疊對標記124以及一光源130,該等光學頭122用於記錄元件30的一或多個影像,該等疊對標記124安裝在該等光學頭122上,光源130則適於照明元件30。安裝在該等光學頭122上的該等疊對標記124是光學可穿透的,且包括多個測試圖案。在一些實施例中,電腦100可僅使用一個測試圖案而確定該疊對誤差是否存在。替代地,電腦100可使用不同測試圖案所記錄的多個影像而確定該疊對誤差是否存在。The imaging assembly 120 includes a plurality of optical heads 122, a plurality of overlay marks 124 and a light source 130. The optical heads 122 are used to record one or more images of the element 30, and the overlay marks 124 are mounted on the optical heads. 122 , the light source 130 is adapted for the lighting element 30 . The overlay marks 124 mounted on the optical heads 122 are optically transparent and include a plurality of test patterns. In some embodiments, the computer 100 can use only one test pattern to determine whether the overlay error exists. Alternatively, the computer 100 can use multiple images recorded with different test patterns to determine whether the overlay error exists.

光學頭122可接收投影到元件的光,其是藉由元件30所反射並穿經相對應的疊對標記124。光學頭122還可將具有預定強度分布的光轉換成相對應的多個電訊號,而電腦100可使用該等電訊號確定該疊對誤差是否存在。在一些實施例中,電腦100依據所擷取的影像執行多個分析演算,其計算在元件30上之多個圖案的一相對位移。The optical head 122 can receive the light projected onto the component, which is reflected by the component 30 and passes through the corresponding overlay mark 124 . The optical head 122 can also convert the light with a predetermined intensity distribution into a plurality of corresponding electrical signals, and the computer 100 can use the electrical signals to determine whether the overlay error exists. In some embodiments, the computer 100 performs analysis algorithms based on the captured images to calculate a relative displacement of the patterns on the device 30 .

光學頭122與光源130設置在元件30的相對兩側上。在一些實施例中,從光源130所發射的光與傳送到元件30的光之一夾角β等於從元件30所發射的光與入射到其中一個光學頭122上的光的一夾角δ。The optical head 122 and the light source 130 are disposed on opposite sides of the element 30 . In some embodiments, the angle β between the light emitted from the light source 130 and the light transmitted to the device 30 is equal to the angle δ between the light emitted from the device 30 and the light incident on one of the optical heads 122 .

圖22是流程示意圖,例示本揭露一些實施例之疊對測量設備的操作方法400。請參考圖1到圖22,疊對測試設備的操作方法可在步驟S402開始,其為提供一成像組件120。成像組件120包括複數個光學頭122以及複數個疊對標記124,該等光學頭122適於記錄一元件30的一或多個影像,該等疊對標記124安裝在該等光學頭122上。FIG. 22 is a flow diagram illustrating a method 400 of operating an overlay measurement device according to some embodiments of the present disclosure. Please refer to FIG. 1 to FIG. 22 , the operation method of the overlay testing device may start at step S402 , which is to provide an imaging component 120 . The imaging component 120 includes a plurality of optical heads 122 and a plurality of overlay marks 124 , the optical heads 122 are suitable for recording one or more images of a component 30 , and the overlay marks 124 are mounted on the optical heads 122 .

然後,該方法進行一步驟S404,其為待測量的元件30置放在一平台110上。元件30包括二或多個連續圖案化層。在前段(FEOL)製程或是後段(BEOL)製程期間,可形成元件30的該等圖案化層。在設置元件30之後,適於擷取一或多個影像的其中一個光學頭122對準元件30(步驟S406)。光學頭122與元件30可依據藉由一電腦100所提供的多個指令進行對準,電腦100進行程式化以控制平台110與該等光學頭122的操作。在對準期間,電腦100可驅動平台110以對準其中一個光學頭122。替代地,電腦100可驅動用於記錄該影像的該等光學頭122,以對準平台110。Then, the method proceeds to a step S404 , which is to place the component 30 to be measured on a platform 110 . Element 30 includes two or more successively patterned layers. The patterned layers of device 30 may be formed during a front-end-of-line (FEOL) process or a back-end-of-line (BEOL) process. After the device 30 is set, one of the optical heads 122 suitable for capturing one or more images is aimed at the device 30 (step S406 ). The optical heads 122 and the components 30 can be aligned according to instructions provided by a computer 100 programmed to control the operation of the platform 110 and the optical heads 122 . During the alignment, the computer 100 can drive the stage 110 to align one of the optical heads 122 . Alternatively, the computer 100 can drive the optical heads 122 for recording the image to align with the platform 110 .

在光學頭122與元件30對準之後,光學頭122可開始記錄元件30的影像(步驟S412)。光學頭122可將所記錄的影像轉換成相對應的多個電訊號,並將該等電訊號傳送到電腦100。電腦100可確定一疊對誤差是否存在,並可依據該等電訊號而確定形成在元件30之該等層上之多個圖案的一相對位移(步驟S414)。After the optical head 122 is aligned with the component 30, the optical head 122 can start to record the image of the component 30 (step S412). The optical head 122 can convert the recorded images into a plurality of corresponding electrical signals, and transmit the electrical signals to the computer 100 . The computer 100 can determine whether an overlay error exists, and can determine a relative displacement of the patterns formed on the layers of the device 30 according to the electrical signals (step S414 ).

電腦100與該等光學頭122可使用有線鏈結、無線鏈結、其組合或任何其他已知的或以後開發的元件而進行交互作用,該等以後開發的元件能夠向所連接的電腦100與該等光學頭122提供資料及/或從電腦100與該等光學頭122傳送資料。舉例來說,用作多個鏈結的傳輸媒體可為用於該等電訊號之任何適合的載體,包括同軸電纜、銅線和光纖,並且可以採用聲波或光波的形式,例如在無線電波以及紅外資料通訊期間所產生的那些。電腦100可在一網路上直接與該等光學頭122進行通訊;舉例來說,一Wi-Fi網路或是例如藍芽的其他區域無線網路。替代地,電腦100亦可在例如網際網路(Internet)的一網路上間接地與該等光學頭122進行通訊。在一些實施例中,電腦100可包括一電腦平台,可操作於執行多個應用程式,其可與該等光學頭122進行交互作用。The computer 100 and the optical heads 122 may interact using a wired link, a wireless link, a combination thereof, or any other known or later-developed element that can communicate to the connected computer 100 and optical heads 122. The optical heads 122 provide data and/or transmit data from the computer 100 to the optical heads 122 . For example, the transmission medium used for the multiple links may be any suitable carrier for such electrical signals, including coaxial cables, copper wire, and fiber optics, and may take the form of sound or light waves, such as in radio waves and Those generated during infrared data communications. The computer 100 can communicate directly with the optical heads 122 over a network; for example, a Wi-Fi network or other local area wireless network such as Bluetooth. Alternatively, the computer 100 can also communicate with the optical heads 122 indirectly on a network such as the Internet. In some embodiments, the computer 100 may include a computer platform operable to execute a plurality of application programs, which may interact with the optical heads 122 .

影響影像品質的材料特性因素包括反射率、折射率、表面粗糙度以及厚度。例如遮蔽以及光波長的製程條件亦可影響訊號品質。因此,若是該測量是在背景光線不足的環境中進行的話,則可以可選擇地提供一光源130以在對元件30進行記錄之前照明元件30(步驟S408)。入射光角度可能影響影像品質;因此,可以可選擇地提供包括一光束分離器132的其他元件以修改藉由光源130所產生的、藉由元件30所反射的以及傳送到光學頭122之光的一光學路徑(步驟S410)。在一些實施例中,光束分離器132定位在光源130的一光軸A1與記錄元件30之影像的光學頭122的一光軸A2的一交叉處。在一些實施例中,藉由光源130所產生的光直接輻射朝向元件30。在一些實施例中,在該照明路徑中可提供一光圈(aperture stop)或是空間光調變器(spatial light modulator)(圖未示),以控制在元件30上之光的入射角度的一範圍。Material properties that affect image quality include reflectivity, refractive index, surface roughness, and thickness. Process conditions such as shadowing and optical wavelength can also affect signal quality. Therefore, if the measurement is performed in an environment with insufficient background light, a light source 130 may optionally be provided to illuminate the device 30 before recording the device 30 (step S408 ). The angle of incident light may affect image quality; therefore, other components including a beam splitter 132 may optionally be provided to modify the distribution of light generated by the light source 130, reflected by the component 30, and transmitted to the optical head 122. an optical path (step S410). In some embodiments, the beam splitter 132 is positioned at an intersection of an optical axis A1 of the light source 130 and an optical axis A2 of the optical head 122 that records the image of the device 30 . In some embodiments, the light generated by the light source 130 is radiated directly toward the element 30 . In some embodiments, an aperture stop or a spatial light modulator (not shown) may be provided in the illumination path to control an angle of incidence of light on the element 30. scope.

總之,藉由疊對測量設備20的配置,疊對標記124的測試圖案安裝在光學頭122上並且在測量期間是可替換的;因此,所記錄的影像可具有一較佳的解析度,也因此改善測量的準確性。In summary, with the configuration of the overlay measurement device 20, the test pattern of the overlay mark 124 is installed on the optical head 122 and is replaceable during the measurement; therefore, the recorded image can have a better resolution and also The accuracy of the measurement is thus improved.

本揭露之一實施例提供一種疊對測量設備,用於確定一元件之二或多個連續圖案化層的相對位置。該疊對測量設備包括一平台以及一成像組件,該成像組件經配置以記錄置放在該平台上之該元件的多個影像。該成像組件包括複數個光學頭,經配置以擷取該元件的該等影像;以及複數個疊對標記,分別組裝在該複數個光學頭上。該元件之該等連續圖案化層的該等相對位置使用從該元件所反射且穿經安裝在相對應之該光學頭上之該疊對標記的光來確定。An embodiment of the present disclosure provides an overlay measurement device for determining the relative position of two or more consecutive patterned layers of a device. The overlay measurement device includes a platform and an imaging component configured to record a plurality of images of the component placed on the platform. The imaging component includes a plurality of optical heads configured to capture the images of the component; and a plurality of overlay marks assembled on the plurality of optical heads respectively. The relative positions of the successively patterned layers of the element are determined using light reflected from the element and passing through the overlay mark mounted on the corresponding optical head.

本揭露之一實施例提供一種光學系統。該光學系統包括一元件以及一疊對測量設備。該元件包括一第一圖案化層、一第二圖案化層以及一第一鈍化膜。該第二圖案化層設置在該第一圖案層上,且該第一鈍化膜覆蓋該第一圖案化層。該疊對測量設備,用以確定該第一與第二圖案化層的相對位置,該疊對測量設備用以確定該第一與第二圖案化層的相對位置,其包括一平台以及一成像組件。該元件置放在該平台上。該成像組件包括複數個光學頭以及複數個疊對標記。該複數個光學頭經配置以記錄該元件的至少一影像。該複數個疊對標記分別組裝到該複數個光學頭上。該元件之該第一與第二圖案化層的該等相對位置使用從該元件所反射且穿經安裝在相對應之該光學頭上之該疊對標記的光來確定。An embodiment of the present disclosure provides an optical system. The optical system includes a component and a pair of measuring devices. The element includes a first patterned layer, a second patterned layer and a first passivation film. The second patterned layer is disposed on the first patterned layer, and the first passivation film covers the first patterned layer. The overlay measurement device is used to determine the relative positions of the first and second patterned layers, and the overlay measurement device is used to determine the relative positions of the first and second patterned layers, which includes a platform and an imaging components. The component is placed on the platform. The imaging component includes a plurality of optical heads and a plurality of overlay marks. The plurality of optical heads are configured to record at least one image of the component. The plurality of overlay marks are respectively assembled on the plurality of optical heads. The relative positions of the first and second patterned layers of the element are determined using light reflected from the element and passing through the overlay mark mounted on the corresponding optical head.

本揭露之一實施例提供一種疊對測量設備的操作方法。該方法包括提供複數個光學頭;將複數個疊對標記分別組裝到該複數個光學頭上;將待測量的一元件置放到一平台上;將其中一個光學頭與該元件對準;以及記錄該元件的至少一影像。An embodiment of the present disclosure provides an operation method of an overlay measurement device. The method includes providing a plurality of optical heads; assembling a plurality of overlay marks onto the plurality of optical heads respectively; placing a component to be measured on a platform; aligning one of the optical heads with the component; and recording At least one image of the element.

雖然已詳述本揭露及其優點,然而應理解可進行各種變化、取代與替代而不脫離申請專利範圍所定義之本揭露的精神與範圍。例如,可用不同的方法實施上述的許多製程,並且以其他製程或其組合替代上述的許多製程。Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and substitutions can be made without departing from the spirit and scope of the present disclosure as defined by the claims. For example, many of the processes described above can be performed in different ways and replaced by other processes or combinations thereof.

再者,本申請案的範圍並不受限於說明書中所述之製程、機械、製造、物質組成物、手段、方法與步驟之特定實施例。該技藝之技術人士可自本揭露的揭示內容理解可根據本揭露而使用與本文所述之對應實施例具有相同功能或是達到實質上相同結果之現存或是未來發展之製程、機械、製造、物質組成物、手段、方法、或步驟。據此,此等製程、機械、製造、物質組成物、手段、方法、或步驟係包含於本申請案之申請專利範圍內。Furthermore, the scope of the present application is not limited to the specific embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. Those skilled in the art can understand from the disclosure content of this disclosure that existing or future developed processes, machinery, manufacturing, A composition of matter, means, method, or step. Accordingly, such processes, machines, manufacturing, material compositions, means, methods, or steps are included in the patent scope of this application.

10:光學系統 20:疊對測量設備 30:元件 100:電腦 102:顯示器 110:平台 120:成像組件 122:光學頭 124:疊對標記 130:光源 132:光束分離器 134:第一透鏡 136:第二透鏡 305b:半導體層 310:第一圖案化層 320:第二圖案化層 330:第一鈍化膜 340:第二鈍化膜 350a:半導體層 400:操作方法 A1:光軸 A2:光軸 P1:第一間距 P2:第二間距 S402:步驟 S404:步驟 S406:步驟 S408:步驟 S410:步驟 S412:步驟 S414:步驟 α:夾角 β:夾角 δ:夾角10: Optical system 20: Overlay measurement equipment 30: Elements 100: computer 102: display 110: Platform 120: Imaging components 122: Optical head 124:Overlap mark 130: light source 132: Beam splitter 134: first lens 136: second lens 305b: semiconductor layer 310: the first patterned layer 320: the second patterned layer 330: the first passivation film 340: second passivation film 350a: semiconductor layer 400: Operation method A1: optical axis A2: optical axis P1: first pitch P2: second pitch S402: step S404: step S406: step S408: step S410: step S412: step S414: step α: included angle β: Angle δ: included angle

藉由參考詳細描述以及申請專利範圍而可以獲得對本揭露更完整的理解。本揭露還應理解為與圖式的元件編號相關聯,而圖式的元件編號在整個描述中代表類似的元件。 圖1是結構示意圖,例示本揭露一些實施例的光學系統。 圖2是剖視示意圖,例示本揭露一些實施例的元件。 圖3到圖18是示意圖,例示本揭露一些實施例用於確定半導體晶圓之其中兩層之對準的多個疊對標記。 圖19是結構示意圖,例示本揭露一些實施例的光學系統。 圖20是剖視示意圖,例示本揭露一些實施例的元件。 圖21是結構示意圖,例示本揭露一些實施例的光學系統。 圖22是流程示意圖,例示本揭露一些實施例之疊對測量設備的操作方法。 A more complete understanding of the present disclosure can be obtained by reference to the detailed description and claims. The disclosure should also be understood in association with drawing element numbers that represent like elements throughout the description. FIG. 1 is a structural schematic diagram illustrating an optical system of some embodiments of the present disclosure. FIG. 2 is a schematic cross-sectional view illustrating components of some embodiments of the present disclosure. 3-18 are schematic diagrams illustrating a plurality of overlay marks used by some embodiments of the present disclosure to determine the alignment of two layers of a semiconductor wafer. FIG. 19 is a structural schematic diagram illustrating an optical system of some embodiments of the present disclosure. FIG. 20 is a schematic cross-sectional view illustrating components of some embodiments of the present disclosure. FIG. 21 is a structural schematic diagram illustrating an optical system of some embodiments of the present disclosure. FIG. 22 is a schematic flowchart illustrating the operation method of the overlay measurement device of some embodiments of the present disclosure.

10:光學系統 10: Optical system

20:疊對測量設備 20: Overlay measurement equipment

30:元件 30: Elements

100:電腦 100: computer

102:顯示器 102: display

110:平台 110: Platform

120:成像組件 120: Imaging components

122:光學頭 122: Optical head

124:疊對標記 124:Overlap mark

130:光源 130: light source

132:光束分離器 132: Beam splitter

134:第一透鏡 134: first lens

136:第二透鏡 136: second lens

A1:光軸 A1: optical axis

A2:光軸 A2: optical axis

Claims (13)

一種疊對測量設備的操作方法,包括: 提供複數個光學頭; 將複數個疊對標記分別組裝到該複數個光學頭上; 將待測量的一元件置放到一平台上; 將其中一個光學頭與該元件對準;以及 記錄該元件的至少一影像。 A method of operating an overlay measurement device, comprising: Provide a plurality of optical heads; Assembling a plurality of overlay marks onto the plurality of optical heads respectively; placing a component to be measured on a platform; Align one of the optical heads with the component; and At least one image of the component is recorded. 如請求項1所述之操作方法,還包括依據該至少一影像計算在該元件上之多個圖案的一相對位移。The operating method according to claim 1, further comprising calculating a relative displacement of the patterns on the device according to the at least one image. 如請求項2所述之操作方法,其中藉由電性耦接到該成像組件的一電腦而執行該計算。The operation method as claimed in claim 2, wherein the calculation is performed by a computer electrically coupled to the imaging device. 如請求項3所述之操作方法,其中該電腦電性耦接到該平台以控制該平台的一運動。The operating method as claimed in claim 3, wherein the computer is electrically coupled to the platform to control a movement of the platform. 如請求項1所述之操作方法,還包括提供一光源以照明該元件。The operating method as claimed in claim 1, further comprising providing a light source to illuminate the component. 如請求項5所述之操作方法,還包括提供一光束分離器並將該光束分離器定位在該光軸與該光學頭之各軸線的一交叉處,以記錄該元件的該影像。The operating method as claimed in claim 5, further comprising providing a beam splitter and positioning the beam splitter at an intersection of the optical axis and axes of the optical head to record the image of the component. 如請求項2所述之操作方法,其中該疊對標記包括一週期性結構。The operation method according to claim 2, wherein the overlay mark comprises a periodic structure. 一種光學系統,包括: 一元件,包括: 一第一圖案化層; 一第二圖案化層,設置在該第一圖案層上;以及 一第一鈍化膜,覆蓋該第一圖案化層;以及 一疊對測量設備,用以確定該第一與第二圖案化層的相對位置,該疊對測量設備包括: 一平台,置放該元件; 一成像組件,包括: 複數個光學頭,經配置以記錄該元件的至少一影像;以及 複數個疊對標記,分別組裝到該複數個光學頭上,其中該元件之該第一與第二圖案化層的該等相對位置使用從該元件所反射且穿經安裝在相對應之該光學頭上之該疊對標記的光來確定。 An optical system comprising: A component comprising: a first patterned layer; a second patterned layer disposed on the first patterned layer; and a first passivation film covering the first patterned layer; and An overlay measurement device for determining the relative positions of the first and second patterned layers, the overlay measurement device comprising: a platform for placing the component; An imaging component, comprising: a plurality of optical heads configured to record at least one image of the element; and A plurality of overlay marks are respectively assembled on the plurality of optical heads, wherein the relative positions of the first and second patterned layers of the element are mounted on the corresponding optical heads using reflections from the element and passing through The light of the overlay marker is determined. 如請求項8所述之光學系統,其中該元件還包括一第二鈍化膜,覆蓋該第二圖案化層。The optical system as claimed in claim 8, wherein the element further comprises a second passivation film covering the second patterned layer. 如請求項9所述之光學系統,其中該元件還包括至少一半導體層,設置在該第一鈍化膜與該第二圖案化層之間,且該第二圖案化層經配置以在蝕刻期間圖案化該半導體層。The optical system as claimed in claim 9, wherein the element further comprises at least one semiconductor layer disposed between the first passivation film and the second patterned layer, and the second patterned layer is configured to be etched during etching The semiconductor layer is patterned. 如請求項9所述之光學系統,其中該疊對測量設備還包括一電腦,經配置以執行多個演算,其從藉由該光學頭所記錄之該影像所傳送的多個電訊號而計算該第一與第二圖案化層的一相對位移。The optical system as claimed in claim 9, wherein the overlay measurement device further includes a computer configured to perform calculations calculated from electrical signals transmitted by the image recorded by the optical head A relative displacement of the first and second patterned layers. 如請求項9所述之光學系統,其中該疊對標記包括複數個微結構,呈一同心配置進行排列。The optical system as claimed in claim 9, wherein the overlay mark includes a plurality of microstructures arranged in a concentric configuration. 如請求項9所述之光學系統,其中該疊對標記由重複的多個微結構所構成。The optical system as claimed in claim 9, wherein the overlay mark is composed of a plurality of repeated microstructures.
TW111118088A 2022-02-25 2022-05-13 Optical system and method for operating the same TWI809871B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US17/680,514 2022-02-25
US17/680,684 US20230273590A1 (en) 2022-02-25 2022-02-25 Method and system of operating overlay measuring
US17/680,684 2022-02-25
US17/680,514 US11829078B2 (en) 2022-02-25 2022-02-25 Overlay measuring apparatus

Publications (2)

Publication Number Publication Date
TWI809871B true TWI809871B (en) 2023-07-21
TW202335071A TW202335071A (en) 2023-09-01

Family

ID=86948698

Family Applications (2)

Application Number Title Priority Date Filing Date
TW111118087A TWI799267B (en) 2022-02-25 2022-05-13 Overlay measuring apparatus
TW111118088A TWI809871B (en) 2022-02-25 2022-05-13 Optical system and method for operating the same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW111118087A TWI799267B (en) 2022-02-25 2022-05-13 Overlay measuring apparatus

Country Status (1)

Country Link
TW (2) TWI799267B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050231732A1 (en) * 2000-12-27 2005-10-20 Asml Netherlands B.V. Method of measuring overlay
US20180122678A1 (en) * 2016-10-31 2018-05-03 Semiconductor Manufacturing International (Shanghai) Corporation Wafer alignment method and apparatus for overlay measurement
TW202024785A (en) * 2018-12-18 2020-07-01 日商佳能股份有限公司 Determination method, exposure method, exposure apparatus, and method of manufacturing article both ensuring overlay accuracy of the upper and lower layers and joint accuracy of the adjacent irradiation regions in an optical lithography process
US20210193493A1 (en) * 2019-12-18 2021-06-24 Micron Technology, Inc. Wafer overlay marks, overlay measurement systems, and related methods

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220350268A1 (en) * 2019-10-14 2022-11-03 Asml Holding N.V. Metrology mark structure and method of determining metrology mark structure
US11481922B2 (en) * 2020-04-07 2022-10-25 Kla Corporation Online navigational drift correction for metrology measurements

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050231732A1 (en) * 2000-12-27 2005-10-20 Asml Netherlands B.V. Method of measuring overlay
US20180122678A1 (en) * 2016-10-31 2018-05-03 Semiconductor Manufacturing International (Shanghai) Corporation Wafer alignment method and apparatus for overlay measurement
TW202024785A (en) * 2018-12-18 2020-07-01 日商佳能股份有限公司 Determination method, exposure method, exposure apparatus, and method of manufacturing article both ensuring overlay accuracy of the upper and lower layers and joint accuracy of the adjacent irradiation regions in an optical lithography process
US20210193493A1 (en) * 2019-12-18 2021-06-24 Micron Technology, Inc. Wafer overlay marks, overlay measurement systems, and related methods

Also Published As

Publication number Publication date
TW202335120A (en) 2023-09-01
TWI799267B (en) 2023-04-11
TW202335071A (en) 2023-09-01

Similar Documents

Publication Publication Date Title
TWI551956B (en) Inspection method and apparatus, lithographic apparatus, lithographic processing cell and device manufacturing method
TWI715575B (en) Metrology system and method
TWI804440B (en) Metrology apparatus and a method of determining a characteristic of interest
TWI673487B (en) Metrology system, metrology apparatus and metrology method
JP4751411B2 (en) How to measure overlay
TW201702588A (en) Feed forward of metrology data in a metrology system
TW201923477A (en) Systems and methods for metrology beam stabilization
CN105612601A (en) Methods and apparatus for patterned wafer characterization
JP2019518973A (en) Pattern structure inspection apparatus and inspection method
CN105593973A (en) Methods and apparatus for determining focus
TW200837507A (en) A scatterometer, a lithographic apparatus and a focus analysis method
TW202018423A (en) Metrology apparatus
JP2022523033A (en) Co-arranged weighing method and system
TW202043716A (en) Semiconductor metrology based on hyperspectral imaging
TWI793295B (en) Laser machining device, laser machining system and laser machining method
TW202401174A (en) Metrology system, pattern mask and metrology method
TW202033940A (en) Metrology apparatus
TW202117309A (en) Method of measurement
TW202032283A (en) Method of measuring a parameter of a patterning process, metrology apparatus, target
TW201812850A (en) Method and apparatus to monitor a process apparatus
TWI809871B (en) Optical system and method for operating the same
TW201809899A (en) Illumination system for a lithographic or inspection apparatus
US10061210B2 (en) 3D target for monitoring multiple patterning process
US11829078B2 (en) Overlay measuring apparatus
US20230273590A1 (en) Method and system of operating overlay measuring