TWI808357B - Inspection method of semiconductor components - Google Patents

Inspection method of semiconductor components Download PDF

Info

Publication number
TWI808357B
TWI808357B TW109140504A TW109140504A TWI808357B TW I808357 B TWI808357 B TW I808357B TW 109140504 A TW109140504 A TW 109140504A TW 109140504 A TW109140504 A TW 109140504A TW I808357 B TWI808357 B TW I808357B
Authority
TW
Taiwan
Prior art keywords
detection
semiconductor
image
light
detection light
Prior art date
Application number
TW109140504A
Other languages
Chinese (zh)
Other versions
TW202221288A (en
Inventor
吳駿翔
吳建興
姚哲文
Original Assignee
鏵友益科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 鏵友益科技股份有限公司 filed Critical 鏵友益科技股份有限公司
Priority to TW109140504A priority Critical patent/TWI808357B/en
Publication of TW202221288A publication Critical patent/TW202221288A/en
Application granted granted Critical
Publication of TWI808357B publication Critical patent/TWI808357B/en

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)

Abstract

一種半導體元件的檢測裝置,所述半導體元件適用於容置在一界定多個容置槽的承載盤,該半導體元件的檢測裝置包含一用以發出一沿直線延伸而通過多個半導體元件之檢測光線的光源單元、一適用於與該承載盤在高度間隔設置的拍攝單元,及一連接該拍攝單元且根據檢測影像中之檢測光線來檢測該等半導體元件的分析單元。本發明還提供一種半導體元件的檢測方法,則是以一預備步驟預備該半導體元件的檢測裝置,在一取像步驟使用該拍攝單元拍攝的檢測影像,再於一分析步驟根據檢測影像中的檢測光線判斷該等半導體元件是否分別精準放置於該等容置槽。 A detection device for a semiconductor element, the semiconductor element is suitable for being accommodated in a carrier plate defining a plurality of accommodating grooves, the detection device for the semiconductor element includes a light source unit for emitting a detection light extending along a straight line and passing through a plurality of semiconductor elements, a shooting unit suitable for being arranged at a height interval with the carrier plate, and an analysis unit connected to the shooting unit and detecting the semiconductor elements according to the detection light in the detection image. The present invention also provides a method for testing a semiconductor component, which is to prepare the testing device of the semiconductor component in a preparatory step, use the detection image captured by the shooting unit in an image capturing step, and then determine whether the semiconductor components are accurately placed in the accommodating grooves in an analysis step according to the detection light in the detection image.

Description

半導體元件的檢測方法 Inspection method of semiconductor components

本發明是有關於一種檢測方法,特別是指一種半導體元件的檢測方法。 The invention relates to a detection method, in particular to a detection method of a semiconductor element.

參閱圖1,為多個放置於一界定出多個容置槽100之承載盤1上的晶片2,而該承載盤1之每一個容置槽100的型態,是因應每一個晶片2的尺寸與規格形狀。在該等晶片2的製程中,該承載盤1除了發揮單純的承載運輸功能,還能在該等晶片2分別確實放置於該等容置槽100的情況下,快速確認數量以及巨觀上的異常。 Referring to FIG. 1 , a plurality of wafers 2 are placed on a carrier plate 1 defining a plurality of accommodating grooves 100 . During the manufacturing process of the wafers 2 , the susceptor 1 not only serves the simple carrying and transporting function, but also can quickly confirm the quantity and macroscopic abnormalities when the wafers 2 are respectively placed in the holding tanks 100 .

然而,目前確認該等晶片2放置於該承載盤1上之情況的方式,大多是以人工目視檢查,並且在發現例如漏放、重疊、歪斜等等情況時,直接藉由手動整理、補齊,甚至是直接忽略少量的漏放情況,不但精準度、可靠性有所疑慮,在效率上也十分低落。 However, most of the current methods for confirming the placement of the wafers 2 on the susceptor 1 are manually visually inspected, and when situations such as missing, overlapping, skewed, etc. are found, they are directly sorted and filled up manually, or even directly ignore a small amount of missing situations. Not only the accuracy and reliability are doubtful, but also the efficiency is very low.

因此,本發明之目的,即在提供一種能快速且精準地完 成自動化檢測之半導體元件的檢測裝置及檢測方法。 Therefore, the purpose of the present invention is to provide a method that can quickly and accurately complete A testing device and testing method for semiconductor components for automatic testing.

於是,本發明半導體元件的檢測裝置,多個所述半導體元件適用於容置在一界定出多個容置槽的承載盤上,該等容置槽是沿相互垂直的一直線方向及一行進方向陣列設置,該半導體元件的檢測裝置包含一光源單元、一適用於與該承載盤間隔設置的拍攝單元,及一資訊連接於該拍攝單元的分析單元。 Therefore, in the testing device for semiconductor components of the present invention, a plurality of semiconductor components are adapted to be accommodated on a carrier plate defining a plurality of accommodating grooves, and the containing grooves are arranged in an array along a straight line direction and a traveling direction perpendicular to each other.

該光源單元用以發出一適用於照射在該承載盤上,並沿該直線方向延伸而通過多個所述半導體元件的檢測光線。 The light source unit is used for emitting a detection light suitable for irradiating on the carrier plate, extending along the straight line and passing through a plurality of the semiconductor elements.

定義一同時垂直該直線方向及該行進方向的高度方向,該拍攝單元適用於沿該高度方向與該承載盤間隔設置,並用以拍攝該檢測光線照射於該等半導體元件上的至少一張檢測影像。 A height direction is defined which is perpendicular to the straight line direction and the traveling direction, and the photographing unit is adapted to be spaced apart from the carrier plate along the height direction, and is used to capture at least one detection image of the semiconductor elements irradiated by the detection light.

該分析單元包括一能對該至少一張檢測影像執行影像辨識,並根據該至少一張檢測影像中之該檢測光線判斷該等半導體元件是否分別精準放置於該等容置槽的處理模組。 The analysis unit includes a processing module capable of performing image recognition on the at least one detection image, and judging whether the semiconductor elements are accurately placed in the accommodating grooves according to the detection light in the at least one detection image.

另外,本發明半導體元件的檢測方法,多個所述半導體元件適用於容置在一界定出多個容置槽的承載盤上,該等容置槽是沿一直線方向及一垂直於該直線方向之行進方向陣列設置。該半導體元件的檢測方法包含一預備步驟、一取像步驟,及一分析步驟。 In addition, in the inspection method of the semiconductor element of the present invention, a plurality of the semiconductor elements are suitable for being accommodated on a carrier plate defining a plurality of accommodating grooves, and the accommodating grooves are arranged in an array along a straight line direction and a traveling direction perpendicular to the straight line direction. The detection method of the semiconductor element includes a preparatory step, an image-taking step, and an analysis step.

該預備步驟是預備一前述本發明半導體元件的檢測裝置。 The preparatory step is to prepare an inspection device for the aforementioned semiconductor element of the present invention.

該取像步驟使該光源單元發出適用於照射在該承載盤而沿該直線方向延伸,並通過多個所述半導體元件的該檢測光線,而該拍攝單元則拍攝該檢測光線照射於該等半導體元件上的至少一張檢測影像。 In the image capturing step, the light source unit emits the detection light suitable for irradiating the carrier plate, extending along the straight line, and passing through a plurality of the semiconductor elements, and the photographing unit captures at least one detection image of the detection light irradiating on the semiconductor elements.

該分析步驟是依據該至少一張檢測影像執行分析,根據該至少一張檢測影像中的該檢測光線來判斷該等半導體元件是否分別精準放置於該等容置槽。 The analysis step is to perform analysis according to the at least one detection image, and judge whether the semiconductor elements are accurately placed in the accommodating grooves according to the detection light in the at least one detection image.

本發明之功效在於:由於沿該直線方向延伸的該檢測光線照射於該等半導體元件時,只要任一個半導體元件未確實放置於對應的容置槽中,相較於其他沿該直線方向設置且正確放置的半導體元件,就會產生沿該高度方向的落差,此時該檢測影像上的該檢測光線也會因而產生落差變化,故能藉由該分析單元分析該至少一張檢測影像,精準且快速地得知該等半導體元件是否分別精準放置於該等容置槽。 The effect of the present invention is that when the detection light extending along the straight line irradiates the semiconductor elements, as long as any semiconductor element is not properly placed in the corresponding accommodating groove, compared with other semiconductor elements disposed along the straight line and correctly placed, there will be a drop along the height direction. At this time, the detection light on the detection image will also produce a drop difference. Therefore, the analyzing unit can analyze the at least one detection image to accurately and quickly know whether the semiconductor elements are respectively accurately placed in the accommodating grooves.

3:光源單元 3: Light source unit

4:拍攝單元 4: Shooting unit

5:分析單元 5: Analysis unit

51:處理模組 51: Processing module

52:合成模組 52:Synthesis module

71:預備步驟 71: Preliminary steps

72:取像步驟 72: Image acquisition step

721:第一擷取子步驟 721: the first retrieval sub-step

722:第二擷取子步驟 722: the second extraction sub-step

73:分析步驟 73: Analysis steps

731:合成子步驟 731:Synthetic substep

8:半導體元件 8: Semiconductor components

8a:半導體元件 8a: Semiconductor components

8b:半導體元件 8b: Semiconductor components

8c:半導體元件 8c: Semiconductor components

8d:半導體元件 8d: Semiconductor components

9:承載盤 9: Carrying plate

90:容置槽 90: storage tank

L:直線方向 L: straight line direction

A:行進方向 A: Direction of travel

H:高度方向 H: height direction

P1:第一張檢測影像 P1: The first detection image

P2:第二張檢測影像 P2: The second detection image

Z1:影像區域 Z1: image area

Z2:影像區域 Z2: image area

α:夾角 α: included angle

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是一俯視圖,說明將多個晶片放置於一承載盤之多個容置槽的情況; 圖2是一系統配置圖,說明本發明半導體元件的檢測裝置之一第一裝置實施例;圖3是一示意圖,說明該第一裝置實施例之一光源單元;圖4是一方塊流程圖,說明本發明半導體元件的檢測方法之一第一方法實施例;圖5是一示意圖,說明使用該第一裝置實施例執行該第一方法實施例的情況;圖6是一系統配置圖,說明本發明半導體元件的檢測裝置之一第二裝置實施例;圖7是一方塊流程圖,說明本發明半導體元件的檢測方法之一第二方法實施例;圖8是一示意圖,說明該第二方法實施例之一取像步驟的一第一擷取子步驟,及一第二擷取子步驟;及圖9是一示意圖,說明該第二方法實施例之一分析步驟的一合成子步驟。 Other features and functions of the present invention will be clearly presented in the embodiments with reference to the drawings, wherein: FIG. 1 is a top view illustrating the situation of placing multiple wafers in multiple accommodating grooves of a carrier tray; Fig. 2 is a system configuration diagram, illustrates one of the first device embodiment of the detection device of semiconductor element of the present invention; Fig. 3 is a schematic diagram, illustrates one light source unit of this first device embodiment; Fig. 4 is a block flow chart, illustrates one of the first method embodiment of the detection method of semiconductor element of the present invention; Fig. 5 is a schematic diagram, illustrates the situation that uses this first device embodiment to carry out this first method embodiment; Example; FIG. 8 is a schematic diagram illustrating a first capture substep of an image-taking step of the second method embodiment, and a second capture substep; and FIG. 9 is a schematic diagram illustrating a synthesis substep of an analysis step of the second method embodiment.

在本發明被詳細描述之前,應當注意在以下的說明內容中,類似的元件是以相同的編號來表示。 Before the present invention is described in detail, it should be noted that in the following description, similar elements are denoted by the same numerals.

參閱圖2與圖3,為本發明半導體元件的檢測裝置之一第 一裝置實施例,多個待檢測的半導體元件8適用於容置在一界定出多個容置槽90的承載盤9上,該等容置槽90是沿相互垂直的一直線方向L及一行進方向A陣列設置,也就是說,該承載盤9是在該直線方向L與該行進方向A所構成的平面上擴展延伸,而每一個待檢測的半導體元件8預期是能精準地放置於個別的容置槽90中。本第一裝置實施例包含一光源單元3、一適用於與該承載盤9間隔設置的拍攝單元4,及一資訊連接於該拍攝單元4的分析單元5。 Referring to Fig. 2 and Fig. 3, it is one of the detection devices of the semiconductor element of the present invention. In one embodiment of the device, a plurality of semiconductor components 8 to be inspected are suitable for being accommodated on a carrier plate 9 defining a plurality of accommodating grooves 90 , and the accommodating grooves 90 are arranged in an array along a straight line direction L and a traveling direction A perpendicular to each other. The first device embodiment includes a light source unit 3 , a photographing unit 4 suitable for being spaced apart from the carrier plate 9 , and an analysis unit 5 connected to the photographing unit 4 .

該光源單元3用以發出一適用於照射在該承載盤9上,並沿該直線方向L延伸而通過多個所述半導體元件8的檢測光線。其中,該光源單元3所發出的該檢測光線為雷射光,且如圖3所示地,該檢測光線與該承載盤9之間的夾角α為15至25度,而較佳為20度。 The light source unit 3 is used for emitting a detection light suitable for irradiating on the carrier plate 9 , extending along the linear direction L and passing through the plurality of semiconductor devices 8 . Wherein, the detection light emitted by the light source unit 3 is laser light, and as shown in FIG. 3 , the angle α between the detection light and the carrier plate 9 is 15 to 25 degrees, preferably 20 degrees.

定義一同時垂直該直線方向L及該行進方向A的高度方向H,該拍攝單元4較佳為一像素為5472*3648的感光耦合元件(CCD)相機,光學解析度介於20至30微米之間,且適用於沿該高度方向H與該承載盤9間隔設置,用以拍攝該檢測光線照射於該等半導體元件8上的多張檢測影像。該拍攝單元4的拍攝範圍,主要是配合該檢測光線的照射,以能夠拍攝到沿該直線方向L排列的一列半導體元件8的範圍為原則。 Define a height direction H that is perpendicular to the linear direction L and the traveling direction A at the same time. The photographing unit 4 is preferably a photosensitive coupling device (CCD) camera with a pixel size of 5472*3648, with an optical resolution between 20 and 30 microns, and is suitable for being spaced apart from the carrier plate 9 along the height direction H to capture multiple detection images of the semiconductor elements 8 irradiated by the detection light. The photographing range of the photographing unit 4 is mainly the range in which a row of semiconductor elements 8 arranged along the linear direction L can be photographed in accordance with the irradiation of the detection light.

該分析單元5包括一能對該等檢測影像執行影像辨識的 處理模組51,該處理模組51具體而言可為一運算處理器,得以執行影像辨識所需之例如對位、二值化、灰階等等計算。 The analysis unit 5 includes a device capable of performing image recognition on the detected images The processing module 51, specifically, the processing module 51 can be an arithmetic processor, capable of performing calculations required for image recognition such as alignment, binarization, grayscale, and the like.

參閱圖4並配合圖2,為本發明半導體元件的檢測方法之一第一方法實施例,本第一方法實施例包含一預備步驟71、一取像步驟72,及一分析步驟73。其中,該預備步驟71即是預備該第一裝置實施例,也就是說,本第一方法實施例是配合該第一裝置實施例執行。具體實施時,該承載盤9會沿該行進方向A移動,即本第一方法實施例較佳的實施,是在該承載盤9沿該行進方向A在產線上移動而運送該等半導體元件8時,同時自動化地執行檢測。 Referring to FIG. 4 together with FIG. 2 , it is a first method embodiment of the inspection method for semiconductor components of the present invention. This first method embodiment includes a preparatory step 71 , an image capturing step 72 , and an analysis step 73 . Wherein, the preparatory step 71 is to prepare the first device embodiment, that is, the first method embodiment is executed in conjunction with the first device embodiment. In practice, the carrying tray 9 will move along the traveling direction A, that is, the preferred implementation of the first method embodiment is to automatically perform detection while the carrying tray 9 is moving along the traveling direction A on the production line to transport the semiconductor elements 8 .

該取像步驟72是使該光源單元3發出適用於照射在該承載盤9而沿該直線方向L延伸,並通過多個所述半導體元件8的該檢測光線,而該拍攝單元4則拍攝該檢測光線照射於該等半導體元件8上的一張檢測影像。 The image capturing step 72 is to make the light source unit 3 emit the detection light adapted to irradiate the carrier plate 9 and extend along the linear direction L, and pass through a plurality of the semiconductor elements 8, and the photographing unit 4 takes a detection image of the detection light irradiating on the semiconductor elements 8.

該分析步驟73是依據該檢測影像執行分析,如圖5所示,根據該檢測影像中之該檢測光線,可見該檢測光線在半導體元件8a、8b上時,相較於其他半導體元件8而言有沿該行進方向A的落差,也就是得以據此判斷該檢測光線是否沿該直線方向L呈現平直。因此,根據該檢測影像中的該檢測光線的呈現,即可判斷該等半導體元件8是否分別精準放置於該等容置槽90。 The analysis step 73 is to perform analysis based on the detection image. As shown in FIG. 5, according to the detection light in the detection image, it can be seen that when the detection light is on the semiconductor elements 8a, 8b, compared with other semiconductor elements 8, there is a drop along the traveling direction A, that is, it can be judged whether the detection light is straight along the linear direction L. Therefore, according to the appearance of the detection light in the detection image, it can be judged whether the semiconductor elements 8 are accurately placed in the accommodating grooves 90 respectively.

進一步論,在本實施方式中所述半導體製程的過程中, 較有可能發生的放置瑕疵概有漏放、疊片、翹曲、歪斜、放反等等的常見情況。其中,針對漏放、疊片、翹曲的情況,也就是沿該高度方向H有較低及較高的情況,因此只要預先設定好正常的影像範圍,只要影像較低則可判斷漏放,而影像較高則可能為疊片或者翹曲。而當放置產生歪斜時,雖然不一定會在該高度方向H上有落差,但因為放置歪斜的該半導體元件8不會與該容置槽90的形狀相互對應,則可能在照射到該檢測光線的範圍有所改變,故即能藉此判斷放置歪斜的情況,特別是有放置歪斜且又在該高度方向H有所落差的情況,則會判斷有所異常。另外,針對放反的情況,由於製造完成的半導體元件8正反兩面會有不同的粗糙程度,只要該檢測光線有沿該行進方向A產生相對不平直的些微波動,即可判斷有放反的情況。 Furthermore, in the process of the semiconductor manufacturing process described in this embodiment mode, Placement defects that are more likely to occur include common situations such as missing placement, lamination, warping, skewing, and reverse placement. Among them, for the situations of missed placement, lamination, and warping, that is, there are lower and higher cases along the height direction H, so as long as the normal image range is set in advance, as long as the image is low, it can be judged that it is missing, and if the image is high, it may be lamination or warping. When the placement is skewed, although there may not be a drop in the height direction H, since the semiconductor element 8 placed skewed does not correspond to the shape of the accommodating groove 90, the range of the detection light irradiated may change. Therefore, it can be used to judge the skewed placement, especially if there is a skewed placement and a drop in the height direction H, it will be judged to be abnormal. In addition, for the situation of reverse placement, since the front and back sides of the manufactured semiconductor element 8 will have different roughness, as long as the detection light has a relatively uneven slight fluctuation along the traveling direction A, it can be judged that there is a reverse placement.

參閱圖6與圖7,為使用本發明半導體元件的檢測裝置之一第二裝置實施例,執行本發明半導體元件的檢測方法之一第二方法實施例的情況。其中,本第二裝置實施例與該第一裝置實施例的差別在於:該分析單元5還包括一連結於該處理模組51並用以疊合二張檢測影像的合成模組52。而本第二方法實施例與該第一方法實施例的差別在於:該取像步驟72包括一在該檢測光線位於該等半導體元件8之一初始位置時拍攝第一張檢測影像的第一擷取子步驟721,及一在該檢測光線位於相同之該等半導體元件8沿該行進方 向A位於該初始位置後方之一後續位置時,拍攝第二張檢測影像的第二擷取子步驟722。 Referring to FIG. 6 and FIG. 7 , it is a case of using a second device embodiment of a semiconductor device detection device of the present invention to execute a second method embodiment of a semiconductor device detection method of the present invention. Wherein, the difference between the second device embodiment and the first device embodiment is that the analyzing unit 5 further includes a synthesizing module 52 connected to the processing module 51 and used for superimposing two detection images. The difference between this second method embodiment and the first method embodiment is that the image taking step 72 includes a first sub-step 721 of capturing a first detection image when the detection light is at an initial position of the semiconductor components 8, and a step 721 where the detection light is at the same semiconductor components 8 along the traveling direction. When A is located at a subsequent position behind the initial position, the second capturing sub-step 722 of taking a second detection image.

要先說明的是,在本第二方法實施例中,由於是配合該承載盤9的移動,藉由該拍攝單元4針對同一列的該等半導體元件8陸續拍攝兩張照片,因此該拍攝單元4在該第一擷取子步驟721與該第二擷取子步驟722的間隔時間,也就是兩張檢測影像的拍攝間隔,必須配合該承載盤9的移動速度而預先妥善設定。而該初始位置及該後續位置,實質上只是以使該檢測光線照射於特定列的半導體元件8為原則,隨著該承載盤9移動的先後位置,只要是該檢測光線照射於同一列半導體元件8,並且該檢測光線與所述同一列半導體元件8之間的相對位置有所差異即可。 What should be explained first is that in this second method embodiment, because the movement of the susceptor 9 is coordinated, the photographing unit 4 successively takes two pictures of the semiconductor devices 8 in the same row, so the interval time between the first capturing sub-step 721 and the second capturing sub-step 722 of the photographing unit 4, that is, the shooting interval of two inspection images, must be properly set in advance in accordance with the moving speed of the susceptor 9. In essence, the initial position and the subsequent position are just to make the detection light irradiate the semiconductor elements 8 of a specific row. As the carrier plate 9 moves, the successive positions are as long as the detection light is irradiated on the semiconductor elements 8 in the same row, and the relative positions between the detection light and the semiconductor elements 8 in the same row are different.

參閱圖8與圖9並配合圖7,該分析步驟73包括一將第一張檢測影像P1與第二張檢測影像P2,以該檢測光線沿該直線方向L呈現平直之部分為基準,利用該合成模組52相互疊合為一合成影像的合成子步驟731。該合成模組52具體而言即為電腦中得以執行合成運算的硬體部分,以及所安裝而能執行將兩張檢測影像相互對位及疊合之軟體所構成的模組,實質上為一按照資料之處理模式劃分的非實體模組。 Referring to FIG. 8 and FIG. 9 in conjunction with FIG. 7, the analysis step 73 includes a synthesizing sub-step 731 of superimposing the first detection image P1 and the second detection image P2 using the synthesis module 52 on the basis of the part where the detection light is straight along the linear direction L to form a composite image. Specifically, the synthesis module 52 is a hardware part capable of performing synthesis operations in a computer, and a module composed of installed software capable of aligning and superimposing two detected images, and is essentially a non-physical module divided according to data processing modes.

在該分析步驟73,是判斷該合成影像中的該檢測光線是否沿該直線方向L呈現平直,以及該檢測光線是否具有沿該行進方 向A的變化。由於該合成影像已將影像中該檢測光線未產生偏移或者落差的部分相互疊合,也就是為了以「概為正常」的部分為參考基準,在同一張影像上進一步凸顯該檢測光線產生偏移或者落差的程度。如圖9所示,對應圖8中未確實放置而有翹曲的半導體元件8c,在圖8中對應的影像區域Z1中則呈現兩條相互間隔的直線,得以使「未正常擺置」的情況更加凸顯,更有利於確實檢測;而對應圖8中的半導體元件8d,則可見圖9中對應的影像區域Z2中是呈現明顯傾斜的線條,同樣能更凸顯影像的異常處,使得影像更容易判斷,進一步優化檢測之快速以及精準的程度。 In the analysis step 73, it is judged whether the detection light in the synthetic image is straight along the straight line direction L, and whether the detection light has a direction along the direction of travel. Change to A. Since the composite image has superimposed the part of the image where the detected light does not shift or fall, that is, to further highlight the degree of the detected light shift or fall on the same image using the "approximately normal" part as a reference. As shown in FIG. 9, corresponding to the warped semiconductor element 8c in FIG. 8, two straight lines spaced apart from each other appear in the corresponding image area Z1 in FIG.

綜上所述,本發明半導體元件的檢測裝置及檢測方法,能藉由在同一列半導體元件8上照射沿該直線方向L延伸之該檢測光線的方式,利用該分析單元5來分析該拍攝單元4拍攝之影像,判斷該檢測光線是否產生例如偏斜、落差、變化等等情況,在預先設定影像之正常範圍的情況下,以自動化的流程快速且精準地確認所述半導體元件8是否分別確實放置於該承載盤9的該等容置槽90。因此,確實能達成本發明之目的。 To sum up, the inspection device and inspection method of the semiconductor element of the present invention can use the analysis unit 5 to analyze the image taken by the shooting unit 4 by irradiating the inspection light extending along the straight line direction L on the same row of semiconductor elements 8, and judge whether the inspection light has deviation, drop, change, etc. Therefore, can really reach the purpose of the present invention.

惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。 But what is described above is only an embodiment of the present invention, and should not limit the implementation scope of the present invention. All simple equivalent changes and modifications made according to the patent scope of the present invention and the content of the patent specification are still within the scope covered by the patent of the present invention.

3:光源單元 3: Light source unit

4:拍攝單元 4: Shooting unit

5:分析單元 5: Analysis unit

51:處理模組 51: Processing module

8:半導體元件 8: Semiconductor components

9:承載盤 9: carrying plate

90:容置槽 90: storage tank

L:直線方向 L: straight line direction

A:行進方向 A: Direction of travel

H:高度方向 H: height direction

Claims (1)

一種半導體元件的檢測方法,多個所述半導體元件適用於容置在一界定出多個容置槽的承載盤上,該等容置槽是沿一直線方向及一垂直於該直線方向之行進方向陣列設置,該承載盤是沿該行進方向移動,該半導體元件的檢測方法包含:一預備步驟,預備一半導體元件的檢測裝置,該半導體元件的檢測裝置包含:一光源單元,用以發出一適用於照射在該承載盤上,並沿該直線方向延伸而通過多個所述半導體元件的檢測光線,一拍攝單元,定義一同時垂直該直線方向及該行進方向的高度方向,該拍攝單元適用於沿該高度方向與該承載盤間隔設置,並用以拍攝該檢測光線照射於該等半導體元件上的至少一張檢測影像,及一分析單元,資訊連接於該拍攝單元,並包括一能對該至少一張檢測影像執行影像辨識,並根據該至少一張檢測影像中之該檢測光線判斷該等半導體元件是否分別精準放置於該等容置槽的處理模組,及一連結於該處理模組並用以疊合二張檢測影像的合成模組;一取像步驟,使該光源單元發出適用於照射在該承載盤而沿該直線方向延伸,並通過多個所述半導體元件的該檢測光線,而該拍攝單元則拍攝該檢測光線照射於 該等半導體元件上的至少一張檢測影像,其中,該取像步驟包括一在該檢測光線位於該等半導體元件之一初始位置時拍攝第一張檢測影像的第一擷取子步驟,及一在該檢測光線位於相同之該等半導體元件沿該行進方向位於該初始位置後方之一後續位置時,拍攝第二張檢測影像的第二擷取子步驟;及一分析步驟,包括一將所述第一張檢測影像與所述第二張檢測影像,以該檢測光線沿該直線方向呈現平直之部分為基準而相互疊合為一合成影像的合成子步驟,根據該合成影像中的該檢測光線是否沿該直線方向呈現平直,以及該檢測光線是否具有沿該行進方向的變化,來判斷該等半導體元件是否分別精準放置於該等容置槽。 A method for detecting a semiconductor element, wherein a plurality of semiconductor elements are suitable for being accommodated on a carrier plate defining a plurality of accommodating grooves, and the accommodating grooves are arranged in an array along a straight line direction and a traveling direction perpendicular to the straight line direction, the carrier plate moves along the moving direction, the semiconductor element testing method includes: a preparatory step, preparing a semiconductor component testing device, the semiconductor component testing device includes: a light source unit, used to emit a light suitable for irradiating on the carrier plate, extending along the straight line direction and passing through a plurality of semiconductor components Detecting light, a photographing unit defining a height direction perpendicular to the straight line direction and the traveling direction, the photographing unit is adapted to be spaced apart from the carrier plate along the height direction, and is used to photograph at least one detection image of the semiconductor components irradiated by the detection light, and an analysis unit, connected to the photographing unit, includes a processing module capable of performing image recognition on the at least one detection image, and judging whether the semiconductor components are respectively accurately placed in the accommodating slots according to the detection light in the at least one detection image, and a processing module connected to the processing module and composite module for superimposing two detection images; an image capturing step, causing the light source unit to emit the detection light suitable for irradiating the carrier plate and extending along the linear direction, and passing through a plurality of semiconductor elements, and the photographing unit photographs the detection light irradiated on the At least one detection image on the semiconductor components, wherein the imaging step includes a first capturing sub-step of capturing a first detection image when the detection light is at an initial position of the semiconductor components, and a second capturing sub-step of capturing a second detection image when the detection light is at a subsequent position of the same semiconductor components behind the initial position along the direction of travel; The synthesis sub-step of superimposing into a synthetic image is to judge whether the semiconductor elements are respectively accurately placed in the accommodating slots according to whether the detection light in the synthetic image is straight along the straight line direction and whether the detection light has a change along the traveling direction.
TW109140504A 2020-11-19 2020-11-19 Inspection method of semiconductor components TWI808357B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109140504A TWI808357B (en) 2020-11-19 2020-11-19 Inspection method of semiconductor components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109140504A TWI808357B (en) 2020-11-19 2020-11-19 Inspection method of semiconductor components

Publications (2)

Publication Number Publication Date
TW202221288A TW202221288A (en) 2022-06-01
TWI808357B true TWI808357B (en) 2023-07-11

Family

ID=83062229

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109140504A TWI808357B (en) 2020-11-19 2020-11-19 Inspection method of semiconductor components

Country Status (1)

Country Link
TW (1) TWI808357B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI491873B (en) * 2003-05-09 2015-07-11 Ebara Corp Inspection method, inspection apparatus and electron beam apparatus
TW201712325A (en) * 2015-06-30 2017-04-01 Seiko Epson Corp Electronic component transfer device and electronic component inspection device
TW201819855A (en) * 2016-11-29 2018-06-01 日商精工愛普生股份有限公司 Electronic component conveying apparatus and electronic component inspection apparatus
TW201905472A (en) * 2017-06-29 2019-02-01 日商精工愛普生股份有限公司 Electronic component conveying device and electronic component inspection device
TW201932793A (en) * 2018-01-25 2019-08-16 日商精工愛普生股份有限公司 Electronic component handler and electronic component tester
TW202012947A (en) * 2018-09-27 2020-04-01 日商精工愛普生股份有限公司 Electronic component handler and electronic component tester

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI491873B (en) * 2003-05-09 2015-07-11 Ebara Corp Inspection method, inspection apparatus and electron beam apparatus
TW201712325A (en) * 2015-06-30 2017-04-01 Seiko Epson Corp Electronic component transfer device and electronic component inspection device
TW201819855A (en) * 2016-11-29 2018-06-01 日商精工愛普生股份有限公司 Electronic component conveying apparatus and electronic component inspection apparatus
TW201905472A (en) * 2017-06-29 2019-02-01 日商精工愛普生股份有限公司 Electronic component conveying device and electronic component inspection device
TW201932793A (en) * 2018-01-25 2019-08-16 日商精工愛普生股份有限公司 Electronic component handler and electronic component tester
TW202012947A (en) * 2018-09-27 2020-04-01 日商精工愛普生股份有限公司 Electronic component handler and electronic component tester

Also Published As

Publication number Publication date
TW202221288A (en) 2022-06-01

Similar Documents

Publication Publication Date Title
TWI477764B (en) Image creation method, substrate inspection method, storage medium storing program for executing image creation method or substrate inspection method, and substrate inspection device
US20090196489A1 (en) High resolution edge inspection
US9140546B2 (en) Apparatus and method for three dimensional inspection of wafer saw marks
US20120327215A1 (en) High speed optical sensor inspection system
CN110739240B (en) Substrate inspection method and substrate inspection apparatus
JP6092602B2 (en) Defect inspection apparatus and defect inspection method
TW201911463A (en) Electronic component transport apparatus and electronic component inspection apparatus
KR101762158B1 (en) Appearance inspection device
TWI673502B (en) Electronic component transport apparatus and electronic component inspection apparatus
KR100862883B1 (en) Apparatus for inspection of semiconductor device and method for inspection using the same
TWI808357B (en) Inspection method of semiconductor components
JP2018040761A (en) Device for inspecting appearance of inspection target object
JP2009236760A (en) Image detection device and inspection apparatus
JP6913615B2 (en) Railroad vehicle visual inspection equipment and its setting method
JP6387620B2 (en) Quality control system
TWM609092U (en) Detection device of semiconductor component
JP7299728B2 (en) Semiconductor manufacturing equipment and semiconductor device manufacturing method
US8139842B2 (en) Device and method for inspecting rechargeable battery connection structure
JP4825643B2 (en) Defect inspection system and defect inspection method for hole filling portion of printed circuit board
JP2009216647A (en) Defect inspection method and defect inspection device
KR101351000B1 (en) In-line camera inspection apparatus having plural mode
KR101351004B1 (en) Carrying apparatus having camera array detecting defects
CN202947976U (en) Top defect imaging device of medical capsule
JP2006177760A (en) X-ray inspection device, x-ray inspection method, and x-ray inspection program
KR101132792B1 (en) Method of inspecting substrate