TWI806358B - Resonance conversion device - Google Patents

Resonance conversion device Download PDF

Info

Publication number
TWI806358B
TWI806358B TW111101606A TW111101606A TWI806358B TW I806358 B TWI806358 B TW I806358B TW 111101606 A TW111101606 A TW 111101606A TW 111101606 A TW111101606 A TW 111101606A TW I806358 B TWI806358 B TW I806358B
Authority
TW
Taiwan
Prior art keywords
coupled
switch
resonant
capacitor
circuit
Prior art date
Application number
TW111101606A
Other languages
Chinese (zh)
Other versions
TW202329598A (en
Inventor
詹子增
Original Assignee
宏碁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宏碁股份有限公司 filed Critical 宏碁股份有限公司
Priority to TW111101606A priority Critical patent/TWI806358B/en
Application granted granted Critical
Publication of TWI806358B publication Critical patent/TWI806358B/en
Publication of TW202329598A publication Critical patent/TW202329598A/en

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Dc-Dc Converters (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)
  • Lift-Guide Devices, And Elevator Ropes And Cables (AREA)
  • Paper (AREA)

Abstract

A resonance conversion device is provided. The resonant conversion device includes an LLC resonant converter and a stabilizing circuit. The LLC resonant converter includes a first rectifier switch, a second rectifier switch, and a resonant tank. The resonant tank includes a resonant capacitor. The stabilizing circuit and the resonant capacitor form a first damping circuit and a second damping circuit. The stabilization circuit senses a variation value associated with an output current of the LLC resonant converter. When the variation value is greater than a default value, the stabilizing circuit couples the first damping circuit to a parasitic capacitance of the first rectifier switch, and couples the second damping circuit to a parasitic capacitance of the second rectifier switch, thereby stabilizing a switching operation of the rectifier switch and the second rectifier switch.

Description

諧振轉換裝置resonant converter

本發明是有關於一種諧振轉換裝置,且特別是有關於一種能夠穩定整流開關的切換操作的諧振轉換裝置。The present invention relates to a resonant conversion device, and more particularly to a resonant conversion device capable of stabilizing the switching operation of a rectifier switch.

LLC諧振轉換器電具有柔性切換之特性並採用變頻式的操作來調整電壓增益,以達到穩定電壓輸出的功能。The LLC resonant converter has the characteristics of flexible switching and adopts frequency conversion operation to adjust the voltage gain to achieve the function of stable voltage output.

一般來說,同步整流型LLC諧振轉換器利用整流開關來取代輸出二極體,以實現較佳的同步整流輸出效果。然而,整流開關具有寄生電容。在輸出電流發生大幅度動態變化時,寄生電容會因為輸出電流發生大幅度動態變化而被干擾。因此,整流開關的切換操作之發生不穩定,從而造成同步整流型LLC諧振轉換器發生電路震盪及電磁干擾等問題。Generally speaking, a synchronous rectification LLC resonant converter uses a rectification switch instead of an output diode to achieve a better synchronous rectification output effect. However, rectifier switches have parasitic capacitance. When the output current has a large dynamic change, the parasitic capacitance will be disturbed by the large dynamic change of the output current. Therefore, the switching operation of the rectifier switch is unstable, which causes problems such as circuit oscillation and electromagnetic interference of the synchronous rectification LLC resonant converter.

本發明提供一種能夠穩定整流開關的切換操作的諧振轉換裝置。The present invention provides a resonant conversion device capable of stabilizing switching operations of a rectifier switch.

本發明的諧振轉換裝置包括LLC諧振轉換器以及穩定電路。LLC諧振轉換器包括變壓器、第一整流開關、第二整流開關以及諧振槽。第一整流開關耦接於變壓器的次級側。第二整流開關耦接於次級側。諧振槽耦接於變壓器的初級側。諧振槽包括諧振電容器。穩定電路耦接於LLC諧振轉換器。穩定電路與諧振電容器共同形成第一緩振電路以及第二緩振電路。穩定電路感測關聯於LLC諧振轉換器的輸出電流的變動值。當變動值大於預設值時,穩定電路將第一緩振電路耦接至第一整流開關的第一寄生電容,並將第二緩振電路耦接至第二整流開關的第二寄生電容,從而穩定第一整流開關以及第二整流開關的切換操作。The resonant conversion device of the present invention includes an LLC resonant converter and a stabilizing circuit. The LLC resonant converter includes a transformer, a first rectifying switch, a second rectifying switch and a resonant tank. The first rectifier switch is coupled to the secondary side of the transformer. The second rectifying switch is coupled to the secondary side. The resonant tank is coupled to the primary side of the transformer. The resonance tank includes a resonance capacitor. The stabilization circuit is coupled to the LLC resonant converter. The stabilizing circuit and the resonant capacitor jointly form a first buffer circuit and a second buffer circuit. The stabilization circuit senses the varying value of the output current associated with the LLC resonant converter. When the fluctuation value is greater than the preset value, the stabilizing circuit couples the first buffer circuit to the first parasitic capacitance of the first rectifier switch, and couples the second buffer circuit to the second parasitic capacitor of the second rectifier switch, Thus, the switching operations of the first rectifier switch and the second rectifier switch are stabilized.

基於上述,當變動值大於預設值時,第一緩振電路被耦接至第一寄生電容,並且第二緩振電路被耦接至第二寄生電容。因此,在輸出電流發生大幅度動態變化時,第一寄生電容以及第二寄生電容受到輸出電流所產生的干擾能被抑制或者被緩衝。整流開關的切換操作被穩定。如此一來,在輸出電流發生大幅度動態變化時,LLC諧振轉換器不會發生電路震盪及電磁干擾等問題。Based on the above, when the fluctuation value is greater than the preset value, the first damping circuit is coupled to the first parasitic capacitor, and the second damping circuit is coupled to the second parasitic capacitor. Therefore, when the output current has a large dynamic change, the interference generated by the output current of the first parasitic capacitor and the second parasitic capacitor can be suppressed or buffered. The switching operation of the rectifier switch is stabilized. In this way, when the output current changes greatly and dynamically, the LLC resonant converter will not have problems such as circuit oscillation and electromagnetic interference.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail together with the accompanying drawings.

本發明的部份實施例接下來將會配合附圖來詳細描述,以下的描述所引用的元件符號,當不同附圖出現相同的元件符號將視為相同或相似的元件。這些實施例只是本發明的一部份,並未揭示所有本發明的可實施方式。更確切的說,這些實施例只是本發明的專利申請範圍中的範例。Parts of the embodiments of the present invention will be described in detail with reference to the accompanying drawings. For the referenced reference symbols in the following description, when the same reference symbols appear in different drawings, they will be regarded as the same or similar components. These embodiments are only a part of the present invention, and do not reveal all possible implementation modes of the present invention. Rather, these embodiments are only examples within the scope of the patent application of the present invention.

請參考圖1,圖1是依據本發明一實施例所繪示的諧振轉換裝置的示意圖。在本實施例中,諧振轉換裝置100包括LLC諧振轉換器110以及穩定電路120。LLC諧振轉換器110是同步整流型LLC諧振轉換器。具體來說,LLC諧振轉換器110包括功率開關Q1、Q2、諧振槽111、變壓器TR、整流開關QR1、QR2以及輸出電容器CO。功率開關Q1的第一端接收輸入電源VIN。功率開關Q1的第二端耦接於連接節點。功率開關Q1的控制端接收控制訊號GD1。功率開關Q2的第一端耦接於連接節點。功率開關Q2的第二端耦接至接地端GND1。功率開關Q2的控制端接收控制訊號GD2。諧振槽111耦接於連接節點與接地端GND1之間。此外,諧振槽111耦接於變壓器TR的次級側。整流開關QR1、QR2耦接於變壓器TR的次級側。Please refer to FIG. 1 , which is a schematic diagram of a resonant conversion device according to an embodiment of the present invention. In this embodiment, the resonant conversion device 100 includes an LLC resonant converter 110 and a stabilization circuit 120 . The LLC resonant converter 110 is a synchronous rectification type LLC resonant converter. Specifically, the LLC resonant converter 110 includes power switches Q1 , Q2 , a resonant tank 111 , a transformer TR, rectifier switches QR1 , QR2 and an output capacitor CO. The first end of the power switch Q1 receives the input power VIN. The second end of the power switch Q1 is coupled to the connection node. The control terminal of the power switch Q1 receives the control signal GD1. The first end of the power switch Q2 is coupled to the connection node. The second terminal of the power switch Q2 is coupled to the ground terminal GND1. The control terminal of the power switch Q2 receives the control signal GD2. The resonance tank 111 is coupled between the connection node and the ground terminal GND1. In addition, the resonant tank 111 is coupled to the secondary side of the transformer TR. The rectifier switches QR1 and QR2 are coupled to the secondary side of the transformer TR.

進一步來說,諧振槽111包括諧振電容器LR、激磁電感器LM以及諧振電容器CR。諧振電容器LR、激磁電感器LM以及諧振電容器CR彼此串聯耦接。變壓器TR包括初級側繞組N1以及次級側繞組N2、N3。激磁電感器LM並聯耦接於初級側繞組N1。諧振電容器LR耦接於連接節點與激磁電感器LM之間。諧振電容器CR耦接於激磁電感器LM與接地端GND1之間。次級側繞組N2的第一端耦接於整流開關QR1的第一端。次級側繞組N2的第二端耦接於次級側繞組N3的第一端以及接地端GND2。次級側繞組N3的第二端耦接於整流開關QR2的第一端。整流開關QR1的第二端作為LLC諧振轉換器100的輸出端。整流開關QR1的控制端接收控制訊號GD3。整流開關QR2的第二端耦接於整流開關QR1的第二端。整流開關QR2的控制端接收控制訊號GD4。輸出電容器CO耦接於LLC諧振轉換器100的輸出端與接地端GND2之間。基於控制訊號GD1~GD4,功率開關Q1、Q2以及整流開關QR1、QR2進行切換操作,使得LLC諧振轉換器110將輸入電源VIN轉換為輸出電源VO。在本實施例中,控制訊號GD1~GD4可以是由一控制器(未示出)來提供。Further, the resonant tank 111 includes a resonant capacitor LR, a magnetizing inductor LM and a resonant capacitor CR. The resonance capacitor LR, the magnetizing inductor LM, and the resonance capacitor CR are coupled in series with each other. The transformer TR includes a primary winding N1 and secondary windings N2, N3. The magnetizing inductor LM is coupled in parallel to the primary winding N1. The resonant capacitor LR is coupled between the connection node and the magnetizing inductor LM. The resonant capacitor CR is coupled between the magnetizing inductor LM and the ground terminal GND1. The first end of the secondary winding N2 is coupled to the first end of the rectifier switch QR1. The second end of the secondary winding N2 is coupled to the first end of the secondary winding N3 and the ground GND2. The second end of the secondary winding N3 is coupled to the first end of the rectifier switch QR2. The second end of the rectifier switch QR1 serves as the output end of the LLC resonant converter 100 . The control terminal of the rectifier switch QR1 receives the control signal GD3. The second terminal of the rectifier switch QR2 is coupled to the second terminal of the rectifier switch QR1 . The control terminal of the rectifier switch QR2 receives the control signal GD4. The output capacitor CO is coupled between the output terminal of the LLC resonant converter 100 and the ground terminal GND2. Based on the control signals GD1 - GD4 , the power switches Q1 , Q2 and the rectifier switches QR1 , QR2 perform switching operations, so that the LLC resonant converter 110 converts the input power VIN into the output power VO. In this embodiment, the control signals GD1 - GD4 may be provided by a controller (not shown).

在本實施例中,穩定電路120耦接於LLC諧振轉換器110。穩定電路120與諧振電容器CR共同形成緩振電路SC1、SC2。穩定電路120感測LLC諧振轉換器110的變動值VR。變動值VR是關聯於LLC諧振轉換器110的輸出電流IO的變化。穩定電路120對變動值VR進行判斷。當變動值VR大於預設值時,穩定電路120將緩振電路SC1耦接至寄生電容C1,並將緩振電路SC2耦接至寄生電容C2。In this embodiment, the stabilization circuit 120 is coupled to the LLC resonant converter 110 . The stabilizing circuit 120 and the resonant capacitor CR jointly form the buffer circuits SC1 and SC2. The stabilization circuit 120 senses the fluctuation value VR of the LLC resonant converter 110 . The variation value VR is related to the variation of the output current IO of the LLC resonant converter 110 . The stabilization circuit 120 judges the fluctuation value VR. When the fluctuation value VR is greater than the preset value, the stabilizing circuit 120 couples the damping circuit SC1 to the parasitic capacitor C1 , and couples the damping circuit SC2 to the parasitic capacitor C2 .

寄生電容C1、C2分別與輸出電容器CO串聯耦接。因此,當輸出電流IO發生大幅度動態變化時,輸出電流IO會使輸出電容器CO的電壓值發生動態變動。輸出電容器CO的動態變動會干擾寄生電容C1、C2兩端的電壓值,使得寄生電容C1、C2兩端的電壓值發生不穩定狀況。上述的不穩定狀況會影響整流開關QR1、QR2的切換操作。在本實施例中,緩振電路SC1、SC2的形成能夠抑制或者緩衝上述的不穩定狀況。換言之,當輸出電流IO發生大幅度動態變化時,寄生電容C1、C2受到輸出電流IO所產生的干擾能被抑制或者被緩衝。緩振電路SC1穩定寄生電容C1兩端之間的寄生電容電壓。緩振電路SC2穩定寄生電容C2兩端之間的寄生電容電壓。因此,整流開關QR1、QR2的切換操作能夠被穩定。如此一來,在輸出電流IO發生大幅度動態變化時,LLC諧振轉換器110不會發生電路震盪及電磁干擾等問題。The parasitic capacitors C1 and C2 are respectively coupled in series with the output capacitor CO. Therefore, when the output current IO has a large dynamic change, the output current IO will cause the voltage value of the output capacitor CO to change dynamically. The dynamic variation of the output capacitor CO will interfere with the voltage values across the parasitic capacitors C1 and C2 , making the voltage across the parasitic capacitors C1 and C2 unstable. The aforementioned unstable conditions will affect the switching operations of the rectifier switches QR1, QR2. In this embodiment, the formation of the damping circuits SC1 and SC2 can suppress or buffer the aforementioned unstable situation. In other words, when the output current IO has a large dynamic change, the interference generated by the output current IO of the parasitic capacitors C1 and C2 can be suppressed or buffered. The damping circuit SC1 stabilizes the parasitic capacitor voltage between the two ends of the parasitic capacitor C1. The damping circuit SC2 stabilizes the parasitic capacitor voltage between the two ends of the parasitic capacitor C2. Therefore, the switching operation of the rectifier switches QR1, QR2 can be stabilized. In this way, the LLC resonant converter 110 will not have problems such as circuit oscillation and electromagnetic interference when the output current IO has a large dynamic change.

在本實施例中,穩定電路120耦接於輸出電容器CO的兩端以接收關聯於輸出電流IO的電容電壓值,並依據電容電壓值的動態變化計算出變動值VR。因此,變動值VR實質上等於單位時間的電壓差值。此外,預設值關聯於LLC諧振轉換器110所提供的輸出電壓值的誤差值範圍。舉例來說,輸出電壓值被設計為19.5±5%伏特。因此,誤差值範圍等於1.95伏特。穩定電路120包括分支BR1、BR2。分支BR1與諧振電容器CR共同形成緩振電路SC1。分支BR2與諧振電容器CR共同形成緩振電路SC2。當穩定電路120判斷出變動值VR大於預設值(即,關聯於1.95伏特的數值)時,穩定電路120會將分支BR1耦接至寄生電容C1,並將分支BR2耦接至寄生電容C2。In this embodiment, the stabilizing circuit 120 is coupled to both ends of the output capacitor CO to receive a capacitor voltage value related to the output current IO, and calculates a variation value VR according to a dynamic change of the capacitor voltage value. Therefore, the fluctuation value VR is substantially equal to the voltage difference per unit time. In addition, the preset value is related to the error range of the output voltage value provided by the LLC resonant converter 110 . For example, the output voltage value is designed to be 19.5±5% volts. Therefore, the range of error values is equal to 1.95 volts. Stabilization circuit 120 includes branches BR1, BR2. The branch BR1 and the resonant capacitor CR jointly form a buffering circuit SC1. The branch BR2 and the resonant capacitor CR jointly form a buffer circuit SC2. When the stabilizing circuit 120 determines that the variation value VR is greater than a predetermined value (ie, a value associated with 1.95 volts), the stabilizing circuit 120 couples the branch BR1 to the parasitic capacitor C1 , and couples the branch BR2 to the parasitic capacitor C2 .

請同時參考圖1以及圖2,圖2是整流開關的電壓時序比較圖。圖2示出了輸出電流IO的時序、先前技術的整流開關QR1的第一端與第二端之間的電壓VQR1的時序F1以及本實施例的整流開關QR1的第一端與第二端之間的電壓VQR1的時序F2。輸出電流IO的電流值在時間點tp0開始發生大幅度地變動。因此,在時序F1中,電壓VQR1的頻率在時間點tp1、tp2之間發生明顯的變動。這樣的變動起因於寄生電容C1兩端的電壓值被干擾。在時間點tp1、tp2之間的變動會使整流開關QR1的切換操作發生異常。因此,LLC諧振轉換器110可能發生電路震盪及電磁干擾等問題。Please refer to Figure 1 and Figure 2 at the same time, Figure 2 is a voltage sequence comparison diagram of the rectifier switch. Fig. 2 shows the sequence of the output current IO, the sequence F1 of the voltage VQR1 between the first terminal and the second terminal of the rectifying switch QR1 of the prior art, and the connection between the first terminal and the second terminal of the rectifying switch QR1 of the present embodiment. The timing F2 of the voltage VQR1 between. The current value of the output current IO starts to fluctuate greatly at the time point tp0. Therefore, in time sequence F1, the frequency of voltage VQR1 fluctuates significantly between time points tp1 and tp2. Such variation is caused by the disturbance of the voltage across the parasitic capacitor C1. The variation between the time points tp1 and tp2 will cause the switching operation of the rectifier switch QR1 to be abnormal. Therefore, problems such as circuit oscillation and electromagnetic interference may occur in the LLC resonant converter 110 .

在時序F2中,緩振電路SC1在時間點tp1、tp2之間被耦接到寄生電容C1。由於緩振電路SC1抑制了輸出電流IO所產生的干擾,因此電壓VQR1的頻率在時間點tp1、tp2之間被穩定而沒有發生變動。也因此,LLC諧振轉換器110不會發生電路震盪及電磁干擾等問題。此外,時間點tp2之後,輸出電流IO的電流值沒有發生變動。因此,緩振電路SC1不會被耦接到寄生電容C1。In the timing sequence F2, the buffering circuit SC1 is coupled to the parasitic capacitor C1 between time points tp1 and tp2. Since the damping circuit SC1 suppresses the disturbance generated by the output current IO, the frequency of the voltage VQR1 is stabilized between the time points tp1 and tp2 without changing. Therefore, the LLC resonant converter 110 will not have problems such as circuit oscillation and electromagnetic interference. In addition, after the time point tp2, the current value of the output current IO does not change. Therefore, the damping circuit SC1 will not be coupled to the parasitic capacitor C1.

請參考圖3,圖3是依據本發明第二實施例所繪示的諧振轉換裝置的示意圖。在本實施例中,諧振轉換裝置200包括LLC諧振轉換器210以及穩定電路220。LLC諧振轉換器110是同步整流型LLC諧振轉換器。LLC諧振轉換器110的實施態樣已經在第一實施例中充份說明,因此不再重述。在本實施例中,穩定電路220包括分支BR1、BR2、判斷電路221、開關QX1、QX2。判斷電路221對變動值VR進行判斷。當變動值VR大於預設值時,判斷電路221提供操作訊號SX。開關QX1的第一端耦接於整流開關QR1的第一端。開關QX1的第二端耦接於分支BR1的第一端。開關QX1的控制端耦接於判斷電路221。開關QX2的第一端耦接於整流開關QR2的第一端。開關QX2的第二端耦接於分支BR2的第一端。開關QX2的控制端耦接於判斷電路221。諧振電容器CR的第一端還耦接於分支BR1、BR2的第二端。諧振電容器CR的第二端耦接於接地端GND1。Please refer to FIG. 3 . FIG. 3 is a schematic diagram of a resonant conversion device according to a second embodiment of the present invention. In this embodiment, the resonant conversion device 200 includes an LLC resonant converter 210 and a stabilization circuit 220 . The LLC resonant converter 110 is a synchronous rectification type LLC resonant converter. The implementation of the LLC resonant converter 110 has been fully described in the first embodiment, so it will not be described again. In this embodiment, the stabilization circuit 220 includes branches BR1, BR2, a judgment circuit 221, and switches QX1, QX2. The judgment circuit 221 judges the fluctuation value VR. When the variation value VR is greater than the preset value, the judging circuit 221 provides the operation signal SX. The first end of the switch QX1 is coupled to the first end of the rectification switch QR1. The second end of the switch QX1 is coupled to the first end of the branch BR1. The control terminal of the switch QX1 is coupled to the judging circuit 221 . The first end of the switch QX2 is coupled to the first end of the rectification switch QR2. The second end of the switch QX2 is coupled to the first end of the branch BR2. The control terminal of the switch QX2 is coupled to the judging circuit 221 . The first terminal of the resonant capacitor CR is also coupled to the second terminals of the branches BR1 and BR2. The second terminal of the resonant capacitor CR is coupled to the ground terminal GND1.

在本實施例中,開關QX1、QX2分別是N型電晶體開關(本發明並不以此為限)。當變動值VR大於預設值時,判斷電路221提供操作訊號SX。操作訊號SX具有高電壓準位。開關QX1、QX2反應於操作訊號SX而被導通。緩振電路SC1被耦接至整流開關QR1的第一端。也就是,緩振電路SC1被耦接至寄生電容C1的第一端。緩振電路SC2被耦接至整流開關QR2的第一端。也就是,緩振電路SC2被耦接至寄生電容C2的第一端。In this embodiment, the switches QX1 and QX2 are N-type transistor switches respectively (the present invention is not limited thereto). When the variation value VR is greater than the preset value, the judging circuit 221 provides the operation signal SX. The operation signal SX has a high voltage level. The switches QX1 and QX2 are turned on in response to the operation signal SX. The buffer circuit SC1 is coupled to the first end of the rectifier switch QR1. That is, the damping circuit SC1 is coupled to the first terminal of the parasitic capacitor C1. The buffer circuit SC2 is coupled to the first end of the rectifier switch QR2. That is, the damping circuit SC2 is coupled to the first terminal of the parasitic capacitor C2.

在另一方面,當變動值VR小於或等於預設值時,判斷電路221不提供操作訊號SX。開關QX1、QX2則被斷開。緩振電路SC1與整流開關QR1解耦。也就是,緩振電路SC1與寄生電容C1解耦。緩振電路SC2與整流開關QR2解耦。也就是,緩振電路SC2與寄生電容C2解耦。On the other hand, when the variation value VR is less than or equal to the preset value, the judging circuit 221 does not provide the operation signal SX. Switches QX1, QX2 are turned off. The damping circuit SC1 is decoupled from the rectifier switch QR1. That is, the damping circuit SC1 is decoupled from the parasitic capacitor C1. The slow shock circuit SC2 is decoupled from the rectifier switch QR2. That is, the damping circuit SC2 is decoupled from the parasitic capacitance C2.

在本實施例中,分支BR1包括二極體D1、緩振電感器LX1以及緩振電阻器R1。緩振電感器LX1耦接於開關QX1的第二端與二極體D1的陽極之間。緩振電阻器R1耦接於二極體D1的陰極與諧振電容器CR的第一端之間。分支BR2包括二極體D2、緩振電感器LX2以及緩振電阻器R2。緩振電感器LX2耦接於開關QX2的第二端與二極體D2的陽極之間。緩振電阻器R2耦接於二極體D2的陰極與諧振電容器CR的第一端之間。In this embodiment, the branch BR1 includes a diode D1 , a buffering inductor LX1 and a buffering resistor R1 . The buffer inductor LX1 is coupled between the second end of the switch QX1 and the anode of the diode D1. The buffering resistor R1 is coupled between the cathode of the diode D1 and the first end of the resonant capacitor CR. The branch BR2 includes a diode D2, a damping inductor LX2 and a damping resistor R2. The damping inductor LX2 is coupled between the second end of the switch QX2 and the anode of the diode D2. The buffering resistor R2 is coupled between the cathode of the diode D2 and the first end of the resonant capacitor CR.

請參考圖3以及圖4,圖4是依據本發明一實施例所繪示的緩振電路與寄生電容的連接示意圖。在本實施例中,當變動值VR大於預設值時,判斷電路221提供操作訊號SX。開關QX1、QX2反應於操作訊號SX而被導通。因此,緩振電路SC1被耦接至寄生電容C1。緩振電路SC2被耦接至寄生電容C2。緩振電路SC1、SC2分別為電阻-電感-電容(RLC)緩振電路。Please refer to FIG. 3 and FIG. 4 . FIG. 4 is a schematic diagram of the connection between the buffer circuit and the parasitic capacitor according to an embodiment of the present invention. In this embodiment, when the variation value VR is greater than the preset value, the judging circuit 221 provides the operation signal SX. The switches QX1 and QX2 are turned on in response to the operation signal SX. Therefore, the damping circuit SC1 is coupled to the parasitic capacitor C1. The shock circuit SC2 is coupled to the parasitic capacitor C2. The damping circuits SC1 and SC2 are resistance-inductance-capacitance (RLC) damping circuits respectively.

在此順帶一提,緩振電路SC1、SC2與諧振槽111共用諧振電容器CR。因此,諧振轉換裝置200的體積可以被節約。諧振轉換裝置200的電容性負載可適度地被降低。此外,二極體D1、D2配置能夠防止諧振槽111的諧振發生異常。Incidentally, here, the buffering circuits SC1 and SC2 share the resonant capacitor CR with the resonant tank 111 . Therefore, the volume of the resonance conversion device 200 can be saved. The capacitive load of the resonant conversion device 200 can be moderately reduced. In addition, the arrangement of the diodes D1 and D2 can prevent abnormal resonance of the resonance tank 111 .

在一些實施例中,緩振電感器LX1、LX2的至少其中一者與變壓器TR是由單一耦合電感器來實施。在一些實施例中,變壓器TR還包括第一繞組以及第二繞組(未示出)。第一繞組用以作為緩振電感器LX1。第二繞組用以作為緩振電感器LX2。因此,諧振轉換裝置200的體積可以進一步地被節約。In some embodiments, at least one of the buffering inductors LX1 , LX2 and the transformer TR are implemented by a single coupled inductor. In some embodiments, the transformer TR further includes a first winding and a second winding (not shown). The first winding is used as a slowing inductor LX1. The second winding is used as a slowing inductor LX2. Therefore, the volume of the resonance conversion device 200 can be further saved.

綜上所述,當變動值大於預設值時,第一緩振電路被耦接至第一寄生電容,並且第二緩振電路被耦接至第二寄生電容。因此,在輸出電流發生大幅度動態變化時,第一寄生電容以及第二寄生電容受到的干擾能被抑制或者被緩衝。整流開關的切換操作被穩定。如此一來,在輸出電流發生大幅度動態變化時,LLC諧振轉換器不會發生電路震盪及電磁干擾等問題。此外,第一緩振電路、第二緩振電路以及諧振槽共用諧振電容器。因此,諧振轉換裝置的體積可以被節約。諧振轉換裝置的電容性負載並可適度地被降低。To sum up, when the fluctuation value is greater than the preset value, the first damping circuit is coupled to the first parasitic capacitor, and the second damping circuit is coupled to the second parasitic capacitor. Therefore, when a large dynamic change occurs in the output current, the interference received by the first parasitic capacitor and the second parasitic capacitor can be suppressed or buffered. The switching operation of the rectifier switch is stabilized. In this way, when the output current changes greatly and dynamically, the LLC resonant converter will not have problems such as circuit oscillation and electromagnetic interference. In addition, the first buffer circuit, the second buffer circuit and the resonance tank share a resonance capacitor. Therefore, the volume of the resonance conversion device can be saved. The capacitive load of the resonant converter can also be moderately reduced.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above with the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention should be defined by the scope of the appended patent application.

100、200:諧振轉換裝置100, 200: Resonant conversion device

110:LLC諧振轉換器110:LLC resonant converter

111:諧振槽111: Resonance tank

120、220:穩定電路120, 220: stabilization circuit

221:判斷電路221: Judgment circuit

BR1、BR2:分支BR1, BR2: branch

C1、C2:寄生電容C1, C2: Parasitic capacitance

CO:輸出電容器CO: output capacitor

CR:諧振電容器CR: resonant capacitor

D1、D2:二極體D1, D2: Diodes

F1、F2:整流開關的第一端與第二端之間的電壓的時序F1, F2: Timing of rectifying the voltage between the first terminal and the second terminal of the switch

GD1~GD4:控制訊號GD1~GD4: Control signal

GND1、GND2:接地端GND1, GND2: ground terminal

IO:輸出電流IO: output current

LM:激磁電感器LM: Exciting inductor

LR:諧振電容器LR: resonant capacitor

LX1、LX2:緩振電感器LX1, LX2: damping inductor

N1:初級側繞組N1: primary side winding

N2、N3:次級側繞組N2, N3: Secondary side winding

Q1、Q2:功率開關Q1, Q2: Power switch

QR1、QR2:整流開關QR1, QR2: rectifier switch

QX1、QX2:開關QX1, QX2: switch

R1、R2:緩振電阻器R1, R2: damping resistors

SC1、SC2:緩振電路SC1, SC2: Suspension circuit

SX:操作訊號SX: operation signal

tp0~tp2:時間點tp0~tp2: time point

TR:變壓器TR: Transformer

VIN:輸入電源VIN: input power

VO:輸出電源VO: output power

VQR1、VQR2:整流開關的第一端與第二端之間的電壓VQR1, VQR2: the voltage between the first terminal and the second terminal of the rectifier switch

VR:變動值VR: Variable Value

圖1是依據本發明第一實施例所繪示的諧振轉換裝置的示意圖。 圖2是整流開關的電壓時序比較圖。 圖3是依據本發明第二實施例所繪示的諧振轉換裝置的示意圖。 圖4是依據本發明一實施例所繪示的緩振電路與寄生電容的連接示意圖。 FIG. 1 is a schematic diagram of a resonant conversion device according to a first embodiment of the present invention. Figure 2 is a voltage sequence comparison diagram of the rectifier switch. FIG. 3 is a schematic diagram of a resonant conversion device according to a second embodiment of the present invention. FIG. 4 is a schematic diagram illustrating a connection between a buffer circuit and a parasitic capacitor according to an embodiment of the present invention.

100:諧振轉換裝置 100: Resonant conversion device

110:LLC諧振轉換器 110:LLC resonant converter

111:諧振槽 111: Resonance tank

120:穩定電路 120: Stabilization circuit

BR1、BR2:分支 BR1, BR2: branch

C1、C2:寄生電容 C1, C2: Parasitic capacitance

CO:輸出電容器 CO: output capacitor

CR:諧振電容器 CR: resonant capacitor

GD1~GD4:控制訊號 GD1~GD4: Control signal

GND1、GND2:接地端 GND1, GND2: ground terminal

IO:輸出電流 IO: output current

LM:激磁電感器 LM: Exciting inductor

LR:諧振電容器 LR: resonant capacitor

N1:初級側繞組 N1: primary side winding

N2、N3:次級側繞組 N2, N3: Secondary side winding

Q1、Q2:功率開關 Q1, Q2: Power switch

QR1、QR2:整流開關 QR1, QR2: rectifier switch

SC1、SC2:緩振電路 SC1, SC2: Suspension circuit

TR:變壓器 TR: Transformer

VIN:輸入電源 VIN: input power

VO:輸出電源 VO: output power

VR:變動值 VR: Variable Value

Claims (9)

一種諧振轉換裝置,包括:一LLC諧振轉換器,包括:一變壓器;一第一整流開關,耦接於該變壓器的一次級側;一第二整流開關,耦接於該次級側;以及一諧振槽,耦接於該變壓器的一初級側,包括一諧振電容器;以及一穩定電路,耦接於該LLC諧振轉換器,經配置以:與該諧振電容器共同形成一第一緩振電路以及一第二緩振電路,感測關聯於該LLC諧振轉換器的一輸出電流的一變動值,並且當該變動值大於一預設值時,將該第一緩振電路耦接至該第一整流開關的一第一寄生電容,並將該第二緩振電路耦接至該第二整流開關的一第二寄生電容,從而穩定該第一整流開關以及該第二整流開關的切換操作,其中該穩定電路包括:一第一分支;一第二分支;一判斷電路,經配置以對該變動值進行判斷,當該變動值大於該預設值時,提供一操作訊號; 一第一開關,該第一開關的第一端耦接於該第一整流開關的第一端,該第一開關的第二端耦接於該第一分支的第一端,該第一開關的控制端耦接於該判斷電路;以及一第二開關,該第二開關的第一端耦接於該第二整流開關的第一端,該第二開關的第二端耦接於該第二分支的第一端,該第二開關的控制端耦接於該判斷電路,其中該諧振電容器的第一端耦接於該第一分支的第二端以及該第二分支的第二端,其中該第一整流開關的第二端以及該第二整流開關的第二端分別耦接至該LLC諧振轉換器的輸出端,並且其中該諧振電容器的第二端耦接於一初級側接地端。 A resonant conversion device, comprising: an LLC resonant converter, including: a transformer; a first rectifier switch coupled to a secondary side of the transformer; a second rectifier switch coupled to the secondary side; and a a resonant tank coupled to a primary side of the transformer, including a resonant capacitor; and a stabilization circuit coupled to the LLC resonant converter, configured to: jointly form a first buffer circuit and a resonant circuit with the resonant capacitor The second buffer circuit senses a fluctuation value of an output current associated with the LLC resonant converter, and when the fluctuation value is greater than a predetermined value, couples the first buffer circuit to the first rectifier A first parasitic capacitance of the switch, and the second buffer circuit is coupled to a second parasitic capacitance of the second rectification switch, thereby stabilizing the switching operation of the first rectification switch and the second rectification switch, wherein the The stabilization circuit includes: a first branch; a second branch; a judging circuit configured to judge the change value, and provide an operation signal when the change value is greater than the preset value; A first switch, the first end of the first switch is coupled to the first end of the first rectifier switch, the second end of the first switch is coupled to the first end of the first branch, the first switch The control end of the second switch is coupled to the judgment circuit; and a second switch, the first end of the second switch is coupled to the first end of the second rectifier switch, and the second end of the second switch is coupled to the first end the first end of the two branches, the control end of the second switch is coupled to the judging circuit, wherein the first end of the resonant capacitor is coupled to the second end of the first branch and the second end of the second branch, wherein the second terminal of the first rectifier switch and the second terminal of the second rectifier switch are respectively coupled to the output terminal of the LLC resonant converter, and wherein the second terminal of the resonant capacitor is coupled to a primary-side ground terminal . 如請求項1所述的諧振轉換裝置,其中:該第一緩振電路穩定該第一寄生電容兩端之間的一第一寄生電容電壓,並且該第二緩振電路穩定該第二寄生電容兩端之間的一第二寄生電容電壓。 The resonant conversion device as claimed in claim 1, wherein: the first buffer circuit stabilizes a first parasitic capacitor voltage between both ends of the first parasitic capacitor, and the second buffer circuit stabilizes the second parasitic capacitor A second parasitic capacitance voltage between the two terminals. 如請求項1所述的諧振轉換裝置,其中該LLC諧振轉換器還包括:一輸出電容器,耦接於該LLC諧振轉換器的輸出端與一次級側接地端之間,其中該穩定電路耦接於該輸出電容器的兩端以接收關聯於該輸出電流的一電容電壓值,並依據該電容電壓值的動態變化計算 出該變動值。 The resonant conversion device as claimed in claim 1, wherein the LLC resonant converter further includes: an output capacitor coupled between the output terminal of the LLC resonant converter and a secondary side ground terminal, wherein the stabilization circuit is coupled to Receive a capacitor voltage value associated with the output current at both ends of the output capacitor, and calculate based on the dynamic change of the capacitor voltage value Get the change value. 如請求項2所述的諧振轉換裝置,其中該預設值關聯於該LLC諧振轉換器所提供的一輸出電壓值的誤差值範圍。 The resonant conversion device as claimed in claim 2, wherein the preset value is related to an error range of an output voltage value provided by the LLC resonant converter. 如請求項1所述的諧振轉換裝置,其中:該第一開關反應於該操作訊號而被導通,使該第一緩振電路耦接至該第一寄生電容,並且該第二開關反應於該操作訊號而被導通,使該第二緩振電路耦接至該第二寄生電容。 The resonant conversion device as claimed in claim 1, wherein: the first switch is turned on in response to the operation signal, so that the first buffer circuit is coupled to the first parasitic capacitance, and the second switch responds to the The operation signal is turned on, so that the second buffer circuit is coupled to the second parasitic capacitor. 如請求項1所述的諧振轉換裝置,其中當該變動值小於或等於該預設值時:該第一開關被斷開,使該第一緩振電路與該第一寄生電容解耦,並且該第二開關被斷開,使該第二緩振電路與該第二寄生電容解耦。 The resonant conversion device as claimed in claim 1, wherein when the fluctuation value is less than or equal to the preset value: the first switch is turned off to decouple the first buffer circuit from the first parasitic capacitance, and The second switch is turned off to decouple the second buffer circuit from the second parasitic capacitance. 如請求項1所述的諧振轉換裝置,其中該第一分支包括:一第一二極體;一第一緩振電感器,耦接於該第一開關的第二端與該第一二極體的陽極之間;以及一第一緩振電阻器,耦接於該第一二極體的陰極與該諧振電容器的第一端之間。 The resonant conversion device as claimed in item 1, wherein the first branch includes: a first diode; a first damping inductor, coupled between the second end of the first switch and the first diode between the anodes of the body; and a first snubber resistor coupled between the cathode of the first diode and the first end of the resonant capacitor. 如請求項7所述的諧振轉換裝置,其中該第二分支包括:一第二二極體;一第二緩振電感器,耦接於該第二開關的第二端與該第二二極體的陽極之間;以及一第二緩振電阻器,耦接於該第二二極體的陰極與該諧振電容器的第一端之間。 The resonant conversion device as claimed in item 7, wherein the second branch includes: a second diode; a second damping inductor, coupled between the second end of the second switch and the second diode between the anodes of the body; and a second snubber resistor coupled between the cathode of the second diode and the first end of the resonant capacitor. 如請求項8所述的諧振轉換裝置,其中該第一緩振電感器以及第二緩振電感器的至少其中一者與該變壓器是由單一耦合電感器來實施。The resonant conversion device as claimed in claim 8, wherein at least one of the first buffer inductor and the second buffer inductor and the transformer are implemented by a single coupled inductor.
TW111101606A 2022-01-14 2022-01-14 Resonance conversion device TWI806358B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW111101606A TWI806358B (en) 2022-01-14 2022-01-14 Resonance conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW111101606A TWI806358B (en) 2022-01-14 2022-01-14 Resonance conversion device

Publications (2)

Publication Number Publication Date
TWI806358B true TWI806358B (en) 2023-06-21
TW202329598A TW202329598A (en) 2023-07-16

Family

ID=87803097

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111101606A TWI806358B (en) 2022-01-14 2022-01-14 Resonance conversion device

Country Status (1)

Country Link
TW (1) TWI806358B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030227280A1 (en) * 2002-01-31 2003-12-11 Patrizio Vinciarelli Factorized power architecture with point of load sine amplitude converters
CN101944851A (en) * 2009-05-07 2011-01-12 弗莱克斯电子有限责任公司 The energy of power inverter recovers buffer circuit
TW201301951A (en) * 2011-06-16 2013-01-01 Delta Electronics Shanghai Co Dimmer system and damper circuit thereof
CN205725464U (en) * 2016-06-24 2016-11-23 江西信瀚新能源科技有限公司 The vibration of LLC resonant converter eliminates circuit and LLC resonant converter circuit

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030227280A1 (en) * 2002-01-31 2003-12-11 Patrizio Vinciarelli Factorized power architecture with point of load sine amplitude converters
CN101944851A (en) * 2009-05-07 2011-01-12 弗莱克斯电子有限责任公司 The energy of power inverter recovers buffer circuit
TW201301951A (en) * 2011-06-16 2013-01-01 Delta Electronics Shanghai Co Dimmer system and damper circuit thereof
CN205725464U (en) * 2016-06-24 2016-11-23 江西信瀚新能源科技有限公司 The vibration of LLC resonant converter eliminates circuit and LLC resonant converter circuit

Also Published As

Publication number Publication date
TW202329598A (en) 2023-07-16

Similar Documents

Publication Publication Date Title
US10770979B2 (en) LLC resonant converter
US7773392B2 (en) Isolated switching power supply apparatus
CN109327146B (en) Loop compensation circuit and compensation method of voltage control isolation type DC/DC converter
US20020012257A1 (en) Complex resonant DC-DC converter and high voltage generating circuit driven in a plurality of frequency regions
JP3337009B2 (en) Switching power supply
US5349514A (en) Reduced-resonant-current zero-voltage-switched forward converter using saturable inductor
FI110972B (en) Stabilized Gate Controller
US20200153346A1 (en) Switched-tank dc transformer and voltage ratio switching method thereof
CN108900082B (en) Switching power supply conversion system
TWI806358B (en) Resonance conversion device
CN113676051B (en) Quasi-resonant switching power supply circuit and control method and control circuit thereof
US11171567B1 (en) Power supply device for eliminating ringing effect
JP2003259644A (en) Switching converter circuit
US20200044575A1 (en) Switching power supply device
US20190326822A1 (en) Switching power supply
TWI784867B (en) Full-bridge resonant converter capable of suppressing high-frequency decoupling distortion
JP2001025242A (en) Switching power source
JPH09265328A (en) Active dummy circuit
CN112564458B (en) Isolation driving circuit
CN111769734B (en) Switch power supply control circuit and control chip capable of simultaneously preventing output overvoltage and undervoltage
CN217063573U (en) Resonance phase compensation circuit
US20230170788A1 (en) Noise control circuit for a switching mode power supply and a method thereof
CN116633140A (en) Full bridge resonant converter for preventing high frequency decoupling distortion
CN212163141U (en) Multi-path voltage-stabilizing output LLC resonant transformer
US20240007006A1 (en) High-efficiency phase shift full-bridge converter