TWI804877B - Braking systems and methods for exercise equipment - Google Patents

Braking systems and methods for exercise equipment Download PDF

Info

Publication number
TWI804877B
TWI804877B TW110119484A TW110119484A TWI804877B TW I804877 B TWI804877 B TW I804877B TW 110119484 A TW110119484 A TW 110119484A TW 110119484 A TW110119484 A TW 110119484A TW I804877 B TWI804877 B TW I804877B
Authority
TW
Taiwan
Prior art keywords
resistance
flywheel
user
target
actuator
Prior art date
Application number
TW110119484A
Other languages
Chinese (zh)
Other versions
TW202202206A (en
Inventor
大衛 威廉 佩崔羅
傑夫 安
麥特 史卡文斯基
艾瑞克 奇斯
馬里沙 維沃里
巴德 因圖納托
米特 波拉特
助榮 李
皮歐茲 萊傑
貝堤納 伊凡恰
Original Assignee
美商派樂騰健康科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商派樂騰健康科技有限公司 filed Critical 美商派樂騰健康科技有限公司
Publication of TW202202206A publication Critical patent/TW202202206A/en
Application granted granted Critical
Publication of TWI804877B publication Critical patent/TWI804877B/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0087Electric or electronic controls for exercising apparatus of groups A63B21/00 - A63B23/00, e.g. controlling load
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B21/00Exercising apparatus for developing or strengthening the muscles or joints of the body by working against a counterforce, with or without measuring devices
    • A63B21/22Resisting devices with rotary bodies
    • A63B21/225Resisting devices with rotary bodies with flywheels
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/06Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement
    • A63B22/0605Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with support elements performing a rotating cycling movement, i.e. a closed path movement performing a circular movement, e.g. ergometers
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0062Monitoring athletic performances, e.g. for determining the work of a user on an exercise apparatus, the completed jogging or cycling distance
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B71/0622Visual, audio or audio-visual systems for entertaining, instructing or motivating the user
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0087Electric or electronic controls for exercising apparatus of groups A63B21/00 - A63B23/00, e.g. controlling load
    • A63B2024/009Electric or electronic controls for exercising apparatus of groups A63B21/00 - A63B23/00, e.g. controlling load the load of the exercise apparatus being controlled in synchronism with visualising systems, e.g. hill slope
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B71/0619Displays, user interfaces and indicating devices, specially adapted for sport equipment, e.g. display mounted on treadmills
    • A63B71/0622Visual, audio or audio-visual systems for entertaining, instructing or motivating the user
    • A63B2071/0638Displaying moving images of recorded environment, e.g. virtual environment
    • A63B2071/0644Displaying moving images of recorded environment, e.g. virtual environment with display speed of moving landscape controlled by the user's performance
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B71/00Games or sports accessories not covered in groups A63B1/00 - A63B69/00
    • A63B71/06Indicating or scoring devices for games or players, or for other sports activities
    • A63B2071/0691Maps, e.g. yardage maps or electronic maps
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B22/00Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements
    • A63B22/02Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills
    • A63B22/0235Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills driven by a motor
    • A63B22/0242Exercising apparatus specially adapted for conditioning the cardio-vascular system, for training agility or co-ordination of movements with movable endless bands, e.g. treadmills driven by a motor with speed variation
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2220/00Measuring of physical parameters relating to sporting activity
    • A63B2220/20Distances or displacements
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B2225/00Miscellaneous features of sport apparatus, devices or equipment
    • A63B2225/20Miscellaneous features of sport apparatus, devices or equipment with means for remote communication, e.g. internet or the like
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • A63B24/0084Exercising apparatus with means for competitions, e.g. virtual races

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Multimedia (AREA)
  • Human Computer Interaction (AREA)
  • Cardiology (AREA)
  • Biophysics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Vascular Medicine (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Bending Of Plates, Rods, And Pipes (AREA)
  • Braking Arrangements (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Mechanical Control Devices (AREA)
  • Braking Systems And Boosters (AREA)
  • Manipulator (AREA)

Abstract

Systems and methods for adjusting resistance on an exercise cycle having a frame and a flywheel include calibration, homing and auto-follow routines. A resistance apparatus comprising an actuator is configured to selectively position the resistance apparatus relative to the flywheel, wherein a distance between the resistance apparatus to the flywheel corresponds to resistance applied to the flywheel. Control components are configured to control operation of the resistance system in response to instructions, and a computing device is configured to output media for an exercise class to a user, the exercise class comprising one or more target resistance ranges corresponding to a segment of the exercise class. The computing device is further configured to selectively implement auto-follow logic configured to determine a target resistance value for a current segment of the exercise class and instruct the control components to adjust the resistance system to the target resistance value.

Description

用於運動設備的煞車系統及方法Braking system and method for sports equipment

本申請案一般而言係關於運動設備及方法之領域,且更具體而言係關於用於在運動設備中感測及/或調整阻力之系統及方法。This application relates generally to the field of athletic equipment and methods, and more particularly to systems and methods for sensing and/or adjusting resistance in athletic equipment.

現代健身設備通常經組態以允許一使用者根據個人訓練目標而調整強度及/或其他設定。調整操作對於諸多使用者而言可為困難且繁瑣的,尤其係在運動期間。舉例而言,一運動自行車(諸如一動感單車)可組態有一轉矩調節器,從而允許一使用者藉由調整將施加至一飛輪之一轉矩程度而調整踏板阻力。轉矩調整可難以操作且花費一長時間來準確地設定,從而在運動期間給使用者帶來不便。若使用者在調整期間因轉矩之突然改變而分心,則轉矩調整亦可干擾運動過程。使使用者體驗進一步複雜化的係,亦可出於安全目的而包含一輔助煞車器以停止旋轉之飛輪及傳動系統。此通常藉由一單獨基於摩擦之煞車器而達成,該單獨基於摩擦之煞車器經設計以僅間歇地使用來使系統處於一完全停止。因此,需要增加使用者之方便性並增強運動體驗之用於操作運動設備之經改良系統及方法。Modern exercise equipment is often configured to allow a user to adjust intensity and/or other settings according to personal training goals. The adjustment operation can be difficult and tedious for many users, especially during exercise. For example, an exercise bike, such as a spinning bike, can be configured with a torque adjuster, allowing a user to adjust pedal resistance by adjusting the amount of torque to be applied to a flywheel. Torque adjustments can be difficult to operate and take a long time to set accurately, inconveniencing the user during exercise. Torque adjustments can also interfere with the movement process if the user is distracted by a sudden change in torque during the adjustment. Further complicating the user experience, the system may also include an auxiliary brake to stop the spinning flywheel and drivetrain for safety purposes. This is usually accomplished with a sole friction based brake designed to be used only intermittently to bring the system to a complete stop. Accordingly, there is a need for improved systems and methods for operating athletic equipment that increase user convenience and enhance the athletic experience.

根據本公開之一項態樣,提供一種用於具有一框架及一飛輪之一運動裝置之阻力系統。該阻力系統包括:一阻力裝置,其包括一致動器,該致動器經組態以相對於該飛輪而選擇性地定位該阻力裝置,其中該阻力裝置至該飛輪之間的一距離對應於施加至該飛輪之阻力;控制組件,其經組態以回應於指令而控制該阻力系統之操作;及一運算器件,其經組態以向一使用者輸出一運動課程之媒體,該運動課程包括與該運動課程之一分段對應之一或多個目標阻力範圍。該運算器件進一步經組態以選擇性地實施自動跟隨邏輯,該自動跟隨邏輯經組態以判定針對該運動課程之一當前分段之一目標阻力值且指示該等控制組件將該阻力系統調整至該目標阻力值。According to one aspect of the present disclosure, a resistance system for a motion device having a frame and a flywheel is provided. The resistance system includes: a resistance device including an actuator configured to selectively position the resistance device relative to the flywheel, wherein a distance from the resistance device to the flywheel corresponds to resistance applied to the flywheel; a control assembly configured to control operation of the resistance system in response to commands; and an computing device configured to output media of an exercise program to a user, the exercise program One or more target resistance ranges corresponding to a segment of the exercise session are included. The computing device is further configured to selectively implement auto-follow logic configured to determine a target resistance value for a current segment of the exercise session and instruct the control components to adjust the resistance system to the target resistance value.

根據本公開之另一態樣,提供一種在具有一框架及一飛輪之一運動裝置中調整阻力之方法。該方法包括:相對於該飛輪而選擇性地定位一阻力裝置,其中該阻力裝置至該飛輪之間的一距離對應於施加至該飛輪之阻力;指示控制組件藉由阻力系統而調整施加至該飛輪之該阻力;向一使用者輸出一運動課程之媒體,該運動課程包括與該運動課程之一分段對應之一或多個目標阻力範圍;及選擇性地實施自動跟隨邏輯,該自動跟隨邏輯經組態以判定針對該運動課程之一當前分段之一目標阻力值且指示該等控制組件將該阻力系統調整至該目標阻力值。According to another aspect of the present disclosure, a method of adjusting resistance in a motion device having a frame and a flywheel is provided. The method includes: selectively positioning a resistance device relative to the flywheel, wherein a distance from the resistance device to the flywheel corresponds to the resistance applied to the flywheel; the resistance of the flywheel; outputting to a user media of an exercise program including one or more target resistance ranges corresponding to a segment of the exercise program; and optionally implementing auto-follow logic, the auto-follow Logic is configured to determine a target resistance value for a current segment of the exercise session and instruct the control components to adjust the resistance system to the target resistance value.

相關申請案交叉參考Related Application Cross Reference

本公開主張2020年9月6日提出申請之US 63/075,198之權益及優先權,US 63/075,198主張2019年8月2日提出申請之PCT/US2019/045013之權益及優先權,PCT/US2019/045013主張2018年8月3日提出申請之美國臨時申請案第62/714,635號之權益及優先權,以及2020年5月29日提出申請之美國臨時申請案第63/032,512號之權益及優先權,所有該等申請案如同在本文中完全陳述一般以引用之方式併入。This disclosure claims the benefit and priority of US 63/075,198, filed September 6, 2020, US 63/075,198 claims the benefit and priority of PCT/US2019/045013, filed August 2, 2019, PCT/US2019 /045013 asserts the benefit and priority of U.S. Provisional Application No. 62/714,635, filed August 3, 2018, and U.S. Provisional Application No. 63/032,512, filed May 29, 2020 Right, all of these applications are incorporated by reference as if fully set forth herein.

根據本公開之各種實施例,提供用於在運動設備中感測及調整轉矩之系統及方法。在某些實施例中,一煞車系統包含在相對於運動裝置之一飛輪移動時提供變化之運動阻力之複數個磁體。在某些實施例中,一煞車系統包含用於在運動期間調整阻力之一易於使用且準確之阻力調整總成以及用於透過同一調整旋鈕而使飛輪處於一完全停止之一輔助煞車器兩者,從而為操作者提供方便性及安全性。一控制系統在操作期間平滑地調整阻力且導出功率、踏頻、阻力及其他值以供由系統使用並顯示給使用者。According to various embodiments of the present disclosure, systems and methods for sensing and adjusting torque in athletic equipment are provided. In some embodiments, a braking system includes a plurality of magnets that provide varying resistance to motion when moving relative to a flywheel of the motion device. In some embodiments, a braking system includes both an easy-to-use and accurate resistance adjustment assembly for adjusting resistance during motion and an auxiliary brake for bringing the flywheel to a full stop through the same adjustment knob , so as to provide convenience and safety for the operator. A control system smoothly adjusts resistance during operation and derives power, cadence, resistance and other values for use by the system and display to the user.

在各種實施例中,阻力調整裝置可操作以使用電子系統及方法來控制阻力煞車器中之阻力位準。此外,可期望實體量測被施加至一運動腳踏車之飛輪之轉矩量以及由使用者感受到之阻力量,以便判定產生了多少瞬時功率以及使用者完成了多少總功。與藉由量測煞車機構相對於飛輪之位置並比較此量測與一先前所量測且經相關阻力位準而推斷所施加之一阻力量之習用方法相比,實體量測所施加阻力位準增加量測之準確性。本文中所揭示之實施例提供此等及其他優點,如熟習此項技術者將明瞭。In various embodiments, the resistance adjustment device is operable to use electronic systems and methods to control the level of resistance in the resistance brake. In addition, it may be desirable for the entity to measure the amount of torque applied to an exercise bike's flywheel and the amount of resistance felt by the user in order to determine how much instantaneous power was produced and how much total work was done by the user. In contrast to the conventional method of measuring the position of the brake mechanism relative to the flywheel and comparing this measurement with a previously measured and correlated resistance level to infer the amount of applied resistance, physically measuring the applied resistance level To increase the accuracy of measurement. Embodiments disclosed herein provide these and other advantages, as will be apparent to those skilled in the art.

參考圖1至圖3,現在將闡述本公開之實例性實施例。一阻力系統包含可操作以調整施加至一運動裝置之一飛輪5之阻力之一電子阻力總成。電子阻力總成可包含一電驅動致動器1,該電驅動致動器驅動一阻力煞車總成2圍繞一樞軸點3朝向飛輪5及遠離該飛輪進行樞轉。在所圖解說明實施例中,樞軸點3包括用以將阻力煞車總成2以可樞轉方式附接至自行車9之一框架之一或多個螺釘、螺栓或其他組件。Referring to FIGS. 1-3 , an example embodiment of the present disclosure will now be described. A resistance system includes an electronic resistance assembly operable to adjust the resistance applied to a flywheel 5 of an exercise device. The electronic drag assembly may comprise an electrically driven actuator 1 that drives a drag brake assembly 2 to pivot about a pivot point 3 towards and away from the flywheel 5 . In the illustrated embodiment, the pivot point 3 comprises one or more screws, bolts or other components used to pivotally attach the drag brake assembly 2 to a frame of the bicycle 9 .

阻力煞車總成2包含兩個或多於兩個磁體4,該兩個或多於兩個磁體經選擇且經配置使得當磁體4移動成較接近於飛輪5之中心(例如,與飛輪5之邊緣重疊)及/或進一步遠離該中心時,可將阻力量自一最大位準調整至零。飛輪5可由鋁或能夠在通過磁體4之磁場時產生阻力之其他材料製成。在一項實施例中,致動器1係包括一軸件6之一步進馬達,諸如一永久磁體線性步進馬達。軸件6具有一第一端,該第一端以可樞轉方式附接至自行車9之框架,從而允許軸件6在步進馬達沿著軸件6橫穿時進行樞轉。在一項實施例中,固定端經鉸接從而防止沿著其主軸進行旋轉。步進馬達主體1在一安裝點8處以可樞轉方式附接至阻力煞車總成2,從而允許步進馬達1在操作期間相對於阻力煞車總成2進行樞轉。在操作中,步進馬達1可操作以沿螺紋軸件6上下平移,從而致使煞車總成2圍繞樞軸點3進行樞轉。因此,磁體4相對於飛輪5而選擇性地上下移動以調整阻力。The drag brake assembly 2 includes two or more magnets 4 selected and configured such that when the magnet 4 is moved closer to the center of the flywheel 5 (eg, to the center of the flywheel 5 edge overlap) and/or further away from the center, the amount of resistance can be adjusted from a maximum level to zero. The flywheel 5 can be made of aluminum or other material capable of generating resistance when passing the magnetic field of the magnet 4 . In one embodiment, the actuator 1 is a stepper motor comprising a shaft 6, such as a permanent magnet linear stepper motor. The shaft 6 has a first end which is pivotally attached to the frame of the bicycle 9 allowing the shaft 6 to pivot as the stepper motor traverses along the shaft 6 . In one embodiment, the fixed end is hinged against rotation along its major axis. The stepper motor body 1 is pivotally attached to the drag brake assembly 2 at a mounting point 8 allowing the stepper motor 1 to pivot relative to the drag brake assembly 2 during operation. In operation, the stepper motor 1 is operable to translate up and down along the threaded shaft 6 , thereby causing the brake assembly 2 to pivot about the pivot point 3 . Thus, the magnet 4 is selectively moved up and down relative to the flywheel 5 to adjust the resistance.

在各種實施例中,阻力系統進一步包含一輔助煞車總成10,該輔助煞車總成可獨立於樞轉阻力煞車總成2而操作。輔助煞車總成10可由操作者藉由按下一調整旋鈕11而啟動,此將致使一細長調整軸件12朝向飛輪平移,從而致使樞轉摩擦煞車總成10朝向飛輪5進行樞轉,最後接觸飛輪之邊緣且提供煞車力。旋轉調整旋鈕11將致使細長調整軸件12圍繞其主軸進行旋轉,該主軸連接至一電編碼器(例如,如圖4A中所展示)。電編碼器回應於調整旋鈕11之所感測旋轉而產生一信號,該信號可由電子控制系統使用以產生命令來啟動電子致動器1,從而將樞轉阻力煞車總成2移動成較接近於飛輪5或進一步遠離該飛輪。In various embodiments, the resistance system further includes an auxiliary brake assembly 10 which is operable independently of the pivoting resistance brake assembly 2 . Auxiliary brake assembly 10 can be activated by the operator by depressing an adjustment knob 11, which will cause an elongated adjustment shaft 12 to translate towards the flywheel, thereby causing the pivoting friction brake assembly 10 to pivot towards flywheel 5, eventually contacting The edge of the flywheel and provides braking force. Rotating the adjustment knob 11 will cause the elongated adjustment shaft 12 to rotate about its major axis, which is connected to an electrical encoder (eg, as shown in FIG. 4A ). The electrical encoder responds to the sensed rotation of the adjustment knob 11 to produce a signal that can be used by the electronic control system to generate commands to activate the electronic actuator 1 to move the pivoting resistance brake assembly 2 closer to the flywheel 5 or further away from the flywheel.

一測力計13量測自樞轉煞車總成之一第二部分14 (包含一磁體固持托架及固持於其中之一或多個磁體)傳輸至安裝至框架之第一部分7之反應力。在各種實施例中,測力計13可具有金屬主體且由經結合金屬箔應變計、矽應變計及/或其他組件組成。測力計13將煞車總成2之第一部分7接合至煞車總成2之第二部分14。在一項實施例中,煞車總成2由測力計13支撐且並非由其他器件或總成支撐。A dynamometer 13 measures the reaction force transmitted from a second part 14 of the pivoting brake assembly (comprising a magnet holding bracket and one or more magnets held therein) to the first part 7 mounted to the frame. In various embodiments, load cell 13 may have a metal body and be composed of bonded metal foil strain gauges, silicon strain gauges, and/or other components. The dynamometer 13 joins the first portion 7 of the brake assembly 2 to the second portion 14 of the brake assembly 2 . In one embodiment, the brake assembly 2 is supported by the dynamometer 13 and not by other components or assemblies.

磁體固持托架14及測力計13之組態將使得由測力計13量測之力將與被施加至飛輪5之負載成比例。為計算施加至使用者之轉矩,所施加力與距飛輪之中心之距離之乘積將產生施加至飛輪之轉矩。亦可使用一或多個感測器來量測飛輪之旋轉速度(例如,使用一或多個感測器來量測RPM)。舉例而言,可藉由使用公式功率(W) = 軸件轉矩(N*m) *速度(RPM) * 0.10472而依據軸件轉矩及速度計算由阻力裝置吸收之功率。The configuration of the magnet holding bracket 14 and the dynamometer 13 will be such that the force measured by the dynamometer 13 will be proportional to the load applied to the flywheel 5 . To calculate the torque applied to the user, the product of the applied force and the distance from the center of the flywheel will yield the torque applied to the flywheel. One or more sensors may also be used to measure the rotational speed of the flywheel (eg, using one or more sensors to measure RPM). For example, the power absorbed by the resistance device can be calculated from the shaft torque and speed by using the formula Power (W)=Shaft Torque (N*m)*Speed (RPM)*0.10472.

參考圖4A至圖4G,現在將闡述用於一運動裝置之一煞車系統之額外實施例。在所圖解說明實施例中,煞車系統20經提供以用於一運動自行車,該煞車系統包含一轉矩感測裝置,該轉矩感測裝置可減少調整力且縮短感測時間,從而增加使用者之操作之方便性。With reference to Figures 4A-4G, additional embodiments of a braking system for a moving device will now be described. In the illustrated embodiment, a braking system 20 is provided for use with an exercise bicycle that includes a torque sensing device that reduces adjustment force and shortens sensing time, thereby increasing usage The convenience of operation.

煞車系統20包含一轉矩調整單元30及一連桿總成40。轉矩調整單元30包含一調整托架31、一調整軸件34及一煞車壓縮彈簧35。在某些實施例中,煞車壓縮彈簧35經提供以在不存在施加至調整軸件34之向下力之情況下將調整軸件34偏置於一向上位置中(飛輪上無阻力)。The brake system 20 includes a torque adjustment unit 30 and a connecting rod assembly 40 . The torque adjustment unit 30 includes an adjustment bracket 31 , an adjustment shaft 34 and a brake compression spring 35 . In certain embodiments, a brake compression spring 35 is provided to bias the trim shaft 34 in an upward position in the absence of a downward force applied to the trim shaft 34 (no resistance on the flywheel).

調整托架31安置於一飛輪14之一周邊周圍,其中調整托架31之一端附接至測力計40。調整軸件34 (在某些實施例中,具有一推桿尖端36之一推桿)通過一煞車編碼器37,該煞車編碼器感測調整軸件34之旋轉。推桿尖端36包含一端部分,該端部分經調適以相應地與煞車墊總成50之一部分嚙合。在某些實施例中,一接頭形成於推桿尖端36與煞車墊總成50殼體之間。在所圖解說明實施例中,推桿尖端36係實質上圓錐形的,具有一圓形尖端以與煞車墊總成50殼體之一對應凹形部分嚙合,從而允許推桿在煞車墊總成50上施加向下壓力,此以可樞轉方式旋轉飛輪14。在各種實施例中,推桿尖端36及煞車墊總成50殼體可相應地以其他組態形成,該等其他組態使得推桿34能夠朝向飛輪14以可樞轉方式移動煞車墊總成50。An adjustment bracket 31 is disposed around a periphery of a flywheel 14 , wherein one end of the adjustment bracket 31 is attached to the dynamometer 40 . The adjustment shaft 34 (in some embodiments, a push rod with a push rod tip 36 ) passes through a brake encoder 37 which senses the rotation of the adjustment shaft 34 . The pushrod tip 36 includes an end portion adapted to correspondingly engage a portion of the brake pad assembly 50 . In some embodiments, a joint is formed between the pushrod tip 36 and the housing of the brake pad assembly 50 . In the illustrated embodiment, the pushrod tip 36 is substantially conical, with a rounded tip to engage a corresponding concave portion of the brake pad assembly 50 housing, thereby allowing the pushrod to be positioned in the brake pad assembly. 50, which pivotally rotates the flywheel 14. In various embodiments, the pushrod tip 36 and brake pad assembly 50 housing may correspondingly be formed in other configurations that enable the pushrod 34 to pivotally move the brake pad assembly toward the flywheel 14 50.

在一或多項實施例中,一煞車墊64安置於調整托架31中以在調整托架31藉由調整軸件34而被向下推動至飛輪14上時將額外阻力施加至飛輪14。在各種實施例中,調整托架包含一煞車墊,該煞車墊經安置以在調整托架藉由調整軸件34而被向下推動至飛輪14中時將一阻力施加至飛輪。一旋鈕、把手、槓桿或其他機構可安置於調整軸件34之一端處以促進施加力來降低煞車墊總成50以接觸飛輪14。In one or more embodiments, a brake pad 64 is disposed in the adjustment bracket 31 to apply additional resistance to the flywheel 14 as the adjustment bracket 31 is pushed down onto the flywheel 14 by the adjustment shaft 34 . In various embodiments, the adjustment bracket includes a brake pad positioned to apply a resistance to the flywheel when the adjustment bracket is pushed down into the flywheel 14 by the adjustment shaft 34 . A knob, handle, lever or other mechanism may be positioned at one end of the adjustment shaft 34 to facilitate the application of force to lower the brake pad assembly 50 into contact with the flywheel 14 .

測力計40在一第一端上連接至調整托架31且在一第二端上連接至一第一安裝托架60。一致動器(諸如步進馬達70)以可樞轉方式附接於第一安裝托架60與一第二安裝托架62之間。步進馬達70包含以可樞轉方式附接至一煞車安裝托架74之一步進馬達桿72。在操作中,步進馬達70經驅動以沿著步進馬達桿72上下移動。同時,安裝托架60及62上下移動,從而致使調整托架31相對於飛輪14進行對應移動,使得安置於飛輪之相對側上之一或多對磁性部件32之間的磁通量改變,從而對飛輪14提供阻力。當驅動步進馬達70時,安裝托架60及62以及測力計40相應地進行調整。轉矩調整單元30經驅動以朝向煞車安裝托架74或遠離該煞車安裝托架定向,使得步進馬達70與煞車安裝托架74之間的一距離及定向改變,如可由測力計40感測到。The load cell 40 is connected on a first end to the adjustment bracket 31 and on a second end to a first mounting bracket 60 . An actuator, such as a stepper motor 70 , is pivotally attached between the first mounting bracket 60 and a second mounting bracket 62 . Stepper motor 70 includes a stepper motor rod 72 pivotally attached to a brake mounting bracket 74 . In operation, stepper motor 70 is driven to move up and down along stepper motor rod 72 . Simultaneously, mounting brackets 60 and 62 move up and down, causing corresponding movement of adjustment bracket 31 relative to flywheel 14, causing a change in magnetic flux between one or more pairs of magnetic members 32 disposed on opposite sides of the flywheel, thereby affecting the flywheel. 14 provides resistance. As stepper motor 70 is driven, mounting brackets 60 and 62 and load cell 40 adjust accordingly. Torque adjustment unit 30 is driven to orient toward or away from brake mounting bracket 74 such that a distance and orientation between stepper motor 70 and brake mounting bracket 74 changes, as sensed by dynamometer 40 detected.

鑒於前述內容,將瞭解,本發明實施例之煞車系統20包含一測力計40,該測力計經安裝以回應於步進馬達70而支撐及移動調整托架31以對飛輪14提供阻力。在某些實施例中,安裝托架60及62以可樞轉方式附接至一腳踏車框架。在所圖解說明實施例中,安裝托架60及62透過一總成中之一腳踏車框架銲件64而以可樞轉方式附接至腳踏車框架,該總成可包含一或多個螺釘、螺栓及/或間隔件以將煞車總成居中於飛輪上方且允許煞車總成相對於飛輪進行上下樞轉。In view of the foregoing, it will be appreciated that the braking system 20 of an embodiment of the present invention includes a dynamometer 40 mounted to support and move the adjustment bracket 31 in response to the stepper motor 70 to provide resistance to the flywheel 14 . In some embodiments, mounting brackets 60 and 62 are pivotally attached to a bicycle frame. In the illustrated embodiment, the mounting brackets 60 and 62 are pivotally attached to the bicycle frame by a bicycle frame weldment 64 in an assembly that may include one or more screws, bolts and/or spacers to center the brake assembly over the flywheel and allow the brake assembly to pivot up and down relative to the flywheel.

在一項實施例中,在將安裝托架60連接至框架64之同一樞軸點處,一煞車安裝托架將煞車墊總成50以可樞轉方式連接至框架。在某些實施例中,提供一轉矩彈簧以在不存在由下推桿34施加之向下力之情況下將煞車墊總成50向上偏置。In one embodiment, a brake mounting bracket pivotally connects the brake pad assembly 50 to the frame at the same pivot point that connects the mounting bracket 60 to the frame 64 . In some embodiments, a torsion spring is provided to bias the brake pad assembly 50 upward in the absence of a downward force exerted by the lower push rod 34 .

現在將參考圖5A至圖5D闡述本公開之其他實施例。圖5A圖解說明處於毗鄰於煞車安裝托架74之一第一位置中之一步進馬達70。在此第一位置中,調整托架31中之磁體維持處於在飛輪14上面之一位置中,從而對飛輪14提供最小阻力。圖5B圖解說明處於毗鄰於步進馬達桿72之一第二端之一第二位置中之步進馬達70。在此第二位置中,調整托架31中之磁體經降低使得飛輪介於對應每一對磁體之間,藉此在運動期間最大化磁阻。透過測力計40而感測磁體相對於飛輪14之位置。Other embodiments of the present disclosure will now be described with reference to FIGS. 5A-5D . FIG. 5A illustrates a stepper motor 70 in a first position adjacent to a brake mounting bracket 74 . In this first position, the magnets in the adjustment bracket 31 are maintained in a position above the flywheel 14 so as to provide the least resistance to the flywheel 14 . FIG. 5B illustrates stepper motor 70 in a second position adjacent to a second end of stepper motor rod 72 . In this second position, the magnets in the adjustment bracket 31 are lowered such that the flywheel is between the corresponding pair of magnets, thereby maximizing reluctance during motion. The position of the magnet relative to the flywheel 14 is sensed by a load cell 40 .

圖5C圖解說明處於一第一位置中從而對飛輪不提供阻力之輔助煞車器。在第一位置中,煞車墊總成50經偏置為遠離飛輪14。圖5D圖解說明處於第二位置中之輔助煞車器,其中煞車墊64透過由一使用者施加於調整桿34上之向下壓力而壓靠在飛輪14上。將瞭解,輔助煞車器之操作不影響由調整托架31之磁體施加之阻力,該阻力係藉由步進馬達70而控制的。將瞭解,在本公開實施例中達成特定優點。舉例而言,可為一使用者提供一單個旋鈕,該單個旋鈕可經旋轉以控制步進馬達70來升高或降低阻力煞車總成,且可經按下以透過一第二煞車總成而啟動一輔助煞車器。Figure 5C illustrates the auxiliary brake in a first position providing no resistance to the flywheel. In the first position, the brake pad assembly 50 is biased away from the flywheel 14 . FIG. 5D illustrates the auxiliary brake in the second position, wherein the brake pad 64 is pressed against the flywheel 14 by downward pressure on the adjustment lever 34 by a user. It will be appreciated that the operation of the auxiliary brake does not affect the resistance exerted by the magnets of the adjustment bracket 31 , which is controlled by the stepper motor 70 . It will be appreciated that certain advantages are achieved in embodiments of the present disclosure. For example, a user may be provided with a single knob that can be turned to control the stepper motor 70 to raise or lower the drag brake assembly, and can be pressed to move through a second brake assembly. Activate an auxiliary brake.

本文中所揭示之實施例達成各種設計目標,包含減少腳踏車至腳踏車瓦特可變性(及度量準確性)且提供準確校準以使使用者在運動期間以一簡單且容易之方式準確地調整阻力。在各種實施例中,一煞車機構可包含一阻力控制系統,該阻力控制系統包括一使用者控制之調整旋鈕及用於感測使用者旋鈕調整之一煞車編碼器。可將所感測旋鈕調整轉化成信號以用於驅動一電致動器來使阻力變化。在各種實施例中,準確性將接近及/或超過+/-1%。Embodiments disclosed herein achieve various design goals, including reducing bike-to-bike watt variability (and measurement accuracy) and providing accurate calibration to allow users to accurately adjust resistance during exercise in a simple and easy manner. In various embodiments, a brake mechanism may include a resistance control system including a user controlled adjustment knob and a brake encoder for sensing user knob adjustment. The sensed knob adjustment can be converted into a signal for driving an electric actuator to vary the resistance. In various embodiments, the accuracy will approach and/or exceed +/- 1%.

在各種實施例中,致動器可包含一步進馬達,該步進馬達可操作而以超過人為控制之速度及精確度來選擇性地朝向飛輪及遠離該飛輪驅動煞車總成。以此方式,為使用者提供對煞車位準之完全程式化控制。In various embodiments, the actuator may comprise a stepper motor operable to selectively drive the brake assembly toward and away from the flywheel with speed and precision beyond human control. In this way, the user is provided with full programmed control over the brake level.

在某些實施例中,經由一測力計而量測煞車力,該測力計可包含可操作以量測直接在煞車機構內產生之力之一低成本高精確度測力計。煞車力可與一所量測飛輪速度一起用於準確地計算使用者功率輸出。在一項實施例中,致動器可包括用以致動煞車機構之一35 mm永久磁體非專屬線性步進馬達。在各種實施例中,測力計可包含一低成本鋁製單點測力計,其經配置使得測力計係將磁體固持托架連接至煞車機構之其餘部分之唯一部件。步進馬達可包含具有電流控制之一整合式步進驅動器。在某些實施例中,可使用可在12 v、500 mA至900 mA下操作之一步進馬達。可使用微步進來進行平滑且安靜之操作。In some embodiments, braking force is measured via a dynamometer, which may include a low cost, high precision dynamometer operable to measure forces generated directly within the braking mechanism. Braking force can be used together with a measured flywheel speed to accurately calculate user power output. In one embodiment, the actuator may comprise a 35 mm permanent magnet non-proprietary linear stepper motor to actuate a braking mechanism. In various embodiments, the dynamometer may comprise a low cost aluminum single point dynamometer configured such that the dynamometer is the only component connecting the magnet holding bracket to the rest of the braking mechanism. Stepper motors may include an integrated stepper driver with current control. In some embodiments, a stepper motor that can operate at 12 volts, 500 mA to 900 mA may be used. Microstepping can be used for smooth and quiet operation.

在某些實施例中,來自測力計之信號可經由針對測力計放大而相容之整合式放大器及高解析度類比轉數位轉換器(ADC)來調節。另一選擇係,可結合一微控制器上之一內建ADC來使用一獨立放大器。另一選擇係,測力計可包含調節電路系統且提供一數位輸出。In certain embodiments, the signal from the dynamometer can be conditioned via an integrated amplifier and high resolution analog-to-digital converter (ADC) compatible for dynamometer amplification. Alternatively, a separate amplifier can be used in conjunction with a built-in ADC on a microcontroller. Alternatively, the force gauge may include conditioning circuitry and provide a digital output.

在某些實施例中,阻力磁體可包含配置成3個對應磁體對(或其他成對配置)之6個阻力磁體。舉例而言,每一磁體可為25 mm直徑、8 mm厚之燒結釹稀土磁體,N32級。阻力裝置可包含一磁體固持器,該磁體固持器以單件形成、被機器加工並彎曲成供如本文中所闡述而使用之形狀。在某些實施例中,兩個對置線性軸承承載量測子總成且可使用具有一類似包絡面(envelope)之普通抽屜滑件或線性軸承。In some embodiments, the resistive magnets may comprise 6 resistive magnets arranged in 3 corresponding magnet pairs (or other paired configurations). For example, each magnet may be a 25 mm diameter, 8 mm thick sintered neodymium rare earth magnet, grade N32. The resistance device may comprise a magnet holder formed in a single piece, machined and bent into a shape for use as set forth herein. In some embodiments, two opposing linear bearings carry the gauge sub-assemblies and a common drawer slide or linear bearings with a similar envelope may be used.

圖6A至圖6B圖解說明處於一第一位置中(圖6A) (從而對飛輪620提供阻力)及一第二位置中(圖6B) (其中磁體維持處於在飛輪620上面之一位置中,從而對飛輪620提供最小阻力)之一煞車機構600之一替代實施例。煞車機構600包含一致動器602、一托架604、安置於托架604上之磁體煞車組件606、安置於托架與一安裝托架610之間的一測力計(未展示),該安裝托架以可滑動方式安裝至抽屜滑件614。6A-6B illustrate a position in a first position (FIG. 6A) (thus providing resistance to the flywheel 620) and a second position (FIG. 6B) (in which the magnet remains in a position above the flywheel 620 so that An alternate embodiment of a brake mechanism 600 that provides minimal resistance to the flywheel 620). The braking mechanism 600 includes an actuator 602, a bracket 604, a magnet brake assembly 606 mounted on the bracket 604, a load cell (not shown) positioned between the bracket and a mounting bracket 610, the mounting The bracket is slidably mounted to the drawer slide 614 .

在各種實施例中,可經由一纜線、柱塞或其他機械系統而啟動輔助裝置(例如,緊急煞車器)。藉由將緊急煞車器整合至阻力裝置中,自行車具有一更乾淨外觀,而不具有一額外啟動介面。In various embodiments, auxiliary devices (eg, emergency brakes) may be activated via a cable, plunger, or other mechanical system. By integrating the emergency brake into the resistance device, the bicycle has a cleaner look without having an additional activation interface.

現在將參考圖7闡述供用於本文中所揭示之具有一煞車系統之一運動裝置中之電組件的各種實施例。在各種實施例中,邏輯組件可操作以在整個鍛煉中評估測力計信號且調整雜訊、準確性、精確度、解析度及/或漂移。邏輯組件可包含一校準程序、功率計算方法、將資料報告至一顯示器、平板電腦或其他經連接器件,及/或與運動裝置之操作相關聯之其他特徵。邏輯組件亦可起作用以評估及調諧致動器總成運動、準確性、速度及可聽雜訊。在某些實施例中,可跨越一有線(例如,使用RS-232標準)或無線通信(例如,藍芽、WiFi等)標準而促進與一平板電腦或顯示器之通信。邏輯組件可包含一「轉到阻力(go to resistance)」選項,從而指導步進馬達/致動器調整阻力直至感測到一所要阻力為止。Various embodiments of electrical components for use in a motion device disclosed herein having a braking system will now be described with reference to FIG. 7 . In various embodiments, the logic component is operable to evaluate the dynamometer signal and adjust for noise, accuracy, precision, resolution, and/or drift throughout a workout. Logic components may include a calibration procedure, power calculation methods, reporting data to a display, tablet or other connected device, and/or other features associated with the operation of the motion device. Logic components can also function to evaluate and tune actuator assembly motion, accuracy, speed and audible noise. In some embodiments, communication with a tablet or display can be facilitated across a wired (eg, using the RS-232 standard) or wireless communication (eg, Bluetooth, WiFi, etc.) standard. The logic component may include a "go to resistance" option, directing the stepper motor/actuator to adjust the resistance until a desired resistance is sensed.

圖7圖解說明根據本公開之各種實施例之用於一實例性運動裝置之電及處理組件。一系統700包含運動裝置電組件710及一操作者終端機750。運動裝置電組件710促進一運動裝置之操作,包含與操作者終端機750進行通信、控制各種組件(例如,一線性致動器),以及接收及處理感測器資料。FIG. 7 illustrates electrical and processing components for an example motion device, according to various embodiments of the present disclosure. A system 700 includes motion device electrical components 710 and an operator terminal 750 . Motion device electrical components 710 facilitate operation of a motion device, including communicating with operator terminal 750, controlling various components (eg, a linear actuator), and receiving and processing sensor data.

在各種實施例中,運動裝置電組件710包含一控制器712、電源供應器714、通信組件722、用於控制線性致動器732之一步進馬達驅動器716、用於自測力計734接收一信號且調節該信號之測力計電路系統718 (例如,PGA及/或ADC),及與其他感測器736之介面,該等其他感測器可包含用於偵測飛輪RPM之感測器及/或用於回應於使用者調整而量測旋鈕位置之改變之感測器,如本文中所揭示。In various embodiments, motion device electrical assembly 710 includes a controller 712, power supply 714, communication assembly 722, stepper motor driver 716 for controlling linear actuator 732, for receiving a signal and condition the dynamometer circuitry 718 (e.g., PGA and/or ADC), and interface with other sensors 736, which may include sensors for detecting flywheel RPM And/or sensors for measuring changes in knob position in response to user adjustments, as disclosed herein.

控制器712可實施為一或多個微處理器、微控制器、特殊應用積體電路(ASIC)、可程式化邏輯器件(PLD) (例如,場可程式化閘陣列(FPGA)、複雜可程式化邏輯器件(CPLD)、場可程式化系統單晶片(FPSC),或其他類型之可程式化器件),或者用於控制運動裝置之操作之其他處理器件。Controller 712 may be implemented as one or more microprocessors, microcontrollers, application specific integrated circuits (ASICs), programmable logic devices (PLDs) such as field programmable gate arrays (FPGAs), complex programmable Programmable Logic Device (CPLD), Field Programmable System-on-Chip (FPSC), or other type of programmable device), or other processing device used to control the operation of a motion device.

通信組件722可包含有線及無線介面。有線介面可包含與操作者終端機750之通信鏈路,且可實施為一或多個實體網路或器件連接介面。無線介面可實施為用於進行無線通信之一或多個WiFi、藍芽、蜂巢式、紅外線、無線電及/或其他類型之網路介面,且可促進與操作者終端機及其他無線器件進行通信。在各種實施例中,控制器712可操作以提供控制信號及與操作者終端機750之通信。The communication component 722 can include wired and wireless interfaces. The wired interface may include a communication link with operator terminal 750 and may be implemented as one or more physical networks or device connection interfaces. The wireless interface may be implemented as one or more of WiFi, Bluetooth, cellular, infrared, radio, and/or other types of network interfaces for wireless communication and may facilitate communication with operator terminals and other wireless devices . In various embodiments, the controller 712 is operable to provide control signals and communicate with the operator terminal 750 .

操作者終端機750可操作以回應於使用者輸入而與運動裝置電組件710進行通信且控制該等運動裝置電組件之操作。操作者終端機750包含一控制器760、運動及使用者控制邏輯770、顯示組件780、使用者輸入/輸出組件790以及通信組件792。The operator terminal 750 is operable to communicate with and control the operation of the athletic device electrical components 710 in response to user input. Operator terminal 750 includes a controller 760 , motion and user control logic 770 , display component 780 , user input/output component 790 and communication component 792 .

處理器760可實施為一或多個微處理器、微控制器、特殊應用積體電路(ASIC)、可程式化邏輯器件(PLD) (例如,場可程式化閘陣列(FPGA)、複雜可程式化邏輯器件(CPLD)、場可程式化系統單晶片(FPSC),或其他類型之可程式化器件),或者用於控制操作者終端機之其他處理器件。就此而言,處理器760可執行儲存於一記憶體中之機器可讀指令(例如,軟體、韌體或其他指令)。Processor 760 may be implemented as one or more microprocessors, microcontrollers, application specific integrated circuits (ASICs), programmable logic devices (PLDs) such as field programmable gate arrays (FPGAs), complex programmable Programmable Logic Device (CPLD), Field Programmable System-on-Chip (FPSC), or other type of programmable device), or other processing devices used to control operator terminals. In this regard, processor 760 may execute machine-readable instructions (eg, software, firmware, or other instructions) stored in a memory.

運動邏輯770可實施為電路系統及/或儲存各種機器可讀指令及資料之一機器可讀媒體。舉例而言,在某些實施例中,運動邏輯770可儲存一作業系統及一或多個應用程式作為可由控制器760讀取及執行以執行本文中所闡述之各種操作之機器可讀指令。在某些實施例中,運動邏輯770可實施為非揮發性記憶體(例如,快閃記憶體、硬碟機、固態磁碟機或其他非揮發性機器可讀媒體)、揮發性記憶體或其組合。運動邏輯770可包含狀態、組態及控制特徵,該等狀態、組態及控制特徵可包含本文中所揭示之各種控制特徵。在某些實施例中,運動邏輯770執行一運動課程(例如,實況或存檔的),該運動課程可包含一指導者及一或多個其他課程參與者。運動課程可包含一排行榜及/或其他比較表現參數以用於在運動課程期間顯示給使用者。Motion logic 770 may be implemented as circuitry and/or as a machine-readable medium storing various machine-readable instructions and data. For example, in some embodiments, motion logic 770 may store an operating system and one or more application programs as machine-readable instructions that may be read and executed by controller 760 to perform the various operations set forth herein. In some embodiments, motion logic 770 may be implemented as non-volatile memory (e.g., flash memory, hard drive, solid-state drive, or other non-volatile machine-readable media), volatile memory, or its combination. Motion logic 770 may include state, configuration, and control features, which may include the various control features disclosed herein. In some embodiments, exercise logic 770 executes an exercise session (eg, live or archived), which may include an instructor and one or more other session participants. The exercise session may include a leaderboard and/or other comparative performance parameters for display to the user during the exercise session.

通信組件792可包含有線及無線介面。一有線介面可實施為經組態以將操作者終端機750與運動裝置電組件710連接之一或多個實體網路或器件連接介面(例如,乙太網路及/或其他協定)。無線介面可實施為用於進行無線通信之一或多個WiFi、藍芽、蜂巢式、紅外線、無線電及/或其他類型之網路介面。The communication component 792 can include wired and wireless interfaces. A wired interface may be implemented as one or more physical networks or device connection interfaces (eg, Ethernet and/or other protocols) configured to connect operator terminal 750 with motion device electrical assembly 710 . The wireless interface may be implemented as one or more of WiFi, Bluetooth, cellular, infrared, radio, and/or other types of network interfaces for wireless communication.

顯示器780向操作者終端機750之使用者呈現資訊。在各種實施例中,顯示器780可實施為一LED顯示器、一液晶顯示器(LCD)、一有機發光二極體(OLED)顯示器,及/或任何其他適當顯示器。使用者輸入/輸出組件790接收使用者輸入以操作操作者終端機750之特徵。Display 780 presents information to a user of operator terminal 750 . In various embodiments, display 780 may be implemented as an LED display, a liquid crystal display (LCD), an organic light emitting diode (OLED) display, and/or any other suitable display. User input/output component 790 receives user input to operate features of operator terminal 750 .

參考圖8,展示包含本文中所揭示之煞車系統之一實施例之一例示性運動裝置。如所展示,一固定式腳踏車102包含整合式或經連接數位硬體,該整合式或經連接數位硬體包含至少一個顯示螢幕104。Referring to FIG. 8 , there is shown an exemplary motion device including one embodiment of the braking system disclosed herein. As shown, a stationary bicycle 102 includes integrated or connected digital hardware including at least one display screen 104 .

在各種例示性實施例中,一固定式腳踏車102可包括一框架106、用以支撐車把110之一車把支柱108、用以支撐座椅114之一座椅支柱112、一後支撐件116及一前支撐件118。踏板120用於經由一帶、鏈或其他驅動機構而驅動一飛輪122。飛輪122可為一重金屬圓盤或其他適當機構。在各種例示性實施例中,使飛輪122旋轉所需的踏板上之力可使用一阻力調整旋鈕124來調整,該阻力調整旋鈕調整一阻力機構126,諸如本文中所揭示之煞車系統。阻力調整旋鈕可旋轉一調整軸件以控制阻力機構126增加或降低飛輪122之旋轉阻力。舉例而言,順時針旋轉阻力調整旋鈕可致使阻力機構126之一組磁體相對於飛輪122移動,從而增加該飛輪之旋轉阻力且增加使用者必須施加至踏板120以使飛輪122旋轉之力。In various exemplary embodiments, a stationary bicycle 102 may include a frame 106, a handlebar post 108 for supporting a handlebar 110, a seat post 112 for supporting a seat 114, a rear support 116 And a front support member 118. Pedal 120 is used to drive a flywheel 122 via a belt, chain or other drive mechanism. Flywheel 122 may be a heavy metal disc or other suitable mechanism. In various exemplary embodiments, the effort on the pedal required to rotate flywheel 122 can be adjusted using a resistance adjustment knob 124 that adjusts a resistance mechanism 126, such as the braking system disclosed herein. The resistance adjustment knob can rotate an adjustment shaft to control the resistance mechanism 126 to increase or decrease the rotation resistance of the flywheel 122 . For example, turning the resistance adjustment knob clockwise can cause a set of magnets of resistance mechanism 126 to move relative to flywheel 122, thereby increasing the resistance to rotation of the flywheel and increasing the force a user must apply to pedals 120 to rotate flywheel 122.

固定式腳踏車102亦可包含允許調整座椅114、車把110等之位置之各種特徵。在各種例示性實施例中,一顯示螢幕104可自車把向前而安裝於使用者前面。此顯示螢幕可包含一鉸鏈或其他機構以允許調整顯示螢幕相對於騎乘者之位置或定向。The stationary cycle 102 may also include various features that allow adjustment of the position of the seat 114, handlebars 110, and the like. In various exemplary embodiments, a display screen 104 may be mounted in front of the user from the handlebars forward. The display screen may include a hinge or other mechanism to allow adjustment of the position or orientation of the display screen relative to the rider.

與固定式腳踏車102相關聯之數位硬體可連接至固定式腳踏車102或與該固定式腳踏車整合在一起,或者該數位硬體可遠端地定位且無線連接至固定式腳踏車。數位硬體可與一顯示螢幕104整合在一起,該顯示螢幕可附接至固定式腳踏車或其可單獨地安裝但應被定位於使用固定式腳踏車之一人之視線中。數位硬體可包含數位儲存、處理及通信硬體、軟體及/或一或多個媒體輸入/輸出器件,諸如顯示螢幕、相機、麥克風、鍵盤、觸控螢幕、頭戴式耳機及/或音訊揚聲器。在各種例示性實施例中,此等組件可與固定式腳踏車整合在一起。此等組件之間及當中的所有通信可為多通道、多方向的,且係無線或有線、使用任何適當協定或技術。在各種例示性實施例中,系統可包含相關聯行動及基於網路之應用程式,該等相關聯行動及基於網路之應用程式自本端或遠端個人電腦、膝上型電腦、行動器件或任何其他數位器件向使用者提供對帳戶、表現及其他相關資訊之存取。Digital hardware associated with the stationary cycle 102 may be connected to or integrated with the stationary cycle 102, or the digital hardware may be remotely located and wirelessly connected to the stationary cycle. The digital hardware can be integrated with a display screen 104 which can be attached to the stationary bike or it can be mounted separately but should be positioned in the line of sight of a person using the stationary bike. Digital hardware may include digital storage, processing and communication hardware, software and/or one or more media input/output devices such as display screens, cameras, microphones, keyboards, touch screens, headphones and/or audio speaker. In various exemplary embodiments, these components may be integrated with a stationary bicycle. All communications between and among such components can be multi-channel, multi-directional, and wireless or wired, using any suitable protocol or technology. In various exemplary embodiments, the system may include associated mobile and web-based applications that are accessed from a local or remote personal computer, laptop, mobile device or any other digital device that provides users with access to account, performance, and other related information.

在各種例示性實施例中,固定式腳踏車102配備有各種感測器,該等感測器可瞬時及/或隨時間量測來自固定式腳踏車及騎乘者兩者之表現度量之一範圍。舉例而言,阻力機構126可包含提供關於阻力機構之位置之阻力回饋之感測器。固定式腳踏車亦可包含在使用期間提供連續功率量測之功率量測感測器,諸如磁阻功率量測感測器或一渦電流功率監測系統。固定式腳踏車亦可包含用以量測速度、踏板踏頻、飛輪旋轉速度等之一寬廣範圍之其他感測器。固定式腳踏車亦可包含用以量測騎乘者心率、呼吸、水分補充或任何其他身體特性之感測器。此等感測器可使用有線連接(諸如視圖有線連接128)或無線連接與位於腳踏車上、在附近或在一遠端位置處之儲存及處理系統進行通信。In various exemplary embodiments, the stationary bike 102 is equipped with various sensors that measure a range of performance metrics from both the stationary bike and the rider, instantaneously and/or over time. For example, resistance mechanism 126 may include sensors that provide resistance feedback regarding the position of the resistance mechanism. Stationary bikes may also include power measurement sensors that provide continuous power measurement during use, such as reluctance power measurement sensors or an eddy current power monitoring system. Stationary bikes may also include a wide range of other sensors for measuring speed, pedal cadence, flywheel rotation speed, and the like. Stationary bikes may also include sensors to measure the rider's heart rate, respiration, hydration, or any other physical characteristic. These sensors may communicate with a storage and processing system located on the bicycle, nearby or at a remote location using a wired connection (such as the wired connection 128 of view) or a wireless connection.

可提供在感測器內或在一單獨處理系統中之硬體及軟體以計算及儲存一寬廣範圍之狀態及表現資訊。可被量測或計算之相關表現度量包含阻力、距離、速度、功率、總功、踏板踏頻、心率、呼吸、水分補充、卡路里燃燒及/或可開發之任何定製表現得分。在適當之情況下,此等表現度量可被計算為當前/瞬時值、最大值、最小值、平均值或隨時間之總和,或者使用任何其他統計分析。亦可判定、儲存並向使用者、指導者及/或其他使用者顯示趨勢。可提供一使用者介面以使使用者控制所顯示資訊之語言、單位及其他特性。Hardware and software can be provided within the sensor or in a separate processing system to compute and store a wide range of status and performance information. Relevant performance metrics that may be measured or calculated include resistance, distance, speed, power, total work, pedal cadence, heart rate, respiration, hydration, calories burned, and/or any custom performance score that may be developed. Where appropriate, such performance measures may be calculated as current/instantaneous values, maximum values, minimum values, average values or sums over time, or using any other statistical analysis. Trends may also be determined, stored, and displayed to the user, instructor, and/or other users. A user interface may be provided to allow the user to control the language, units, and other characteristics of the displayed information.

參考圖9,現在將闡述根據本公開之實施例之用於操作一煞車系統之一程序900。在步驟902中,使用一煞車編碼器來感測一調整軸件之一旋轉且由電控制組件接收該旋轉(步驟904)。根據所感測旋轉,電控制組件產生一信號以驅動一線性致動器來調整施加至飛輪之阻力(步驟906)。然後回應於所產生信號而操作線性致動器,以藉由朝向及/或遠離飛輪移動阻力組件而使阻力變化(步驟908)。一測力計連接於阻力組件與框架之間且感測施加至阻力總成之一負載。由電控制組件接收測力計資料且判定一或多個操作參數(步驟912),諸如瞬時功率或施加至飛輪之一阻力量測。實例性實施方案 Referring to FIG. 9 , a routine 900 for operating a braking system according to an embodiment of the present disclosure will now be described. In step 902, a rotation of an adjustment shaft is sensed using a brake encoder and received by the electrical control assembly (step 904). Based on the sensed rotation, the electrical control assembly generates a signal to drive a linear actuator to adjust the resistance applied to the flywheel (step 906). The linear actuator is then operated in response to the generated signal to vary the resistance by moving the resistance member toward and/or away from the flywheel (step 908). A load cell is connected between the resistance assembly and the frame and senses a load applied to the resistance assembly. The dynamometer data is received by the electrical control assembly and one or more operating parameters are determined (step 912), such as instantaneous power or a measure of resistance applied to the flywheel. Example implementation

現在將參考圖10A至圖12闡述根據一或多項實施例之一實例性煞車器實施方案。所圖解說明實施例提供用於煞車器、編碼器以及用於導出功率、踏頻及阻力之值之實例性準則,該實例性準則可顯示給使用者。資料可儲存於與運動裝置相關聯之一記憶體組件、一中央伺服器(諸如一雲端儲存服務)或其他儲存系統中。An example brake implementation in accordance with one or more embodiments will now be described with reference to FIGS. 10A-12 . The illustrated embodiment provides example criteria for the brakes, encoders, and values for deriving power, cadence, and resistance that can be displayed to the user. Data may be stored in a memory component associated with the motion device, a central server (such as a cloud storage service), or other storage systems.

圖10A至圖10E圖解說明根據本公開之一或多項實施例之一實例性控制系統。一處理系統1000包含一控制單元1050,該控制單元經組態以接收及處理來自一運動裝置之複數個感測器及/或組件之信號且促進組件與一運算器件之間的通信。在所圖解說明實施例中,控制單元1050電連接至:一旋轉編碼器1012,其經組態以感測一煞車調整軸件1010之旋轉;一測力計1020,其經組態以量測由一磁性煞車總成施加至飛輪之力;一霍爾(hall)效應感測器1032,其可經安置以追蹤一飛輪1030之旋轉(例如,旋轉速度);及一步進馬達1040,其提供關於一當前煞車器位置之資訊。10A-10E illustrate an example control system according to one or more embodiments of the present disclosure. A processing system 1000 includes a control unit 1050 configured to receive and process signals from a plurality of sensors and/or components of a motion device and to facilitate communication between the components and a computing device. In the illustrated embodiment, the control unit 1050 is electrically connected to: a rotary encoder 1012 configured to sense rotation of a brake adjustment shaft 1010; a force gauge 1020 configured to measure force applied to the flywheel by a magnetic brake assembly; a Hall effect sensor 1032, which may be positioned to track the rotation (e.g., rotational speed) of a flywheel 1030; and stepper motor 1040, which provides Information about a current brake position.

控制單元1050可透過一通信鏈路1060 (例如,向控制單元提供24 V功率之USB-C連接)而連接至其他器件。控制單元1050處理感測器輸入以產生用於由系統1000處理及/或顯示給使用者(例如,透過一顯示器件1066)之資料1052,諸如每分鐘轉數(RPM)、功率、阻力及煞車器位置。在各種實施例中,控制單元1050可實施為在感測器與一處理系統、一感測器板、一資料記錄器、一運算器件及/或根據系統要求而組態之其他硬體及/或軟體之間提供一介面之電路系統。在各種實施例中,控制單元1050包含一RPM/踏頻處理模組1054、一測力計處理模組1055、一旋鈕位置處理模組1056、一阻力控制器1057、一步進監督器1058及一資料處理模組1059。The control unit 1050 can be connected to other devices through a communication link 1060 such as a USB-C connection providing 24 V power to the control unit. The control unit 1050 processes the sensor inputs to generate data 1052, such as revolutions per minute (RPM), power, resistance, and braking, for processing by the system 1000 and/or for display to the user (e.g., via a display device 1066). device position. In various embodiments, the control unit 1050 can be implemented as a combination of sensors and a processing system, a sensor board, a data logger, a computing device, and/or other hardware configured according to system requirements and/or Or a circuit system that provides an interface between software. In various embodiments, the control unit 1050 includes an RPM/cadence processing module 1054, a dynamometer processing module 1055, a knob position processing module 1056, a resistance controller 1057, a step monitor 1058 and a Data processing module 1059.

圖11圖解說明針對一運動裝置(諸如圖10A之系統1000)之高效操作之實例性功率狀態。功率狀態1100包含生產系統狀態、狀態轉變及至子系統狀態(包含一觸控顯示器/平板電腦、煞車控制器及其他系統組件)之映射。在無功率狀態1110中,系統未接收功率(例如,未連接至一壁上功率出口)且所有組件係關斷的。當系統連接至一電源時,系統進入一關斷狀態1120。此係一較低功率狀態(例如,消耗少於.5 W)且未執行處理。一燈(例如,一LED)可經通電以向使用者指示正接收功率。若接通系統(例如,藉由按下一平板電腦上之一按鈕、輕擊一觸控螢幕顯示器或其他使用者輸入),則系統進入一喚醒狀態1130以進行系統及運動裝置之全部操作。系統可回應於使用者輸入(例如,按下平板電腦上之按鈕)或系統在一段時間內空閒而進入一睡眠模式1150。使用者可藉由按下平板電腦上之一控制件或提供由系統偵測到之其他輸入而退出睡眠模式1150。一喚醒(DISP關斷)狀態1140提供後台處理(諸如系統更新、資料處理、與其他器件之資料通信),同時向使用者顯現為處於一睡眠模式中(例如,平板電腦顯示器關斷)。RPM/ 踏頻處理 1054 FIG. 11 illustrates example power states for efficient operation of a motion device, such as system 1000 of FIG. 10A . Power state 1100 includes production system states, state transitions, and mappings to subsystem states (including a touch display/tablet, brake controller, and other system components). In the unpowered state 1110, the system is not receiving power (eg, not connected to a wall power outlet) and all components are off. When the system is connected to a power source, the system enters a shutdown state 1120 . This is a lower power state (eg, consuming less than .5 W) and no processing is performed. A light (eg, an LED) can be energized to indicate to the user that power is being received. If the system is turned on (eg, by pressing a button on a tablet, tapping a touch screen display, or other user input), the system enters an awake state 1130 for full system and motion device operation. The system may enter a sleep mode 1150 in response to user input (eg, pressing a button on a tablet) or if the system is idle for a period of time. The user can exit sleep mode 1150 by pressing a control on the tablet or providing other input detected by the system. A wake (DISP off) state 1140 provides background processing (such as system updates, data processing, data communication with other devices) while appearing to the user to be in a sleep mode (eg, tablet display off). RPM/ cadence processing 1054

返回參考圖10A至圖10E,現在將闡述感測器輸入處理之實施例。在圖10C中圖解說明用於計算RPM及踏頻度量之一程序1070。首先,在步驟1072中,使用一感測器來判定飛輪之旋轉速率,舉例而言,自經組態以在操作期間計算運動裝置之RPM之霍爾效應感測器1032接收資料。在步驟1074中,系統可然後使用位於飛輪上之霍爾效應感測器1032來計算踏頻。霍爾效應感測器1032可安置於運動裝置上之一固定位置中以隨著飛輪之每一轉數而感測飛輪1030上之一磁體。樣本速率可為中斷驅動的且可表示與飛輪RPM成比例之曲柄RPM。在一項實施方案中,藉由將飛輪RPM除以一常數(例如,在一實例性實施方案中,4.395)而計算曲柄RPM,從而表示一曲柄轉數與一飛輪轉數之間的關係。Referring back to FIGS. 10A-10E , embodiments of sensor input processing will now be described. One procedure 1070 for calculating RPM and cadence metrics is illustrated in FIG. 1OC. First, in step 1072, a sensor is used to determine the rate of rotation of the flywheel, for example, receiving data from Hall effect sensor 1032 configured to calculate the RPM of the motion device during operation. In step 1074, the system may then calculate cadence using the Hall effect sensor 1032 located on the flywheel. A Hall effect sensor 1032 may be placed in a fixed location on the motion device to sense a magnet on the flywheel 1030 with each revolution of the flywheel. The sample rate may be interrupt driven and may represent crank RPM proportional to flywheel RPM. In one embodiment, the crank RPM is calculated by dividing the flywheel RPM by a constant (eg, 4.395 in an exemplary embodiment), thereby expressing the relationship between a crank revolution and a flywheel revolution.

將一中斷常式附加到霍爾效應感測器輸入之下降邊緣。該常式可計算並更新表示飛輪rpm、曲柄rpm及/或特定於運動裝置之其他速率資訊之變數。若在磁體之一次通過時偵測到兩個或多於兩個下降邊緣,則該常式可併入有一去抖動方法以拒絕錯誤觸發。系統亦可經組態以拒絕將產生明顯錯誤資料(例如,高於一預定臨限值之一RPM)之中斷。若飛輪出現一突然停止,則該常式可進一步併入有用於以一自然方式將所量測RPM衰減至零之一程序。在步驟1076中,將旋轉速率及/或踩踏板踏頻提供至控制單元及/或運動裝置之其他組件以用於處理、顯示及/或儲存。測力計資料處理 1055 Attach an interrupt routine to the falling edge of the Hall effect sensor input. The routine may calculate and update variables representing flywheel rpm, crank rpm, and/or other speed information specific to the motion device. The routine can incorporate a debounce method to reject false triggers if two or more falling edges are detected on one pass of the magnet. The system can also be configured to reject interruptions that would produce obviously erroneous data (eg, an RPM above a predetermined threshold). The routine may further incorporate a procedure for decaying the measured RPM to zero in a natural manner if there is a sudden stop of the flywheel. In step 1076, the rotation rate and/or pedaling cadence are provided to the control unit and/or other components of the exercise device for processing, display, and/or storage. Dynamometer Data Processing 1055

在某些實施例中,測力計1020以一預定樣本速率(例如,4 Hz)進行操作且量測由磁性煞車總成施加至飛輪之力(例如,以十克或一類似量測單位)。控制單元1050使用一標準協定(諸如I2 C)與測力計1020進行通信。來自測力計1020之力量測可用於計算功率及其他準則。舉例而言,可依據與煞車總成之一位置對應之自測力計1020導出之力以及自RPM資料計算之飛輪之速度(或其他速率計算)而計算功率。In some embodiments, the force gauge 1020 operates at a predetermined sample rate (eg, 4 Hz) and measures the force applied to the flywheel by the magnetic brake assembly (eg, in decigrams or a similar unit of measurement) . The control unit 1050 communicates with the load cell 1020 using a standard protocol such as I2C . Force measurements from force gauge 1020 can be used to calculate power and other criteria. For example, power can be calculated from the force derived from the dynamometer 1020 corresponding to a position of the brake assembly and the speed of the flywheel (or other rate calculation) calculated from RPM data.

參考圖10D,現在將闡述用於處理測力計資料之一實例性程序1080。在某些實施例中,控制單元1050及/或平板電腦/顯示器1066包含一測力計校準常式。該常式在飛輪靜止時建立在煞車總成之間隔位置(例如,相等間隔位置) (例如,10個位置)處之測力計量測值之一表。此資料允許在不將煞車器移動至一「初始」位置之情況下對測力計進行「歸零」。Referring to Figure 10D, one example routine 1080 for processing dynamometer data will now be described. In some embodiments, control unit 1050 and/or tablet/display 1066 includes a force gauge calibration routine. The routine builds up a table of dynamometer measurements at spaced (eg, equally spaced positions) (eg, 10 positions) of the brake assembly when the flywheel is at rest. This data allows "zeroing" of the dynamometer without moving the brake to a "home" position.

在一項實施例中,程序1080在步驟1082中藉由起始一測力計校準常式而開始,該測力計校準常式判定器件所需要之校準步驟(例如,建立測力計量測表、判定偏移、更新測力計量測等)。為校準測力計,在步驟1084中,將煞車總成定位至飛輪之一邊緣處之一第一位置。在步驟1086中,在第一位置及煞車總成之與第一位置間隔開之複數個位置處量測測力計值。在步驟1088中,將複數個煞車器位置及對應測力計值儲存於一表中。該表可儲存於非揮發性記憶體中,包含測力計值、煞車器位置及用以確保資料完整性之一crc總和檢查碼(checksum)。在步驟1089中,基於所感測測力計值及儲存於該表中之值而計算在運動裝置之操作期間施加之阻力。In one embodiment, process 1080 begins at step 1082 by initiating a dynamometer calibration routine that determines the calibration steps required for the device (e.g., establishing a dynamometer tables, determining offsets, updating dynamometer measurements, etc.). To calibrate the dynamometer, in step 1084, the brake assembly is positioned to a first position at one edge of the flywheel. In step 1086, dynamometer values are measured at the first location and at a plurality of locations of the brake assembly spaced from the first location. In step 1088, a plurality of brake positions and corresponding dynamometer values are stored in a table. The table can be stored in non-volatile memory and contains dynamometer values, brake position and a crc checksum to ensure data integrity. In step 1089, the resistance applied during operation of the motion device is calculated based on the sensed dynamometer values and the values stored in the table.

在一項實施例中,在開啟電源後,運算系統(例如,平板電腦、控制單元或其他處理器件)旋即檢查記憶體中之一有效測力計表。若一表存在,則進行一標準歸位(homing)程序。若在記憶體中未找到一有效表,則執行校準常式以建立一新表且將該新表儲存於記憶體中。使用該表,一當前測力計讀數可用於藉由自來自該表之位置資訊進行內插而計算一位置/偏移。In one embodiment, immediately after power is turned on, the computing system (eg, tablet, control unit, or other processing device) checks memory for a valid force gauge. If a table exists, a standard homing procedure is performed. If a valid table is not found in memory, the calibration routine is executed to create a new table and stored in memory. Using the table, a current dynamometer reading can be used to calculate a position/offset by interpolating from the position information from the table.

在某些實施例中,在一運動過程之開始時或接近開始時執行測力計歸零。對於負載量測器件常見的係,來自測力計1020之讀數可基於無法控制之諸多因素而隨時間漂移。可執行一常式以產生一「偏移」,該「偏移」可被添加至來自測力計1020之未來讀數,或者直至下一次測力計歸零。為允許在任何煞車器位置處進行歸零,使用偏移表來計算待應用之偏移。舉例而言,用以計算「偏移」之一公式係當前讀數加上自來自該表之位置之輸出之一插值。本文中所闡述之程序可在大約1秒或更少內執行且可在感測器韌體內自動執行。在某一組態中,在每次騎乘之前執行該程序。韌體可喚醒並以規則間隔(例如,每隔幾分鐘)獲取讀數,(舉例而言)如藉由容許功率汲取所判定。飛輪之運動可產生不準確讀數。因此,若飛輪在喚醒時正在移動(例如,> 10 RPM),則可在最後所記錄值並不太舊(例如,不舊於10分鐘)之情況下使用該最後所記錄值。旋鈕位置處理 1056 In some embodiments, zeroing the dynamometer is performed at or near the beginning of an exercise session. As is common with load measurement devices, the readings from the load cell 1020 can drift over time based on a number of factors beyond our control. A routine can be implemented to generate an "offset" that can be added to future readings from the dynamometer 1020, or until the next time the dynamometer is zeroed. To allow zeroing at any brake position, an offset table is used to calculate the offset to apply. For example, one formula used to calculate "offset" is the current reading plus an interpolation from the output from the meter's position. The procedures described herein can be executed in about 1 second or less and can be executed automatically within the sensor firmware. In one configuration, this procedure is performed before each ride. The firmware can wake up and take readings at regular intervals (eg, every few minutes), as determined, for example, by allowing power draw. Movement of the flywheel can produce inaccurate readings. Thus, if the flywheel is moving (eg, >10 RPM) when woken up, the last recorded value can be used if the last recorded value is not too old (eg, not older than 10 minutes). Knob Position Handling 1056

可調整軸件之位置(例如,旋鈕位置)係透過中斷以一定速率來取樣且可藉由旋轉編碼器1012就旋轉來進行量測。可使用旋轉編碼器1012之組件來計算並追蹤旋鈕位置且可使用所得資料來驅動步進馬達。步進馬達驅動 The position of the adjustable shaft (eg, knob position) is sampled at a rate by interrupts and can be measured for rotation by the rotary encoder 1012 . The knob position can be calculated and tracked using components of the rotary encoder 1012 and the resulting data can be used to drive a stepper motor. stepper motor drive

步進馬達1040經組態以由一積體電路或其他控制組件操作以初始化、組態及驅動步進馬達來提供煞車器之位置控制。如先前所論述,步進馬達位置用於填充位置值及測力計量測值之一偏移表。The stepper motor 1040 is configured to be operated by an IC or other control component to initialize, configure and drive the stepper motor to provide position control of the brake. As previously discussed, the stepper motor position is used to populate an offset table of position values and dynamometer measurements.

在圖10E中圖解說明用於操作一步進馬達之一實例性程序1090。在步驟1092中,透過一初始啟動常式而對步進馬達執行一歸位程序,可根據使用者請求而重新運行該初始啟動常式。可在每個功率循環上(例如,拔下/重新***一電源)執行一歸位常式。該歸位常式可使煞車機構接觸到飛輪之邊緣以達成歸位。One example routine 1090 for operating a stepper motor is illustrated in FIG. 10E. In step 1092, a homing procedure is performed on the stepper motor through an initial start-up routine that can be rerun upon user request. A homing routine may be performed on every power cycle (eg, unplugging/replugging a power supply). The homing routine can make the brake mechanism touch the edge of the flywheel to achieve homing.

步進馬達之操作包含複數個處理步驟。在某些實施例中,使用步進驅動器內之整合式失速偵測(步驟1096)來達成歸位。可提供一開環位置控制常式(步驟1093)以追蹤煞車器位置對零位置(舉例而言,作為自歸位位置之一步進數)。歸位常式可用於判定煞車器之運動範圍之上限及下限。可將步進馬達位置計數為自磁體固持器與飛輪之邊緣之間的接觸開始上數之步進數。在某些實施例中,提供邏輯以偵測飛輪之運動且若自霍爾效應感測器偵測到飛輪之運動,則阻止歸位常式執行。在此情形中,在執行歸位常式之同時,使用者可被通知停止踩踏板。在某些實施方案中,本文中所揭示之歸位常式可在大約五秒或更少內完成。The operation of a stepper motor involves a number of processing steps. In some embodiments, homing is achieved using integrated stall detection (step 1096) within the stepper driver. An open loop position control routine (step 1093) may be provided to track the brake position to the zero position (eg, as a number of steps from the home position). The homing routine can be used to determine the upper and lower limits of the brake's range of motion. The stepper motor position can be counted as the number of steps counted from contact between the magnet holder and the edge of the flywheel. In some embodiments, logic is provided to detect movement of the flywheel and prevent the homing routine from executing if movement of the flywheel is detected from the Hall Effect sensors. In this case, the user may be notified to stop pedaling while the homing routine is being performed. In certain implementations, the homing routines disclosed herein can complete in about five seconds or less.

使用步進馬達1040位置來以全步進數為單位判定煞車總成之一位置值。舉例而言,可使用0步進數至1000步進數之一尺度,其中1000係當煞車器接觸飛輪時且0係在操作期間接近行進範圍之頂部。在某些實施例中,步進馬達1040經組態以在位置0與小於1000之一值(例如,750)之間進行操作,從而避免與飛輪接觸並且匹配運動裝置之一操作範圍。Use the position of the stepper motor 1040 to determine a position value of the brake assembly in units of full steps. For example, a scale of 0 steps to 1000 steps may be used, where 1000 is when the brake is in contact with the flywheel and 0 is near the top of the travel range during operation. In some embodiments, the stepper motor 1040 is configured to operate between position 0 and a value less than 1000 (eg, 750) to avoid contact with the flywheel and match an operating range of the motion device.

在一或多項實施例中,一運算系統(例如,平板電腦/顯示器1066)、阻力控制器、控制單元或其他器件/電路系統經組態以向一步進馬達1040提供指令,包含產生一「驅動至位置」命令。舉例而言,當需要一阻力設定時(例如,如由一使用者設定或由運動裝置根據一地形特徵而控制),判定一對應目標位置且發佈一驅動至位置命令。步進馬達1040經組態以接收「驅動至位置」命令,包含所要位置值(步驟1094),且命令步進馬達在一當前位置與目標位置之間執行對應步進數(步驟1095)。可使用來自偏移表之一反向查找將阻力轉換成一位置。然後應使用該命令使用一平滑運動控制量變曲線來驅動至位置,以獲得一合意使用者體驗。In one or more embodiments, a computing system (e.g., tablet/display 1066), resistance controller, control unit, or other device/circuitry is configured to provide instructions to stepper motor 1040, including generating a "drive to position" command. For example, when a resistance setting is required (eg, as set by a user or controlled by a motion device based on a terrain feature), a corresponding target position is determined and a drive-to-position command is issued. The stepper motor 1040 is configured to receive a "drive to position" command, including the desired position value (step 1094), and command the stepper motor to perform the corresponding number of steps between a current position and the target position (step 1095). Resistance can be converted to a position using a reverse lookup from the offset table. This command should then be used to drive to position using a smooth motion control profile for a pleasing user experience.

編碼器經組態以更新阻力設定點(例如,根據每100個阻力百分點7.5轉數之一固定線性比率)。在一項實施例中,在啟動後,韌體不會基於相對旋鈕位置而對阻力設定點造成任何偏移。在此實施例中,旋鈕充當不具有零參考之一增量編碼器。在移動旋鈕後,編碼器旋即根據所界定比率而更新阻力設定點。編碼器移動邏輯可經組態以拒絕小的輸入(例如,1度以下之改變)以避免在使用者將其手部放置於旋鈕上時移動。The encoder is configured to update the resistance set point (eg, based on a fixed linear ratio of 7.5 revolutions per 100 percent resistance). In one embodiment, upon activation, the firmware does not introduce any offset to the resistance set point based on the relative knob position. In this embodiment, the knob acts as an incremental encoder without a zero reference. Immediately after moving the knob, the encoder updates the resistance set point according to the defined ratio. The encoder movement logic can be configured to reject small inputs (eg, changes under 1 degree) to avoid movement when the user places their hand on the knob.

在某些實施例中,步進馬達之加速度、速度及當前位置值由一步進監督器程序管理以在各種速度及負載條件下達成同步步進且在使用者於一長時間內以高負載連續循環步進器之事件中保護步進馬達免遭過熱。調諧步進器之加速度及運行速度以及定製電流量變曲線促進感到平滑之一使用者體驗。步進馬達之操作可進一步包含保護電路系統及/或控制邏輯以對步進馬達提供熱保護。運動控制 In some embodiments, the acceleration, velocity, and current position values of the stepper motors are managed by a step supervisor program to achieve synchronized steps under various speed and load conditions and to allow the user to continue with high loads over a long period of time. Protects the stepper motor from overheating in the event of cycling the stepper. Tuning the stepper's acceleration and operating speed and customizing the current profile facilitates a smooth user experience. Operation of the stepper motor may further include protection circuitry and/or control logic to provide thermal protection for the stepper motor. sport control

在各種實施例中,步進馬達1040之加速度、速度及/或電流由一步進監督器控制,一目標係在所有可能之速度及負載條件下達成同步步進且在使用者於一段時間內以高負載連續循環步進器之事件中保護步進器免遭過熱。調諧步進器之加速度及運行速度以及定製電流量變曲線允許操作感到平滑。In various embodiments, the acceleration, velocity, and/or current of the stepper motor 1040 are controlled by a step supervisor, with the goal of achieving synchronized steps at all possible speeds and load conditions and by the user over a period of time at Protects steppers from overheating in the event of high load continuous cycle steppers. Tuning the stepper's acceleration and operating speed and customizing the current profile allows for smooth operation.

在步進控制之各種實施例中,通常就整體步進數(0至1000)及每秒整體步進數來參考馬達位置及速度。然而,為了達成儘可能最平滑且最安靜操作,以一微步進模式操作馬達,其中兩個馬達相皆部分地通電,以便達成整體步進數之間的部分步進數。實際馬達位置以微步進數(0至8000)來計數,但大多數較高階函數指定全步進數值。In various embodiments of step control, motor position and speed are typically referenced in terms of overall number of steps (0 to 1000) and overall steps per second. However, in order to achieve the smoothest and quietest possible operation, the motors are operated in a microstepping mode, where both motors are partially energized in phase, so as to achieve a fractional number of steps between the overall number of steps. Actual motor position is counted in microsteps (0 to 8000), but most higher order functions specify full step values.

在一項實施例中,馬達驅動器允許使用者針對微步進之個別階段在定製電流量變曲線中進行程式化。標稱地,此等步進數將被程式化為一正弦量變曲線。可使用自其馬達之反EMF波形導出之一定製量變曲線。與此特定馬達之一理想正弦曲線相比,此量變曲線給出更平滑且更安靜之操作。In one embodiment, the motor driver allows the user to program in custom current profiles for individual stages of microstepping. Nominally, the number of steps will be programmed into a sinusoidal curve. A custom variable curve derived from the back EMF waveform of its motor may be used. This variable curve gives smoother and quieter operation than an ideal sinusoid for this particular motor.

在某些實施例中,步進馬達之速度隨著馬達到達一目標位置而變化。舉例而言,每當馬達處於運動中時,可將目標馬達速度指定為待行進之剩餘距離之一倍數(以全步進數)。該速度亦由最小值及最大值限界。對於小的跳行,使用低速度。對於極長的所命令運動,速度將限定在最大允許值處。隨著馬達接近目標位置,馬達將自然減速,此乃因剩餘距離值變得較小。In some embodiments, the speed of the stepper motor varies as the motor reaches a target position. For example, a target motor speed may be specified as a multiple of the remaining distance to travel (in full steps) whenever the motor is in motion. The speed is also bounded by a minimum value and a maximum value. For small jumps, use a low speed. For extremely long commanded movements, the velocity will be limited to the maximum allowable value. As the motor approaches the target position, the motor will naturally slow down as the remaining distance value becomes smaller.

此成比例速度設定允許馬達跟隨連續位置更新(例如,來自編碼器),而不會因追趕太快及反覆停止而導致斷續步進。馬達將穩定至與位置更新匹配之一平均速度中,具有與速度成比例之一角滯後。當目標位置停止改變時,馬達將追上目標位置並停止。This proportional speed setting allows the motor to follow continuous position updates (for example, from an encoder) without stuttering steps caused by too fast catch-up and repeated stops. The motor will settle to an average speed matching the position update, with an angular lag proportional to the speed. When the target position stops changing, the motor will catch up to the target position and stop.

在某些實施例中,亦控制步進馬達之加速度。馬達可具有一最小速度設定且能夠立即達到一特定最小速度(例如,在一個步進之內),並且嘗試自一較慢速度斜升係毫無意義的,此將僅損害控制之回應性。自太低之一速度開始僅浪費時間且導致馬達針對每一步進而移動及停止。若一給定運動之目標速度值高於最小速度,則馬達速度將在每一連續步進上線性斜升直至達到目標速度為止。在每一步進完成之後,計算一新的目標速度以及所允許之一新的最小速度,同時保持在線性加速度極限之內。所得速度值然後用於判定至下一馬達步進之時間。在某些實施例中,不存在明確之減速控制,但隨著自實際位置至目標位置之距離減小,速度設定點可自然地斜降。In some embodiments, the acceleration of the stepper motor is also controlled. A motor may have a minimum speed setting and be able to reach a certain minimum speed immediately (eg, within one step), and trying to ramp up from a slower speed is pointless, it will only impair the responsiveness of the control. Starting from a speed that is too low just wastes time and causes the motor to move and stop for every step. If the target speed value for a given movement is higher than the minimum speed, the motor speed will be linearly ramped up at each successive step until the target speed is reached. After each step is completed, a new target velocity and a new minimum velocity allowed while remaining within the linear acceleration limit are calculated. The resulting velocity value is then used to determine the time to the next motor step. In some embodiments, there is no explicit deceleration control, but the speed set point may naturally ramp down as the distance from the actual position to the target position decreases.

在某些實施例中,步進馬達驅動器允許將多個可能電流量值(例如,自0至7之8個電流設定)施加至馬達。較高電流值允許馬達輸出較大轉矩,從而減小丟失一步進之可能性。由於馬達位置由開環步進計數控制,因此從不丟失步進係關鍵的。然而,較高電流位準導致較多可聽雜訊及可感知之振動,以及馬達之較多發熱。因此,期望將電流設定最佳化至目前操作狀態,同時為設計容差留出充足餘裕。In some embodiments, a stepper motor driver allows multiple possible current magnitudes (eg, 8 current settings from 0 to 7) to be applied to the motor. Higher current values allow the motor to output more torque, thereby reducing the possibility of missing a step. Since the motor position is controlled by an open-loop step count, it is critical that a step is never lost. However, higher current levels result in more audible noise and perceived vibration, as well as more heating of the motor. Therefore, it is desirable to optimize the current setting to the current operating conditions while allowing sufficient margin for design tolerances.

測試已證明較低電流位準可對騎乘者產生較不合意之結果,且對於特定步進馬達,僅使用較高電流位準來控制煞車(例如,4與7之間)以獲得一較佳騎乘者體驗。在某些實施例中,控制器經組態以取決於條件而計算及/或判定必要電流位準。對於某些馬達,可藉由在步進馬達中登記之設定而設定電流。當馬達開始移動時,判定所要電流,且在操作期間(諸如每當一步進完成時)重新計算該所要電流。因此,若條件改變(飛輪速度、馬達位置等),則可更新電流值。若目標電流值改變,則在馬達處於運動中之同時發送一訊息或命令以更新步進馬達(例如,藉由設定步進馬達之暫存器)。Testing has proven that lower current levels can produce less pleasing results for the rider, and for certain stepper motors, only use higher current levels to control the brakes (eg, between 4 and 7) to obtain a better The best rider experience. In some embodiments, the controller is configured to calculate and/or determine the necessary current level depending on conditions. For some motors, the current can be set by a setting registered in the stepper motor. When the motor begins to move, the desired current is determined and recalculated during operation, such as each time a step is completed. Thus, if conditions change (flywheel speed, motor position, etc.), the current value can be updated. If the target current value changes, a message or command is sent while the motor is in motion to update the stepper motor (eg, by setting a register for the stepper motor).

在某些實施例中,藉由組合馬達之特性資料(依據電流設定點及速度之最大線性力)與煞車器之資料(依據馬達位置、移動方向及飛輪速度之所需線性力)而判定電流設定點。基於馬達及煞車器之一取樣,選擇一電流設定點,該電流設定點將允許馬達滿足必要之力要求且應提供一裕度(例如,至少30%至40%裕度)。In some embodiments, the current is determined by combining motor characteristic data (maximum linear force based on current set point and speed) with brake data (desired linear force based on motor position, direction of travel, and flywheel speed) set point. Based on a sample of the motor and brake, a current setpoint is selected that will allow the motor to meet the necessary force requirements and should provide a margin (eg, at least 30% to 40% margin).

馬達力曲線係電流及馬達速度之一函數。然而,低於300 PPS (當前所允許之最大值)之一馬達速度,曲線係相當平坦的。給定馬達電流設定所要之裕量,在選擇一電流設定點時將忽略馬達速度。換言之,僅依據馬達電流而非依據馬達速度來看待最大力能力。額定值足夠保守以在300 PPS下適用。若需要一較高馬達速度,則可需要在電流設定點判定中考量馬達速度。The motor force curve is a function of current and motor speed. However, below a motor speed of 300 PPS (the maximum currently allowed), the curve is quite flat. Given the desired margin for motor current setting, motor speed will be ignored in selecting a current set point. In other words, the maximum force capability is viewed only in terms of motor current and not in terms of motor speed. Ratings are conservative enough to apply at 300 PPS. If a higher motor speed is required, then the motor speed may need to be considered in the current set point determination.

煞車器所需之力受數個因素影響。煞車器抵靠一彈簧移動,因此存在係馬達位置之一函數之一靜力。煞車器向下移動地越遠,彈簧偏轉地越大且需要的力越大。另外,一旋轉之飛輪對煞車器產生一負載,此增加力要求。此負載與飛輪速度成比例。The force required for a brake is affected by several factors. The brake moves against a spring, so there is a static force that is a function of the motor position. The farther down the brake is moved, the more the spring deflects and the more force is required. Additionally, a spinning flywheel creates a load on the brake, which increases the force requirement. This load is proportional to flywheel speed.

基於曲線擬合,自目標馬達位置計算一基線力要求,然後添加與飛輪速度成比例之一額外力。若在馬達處於運動中之同時目標位置或飛輪速度改變,則可更新所需力,從而導致馬達電流設定點之一改變。Based on curve fitting, a baseline force requirement is calculated from the target motor position, then an additional force proportional to flywheel speed is added. If the target position or flywheel speed changes while the motor is in motion, the required force can be updated, resulting in a change in one of the motor current setpoints.

在各種實施例中,控制系統可包含一失速偵測機構,該失速偵測機構取決於馬達之操作條件。控制器起作用以調節馬達電流。器件設定一脈衝寬度調變(PWM)工作循環,該PWM工作循環連同供應電壓一起判定施加至馬達之電壓。所施加電壓減去馬達之反EMF電壓除以馬達之電阻以便設定馬達電流。失速偵測機構藉由監測PWM工作循環而起作用。In various embodiments, the control system may include a stall detection mechanism that is dependent on the operating conditions of the motor. A controller functions to regulate motor current. The device sets a pulse width modulation (PWM) duty cycle that, along with the supply voltage, determines the voltage applied to the motor. The applied voltage minus the motor's back EMF voltage is divided by the motor's resistance to set the motor current. The stall detection mechanism works by monitoring the PWM duty cycle.

若馬達失速(被阻止移動),則反EMF將變為零。此致使所需電壓減小,從而致使PWM工作循環降低。將PWM工作循環之此降低偵測為一失速。為使用失速偵測,控制器組態有一臨限PWM工作循環,低於該臨限PWM工作循環,報告一失速。在各種實施例中,標稱PWM工作循環取決於電源供應器電壓(例如,步進馬達調節至12 V)、馬達繞組電阻(生產容差及溫度相依的)、馬達速度及馬達電流設定點。若此等參數中之任一者改變,則標稱PWM工作循環可改變且失速偵測臨限值亦可需要改變。若該臨限值設定得太高,則將錯誤地報告失速。若該臨限值設定得太低,則將永遠不會報告一真正失速。If the motor is stalled (prevented from moving), the back EMF will go to zero. This results in a reduction in the required voltage, resulting in a reduction in the PWM duty cycle. This decrease in PWM duty cycle is detected as a stall. To use stall detection, the controller is configured with a threshold PWM duty cycle below which a stall is reported. In various embodiments, the nominal PWM duty cycle depends on the power supply voltage (eg, stepper motors are regulated to 12 V), motor winding resistance (production tolerance and temperature dependent), motor speed, and motor current set point. If any of these parameters are changed, the nominal PWM duty cycle may change and the stall detection threshold may also need to be changed. If the threshold is set too high, a stall will be falsely reported. If the threshold is set too low, a true stall will never be reported.

考慮到此等約束,在某些實施例中,失速偵測可限制於在一種情況中使用:馬達歸位。當馬達歸位時,其以一固定電流位準(位準7)及一固定速度(300 PPS)進行操作。馬達以恆定速度驅動直至其碰到飛輪並突然停止。針對此等特定條件選擇一失速偵測臨限值,其在最後一次偵測一失速失敗與第一次錯誤失速偵測之間的範圍之中間。若電源供應器電壓、歸位速度、歸位電流或馬達設計改變,則將需要重新評估失速偵測臨限值。With these constraints in mind, in some embodiments, stall detection may be limited to use in one situation: motor homing. When the motor is home, it operates at a fixed current level (level 7) and a fixed speed (300 PPS). The motor is driven at a constant speed until it hits the flywheel and stops abruptly. For these specific conditions a stall detection threshold is selected that is in the middle of the range between the last failed stall detection and the first false stall detection. If the power supply voltage, homing speed, homing current, or motor design changes, the stall detection thresholds will need to be re-evaluated.

在實證設定中,將一失速偵測臨限值設定在125且此被證明係由於一彈簧製造缺陷導致的小於1%之腳踏車之一PVT問題。此藉由實施一智慧型且自適應失速偵測程序而解決。在校準期間,校準常式經更新使得自永久記憶體提取一失速偵測值且不再針對每一煞車器而對失速偵測值進行硬編碼。當運行校準時,藉由將失速偵測設定至一共同臨限值(例如,將失速臨限值設定至125)而開始。若未偵測到一失速,則將失速偵測增加5且進行重複直至一最大值(例如,一最大臨限值145)。在一歸位常式期間,應偵測到一失速。若未偵測到一失速,則將儲存於記憶體中之失速偵測臨限值更新5直至一最大值(例如,一最大臨限值145)。功率 In the empirical setting, a stall detection threshold was set at 125 and this was shown to be a PVT problem in less than 1% of bicycles due to a spring manufacturing defect. This is addressed by implementing an intelligent and adaptive stall detection procedure. During calibration, the calibration routine is updated such that a stall detection value is fetched from persistent memory and the stall detection value is no longer hardcoded for each brake. When running the calibration, start by setting the stall detection to a common threshold (eg, set the stall threshold to 125). If a stall is not detected, increment the stall detection by 5 and repeat until a maximum value (eg, a maximum threshold 145). During a homing routine, a stall shall be detected. If a stall is not detected, the stall detection threshold stored in memory is updated 5 up to a maximum value (eg, a maximum threshold 145 ). power

在各種實施例中,計算並顯示於平板電腦/顯示器1066上之功率係使用一多項式方程式且匹配係數與變數來計算的。舉例而言,功率計算使用阻力裝置之位置值及飛輪之RPM之讀數。為計算功率,系統可對兩個值清單之一逐元素乘法之所有項求和。在感測器資料無效之事件中,可基於僅基於阻力及RPM之一回退功率映射而提供功率值。阻力 In various embodiments, the power calculated and displayed on the tablet/display 1066 is calculated using a polynomial equation and matching coefficients and variables. For example, the power calculation uses the position value of the resistance device and the RPM reading of the flywheel. To calculate power, the system sums all terms of the element-wise multiplication of one of the two lists of values. In the event of invalid sensor data, a power value may be provided based on a fallback power map based only on drag and RPM. resistance

現在將參考圖12闡述具有阻力校正機制之一運動裝置之操作。在一預設組態中,向使用者顯示與煞車器當前所定位之位置對應之阻力。此係使用使煞車器位置與一阻力值相對應之一查找表來完成的。當處理系統提供向步進馬達指令以驅動至一特定阻力/位置時,使用一反向查找。使用者介面可經組態以展示目標阻力值(例如,阻力設定點)且提供一指示(例如,顯示閃爍值)直至當前阻力值匹配為止。The operation of an exercise device with a resistance correction mechanism will now be described with reference to FIG. 12 . In a default configuration, the resistance corresponding to the current position of the brake is displayed to the user. This is done using a lookup table that corresponds brake position to a resistance value. A reverse lookup is used when the processing system provides commands to the stepper motor to drive to a specific resistance/position. The user interface can be configured to display a target resistance value (eg, resistance set point) and provide an indication (eg, display a blinking value) until the current resistance value matches.

包含本文中所揭示之一煞車系統之一運動裝置1210包含一互動式顯示器。當使用者騎乘運動裝置1210時,基於如在表1230中所圖解說明之煞車器位置與阻力之一映射而向使用者顯示阻力(步驟1220)。同時,在步驟1222中,對照一固定映射1240而檢查值且計算一誤差值。在步驟1264中,將誤差值儲存於一新的誤差映射1260中。在步驟1262中,顯示表1230然後得到更新。為使用者顯示所得阻力值,如在螢幕擷取畫面1270中所展示。A motion device 1210 including a braking system disclosed herein includes an interactive display. As the user rides the exercise device 1210, the resistance is displayed to the user based on a mapping of brake position and resistance as illustrated in table 1230 (step 1220). Meanwhile, in step 1222, the value is checked against a fixed map 1240 and an error value is calculated. In step 1264 , the error values are stored in a new error map 1260 . In step 1262, display table 1230 is then updated. The resulting resistance value is displayed to the user, as shown in screenshot 1270 .

如所圖解說明,圖12之程序可經實施以消除針對給定踏頻/阻力對之在功率輸出上之腳踏車至腳踏車可變性(例如,根據本公開,當一較舊腳踏車被一較新腳踏車替換時或當來自不同類型之腳踏車之資料在一較大系統中被共用/比較時)。在一項實施例中,透過圖12之自動校正程序而更新位置表,該自動校正程序可(舉例而言)每分鐘發生一次且僅在轉動旋鈕至少5個百分點之後發生。As illustrated, the procedure of FIG. 12 can be implemented to eliminate bike-to-bike variability in power output for a given cadence/resistance pair (e.g., when an older bike is replaced by a newer bike in accordance with the present disclosure). When replacing or when data from different types of bikes are shared/compared in a larger system). In one embodiment, the position table is updated via the auto-calibration routine of FIG. 12, which may, for example, occur every minute and only after turning the knob at least 5 percent.

阻力判定使用兩個表,該兩個表可稱為:(i)主動阻力與位置表(例如,表1230);及(ii)與一參考腳踏車或一查找表緊密匹配之一靜態理想功率/阻力/踏頻模型(例如,固定表1240),其將用於計算一誤差信號。由於實際映射可為較大的,因此可使用彼關係之一模型來代替。舉例而言,可跨越一特定品牌之腳踏車而使用同一模型。Drag determination uses two tables, which may be referred to as: (i) an active drag versus position table (e.g., table 1230); and (ii) a static ideal power/power that closely matches a reference bicycle or a look-up table. Resistance/cadence model (eg, fixed table 1240), which will be used to calculate an error signal. Since the actual mapping may be larger, one of the models of that relationship may be used instead. For example, the same model can be used across a particular brand of bicycles.

使用圖12之程序達成阻力自動校正。在初始操作期間且針對正常操作,阻力與煞車器位置之間的關係儲存於阻力與位置表1230中。針對自一阻力設定點驅動至一煞車器位置,或針對自一當前位置值報告一當前阻力值,查找表用作在該兩者之間進行變換之方法。在使用期間,產生一誤差信號並使用一運行平均技術追蹤該誤差信號。誤差信號係自當前查找表產生之阻力與使用表1240之功率/阻力/踏頻組合之靜態理想表找到之阻力之間的差。Use the program in Figure 12 to achieve automatic calibration of resistance. During initial operation and for normal operation, the relationship between resistance and brake position is stored in resistance and position table 1230 . A lookup table is used as a means of converting between the two for driving from a resistance set point to a brake position, or for reporting a current resistance value from a current position value. During use, an error signal is generated and tracked using a running averaging technique. The error signal is the difference between the resistance produced from the current lookup table and the resistance found using the static ideal table of power/resistance/cadence combinations of table 1240 .

週期性地(例如,每秒一次)計算誤差。在某些實施例中,若飛輪之加速度高於一臨限值(例如,3轉/分鐘2 )、當RPM小於20時或當功率小於22 W時,不計算誤差。運行平均可具有各種長度(例如,30個值)。可調整運行平均之長度及頻率以根據需要改良性能。當在所命令改變超過5個百分點之情況下執行阻力設定點改變時,誤差之運行平均之值用於將阻力表更新為百分比表以將誤差歸零。若運行平均尚未達到臨限數目個讀數(例如,30個讀數長),則將不發生歸零。若誤差信號大於2個百分點,則其可被分成不同之移動。The error is calculated periodically (eg, once per second). In some embodiments, no error is calculated if the acceleration of the flywheel is above a threshold (eg, 3 rpm 2 ), when the RPM is less than 20, or when the power is less than 22 W. Running averages can be of various lengths (eg, 30 values). The length and frequency of running averages can be adjusted to improve performance as desired. When a resistance set point change is performed with a commanded change of more than 5 percent, the value of the running average of the error is used to update the resistance table to a percentage table to zero the error. If the running average has not reached a threshold number of readings (eg, 30 readings long), no zeroing will occur. If the error signal is greater than 2 percent, it can be divided into different moves.

用於實施圖12之阻力計算程序之程式邏輯包含用以將一百分比設定點(例如,自0%至100%之阻力值)變換為一位置設定點之一函數。針對大於特定數目個步進(例如,38個全步進數)或約5個百分點之移動,此函數抑制誤差校正。當系統執行至一新百分比之一移動時,自編碼器或自平板電腦/顯示器呼叫此函數。下文圖解說明一實例性函數: def PercentageToPosition(percentage): position = lookup_1D(resistance_to_percentage_table, percentage = percentage) If (abs(motor_controller.current_position()-position)>=38*microsteps): zero_errors(resistance_to_percentage_table, running_average_error.current_average()) position = lookup_1D(resistance_to_percentage_table, percentage) Return position The program logic used to implement the resistance calculation routine of FIG. 12 includes a function to convert a percentage set point (eg, resistance value from 0% to 100%) to a position set point. This function suppresses error correction for moves greater than a certain number of steps (eg, 38 full steps), or about 5 percent. This function is called from the encoder or from the tablet/display when the system performs a move to a new percentage. An example function is illustrated below: def PercentageToPosition(percentage): position = lookup_1D(resistance_to_percentage_table, percentage = percentage) If (abs(motor_controller.current_position()-position)>=38*microsteps): zero_errors(resistance_to_percentage_table, running_average_error.cu rrent_average()) position = lookup_1D(resistance_to_percentage_table , percentage) Return position

下文圖解說明用以處置隨時間積累之累積誤差之一實例性函數:def zero_errors(table, errors): #return a table with the position shifted up or down by the specified number of steps. #Keeping track of error: this should be run on a regular interval, it could be nested into the function that updates the power calculation itself. def calculate_error(Titan_ideal_map, resistance_to_percentage_table, cadence, power, position): If (derivative(cadence)>threshold): If (cadence >= 20 && power >= 22): actual_resistance = lookup_2D(Titan_ideal_map, cadence, power) actual_position = lookup_1D(resistance_to_percentage_table, position = position) error = actual_position – position running_average_error.add(error) The following illustrates one example function to handle cumulative errors accumulated over time: def zero_errors(table, errors): #return a table with the position shifted up or down by the specified number of steps. #Keeping track of error: this should be run on a regular interval, it could be nested into the function that updates the power calculation itself. def calculate_error(Titan_ideal_map, resistance_to_percentage_table, cadence, power, position): If (derivative(cadence)>threshold): If (c adence >= 20 && power >= 22): actual_resistance = lookup_2D(Titan_ideal_map, cadence, power) actual_position = lookup_1D(resistance_to_percentage_table, position = position) error = actual_position – position running_average_error.add(error)

用於本發明實施例之一實施方案中之各種範圍(例如,RPM、W、用於判定速度穩定性之臨限值、運行平均之大小、用以呼叫函數之頻率)可為系統相依的且以實證方式判定。可使用小於5 rpm/秒2 之一初始值來開始。第三,運行平均之大小及用以呼叫函數之頻率應以實證方式判定。The various ranges used in an implementation of an embodiment of the invention (e.g., RPM, W, thresholds for determining speed stability, size of running average, frequency to call functions) may be system dependent and Determined empirically. An initial value of less than 5 rpm/ sec2 can be used to start. Third, the size of the running average and the frequency used to call the function should be determined empirically.

在各種實施例中,本文中所揭示之系統可用於擷取診斷及其他資料且將資料傳輸至一中央伺服器、雲端或其他處理系統以用於進一步處理,該進一步處理可包含跨越一或多個運動裝置而追蹤資料。診斷資料可在一非揮發性記憶體中被擷取並保持最新且在一週期性基礎上(例如,每喚醒循環一次)被傳遞至平板電腦/運算器件及/或雲端。診斷資料可包含:1. 里程表(以總轉數);2.工時(以分鐘);3.校準循環;4.喚醒循環;5.編碼器移動(編碼器已移動之總數目);6.驅動至位置移動(平板電腦定向移動之總數目);7.平均馬達位置(0至768);8.就馬達位置(0至768)之平均編碼器移動大小;9.就馬達位置(0至768)之最大編碼器移動大小。功率 / 阻力 / 踏頻模型 In various embodiments, the systems disclosed herein can be used to retrieve diagnostic and other data and transmit the data to a central server, cloud, or other processing system for further processing, which can include track data on a sports device. Diagnostic data can be retrieved and kept up-to-date in a non-volatile memory and transferred to the tablet/computing device and/or the cloud on a periodic basis (eg, every wakeup cycle). Diagnostic data can include: 1. Odometer (in total revolutions); 2. Working hours (in minutes); 3. Calibration cycles; 4. Wake-up cycles; 5. Encoder movements (total number of encoder movements); 6. Drive to position moves (total number of tablet oriented moves); 7. Average motor position (0 to 768); 8. Average encoder move size for motor position (0 to 768); 9. Average motor position (0 to 768); 0 to 768) the maximum encoder move size. Power / Resistance / Cadence Model

由於器件之間的固有製造變化及其他因素,因此用於習用運動設備中之踏頻-阻力-輸出值不提供準確功率讀數。本文中所揭示之系統包含一新穎測力計配置及一定位步進馬達,其提供對煞車器之位置之經改良感測且量測由磁性煞車器施加至飛輪之負載。來自系統之負載、位置及踏頻值用於計算由使用者輸入之功率。此可利用轉矩及功率之實證方程式以及負載感測器之已知幾何結構及組態來完成。在開發期間,可仔細地量測、校準及調整定義系統之係數/關係以在使用期間獲得準確結果。Cadence-resistance-output values used in conventional exercise equipment do not provide accurate power readings due to inherent manufacturing variation between devices and other factors. The system disclosed herein includes a novel dynamometer arrangement and a positioning stepper motor that provide improved sensing of the position of the brake and measure the load applied to the flywheel by the magnetic brake. Load, position and cadence values from the system are used to calculate power input by the user. This can be done using empirical equations for torque and power and the known geometry and configuration of the load sensors. During development, the coefficients/relationships defining the system can be carefully measured, calibrated and adjusted to obtain accurate results during use.

圖12中所圖解說明之系統包含用於更新阻力值之一踏頻-功率模型。現在將闡述用於高效且準確模擬/模型化一功率感測器以量測運動機器(目前,其係腳踏車)上之輸出功率之一系統及方法。可使用一統計模型來代替實證公式及/或係數。給定阻力、踏頻及負載,此模型將預測輸出功率。The system illustrated in Figure 12 includes a cadence-power model for updating resistance values. A system and method for efficiently and accurately simulating/modeling a power sensor for measuring output power on an exercise machine (currently, a bicycle) will now be described. A statistical model may be used instead of empirical formulas and/or coefficients. Given resistance, cadence, and load, the model predicts power output.

該方法藉由使用一高精確度測力計量測在各種位準之踏頻、阻力及負載下由一腳踏車產生之輸出功率而開始。將此資料收集至一雲端資料儲存器。將此資料下載至一伺服器/遠端/主機機器上以訓練關於此資料之一彈性網路模型(或視情況,其他統計模型)來瞭解輸出功率與其他變數之間的基本關係。彈性網路係使用正則化來訓練之一線性模型,該正則化係償罰大的模型係數/權重之一技術,其經由彈性網路而減少過度擬合,以及正則化及變數選擇。在某些實施例中,此等權重在一韌體層級處嵌入於晶片上,該等晶片可不具有高數值精確度及/或記憶體以適應較大值。此等權重值將被上載至一資料儲存器,且最終被載入至運動機器/腳踏車韌體上。自動跟隨 The method begins by using a high precision ergometer to measure the power output produced by a bicycle at various levels of cadence, resistance and load. Collect this data to a cloud data storage. This data is downloaded to a server/remote/host machine to train an elastic network model (or other statistical model as appropriate) on this data to understand the underlying relationship between output power and other variables. Elastic nets are used to train a linear model using regularization, which is a technique for compensating for large model coefficients/weights, which reduces overfitting via elastic nets, as well as regularization and variable selection. In some embodiments, these weights are embedded at a firmware level on chips that may not have high numerical precision and/or memory to accommodate larger values. These weight values will be uploaded to a data storage and eventually loaded into the exercise machine/bike firmware. auto follow

本文中所闡述之系統及方法提供穩健平台,該等穩健平台改良騎乘者體驗,同時促進新的且經改良運動模型。舉例而言,在某些運動課程中,一指導者引導一群騎乘者完成一鍛煉常式,該鍛煉常式包含用以在課程中之各種時間改變一踩踏板阻力、踏頻或其他目標表現度量之指令。在一實況課程中,指導者可說出表現目標範圍且作為回應,每一騎乘者可調整運動腳踏車上之設定及/或調整表現以跟隨課程。在一經存檔或經預程式化課程中,運動課程內容可包含識別各種課程分段之目標範圍之資料。The systems and methods described herein provide a robust platform that improves the rider experience while facilitating new and improved motion models. For example, in some exercise classes, an instructor guides a group of riders through an exercise routine that involves varying a pedaling resistance, cadence, or other target performance at various times during the class Instructions for measurement. During a live class, the instructor can state a performance target range and in response, each rider can adjust settings on the exercise bike and/or adjust performance to follow the class. In an archived or pre-programmed curriculum, the athletic program content may include information identifying target areas for the various program segments.

在某些實施例中,記錄實況課程,且使用一後處理方法以用目標範圍來填充課程內容。舉例而言,一手動程序可包含使一人收聽所記錄實況課程以獲得目標踏頻及阻力範圍,且基於一時間戳而用表示目標範圍之資料來注釋課程內容。在其他實施例中,一自動化程序可包含進行自動化語音處理以偵測並注釋目標事件、分析來自指導者之運動裝置及/或課程參與者之表現度量,及/或其他資料處理技術。In some embodiments, live lessons are recorded and a post-processing method is used to populate the lesson content with target ranges. For example, a manual procedure may involve having a person listen to a recorded live session to obtain a target cadence and resistance range, and annotate the session content with data indicative of the target range based on a timestamp. In other embodiments, an automated process may include automated speech processing to detect and annotate target events, analysis of performance metrics from the instructor's motion device and/or session participants, and/or other data processing techniques.

當一使用者存取一隨選運動課程時,使用者介面可顯示一當前課程分段之一或多個表現目標度量。舉例而言,在課程中之一特定時刻,指導者可向課程參與者指示針對阻力及踏頻之目標範圍(例如,阻力20至30及踏頻80至100)。一實例性使用者介面1500圖解說明於圖15中,且包含來自引導課程之一指導者1510之視訊及音訊。使用者介面1500進一步在一或多個視窗(諸如視窗1520、1522、1524及1526)中顯示表現資料。表現資料可包含當前資料,諸如速度、所行進距離、功率輸出、卡路里燃燒、心率、課程進度、允許騎乘者與課程中之其他騎乘者比較表現之一排行榜,及/或其他表現資料。所顯示內容可進一步包含目標度量,諸如騎乘者之當前踏頻1530及針對課程分段之一當前目標踏頻範圍1532,以及運動腳踏車之當前阻力設定1540及針對課程分段之一當前目標阻力範圍1542。在某些實施例中,可視需要顯示其他表現度量及範圍。When a user accesses an on-demand exercise session, the user interface may display one or more performance goal metrics for a current session segment. For example, at a particular point in the session, the instructor may indicate to the session participants target ranges for resistance and cadence (eg, 20-30 resistance and 80-100 cadence). An example user interface 1500 is illustrated in FIG. 15 and includes video and audio from an instructor 1510 of a guided session. User interface 1500 further displays performance data in one or more windows, such as windows 1520, 1522, 1524, and 1526. Performance data may include current data such as speed, distance traveled, power output, calories burned, heart rate, course progress, a leaderboard that allows the rider to compare performance with other riders in the course, and/or other performance data . The display may further include target metrics, such as the rider's current cadence 1530 and a current target cadence range 1532 for the session segment, and the exercise bike's current resistance setting 1540 and a current target resistance for the session segment Range 1542. In certain embodiments, other performance metrics and ranges may be displayed as desired.

參考圖16,現在將闡述用於顯示阻力目標度量1610及踏頻目標度量1650 (包含一自動跟隨特徵之使用者控制)之實例性使用者介面。在一運動課程期間,使用者介面1610及1650可在一互動式顯示螢幕(諸如圖15之使用者介面1500)上顯示給一使用者。將向參與具有相關聯目標範圍資料之一運動課程之一使用者呈現一介面,該介面展示當前阻力及踏頻數字以及針對每一者之一目標範圍(例如,在實例性使用者介面1610a中,針對阻力之目標範圍1622顯示於當前阻力數字1624上方)。使用者介面1610進一步包含用於起始一自動跟隨模式之一圖標或其他使用者輸入方法。在所圖解說明實施例中,顯示一鎖1620,其圖解說明一未鎖定的鎖(表示一標準模式)及一鎖定的鎖(例如,圖標1632) (表示一鎖定阻力自動跟隨範圍)。在某些實施例中,使用者可輕擊鎖圖標1620以接合及脫離自動跟隨模式。Referring to FIG. 16, an example user interface for displaying a resistance target metric 1610 and a cadence target metric 1650 (including user controls for an auto-follow feature) will now be described. During an exercise session, user interfaces 1610 and 1650 may be displayed to a user on an interactive display screen, such as user interface 1500 of FIG. 15 . A user participating in an exercise session with associated target range data will be presented with an interface showing current resistance and cadence numbers and a target range for each (e.g., in example user interface 1610a , the target range 1622 for resistance is displayed above the current resistance number 1624). The user interface 1610 further includes an icon or other user input method for initiating an auto-follow mode. In the illustrated embodiment, a lock 1620 is displayed illustrating an unlocked lock (representing a standard mode) and a locked lock (eg, icon 1632 ) (representing a locking resistance auto-follow range). In some embodiments, the user can tap the lock icon 1620 to engage and disengage the auto-follow mode.

在操作中,自動跟隨模式將根據目標阻力範圍而自動調整施加至飛輪之阻力。在某些實施例中,本文中所闡述(例如,如圖9之方法中所闡述)之阻力調整系統及方法用於自動調整阻力,其中目標範圍用於驅動線性致動器來代替調整軸件之所感測旋轉。舉例而言,可自動調整阻力機構以達成處於目標範圍之中間之一阻力值。在所圖解說明實施例中,鎖圖標1632包含一環狀物或其他圖形標記,該環狀物或其他圖形標記經調適以向使用者提供自動阻力將改變為一新阻力範圍之一通知。舉例而言,環狀物可沿著鎖圖標之圓周延伸、自目標範圍開始處之無環或一點增長至指示目標範圍結束及至新目標範圍之一切換之一閉合位置(全環)。以此方式,藉由給出一阻力改變之使用者通知,使用者可對阻力之突然改變做好準備。In operation, the auto-follow mode will automatically adjust the resistance applied to the flywheel according to the target resistance range. In certain embodiments, resistance adjustment systems and methods described herein (e.g., as described in the method of FIG. 9 ) are used to automatically adjust resistance, wherein the target range is used to drive a linear actuator instead of an adjustment shaft It senses the rotation. For example, the resistance mechanism can be automatically adjusted to achieve a resistance value in the middle of the target range. In the illustrated embodiment, the lock icon 1632 includes a ring or other graphical indicium adapted to provide a notification to the user that the automatic resistance will change to a new resistance range. For example, the ring may extend along the circumference of the lock icon, growing from no ring or one point at the beginning of the target range to a closed position (full ring) indicating the end of the target range and a switch to a new target range. In this way, by giving the user notification of a change in resistance, the user can be prepared for sudden changes in resistance.

使用者介面1610進一步包含圖解說明運動裝置沿著阻力目標範圍當前設定於何處之一圖形表示1626 (例如,一點)。使用者可在操作期間調整阻力以增加或減小阻力(例如,藉由轉動一調整旋鈕,如參考圖9所闡述),且圖形表示1626將相應地移動。若阻力在範圍之外,則該圖形表示可顯示於範圍之端處且可向使用者提供其他標記,諸如一或多個螢幕元素之色彩改變(例如,用一警報色彩(諸如紅色)來填充範圍框)、一可聽信號(諸如一蜂鳴),或其他標記。其他目標度量(諸如踏頻)可具有指示使用者相對於目標範圍之相對表現之類似顯示表示。User interface 1610 further includes a graphical representation 1626 (eg, a point) illustrating where the exercise device is currently set along the resistance target range. The user can adjust the resistance during operation to increase or decrease the resistance (eg, by turning an adjustment knob, as described with reference to FIG. 9 ), and graphical representation 1626 will move accordingly. If the resistance is outside the range, the graphical representation may be displayed at the end of the range and other indications may be provided to the user, such as a color change of one or more screen elements (e.g., filled with an alert color such as red) range box), an audible signal (such as a beep), or other indicia. Other goal metrics, such as cadence, may have similar display representations indicating the user's relative performance relative to the target range.

本文中所闡述之自動跟隨特徵可在各種使用者介面中被支援且透過複數個操作模式而實施,從而允許使用者選擇、雙態切換或以其他方式控制自動跟隨功能性之實施方案。取決於由使用者選擇之模式,可在課程參與期間實時地修改使用者介面及/或使用者表現至運動課程之映射。本端儲存裝置可用於追蹤跨越工作階段所見之工具提示(例如,作為資訊顯示給一使用者之一圖形使用者介面元素(諸如在一螢幕元素上之一圖形框中),如工具提示1640及工具提示1642中所展示)且維持映射程式內部之工具提示顯示邏輯。可藉由與圖形使用者介面相關聯之動作而處置使用者互動以處置通過工具提示之導航且處置與啟用或停用自動跟隨、觸發輕擊跳轉(tap-to-jump)及其他特徵相關之使用者互動(例如,輕擊)。The auto-follow feature described herein can be supported in various user interfaces and implemented through a plurality of modes of operation, allowing the user to select, toggle or otherwise control the implementation of the auto-follow functionality. Depending on the mode selected by the user, the user interface and/or the mapping of the user's performance to the exercise session may be modified in real time during session participation. Local storage can be used to track tooltips seen across sessions (e.g., a GUI element displayed as information to a user (such as in a graphic box on a screen element), such as tooltip 1640 and shown in Tooltip 1642) and maintains the tooltip display logic inside the mapper. User interaction can be handled by actions associated with the GUI to handle navigation through tooltips and handle issues related to enabling or disabling auto-follow, triggering tap-to-jump, and other features User interaction (eg, tap).

圖形使用者介面1610a至1610i圖解說明可在操作期間呈現給一使用者之各種介面。介面1610a展示一「自動跟隨關斷」狀態,具有一阻力範圍1622、在範圍之內的一當前阻力值1624及用於選擇「自動跟隨」模式之一鎖圖標1620。介面1610b展示具有低於目標範圍之一當前阻力之介面。在介面1610c中,隱藏目標度量。在介面1610d中,鎖圖標指示已選擇「自動跟隨」模式且圍繞鎖圖標之狀態環狀物提供目標範圍將何時改變之一指示。介面1610e圖解說明一自動跟隨模式,具有低於範圍之一當前阻力。介面1610f圖解說明一自動跟隨模式,其中目標度量自視圖隱藏。介面1610g圖解說明在一標準操作模式中處於目標範圍之中間之一阻力度量。介面1610h圖解說明通知使用者自動跟隨關斷之一工具提示。介面1610i圖解說明通知使用者自動跟隨接通之一工具提示。介面1650a、1650b及1650c分別圖解說明在範圍內、高於範圍及隱藏之踏頻度量。Graphical user interfaces 1610a through 1610i illustrate various interfaces that may be presented to a user during operation. Interface 1610a shows an "autofollow off" state with a resistance range 1622, a current resistance value 1624 within the range, and a lock icon 1620 for selecting the "autofollow" mode. Interface 1610b shows an interface with a current resistance below the target range. In interface 1610c, target metrics are hidden. In interface 1610d, a lock icon indicates that the "auto-follow" mode has been selected and a status ring around the lock icon provides an indication of when the target range will change. Interface 1610e illustrates an auto-follow mode with a current resistance below a range. Interface 161 Of illustrates an auto-follow mode in which the target metric is hidden from view. Interface 1610g illustrates a resistance measure in the middle of the target range in a standard operating mode. Interface 1610h illustrates a tooltip notifying the user to automatically follow off. Interface 1610i illustrates a tooltip notifying the user to automatically follow through. Interfaces 1650a, 1650b, and 1650c illustrate in-range, over-range, and hidden cadence metrics, respectively.

在某些實施例中,一運動系統包含可用於遞送至遠端位置處之一或多個運動器件之一或多個實況及/或經存檔指導者引導之課程。運動器件(諸如一運動自行車)包含透過視訊、音訊及/或所顯示內容而導引使用者完成運動課程之一使用者介面(例如,使用者介面1500)。課程內容包含指導者提示,該等指導者提示指導騎乘者接近特定表現度量或設定,諸如踏頻(例如,在一所識別踏頻範圍內踩踏板)、阻力(例如,將運動器件設定至一特定阻力範圍內)及/或其他度量。In certain embodiments, an exercise system includes one or more live and/or archived instructor-led sessions available for delivery to one or more exercise devices at a remote location. An exercise device, such as an exercise bike, includes a user interface (eg, user interface 1500 ) that guides the user through an exercise session through video, audio, and/or displayed content. Lesson content includes instructor prompts that guide the rider toward specific performance metrics or settings, such as cadence (e.g., pedaling within an identified cadence range), resistance (e.g., setting the exercise device to within a specified resistance range) and/or other metrics.

在一標準操作中,騎乘者手動地調整目標參數以保持在範圍內。在一預設自動跟隨模式中,運動自行車接收針對課程之一分段之目標範圍資料且將阻力(及/或其他目標度量)調整至範圍內之位置(例如,在範圍之中間)。在某些情形中,騎乘者可不能夠執行至一所要指導者目標度量且可手動地調整運動表現以適應騎乘者之能力。舉例而言,騎乘者可使用一旋鈕來減小阻力以使騎乘更容易。在此等情形中,仍可期望騎乘者使用本文中所闡述之自動跟隨特徵。根據一或多項實施例,運動系統包含一或多個自動跟隨特徵及邏輯以利用使用者起始之調整來增強騎乘者之運動體驗。舉例而言,使用者可將阻力調整至範圍之一較高或較低部分,且下一自動阻力改變會將阻力設定至處於新阻力範圍中之一類似相對位置處之值。In a standard operation, the rider manually adjusts the target parameters to stay within range. In a default auto-follow mode, the exercise bike receives target range data for a segment of the course and adjusts the resistance (and/or other target metric) to a position within the range (eg, in the middle of the range). In some cases, the rider may not be able to perform to a desired instructor goal metric and the athletic performance may be manually adjusted to suit the rider's ability. For example, a rider can use a knob to reduce resistance to make riding easier. In such cases, the rider may still be expected to use the auto-follow feature set forth herein. According to one or more embodiments, the exercise system includes one or more auto-follow features and logic to utilize user-initiated adjustments to enhance the rider's exercise experience. For example, the user can adjust the resistance to a higher or lower portion of the range, and the next automatic resistance change will set the resistance to a value at a similar relative position in the new resistance range.

在某些實施例中,運動內容包含向系統通知與運動內容相關聯之目標度量及範圍之指導者提示資料、注釋或者類似資料或指定。該內容可被顯示給使用者從而允許使用者手動地跟隨指導者或者用於一自動跟隨模式中,其中運動器件自動實施一或多個指導者提示(例如,藉由自動設定一阻力)及/或調整在一運動課程期間於使用者介面上呈現給使用者之設定、表現目標及/或課程內容。如先前所論述,自動跟隨模式可包含用以根據所偵測使用者表現及/或使用者調整而調整一或多個設定之邏輯。In some embodiments, the athletic content includes instructor prompts, annotations, or similar data or designations that inform the system of target metrics and ranges associated with the athletic content. This content can be displayed to the user to allow the user to manually follow the instructor or be used in an auto-follow mode in which the movement device automatically implements one or more instructor cues (e.g., by automatically setting a resistance) and/or Or adjust the settings, performance goals and/or lesson content presented to the user on the user interface during an exercise session. As previously discussed, the auto-follow mode may include logic to adjust one or more settings based on detected user performance and/or user adjustments.

在某些實施例中,向使用者提供教程特徵(例如,工具提示1640及1642)以指導使用者完成自動跟隨特徵。舉例而言,可儲存識別使用者是否已看過特定教程之資料(例如,針對每一教程之一布林(Boolean)值)。舉例而言,可在運動課程期間在覆疊於圖形使用者介面上之一視窗中提供教程。In some embodiments, a tutorial feature (eg, tooltips 1640 and 1642 ) is provided to the user to guide the user through the auto-follow feature. For example, data identifying whether a user has watched a particular tutorial (eg, a Boolean value for each tutorial) may be stored. For example, tutorials may be provided in a window overlaid on a graphical user interface during an exercise class.

參考圖13,圖解說明根據一或多項實施例之一實例性教育狀態資料流1300。程序藉由以下操作開始:識別使用者(諸如透過一使用者登入程序1302)以將騎乘者與一使用者帳戶相關聯。接下來,程序在步驟1304中提取使用者教育資料,該使用者教育資料可包含對所觀看教程之一識別、使用者偏好及/或其他使用者特定資料。在步驟1306中,針對使用者識別一當前教育狀態。在自動跟隨常式、手動常式、當前使用者介面顯示模式及其他狀態資訊中考量該教育狀態,從而允許系統顯示及/或隱藏適合於使用者之特定教育工具提示。該教育狀態在需要一子狀態之任何活動開始時自被共用而更新。舉例而言,可藉由進入課程而初始化一課程內自動跟隨教程狀態。Referring to FIG. 13 , an example education status data flow 1300 is illustrated in accordance with one or more embodiments. The process begins by identifying the user (such as through a user login process 1302) to associate the rider with a user account. Next, the program extracts user education data in step 1304, which may include an identification of a viewed tutorial, user preferences, and/or other user specific data. In step 1306, a current educational status is identified for the user. Consider this educational state in auto-follow routines, manual routines, current UI display mode, and other state information, allowing the system to show and/or hide educational tooltips specific to the user. The education state is updated since being shared when any activity requiring a substate is started. For example, auto-follow tutorial state within a course can be initiated by entering the course.

在步驟1308中,實施利用工具提示所見資料之一運動程式。舉例而言,程式邏輯可包含邏輯,該邏輯使使用者之運動表現與一運動課程之對應資料相關且向使用者顯示相關資料。在步驟1310中,系統判定當前程式及內容是否使用HasSeen資料以及在當前狀態中教程資訊是否可用於顯示。在步驟1312中顯示教程資訊以向使用者通知教育資訊且改變使用者記錄以反映已觀察到教程資訊。在填充狀態之後,該狀態可用於指示使用者介面在需要時顯示教程工具提示。In step 1308, a motion program is implemented using the tooltip to see the data. For example, program logic may include logic that correlates a user's athletic performance with corresponding data for an exercise session and displays the relevant data to the user. In step 1310, the system determines whether the current program and content use HasSeen data and whether tutorial information is available for display in the current state. Tutorial information is displayed in step 1312 to inform the user of educational information and the user record is changed to reflect that the tutorial information has been observed. After the state is populated, this state can be used to instruct the UI to display a tutorial tooltip if desired.

在某些實施例中,藉由雙態切換使用者介面上之工具提示而控制使用者動作。此將用於循環通過至下一工具提示。此允許映射程式保持針對於將展示哪些工具提示及以何種次序展示工具提示之邏輯。一啟用/停用自動跟隨動作將負責啟用自動跟隨特徵以及更新狀態以反映已啟用/停用該特徵。使用者介面邏輯可包含自動跟隨邏輯、上線/工具提示邏輯、隱藏/取消隱藏邏輯及域模型邏輯。在某些實施例中,可定義一資料類別CueRangeDomainModel,從而識別一圖標是否可見、自動跟隨按鈕是否可見、是否摺疊工具提示或其他顯示元素等。針對個別使用者而處置工具提示顯示追蹤,其可包含使用者偏好資料、用以按照使用者工具提示顯示追蹤進行處置之定製鍵等。In some embodiments, user actions are controlled by toggling tooltips on the user interface. This will be used to cycle through to the next tooltip. This allows the mapper to maintain logic as to which tooltips will be displayed and in what order. An enable/disable autofollow action will take care of enabling the autofollow feature and updating the state to reflect that feature is enabled/disabled. User interface logic can include autofollow logic, launch/tooltip logic, hide/unhide logic, and domain model logic. In some embodiments, a data type CueRangeDomainModel can be defined to identify whether an icon is visible, whether an auto-follow button is visible, whether a tooltip or other display elements are collapsed, and so on. Handle tooltip display tracking for individual users, which may include user preference data, custom keys to handle tooltip display tracking by user, etc.

自動跟隨功能性進一步包含偵測、追蹤及回應於感測器資料。在某些實施例中,讀取與當前阻力值及目標阻力值(例如,來自課程資料)相關之感測器資料。此等可透過一感測器狀態操作獲得。阻力值亦可利用一類別BikeSensorWriter來寫入。可將目標阻力值發送至一或多個控制機構以用於調整阻力值來在一騎乘期間提供平滑且準確之改變。在某些實施例中,一改變速率遵循以下邏輯,該邏輯指示在阻力改變下降後,系統旋即向寫入器發送兩個訊息,一個訊息至一中間值,然後一旦達到中間值,便將其向下發送至最終阻力。在阻力上升後,僅向感測器寫入一次並使感測器注意平滑化。Auto-follow functionality further includes detecting, tracking and responding to sensor data. In some embodiments, sensor data related to the current resistance value and the target resistance value (eg, from course materials) is read. This is achieved through a sensor state operation. The resistance value can also be written using a class of BikeSensorWriter. The target resistance value can be sent to one or more control mechanisms for adjusting the resistance value to provide smooth and accurate changes during a ride. In some embodiments, a rate of change follows logic that dictates that immediately after the resistance change drops, the system sends two messages to the writer, one to an intermediate value, and then once the intermediate value is reached, it Send down to final resistance. After the resistance rises, write to the sensor only once and smooth the sensor attention.

現在將參考圖14闡述實例性自動跟隨邏輯1400。在步驟1402中,判定當前運動狀態,其可包含追蹤當前表現度量(度量狀態1404),諸如一阻力設定、一當前踏頻及其他所要資料。狀態可進一步包含一指導者提示狀態1405,其中運動課程資訊包含識別針對特定運動分段之目標度量之指導者提示資料,該等目標度量可用於顯示給使用者及自動跟隨處理(若啟用)。Example auto-follow logic 1400 will now be explained with reference to FIG. 14 . In step 1402, the current exercise state is determined, which may include tracking current performance metrics (metric state 1404), such as a resistance setting, a current cadence, and other desired data. The states may further include a Mentor Prompt state 1405 in which exercise session information includes coach prompt data identifying target metrics for specific sport segments that may be used for display to the user and for automatic follow-up processing (if enabled).

一自動跟隨常式1406追蹤當前度量及目標度量且再現一適當使用者介面,諸如圖15及圖16中所圖解說明。在步驟1408中,可顯示工具提示所見資料1408以視情況向使用者提供教育資訊。在步驟1410中,一自動跟隨管理器常式1410識別一目標度量範圍及自動跟隨值(諸如一目標阻力),且提供指令以調整阻力來達成目標值。在步驟1412中,一感測器服務常式將阻力調整至新目標阻力值。An autofollow routine 1406 tracks the current and target metrics and renders an appropriate user interface, such as illustrated in FIGS. 15 and 16 . In step 1408, a tooltip on the seen data 1408 may be displayed to optionally provide educational information to the user. In step 1410, an autofollow manager routine 1410 identifies a target metric range and autofollow value (such as a target resistance), and provides instructions to adjust the resistance to achieve the target value. In step 1412, a sensor service routine adjusts the resistance to the new target resistance value.

在某些實施例中,邏輯實施用於調整阻力之一組規則,該組規則可包含在以下論述中所陳述之規則中之一或多者。舉例而言,可藉由輕擊一圖標(例如,一鎖圖標)而將自動跟隨特徵雙態切換為接通或關斷。一彈出通知可讓使用者知曉自動跟隨已接通,且鎖圖標可改變狀態(例如,自一未鎖定的鎖改變為一鎖定的鎖)。可顯示一進度指示器(諸如在鎖圖標周圍之一動畫環狀物),從而展示至下一範圍改變之進度。在一項實施例中,當自動跟隨開始時,使用者被帶至範圍之中間。在某些實施例中,若在自動跟隨開始時當前表現度量在新範圍之內,則阻力可保持不變而無需調整至中間。In certain embodiments, the logic implements a set of rules for adjusting resistance, which set of rules may include one or more of the rules set forth in the following discussion. For example, the auto-follow feature can be toggled on or off by tapping an icon (eg, a lock icon). A pop-up notification can let the user know that auto-follow is on, and the lock icon can change state (eg, from an unlocked lock to a locked lock). A progress indicator, such as an animated ring around the lock icon, can be displayed showing progress to the next range change. In one embodiment, when auto-follow starts, the user is brought to the middle of the range. In some embodiments, if the current performance metric is within the new range when the auto-follow begins, the resistance may remain the same without adjusting to the middle.

在某些實施例中,自動跟隨邏輯經組態以調整至一或多個使用者偏好。舉例而言,若騎乘者在下一範圍開始時處於當前範圍中,則可調整阻力以保持在新範圍中之相同相對位置處(例如,新阻力值計算為自中間之一百分比,其中1%等於範圍/100)。若騎乘者在一旦下一範圍開始時低於當前範圍,則可將阻力調整至新範圍之底部。若騎乘者在下一範圍開始時高於當前範圍,則可將阻力調整至新範圍之頂部。若使用者在自動跟隨調整期間手動地調整阻力(例如,若自動阻力太難或太容易,則使用者可將阻力手動地調整至一所要值),則可忽略自動調整以支援手動調整。In some embodiments, the auto-follow logic is configured to adjust to one or more user preferences. For example, if the rider is in the current range when the next range begins, the resistance can be adjusted to remain at the same relative position in the new range (e.g., the new resistance value is calculated as a percentage from the middle, where 1% equal to range/100). If the rider is below the current range once the next range begins, the resistance can be adjusted to the bottom of the new range. If the rider is above the current range at the start of the next range, the resistance can be adjusted to the top of the new range. If the user manually adjusts the resistance during the auto-follow adjustment (eg, if the auto resistance is too hard or too easy, the user can manually adjust the resistance to a desired value), then the auto-adjustment can be ignored in favor of the manual adjustment.

在某些實施例中,手動調整之阻力可在範圍之外,且新範圍可被設定至:(i)範圍之底部;(ii)在範圍之外的一相對位置,具有指示騎乘者在範圍之外的通知(例如,一工具提示);或(iii)根據使用者偏好之其他設定。在某些實施例中,鍛煉提示可在時間上重疊,使得當觸發下一提示時,一個提示之一調整並未完成。在此情形中,可取消第一提示,從而允許系統調整當前提示。可在一課程設定或個別鍛煉中實施指導者提示。In some embodiments, the manually adjusted resistance can be outside the range, and the new range can be set to: (i) the bottom of the range; (ii) a relative position outside the range, with an indicator indicating the rider is in Out-of-scope notifications (for example, a tooltip); or (iii) other settings based on user preferences. In some embodiments, exercise reminders may overlap in time such that when the next reminder is triggered, one adjustment of one reminder is not complete. In this case, the first prompt can be dismissed, allowing the system to adjust the current prompt. Instructor prompts can be implemented within a session or individual workouts.

熟習此項技術者將明瞭本發明實施例之優點,包含本文中所揭示之實施例可有效地達成一使用者動作減少且縮短所需之感測時間。Those skilled in the art will appreciate the advantages of the embodiments of the present invention, including that the embodiments disclosed herein can effectively achieve a reduced user motion and shorten the required sensing time.

前述揭示內容並不意欲將本發明限制於所揭示之精確形式或特定使用領域。如此,請考慮鑒於揭示內容,本公開之各種替代實施例及/或修改(無論是在本文中明確闡述還是暗示)係可能的。因此,在已闡述本公開之實施例後,熟習此項技術者將認識到優於習用方法之優點且可在不背離本公開之範疇之情況下在形式及細節上做出改變。The foregoing disclosure is not intended to limit the invention to the precise forms disclosed or to the particular field of use. As such, please consider that various alternative embodiments and/or modifications of the present disclosure, whether explicitly stated or implied herein, are possible in light of the disclosure. Thus, having described embodiments of the present disclosure, those skilled in the art will recognize advantages over conventional methods and may make changes in form and detail without departing from the scope of the disclosure.

1:電驅動致動器/致動器/步進馬達主體/步進馬達/電子致動器 2:阻力煞車總成/煞車總成/樞轉阻力煞車總成 3:樞軸點 4:磁體 5:飛輪 6:軸件/螺紋軸件 7:第一部分 8:安裝點 9:自行車 10:輔助煞車總成/樞轉摩擦煞車總成 11:調整旋鈕 12:細長調整軸件 13:測力計 14:第二部分/磁體固持托架/飛輪 20:煞車系統 30:轉矩調整單元 31:調整托架 32:磁性部件 34:調整軸件/推桿/調整桿 35:煞車壓縮彈簧 36:推桿尖端 37:煞車編碼器 40:連桿總成/測力計 50:煞車墊總成 60:第一安裝托架/安裝托架 62:第二安裝托架/安裝托架 64:煞車墊/腳踏車框架銲件/框架 70:步進馬達 72:步進馬達桿 74:煞車安裝托架 102:固定式腳踏車 104:顯示螢幕 106:框架 108:車把支柱 110:車把 112:座椅支柱 114:座椅 116:後支撐件 118:前支撐件 120:踏板 122:飛輪 124:阻力調整旋鈕 126:阻力機構 128:視圖有線連接 600:煞車機構 602:致動器 604:托架 606:磁體煞車組件 610:安裝托架 614:抽屜滑件 620:飛輪 700:系統 710:運動裝置電組件 712:控制器 714:電源供應器 716:步進馬達驅動器 718:測力計電路系統 722:通信組件 732:線性致動器 734:測力計 736:感測器 750:操作者終端機 760:控制器/處理器 770:運動及使用者控制邏輯/運動邏輯 780:顯示組件/顯示器 790:使用者輸入/輸出組件 792:通信組件 900:程序 902:步驟 904:步驟 906:步驟 908:步驟 910:步驟 912:步驟 1000:處理系統/系統 1010:煞車調整軸件 1012:旋轉編碼器 1020:測力計 1030:飛輪 1032:霍爾效應感測器 1040:步進馬達 1050:控制單元 1052:資料 1054:每分鐘轉數/踏頻處理模組/ 每分鐘轉數/踏頻處理 1055:測力計處理模組/測力計資料處理 1056:旋鈕位置處理模組 1057:阻力控制器 1058:步進監督器 1059:資料處理模組 1060:通信鏈路 1066:顯示器件/平板電腦/顯示器 1070:程序 1072:步驟 1074:步驟 1076:步驟 1080:程序 1082:步驟 1084:步驟 1086:步驟 1088:步驟 1089:步驟 1090:程序 1092:步驟 1093:步驟 1094:步驟 1095:步驟 1096:步驟 1100:功率狀態 1110:無功率狀態 1120:關斷狀態 1130:喚醒狀態 1140:喚醒(DISP關斷)狀態 1150:睡眠模式 1210:運動裝置 1220:步驟 1222:步驟 1230:表/顯示表/阻力與位置表 1240:固定映射/固定表/表 1260:新的誤差映射 1262:步驟 1264:步驟 1270:螢幕擷取畫面 1300:教育狀態資料流 1302:使用者登入程序 1304:步驟 1306:步驟 1308:步驟 1310:步驟 1312:步驟 1314:步驟 1400:自動跟隨邏輯 1402:步驟 1404:度量狀態 1405:指導者提示狀態 1406:自動跟隨常式 1408:步驟/工具提示所見資料 1410:步驟/自動跟隨管理器常式 1412:步驟 1500:使用者介面 1510:指導者 1520:視窗 1522:視窗 1524:視窗 1526:視窗 1530:騎乘者之當前踏頻 1532:當前目標踏頻範圍 1540:當前阻力設定 1542:當前目標阻力範圍 1610:阻力目標度量/使用者介面 1610a:使用者介面/圖形使用者介面/介面 1610b:圖形使用者介面/介面 1610c:圖形使用者介面/介面 1610d:圖形使用者介面/介面 1610e:圖形使用者介面/介面 1610f:圖形使用者介面/介面 1610g:圖形使用者介面/介面 1610h:圖形使用者介面/介面 1610i:圖形使用者介面/介面 1620:鎖/鎖圖標 1622:目標範圍/阻力範圍 1624:當前阻力數字/當前阻力值 1626:圖形表示 1632:圖標/鎖圖標 1640:工具提示 1642:工具提示 1650:踏頻目標度量/使用者介面 1650a:介面 1650b:介面 1650c:介面1: Electric Drive Actuator/Actuator/Stepper Motor Body/Stepper Motor/Electronic Actuator 2: Resistance brake assembly/brake assembly/pivot resistance brake assembly 3: Pivot point 4: magnet 5: flywheel 6: Shaft/threaded shaft 7: Part 1 8: Installation point 9: Bicycle 10: Auxiliary brake assembly/pivot friction brake assembly 11: Adjustment knob 12: Slender adjustment shaft 13: Dynamometer 14: Second part/Magnet holding bracket/Flywheel 20:Brake system 30: Torque adjustment unit 31: Adjustment bracket 32:Magnetic parts 34:Adjusting shaft/push rod/adjusting rod 35: Brake compression spring 36:Puttip tip 37:Brake encoder 40:Connecting rod assembly/dynamometer 50: Brake pad assembly 60:First Mounting Bracket/Mounting Bracket 62:Second mounting bracket/mounting bracket 64:brake pad/bicycle frame weldment/frame 70: Stepping motor 72: Stepping motor rod 74: Brake mounting bracket 102: Stationary bicycles 104: display screen 106: frame 108:Handlebar strut 110: handlebar 112: seat pillar 114: seat 116: Rear support 118: front support 120: pedal 122: flywheel 124: Resistance adjustment knob 126: resistance mechanism 128: View Wired Connections 600: brake mechanism 602: Actuator 604: Bracket 606:Magnet brake assembly 610: Mounting bracket 614: drawer slide 620: flywheel 700: system 710: Electrical components of sports equipment 712: Controller 714: Power supply 716: Stepper motor driver 718: Dynamometer circuit system 722: Communication component 732: Linear Actuator 734: Dynamometer 736: sensor 750:Operator terminal 760: Controller/Processor 770: Motion and User Control Logic/Motion Logic 780:Display components/monitors 790:User input/output components 792:Communication components 900: program 902: Step 904: Step 906: Step 908: Step 910: step 912: Step 1000: processing system/system 1010: Brake adjustment shaft 1012: Rotary encoder 1020: Dynamometer 1030: flywheel 1032: Hall effect sensor 1040: stepper motor 1050: control unit 1052: data 1054: RPM/cadence processing module/RPM/cadence processing 1055: Dynamometer processing module/dynamometer data processing 1056: Knob position processing module 1057: resistance controller 1058: step monitor 1059: Data processing module 1060: communication link 1066:Display device/tablet computer/monitor 1070: Procedure 1072:Step 1074:step 1076:step 1080: program 1082:Step 1084:step 1086:step 1088:step 1089:step 1090: Procedure 1092:Step 1093:step 1094:step 1095:step 1096:step 1100: power state 1110: No power status 1120: Off state 1130: wake up state 1140: Wake up (DISP off) state 1150: sleep mode 1210: Movement device 1220: step 1222:Step 1230: Gauge/Display Gauge/Resistance and Position Gauge 1240: fixed map/fixed table/table 1260: New error map 1262:Step 1264:step 1270:Screen capture 1300: Education status data flow 1302: User login procedure 1304: step 1306: step 1308:step 1310: step 1312:Step 1314:step 1400: Automatic follow logic 1402: Step 1404: Metric Status 1405: Instructor prompt status 1406: Automatically follow the routine 1408: Step/tooltip information seen 1410: Step/autofollow manager routine 1412:step 1500: user interface 1510: Mentor 1520: Windows 1522: Windows 1524: Windows 1526: Windows 1530: The current cadence of the rider 1532: Current target cadence range 1540: current resistance setting 1542: current target resistance range 1610: Resistance target metrics/user interface 1610a: User Interface/GUI/Interface 1610b: Graphical User Interface/Interface 1610c: Graphical User Interface/Interface 1610d: Graphical User Interface/Interface 1610e: Graphical User Interface/Interface 1610f: Graphical User Interface/Interface 1610g: Graphical User Interface/Interface 1610h: Graphical User Interface/Interface 1610i: GUI/Interface 1620: lock/lock icon 1622: target range/resistance range 1624: current resistance figure/current resistance value 1626: Graphic representation 1632: icon/lock icon 1640: Tooltip 1642: Tooltip 1650: Cadence Target Metrics / User Interface 1650a: interface 1650b: interface 1650c: interface

可參考以下圖式及隨附之詳細說明較佳地理解本公開之態樣及其優點。應瞭解,相似元件符號用於識別各圖中之一或多者中所圖解說明之相似元件,其中各圖中之展示係出於圖解說明本公開之實施例之目的而並非出於限制本公開之實施例之目的。圖式中之組件未必係按比例,而重點放在清晰地圖解說明本發明之原理上。Aspects of the present disclosure and advantages thereof may be better understood with reference to the following drawings and accompanying detailed description. It should be understood that like element numbers are used to identify like elements illustrated in one or more of the figures, where the illustrations in the figures are for purposes of illustrating embodiments of the present disclosure and not for limitation of the present disclosure. The purpose of the embodiment. The components in the drawings are not necessarily to scale, emphasis instead being placed upon clearly illustrating the principles of the invention.

圖1圖解說明根據本公開之一或多項實施例之一煞車系統。FIG. 1 illustrates a braking system according to one or more embodiments of the present disclosure.

圖2係根據本公開之一或多項實施例之一輔助煞車系統之一剖面圖。FIG. 2 is a cross-sectional view of an auxiliary braking system according to one or more embodiments of the present disclosure.

圖3係根據本公開之一或多項實施例之一輔助煞車系統之一剖面圖。FIG. 3 is a cross-sectional view of an auxiliary braking system according to one or more embodiments of the present disclosure.

圖4A圖解說明根據本公開之一或多項實施例之一煞車系統。FIG. 4A illustrates a braking system according to one or more embodiments of the present disclosure.

圖4B係根據本公開之一或多項實施例之一煞車系統之一側視圖。4B is a side view of a braking system according to one or more embodiments of the present disclosure.

圖4C係根據本公開之一或多項實施例之一煞車系統之一側視圖。FIG. 4C is a side view of a braking system according to one or more embodiments of the present disclosure.

圖4D係根據本公開之一或多項實施例之一煞車系統之一前視圖。FIG. 4D is a front view of a braking system according to one or more embodiments of the present disclosure.

圖4E係根據本公開之一或多項實施例之一煞車系統之一後視圖。FIG. 4E is a rear view of a braking system according to one or more embodiments of the present disclosure.

圖4F係根據本公開之一或多項實施例之一煞車系統之一俯視圖。FIG. 4F is a top view of a braking system according to one or more embodiments of the present disclosure.

圖4G係根據本公開之一或多項實施例之一煞車系統之一仰視圖。FIG. 4G is a bottom view of a braking system according to one or more embodiments of the present disclosure.

圖5A及圖5B圖解說明根據本公開之一或多項實施例之一煞車系統之一操作。5A and 5B illustrate an operation of a braking system according to one or more embodiments of the present disclosure.

圖5C及圖5D圖解說明根據本公開之一或多項實施例之一輔助煞車系統之一操作。5C and 5D illustrate the operation of an auxiliary braking system according to one or more embodiments of the present disclosure.

圖6A及圖6B圖解說明根據本公開之一或多項實施例之一煞車系統。6A and 6B illustrate a braking system according to one or more embodiments of the present disclosure.

圖7係圖解說明根據本公開之一或多項實施例之供用於實施一煞車系統之一運動裝置中之電組件的一方塊圖。FIG. 7 is a block diagram illustrating electrical components used in a moving device for implementing a braking system in accordance with one or more embodiments of the present disclosure.

圖8圖解說明根據本公開之一或多項實施例之實施一煞車系統之一運動裝置。FIG. 8 illustrates a kinematic device implementing a braking system according to one or more embodiments of the present disclosure.

圖9圖解說明根據本公開之一或多項實施例之操作一煞車系統之一方法。FIG. 9 illustrates a method of operating a braking system according to one or more embodiments of the present disclosure.

圖10A圖解說明根據本公開之一或多項實施例之用於操作一運動裝置之一實例性控制系統,操作該運動裝置包含用於量測RPM/踏頻、量測阻力及/或控制運動裝置中之一步進馬達之程序。FIG. 10A illustrates an example control system for operating an exercise device, including for measuring RPM/cadence, measuring resistance, and/or controlling the exercise device, according to one or more embodiments of the present disclosure. One of the procedures of the stepping motor.

圖10B圖解說明根據本公開之一或多項實施例之用於一運動裝置之一控制單元之實例性模組。FIG. 10B illustrates example modules for a control unit of a motion device according to one or more embodiments of the present disclosure.

圖10C圖解說明根據本公開之一或多項實施例之用於量測一運動裝置中之RPM及/或踏頻之一實例性程序。FIG. 10C illustrates an example procedure for measuring RPM and/or cadence in an exercise device according to one or more embodiments of the present disclosure.

圖10D圖解說明根據本公開之一或多項實施例之用於量測一運動裝置中之阻力之一實例性程序。FIG. 10D illustrates an example procedure for measuring resistance in an exercise device according to one or more embodiments of the present disclosure.

圖10E圖解說明根據本公開之一或多項實施例之用於控制一運動裝置中之一步進馬達之實例性程序。Figure 10E illustrates an example process for controlling a stepper motor in a motion device, according to one or more embodiments of the present disclosure.

圖11圖解說明根據本公開之一或多項實施例之供與運動裝置一起使用之一系統之實例性功率狀態。11 illustrates example power states of a system for use with a motion device according to one or more embodiments of the present disclosure.

圖12圖解說明根據本公開之一或多項實施例之用於一運動裝置之實例性阻力校正機制。Figure 12 illustrates an example resistance correction mechanism for an exercise device according to one or more embodiments of the present disclosure.

圖13圖解說明根據本公開之一或多項實施例之一實例性教育狀態資料流。Figure 13 illustrates an example education status data flow according to one or more embodiments of the present disclosure.

圖14圖解說明根據本公開之一或多項實施例之實例性自動跟隨邏輯。Figure 14 illustrates example auto-follow logic in accordance with one or more embodiments of the present disclosure.

圖15圖解說明根據本公開之一或多項實施例之一實例性圖形使用者介面。Figure 15 illustrates an example graphical user interface in accordance with one or more embodiments of the present disclosure.

圖16圖解說明根據本公開之一或多項實施例之用於自動跟隨模式及目標度量處理之實例性圖形使用者介面。Figure 16 illustrates an example graphical user interface for auto-follow mode and target metric processing in accordance with one or more embodiments of the present disclosure.

1:電驅動致動器/致動器/步進馬達主體/步進馬達/電子致動器 1: Electric Drive Actuator/Actuator/Stepper Motor Body/Stepper Motor/Electronic Actuator

2:阻力煞車總成/煞車總成/樞轉阻力煞車總成 2: Resistance brake assembly/brake assembly/pivot resistance brake assembly

3:樞軸點 3: Pivot point

4:磁體 4: magnet

5:飛輪 5: flywheel

6:軸件/螺紋軸件 6: Shaft/threaded shaft

7:第一部分 7: Part 1

8:安裝點 8: Installation point

9:自行車 9: Bicycle

13:測力計 13: Dynamometer

14:第二部分/磁體固持托架 14: Second part / magnet holding bracket

Claims (21)

一種用於具有一框架及一飛輪之一運動裝置之阻力系統,該阻力系統包括:一阻力裝置,其包括一致動器,該致動器經組態以相對於該飛輪而選擇性地定位該阻力裝置,其中該阻力裝置至該飛輪之間的一距離對應於施加至該飛輪之阻力;控制組件,其經組態以回應於自動化指令而控制該阻力系統之操作;及一運算器件,其經組態以向一使用者輸出一運動課程之媒體,該運動課程包括與該運動課程之一或多個分段對應之一或多個目標阻力範圍,該媒體包含至少一自動化指令以控制該阻力系統之操作;其中該運算器件進一步經組態以選擇性地實施自動跟隨邏輯,該自動跟隨邏輯經組態以至少部分地基於相應的該目標阻力範圍及該使用者在一先前目標阻力範圍內的相對位置來判定針對該運動課程之一當前分段之一目標阻力值且指示該等控制組件將該阻力系統調整至該目標阻力值。 A resistance system for a motion device having a frame and a flywheel, the resistance system comprising: a resistance device including an actuator configured to selectively position the a resistance device, wherein a distance between the resistance device and the flywheel corresponds to the resistance applied to the flywheel; a control assembly configured to control operation of the resistance system in response to automated commands; and an arithmetic device, which Media configured to output to a user an exercise program including one or more target resistance ranges corresponding to one or more segments of the exercise program, the media including at least one automated instruction to control the Operation of the resistance system; wherein the computing device is further configured to selectively implement auto-follow logic configured to be based at least in part on the corresponding target resistance range and the user in a previous target resistance range determine a target resistance value for a current segment of the exercise session and instruct the control components to adjust the resistance system to the target resistance value. 如請求項1之阻力系統,其進一步包括:一手動阻力調整機構,其經組態以調整施加至該飛輪之一當前阻力;一煞車編碼器,其經組態以感測該手動阻力調整機構之移動;及一測力計,其將該阻力裝置耦合至該框架,該測力計產生與該阻力裝置相對於該框架的一位置對應之一信號。 The resistance system of claim 1, further comprising: a manual resistance adjustment mechanism configured to adjust a current resistance applied to the flywheel; a brake encoder configured to sense the manual resistance adjustment mechanism and a dynamometer coupling the resistance device to the frame, the dynamometer generating a signal corresponding to a position of the resistance device relative to the frame. 如請求項1之阻力系統,其中該等控制組件進一步經組態以判定該使用者在該先前目標阻力範圍內的該相對位置,該相對位置至少部分地基於偵測到的使用者表現及/或手動的使用者調整,並且將該目標阻力值設定為該當前分段中的一對應相對位置。 The resistance system of claim 1, wherein the control components are further configured to determine the relative position of the user within the previous target resistance range, the relative position being based at least in part on detected user performance and/or Or manually adjust by the user, and set the target resistance value as a corresponding relative position in the current segment. 如請求項3之阻力系統,其中該運動課程為一指導者引導之課程,該指導者引導之課程包含指導者之視訊及音訊,且其中至少部分地基於對來自該指導者的該音訊的音頻提示資料的分析及/或在該指導者引導之課程期間所偵測的該指導者的表現而生成該至少一自動化指令。 The resistance system of claim 3, wherein the exercise session is an instructor-led session, the instructor-led session includes video and audio of an instructor, and wherein is based at least in part on audio of the audio from the instructor Analysis of prompt data and/or detected performance of the instructor during the instructor-led session generates the at least one automated instruction. 如請求項3之阻力系統,其中該等控制組件進一步經組態為若所判定的該使用者的該相對位置低於該先前目標阻力範圍的底部,則將該目標阻力值設定為該目標阻力範圍的底部,且若所判定的該使用者的該相對位置高於該先前目標阻力範圍的頂部,則將該目標阻力值設定為該目標阻力範圍的頂部。 The resistance system of claim 3, wherein the control components are further configured to set the target resistance value as the target resistance if the determined relative position of the user is lower than the bottom of the previous target resistance range and if the determined relative position of the user is higher than the top of the previous target resistance range, then setting the target resistance value as the top of the target resistance range. 如請求項1之阻力系統,其中該等控制組件經組態以藉由在該致動器之對應複數個位置處量測測力計值且將該等測力計值儲存於一表中而校準該阻力系統;其中該等控制組件進一步經組態以基於一所感測測力計值及經儲存之該表而計算一操作阻力;及其中該等控制組件經組態以執行一步進器歸位常式來判定一零位 置。 The resistance system of claim 1, wherein the control components are configured to measure dynamometer values at corresponding positions of the actuator and store the dynamometer values in a table calibrating the resistance system; wherein the control components are further configured to calculate an operating resistance based on a sensed dynamometer value and the stored table; and wherein the control components are configured to perform a stepper reset bit routine to determine a zero bit place. 如請求項6之阻力系統,其中該等控制組件包括一步進馬達監督器,該步進馬達監督器經組態以使用一開環控制常式至少部分地基於自該零位置之致動器步進單位而追蹤一致動器位置。 The resistance system of claim 6, wherein the control components include a stepper motor supervisor configured to use an open loop control routine based at least in part on actuator steps from the zero position Into the unit to track an actuator position. 如請求項3之阻力系統,其中該等控制組件包括一步進馬達監督器,該步進馬達監督器經組態以接收包含一所要致動器位置之一驅動位置命令且將該致動器調整至該所要致動器位置。 The resistance system of claim 3, wherein the control components include a stepper motor supervisor configured to receive a drive position command including a desired actuator position and adjust the actuator to the desired actuator position. 如請求項8之阻力系統,其中該步進馬達監督器包括該致動器之運動控制、加速度控制及/或電流及轉矩控制。 The resistance system of claim 8, wherein the stepper motor supervisor includes motion control, acceleration control and/or current and torque control of the actuator. 如請求項8之阻力系統,其中該步進馬達監督器包括經組態以偵測一致動器失速事件之一失速偵測。 The resistance system of claim 8, wherein the stepper motor supervisor includes a stall detection configured to detect an actuator stall event. 如請求項1之阻力系統,其進一步包括:一第二阻力裝置,其包括:一煞車墊總成,其包括一煞車墊;及一啟動裝置,其可操作以將該煞車墊偏置抵靠該飛輪,從而對該飛輪提供阻力。 The resistance system of claim 1, further comprising: a second resistance device comprising: a brake pad assembly including a brake pad; and an activation device operable to bias the brake pad against The flywheel, thereby providing resistance to the flywheel. 如請求項1之阻力系統,其進一步包括一煞車墊總成及安置於該煞車 墊總成上之一煞車墊,且其中一調整軸件可操作以將該煞車墊總成朝向該飛輪偏置,使得該煞車墊與該飛輪接觸。 If the resistance system of claim 1, it further includes a brake pad assembly and is placed on the brake A brake pad on the pad assembly, and one of the adjustment shafts is operable to bias the brake pad assembly toward the flywheel so that the brake pad is in contact with the flywheel. 如請求項1之阻力系統,其進一步包括一記憶體,該記憶體儲存踏頻與功率之一固定映射、位置至阻力之一動態映射以及一誤差映射;其中該阻力系統進一步包括一邏輯器件,該邏輯器件經組態以計算阻力值之一誤差且更新位置至阻力之該動態映射以補償該誤差。 The resistance system according to claim 1, which further includes a memory, which stores a fixed mapping between cadence and power, a dynamic mapping between position and resistance, and an error mapping; wherein the resistance system further includes a logic device, The logic device is configured to calculate an error in resistance value and update the dynamic mapping of position to resistance to compensate for the error. 一種在具有一框架及一飛輪之一運動裝置中調整阻力之方法,該方法包括:相對於該飛輪而選擇性地定位一阻力裝置,其中該阻力裝置至該飛輪之間的一距離對應於施加至該飛輪之阻力;回應於自動化指令指示控制組件藉由阻力裝置而調整施加至該飛輪之該阻力;向一使用者輸出一運動課程之媒體,該運動課程包括與該運動課程之一或多個分段對應之一或多個目標阻力範圍;及選擇性地實施自動跟隨邏輯,該自動跟隨邏輯經組態以至少部分地基於相應的該目標阻力範圍及在該運動課程期間由該控制組件所接收的使用者表現的資料來判定針對該運動課程之一當前分段之一目標阻力值且指示該等控制組件將該阻力裝置調整至該目標阻力值。 A method of adjusting resistance in a motion device having a frame and a flywheel, the method comprising: selectively positioning a resistance device relative to the flywheel, wherein a distance from the resistance device to the flywheel corresponds to applied resistance to the flywheel; instructing the control assembly to adjust the resistance applied to the flywheel by a resistance device in response to an automated command; outputting to a user media of an exercise program comprising one or more of the exercise programs a segment corresponding to one or more target resistance ranges; and selectively implementing auto-follow logic configured to be based at least in part on the corresponding target resistance ranges and by the control assembly during the exercise session The received user performance data is used to determine a target resistance value for a current segment of the exercise program and instruct the control components to adjust the resistance device to the target resistance value. 如請求項14之方法,其進一步包括:感測一調整軸件之一旋轉; 產生用以驅動一致動器之一信號,該致動器可操作以使施加至該飛輪之阻力變化;回應於該信號而操作該致動器以將阻力組件朝向及/或遠離該飛輪而驅動來使施加至該飛輪之該阻力變化;經由連接於該等阻力組件與該框架之間的測力計而進行感測藉由在該致動器之對應複數個位置處量測測力計值且將該等測力計值儲存於一表中而校準該阻力裝置;及基於一所感測測力計值及經儲存之該表而計算一操作阻力。 The method of claim 14, further comprising: sensing a rotation of an adjustment shaft; generating a signal for driving an actuator operable to vary the resistance applied to the flywheel; operating the actuator in response to the signal to drive a resistance member toward and/or away from the flywheel to vary the resistance applied to the flywheel; sensing via a dynamometer connected between the resistance assemblies and the frame by measuring dynamometer values at corresponding positions of the actuator and storing the dynamometer values in a table to calibrate the resistance device; and calculating an operating resistance based on a sensed dynamometer value and the stored table. 如請求項14之方法,其進一步包括判定該使用者在一先前目標阻力範圍內的相對位置,該相對位置至少部分地基於偵測到的使用者表現及/或手動的使用者調整;及將該目標阻力值設定為該當前分段中的一對應相對位置。 The method of claim 14, further comprising determining a relative position of the user within a previous target resistance range based at least in part on detected user performance and/or manual user adjustments; and The target resistance value is set as a corresponding relative position in the current segment. 如請求項16之方法,其中該運動課程為一指導者引導之課程,該指導者引導之課程包含指導者之視訊及音訊,且其中該方法進一步包括至少部分地基於對來自該指導者的該音訊的音頻提示資料的分析及/或在該指導者引導之課程期間所偵測的該指導者的表現而生成該至少一自動化指令。 The method of claim 16, wherein the exercise session is an instructor-led session, the instructor-led session includes video and audio of the instructor, and wherein the method further comprises based at least in part on the Analysis of the audio prompt data of the audio and/or the detected performance of the instructor during the instructor-led session generates the at least one automated instruction. 如請求項17之方法,進一步包括若所判定的該使用者的該相對位置低於該先前目標阻力範圍的底部,則將該目標阻力值設定為該目標阻力範圍的底部,且若所判定的該使用者的該相對位置高於該先前目標阻力範圍 的頂部,則將該目標阻力值設定為該目標阻力範圍的頂部。 The method according to claim 17, further comprising setting the target resistance value as the bottom of the target resistance range if the determined relative position of the user is lower than the bottom of the previous target resistance range, and if the determined The relative position of the user is above the previous target resistance range , then set the target resistance value as the top of the target resistance range. 如請求項15之方法,其進一步包括執行一步進器歸位常式來判定一零位置;使用一開環控制常式至少部分地基於自該零位置之致動器步進單位而追蹤一致動器位置;及接收包含一所要致動器位置之一驅動位置命令且將該致動器調整至該所要致動器位置。 The method of claim 15, further comprising executing a stepper homing routine to determine a zero position; tracking an actuation based at least in part on actuator step units from the zero position using an open loop control routine and receiving a drive position command comprising a desired actuator position and adjusting the actuator to the desired actuator position. 如請求項15之方法,其進一步包括將一對磁性部件安置於一調整托架之一內表面上,該等磁性部件以大於該飛輪之一寬度之一距離間隔開。 The method of claim 15, further comprising positioning a pair of magnetic members on an inner surface of an adjustment bracket, the magnetic members being spaced apart by a distance greater than a width of the flywheel. 如請求項15之方法,其中調整阻力進一步包括將一煞車墊安置於一調整托架之一內表面上且自該調整軸件向該調整托架施加壓力以將該煞車墊推進至該飛輪中。 The method of claim 15, wherein adjusting the resistance further comprises placing a brake pad on an inner surface of an adjustment bracket and applying pressure from the adjustment shaft to the adjustment bracket to push the brake pad into the flywheel .
TW110119484A 2020-05-29 2021-05-28 Braking systems and methods for exercise equipment TWI804877B (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202063032512P 2020-05-29 2020-05-29
US63/032,512 2020-05-29
US202063075198P 2020-09-06 2020-09-06
US63/075,198 2020-09-06

Publications (2)

Publication Number Publication Date
TW202202206A TW202202206A (en) 2022-01-16
TWI804877B true TWI804877B (en) 2023-06-11

Family

ID=76523509

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110119484A TWI804877B (en) 2020-05-29 2021-05-28 Braking systems and methods for exercise equipment

Country Status (7)

Country Link
EP (1) EP4157470A1 (en)
AU (1) AU2021282376A1 (en)
BR (1) BR112022024365A2 (en)
CA (1) CA3180720A1 (en)
MX (1) MX2022015108A (en)
TW (1) TWI804877B (en)
WO (1) WO2021243092A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116877365B (en) * 2023-06-20 2024-07-16 深圳博尔乐能源技术有限公司 Resistance adjustment method, device and computer readable storage medium for sports equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070232452A1 (en) * 2004-10-22 2007-10-04 Mytrak Health System Inc. Computerized Spinning Exercise System and Methods Thereof
US8845493B2 (en) * 2009-03-27 2014-09-30 Icon Ip, Inc. System and method for exercising
TWM565048U (en) * 2018-02-27 2018-08-11 岱宇國際股份有限公司 Resistance regulating device for wheel of training machine
TWM577747U (en) * 2018-11-13 2019-05-11 祺驊股份有限公司 Flywheel fitness equipment with variable magnetic resistance

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0925096B1 (en) * 1996-07-02 2004-05-19 Graber Products, Inc. Electronic exercise system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070232452A1 (en) * 2004-10-22 2007-10-04 Mytrak Health System Inc. Computerized Spinning Exercise System and Methods Thereof
US8845493B2 (en) * 2009-03-27 2014-09-30 Icon Ip, Inc. System and method for exercising
TWM565048U (en) * 2018-02-27 2018-08-11 岱宇國際股份有限公司 Resistance regulating device for wheel of training machine
TWM577747U (en) * 2018-11-13 2019-05-11 祺驊股份有限公司 Flywheel fitness equipment with variable magnetic resistance

Also Published As

Publication number Publication date
TW202202206A (en) 2022-01-16
AU2021282376A1 (en) 2023-01-19
CA3180720A1 (en) 2021-12-02
WO2021243092A1 (en) 2021-12-02
MX2022015108A (en) 2023-03-02
BR112022024365A2 (en) 2023-03-07
EP4157470A1 (en) 2023-04-05

Similar Documents

Publication Publication Date Title
US11794054B2 (en) Braking systems and methods for exercise equipment
US20230093086A1 (en) Braking systems and methods for exercise equipment
US5067710A (en) Computerized exercise machine
US7618346B2 (en) System and method for controlling an exercise apparatus
US7585258B2 (en) Power sensing eddy current resistance unit for an exercise device
TWI718229B (en) Stationary ergometric exercise device, method of oprating stationary ergometric exercise device, and computer program product
US11426617B2 (en) Braking system and method for exercise equipment
US20080032870A1 (en) Method and apparatus of counting steps for treadmill
EP1040852A2 (en) Brake arrangement for magnetic or electric ergometer
WO2004078270A2 (en) System and method for controlling an exercise apparatus
TWI804877B (en) Braking systems and methods for exercise equipment
TW201741196A (en) System and method of controlling derailleur of bicycle
CN114129955A (en) Resistance-adjustable rotating wheel, adjusting method thereof and sports equipment
KR20010103355A (en) An individual momentum control system
GB2610224A (en) An exercise bike system
US20240226662A1 (en) Handle controls systems and methods for exercise equipment
CN218010837U (en) Exercise apparatus
RU2411980C1 (en) Device for training cyclists
TWM628503U (en) Fitness equipment resistance adjustment device
TWM584671U (en) Exercise rehabilitation machine