TWI804832B - 用於促進與強化金鑰交換程序的抗量子運算威脅之系統與方法 - Google Patents

用於促進與強化金鑰交換程序的抗量子運算威脅之系統與方法 Download PDF

Info

Publication number
TWI804832B
TWI804832B TW110110929A TW110110929A TWI804832B TW I804832 B TWI804832 B TW I804832B TW 110110929 A TW110110929 A TW 110110929A TW 110110929 A TW110110929 A TW 110110929A TW I804832 B TWI804832 B TW I804832B
Authority
TW
Taiwan
Prior art keywords
key
data
quantum
space
manifold
Prior art date
Application number
TW110110929A
Other languages
English (en)
Other versions
TW202137730A (zh
Inventor
陳朝煌
Original Assignee
阿證科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 阿證科技股份有限公司 filed Critical 阿證科技股份有限公司
Publication of TW202137730A publication Critical patent/TW202137730A/zh
Application granted granted Critical
Publication of TWI804832B publication Critical patent/TWI804832B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0852Quantum cryptography
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/06Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols the encryption apparatus using shift registers or memories for block-wise or stream coding, e.g. DES systems or RC4; Hash functions; Pseudorandom sequence generators
    • H04L9/065Encryption by serially and continuously modifying data stream elements, e.g. stream cipher systems, RC4, SEAL or A5/3
    • H04L9/0656Pseudorandom key sequence combined element-for-element with data sequence, e.g. one-time-pad [OTP] or Vernam's cipher
    • H04L9/0662Pseudorandom key sequence combined element-for-element with data sequence, e.g. one-time-pad [OTP] or Vernam's cipher with particular pseudorandom sequence generator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/30Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy
    • H04L9/3066Public key, i.e. encryption algorithm being computationally infeasible to invert or user's encryption keys not requiring secrecy involving algebraic varieties, e.g. elliptic or hyper-elliptic curves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/57Arithmetic logic units [ALU], i.e. arrangements or devices for performing two or more of the operations covered by groups G06F7/483 – G06F7/556 or for performing logical operations

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)

Abstract

一種抗量子運算威脅之強化與促進金鑰交換的解決方案,包含線性空間結構-運算模組、流形運算模組以及巴拿赫空間運算模組;以金鑰變形或金鑰隱藏等技術手段,以助於在不同於一般量子運算攻擊所在的代數空間(mathematics space)完成抗量子運算威脅的金鑰交換程序後再回到希爾伯特空間解回原始金鑰。除了有助於在金鑰交換的過程中強化避免一般量子運算之破密攻擊之外,此系統之技術手段可以避免了現行PQC方案的實作缺失、市場上對稱與非對稱加密系統的漏洞、以及量子金鑰在希爾伯特空間的運算限制等問題,可兼容傳統金鑰或量子金鑰,克服現行多數PQC方案須透過高昂成本之設備運作的瓶頸。

Description

用於促進與強化金鑰交換程序的抗量子運算威脅之系統與 方法
本發明係用於金鑰交換程序的對抗量子運算破密攻擊的解決方案,更特別的是關於一種可選用金鑰變形運算與金鑰隱藏變換的金鑰轉換技術,可兼容支援傳統金鑰與量子金鑰的交換程序,有助於強化金鑰交換程序安全性之系統與其方法。
目前常見的後量子加密(Post-quantum cryptography,PQC)技術,對於抵抗量子運算的攻擊,多採用已知的超高複雜度密碼系統(例如Lattice、Code-based、Supersingular Elliptic Curve Isogency等)實作其金鑰機制,一方面其安全風險仍被動取決於執行量子破密運算的量子電腦其量子位元數之發展,另一方面一般終端使用者若要實現其機制,還須大幅升級現有的硬體設備才能運作順暢。除此之外,目前大多數的PQC方案還存在以下基本缺失,包括:1)缺乏透過逆運算進行驗證的機制,無法確保金鑰產出的正確率與成功率;2)其傳輸架構缺乏輕量化設計,不利於搭配IOT設備與現行頻寬進行海量資料傳輸;3)且許多PQC方案的加密強度並不穩定,不只增加品質保證的難度,且可能影響解碼端的正確性;4)另外許多PQC所用的交換協定也會因為大幅增加交握與加解密機制的資料流量,導致許多現行HTTP Web Server面臨汰換的問題;5)此外在檔案傳輸協定的使用上,目前的PQC方案會因為選用的幾何結構不同(例如橢圓曲線或晶格),存在有不同的編碼對應問題,可能造成傳輸檔案的結尾錯誤,甚至 在小封包傳輸的情況下還會增加被量子運算破密的風險;6)而有些搭配ElGamal加解密系統的模擬機制,更存在當多個可能解大量產生時,系統無法有效判斷正確解的問題。而且現行PQC方案多需汰除傳統金鑰,無法兼顧傳統金鑰與未來量子金鑰的需求,其產業利用性存在許多現實上的限制。
然而即使目前有少數PQC整合方案兼容傳統金鑰,但是對於現行對稱與非對稱式金鑰系統的漏洞,仍無法有效避免,例如:1)資料傳輸只能在傳統通道進行;2)其亂數產生機制大多採用偽亂數產生器,此類函式庫易被破解;3)對於現行憑證被竊之後的應對機制亦不完善;4)此外現行對稱與非對稱系統所適用的質因數,也多被掌握,繼續尋求更大的質因數也會造成系統效能問題;5)尤其重要的是,許多目前的模數運算機制容易在一段時間的暴力攻擊下或是藉由量子克隆進行分析,而被測出模數參數或是函式庫的相關設定。
再者,目前基於已知的量子金鑰配置(quantum key distribution,QKD)技術所實作的量子金鑰系統,常常因為執行希爾伯特空間的運算體系,而有以下限制,例如:1)在希爾伯特空間中,只能適用少數已知的距離度量定義;2)此外其矩陣運算必須使用正交基底,在此以之條件下將增加被量子運算暴力破解的可能性;3)尤其受限於量子本身的物理性質,可用於希爾伯特空間的運算子更為有限;以上相關限制都不利於目前已發表的量子金鑰系統於希爾伯特空間對抗量子破密運算。
由此可知,目前的後量子加密之金鑰技術與量子金鑰配置系統,仍有待改進。
本發明之一目的在於提出一種能夠有助於強化金鑰交換程序以對抗量子運算破密攻擊的解決方案,其中該方案如果能夠運作於金鑰交換程序上,以協助其對抗量子運算的攻擊,那麼就能避免傳統金鑰或量子金鑰在交換過程中被攔截之後以量子運算破解。據此,即使是使用一般傳統金鑰,在基於本發明的實施例所進行的金鑰交換過程中,也能有效降低被量子運算破密的風險。此技術可實現於具合理成本的電子裝置或系統,且可避免在短期內汰除大量傳統金鑰系統的資本支出。同時有效避免先前技術在現行PQC方案的實作缺失、市場上對稱與非對稱加密系統的漏洞、以及量子金鑰在希爾伯特空間的運算限制等問題。
為達成上述目的,本發明提出一種可用於已知的金鑰交換程序(不限於傳統金鑰或是量子金鑰),以對抗量子運算破密威脅的解決方案,該方案採用以下方法與流程進行運作:首先利用線性空間結構運算的組合,對於具備希爾伯特空間資料型態的量子金鑰或傳統金鑰,可選用量子運算指令、交換子運算指令、原根運算指令、代數運算指令等指令組合,以進行各類量子邏輯閘的模擬與循環群模多項式的運算,進而對已知的量子金鑰或是傳統金鑰進行自有的再編碼,以取得一相當於金鑰資訊的編碼資料。
接著再利用與流形運算相關的金鑰變形運算以及與轉換時間函數相關的金鑰隱藏變換等方法,將該金鑰資訊之編碼資料轉換為一種高安全性的資料輸出型態,再根據資料來源,採用含時偏微分方程組或是複平面轉換加密的方法,將該資料輸出型態轉換為安全傳輸資料,使得該安全傳輸資料具有無法被逆運算破解、可身分認證,以及可驗證傳輸資料完整性且可防制泛函破密分析之功效。
同時藉由希爾伯特空間與巴拿赫空間之間的資料型態轉換運算,可於上述要將資料輸出型態轉換為安全傳輸資料之前,將已完成金鑰變形或金鑰隱藏的資料,從拓樸空間的流形資料型態先映射轉換為巴拿赫空間的皮亞諾曲線之資料型態,再轉換為安全傳輸資料以完成安全傳輸接收後,再解密出巴拿赫空間的皮亞諾曲線之資料型態,才將巴拿赫空間的皮亞諾曲線之資料型態轉回希爾伯特空間的資料型態,再進行流形資料型態的解編碼,以解出相當於原始希爾伯特空間的金鑰資訊的編碼資料,再還原為原始對應的量子金鑰或傳統金鑰,以達到避免傳輸過程中遭到量子運算暴力破密之功效。
接著要說明的是,以下本發明所指之模組、單元、子單元、過濾器、保存器、轉換器或計算器等,皆相當於一組可載入的函式庫或指令集,且該函式庫或指令集具有程式化的演算法並儲存於可重複讀寫的非揮發性記憶體,可用於逐步執行一系列的子例程。為實作上述方法與流程,本發明提出一種可用於金鑰交換裝置或系統以對抗量子運算破密攻擊的實施例,其包括一線性空間結構-運算模組,該線性空間結構-運算模組可以包含以下單元:一量子運算子-整合計算單元,可於線性空間支援量子基本運算;一可交換運算子-處理單元,可用於維護原始量子訊息的完整性;一原根產生單元,可選用解出的原根,以導出線性空間中適用的代數結構循環群;一量子亂數產生單元,可提供原根產生單元選用原根的真隨機性;以及一進階數論-運算單元,可提供對代數結構資料的模次冪運算能力。
在一實施例中,量子運算子-整合計算單元執行以下子例程以支援量子組態與線性空間有關的基本運算,包括有:1)對線性矩陣進行么正變換;2)對多維空間之么正矩陣作降維處理;3)對向量空間基底驗證其正交性;4)對 向量空間導入內積計算;5)對向量空間做固有化程序解出特徵值與特徵向量;6)對選用的量子運算子驗證其是否為厄米特運算子;7)藉由碰撞截面積計算量子自基態躍遷的機率;8)藉由拉普拉斯轉換,導出向量空間內互相垂直的波向量;以及9)採用轉換運算子,將向量空間轉換為共軛之複數空間。以上之計算單元與各個子例程可基於相關之習知技術而實現為軟體單元、硬體單元或以軟體結合方式實現,然此組合之整合計算單元可花費有限的運算成本,有效率地提供各種轉換對於線性空間所需的基本運算,並且有助於確保各種基本轉換運算之正確性。
在同一實施例中,上述量子運算子-整合計算單元的相關線性轉換運算的結果,需進一步透過一可交換運算子-處理單元,確認是否其固有值有退化的現象,並以可交換運算子完備集(Complete set of commuting observables,C.S.C.O.)去除退化問題,以維護原始量子訊息的完整性,其中該可交換運算子-處理單元執行的子例程包含有:1)對量測到的量子態進行非正交轉換,以導出投影於正交座標系的固有態(eigen state);2)確認導出的固有態是否可完成厄米特轉換(Hermitian Transform);3)若厄米特轉換後顯示有退化態,則先做相位修正;4)若相位修正後仍有退化態,再以可交換運算子完備集(C.S.C.O.)去除退化問題,以維護原始訊息的完整性。接著,系統將已去退化的完備轉換結果,配合線性空間結構-運算模組之量子亂數產生單元原根產生單元,可進一步產生具有真隨機性的適用代數結構之循環群。
在同一實施例中,進階數論-運算單元包括一代數環運算-子單元;一伽羅瓦群運算-子單元;以及一模次冪根連續平方運算-子單元。其中,代數環運算-子單元,可支援代數結構環之維護與運算;伽羅瓦群運算-子單元,可 支援伽羅瓦群之產生與運算;模次冪根連續平方運算-子單元,利用尤拉定理與費馬小定理之運算程序,可處理模次冪根的連續平方計算。以上之各個子單元可基於相關習知技術而實現為軟體單元、硬體單元或以軟硬體結合方式實現,然此組合之運算單元可提供具高複雜度的安全性代數結構,同時有效率地簡化模次冪根的運算程序。
在一實施例中,此發明之系統更可包括一流形運算模組,該模組可以包含一金鑰運算單元及一金鑰交換單元。其中,該金鑰運算單元用以對金鑰進行流形拓樸運算,以得出已轉換的金鑰。金鑰運算單元可包含:一金鑰變形運算-單元,可對一傳統金鑰進行一種基於同態變形的代數結構轉換方法,將傳統金鑰的資料型態變形為一卡拉比丘流形的資料型態,以作為已轉換的金鑰資料型態;以及一金鑰隱藏變換-單元,可對一量子金鑰進行一種基於代數空間(mathematics space)與時間因子進行區塊化加密的資料變換方法,將該量子金鑰的組態資料隱藏於一隨時間演化的熱核函數中,以作為已轉換的金鑰資料型態。接著,該金鑰交換單元,於傳送端將金鑰運算單元提供的已轉換的金鑰資料轉換為自有的傳輸資料型態,或於接收端識別並接收自有的傳輸資料型態,以助於強化金鑰交換程序,其中,為促進量子金鑰傳輸的穩定性,該金鑰交換單元更包含有一量子導引-子單元於量子傳輸通道執行量子導引(quantum steering)機制,以確保量子傳輸的成功率;並有一貝爾量測-子單元以便於量子傳輸通道分析目前進行的量子通訊是否存在退相干問題,以降低發生無效的量子傳輸之機率。
在一實施例中,上述流形運算模組之金鑰變形運算-單元執行一組子例程,以進行一種金鑰變形運算,該運算是一種基於同態變形的代數結構轉換方法,該組子例程包括:1)基於偽黎曼度量之轉換,用以將金鑰資訊的編碼資 料以一洛倫茲流形之模型表示;2)運用微分流形之運算,將洛倫茲流形之度量推廣至芬斯勒空間,使該金鑰資訊的編碼資料從洛倫茲流形的資料型態轉變為芬斯勒流形的資料型態;3)將該芬斯勒流形的資料型態於複三維空間,以卡拉比丘五次多項式將其表示為一卡拉比丘流形的資料型態;4)將該卡拉比丘流形的資料型態做一平行化驗證,根據平行化驗證轉換後的流形資料,判斷該卡拉比丘流形資料是否為一可平行化之流形資料,以確認此金鑰變形運算的結果是否適用。以上之各個子例程可基於相關習知技術而實現為軟體單元、硬體單元或以軟硬體結合方式實現,然此組合之運算單元可達成先前技術未提供之金鑰變形運算功效,將一傳統金鑰的資料型態,藉由空間度量與同構映射以極為度變換等技術思想之組合,成功轉換成一高維流形拓樸空間的資料型態表示方式,此一變形將使得使用希爾伯特空間基底的量子破密運算於金鑰交換的過程中,無法對傳統金鑰進行正確的分析。
在一實施例中,前述流形運算模組之金鑰隱藏變換-單元執行一組子例程,以進行一種金鑰隱藏變換,該變換是一種基於代數空間(mathematics space)與時間因子進行區塊化加密的資料變換方法,該組子例程包括:1)將量子金鑰相關組態之編碼資料以相空間進行辛流形建模,以導出一線性辛空間模型,用以表示與該量子金鑰相關組態對應的編碼資料;2)對該量子金鑰相關組態進行驗證運算,以汰除退相干的量子態,同時避免使用發生機率過低的量子態,並保留組態對應的編碼資料經流形操作之保角映射後必要的邊緣訊息;以及3)利用狄拉克δ函數協同拉普拉斯算子,將線性辛空間模型所表示的量子金鑰相關組態對應的編碼資料,轉換成具時間因子的雅可比Θ函數型態,以達成量子金鑰隱藏變換之功效。以上之各個子例程可基於相關習知技術而實現為軟體單元、硬體 單元或以軟硬體結合方式實現,然此組合之運算單元可達成先前技術未提供之金鑰隱藏變換之功效,將一量子金鑰之組態資料於代數空間作區塊化建模,再轉換成一隨時間演化的熱核函數之資料型態,具有跨代數空間之區塊化時變加密之功效,使得一般量子破密運算攻擊於金鑰交換的過程中,無法找到可做量子運算的金鑰組態。
在另一實施例中,上述金鑰隱藏變換-單元為確保金鑰交換過程中,傳送端與接收端執行金鑰隱藏變換的正確性與成功率,更包含:一退相干過濾器,利用厄米特轉換(Hermitian Transform)過濾掉退相干的量子態;一機率過濾器,透過設定一機率門檻,並根據波函數之運算結果,排除發生機率低於設定門檻的量子態;以及一訊息保存器,保留量子金鑰組態對應的編碼資料經流形操作之保角映射後必要的邊緣訊息。以上之各個元件可基於相關習知技術而實現為軟體單元、硬體單元或以軟硬體結合方式實現,然將其整合為一過濾與保存-子單元可確保金鑰交換過程中,傳送端與接收端執行金鑰隱藏變換的正確性與成功率。
接著在一實施例中,前述流形運算模組之金鑰交換單元可根據資料的輸入型態,採用對應的強化交換程序方法(或對應的多個運作),包括有:1)強化傳統金鑰交換程序方法(或對應的多個運作),對該流形運算模組之金鑰變形運算-單元所提供的已變形的金鑰資料,將其從流形資料型態轉換成代表曲率多項式之積分式的積分式資料,再將該積分式資料中表示的多項式予以參數化,再使用隨時間演化的偏微分方程,以助於強化傳統通道的金鑰交換程序;2)強化量子金鑰交換程序方法(或對應的多個運作),對該流形運算模組之金鑰隱藏變換-單元所提供的已隱藏的金鑰資料,將其已隱藏於熱核函數內的量子金鑰組 態資料以數對之形式轉換至一無限迭代產生之複平面,並據以尋找對應座標所接近的非平凡零點,再將所有對應的非平凡零點集合與位於複平面的數對之向量關係,以及該複平面的產生參數,以一超奇異橢圓曲線加密,以助於強化金鑰交換與驗證之程序。
在一實施例中,為實現上述對應的強化交換程序方法,前述流形運算模組之金鑰交換單元可以包括:一傳統金鑰交換-子單元與一量子金鑰交換-子單元。其中,傳統金鑰交換-子單元,包含有以下元件:一拓樸曲面轉換器,對於來自該金鑰變形運算-單元的流形資料,利用陳-高斯-博內定理,藉由偶數維度的閉黎曼流形以曲率多項式的積分式表達;以及一非線性偏微分計算器,用於將曲率多項式的各種曲率參數以可隨時間演化的非線性拋物線偏微分方程式攜帶。以上之各個元件可基於相關習知技術而實現為軟體單元、硬體單元或以軟硬體結合方式實現,然此組合之傳統金鑰交換-子單元可達成先前技術未提供之促進金鑰交換的功效,可將已變形之傳統金鑰或量子金鑰所對應的流形資料轉換成代表曲率多項式之積分式的積分式資料,並將該積分式資料中表示的多項式予以參數化,再使用隨時間演化的偏微分方程,以助於傳統通道強化金鑰交換程序。同時,以上的金鑰變形運算-單元傳統金鑰交換-子單元之整合亦有效避免了傳統對稱與非對稱加密系統在金鑰交換過程中,先前技術的可能漏洞。
而前述之量子金鑰交換-子單元,執行一組子例程,於傳送端執行資料傳送前的處理方法,該組子例程包括:1)將已隱藏於熱核函數內的量子金鑰組態資訊轉換至一無限迭代產生之曼德博集複平面,使其成為以該複平面座標表示之數對集合;2)根據曼德博集複平面的碎形邊緣所表示的複二次多項式,尋找所有相對接近黎曼猜想之非平凡零點;3)選定合適的超奇異橢圓曲線, 以符合伽羅瓦群的超奇異質數作為生成點,產生可用於模擬ElGamal加密法的加密參數,對該複二次多項式、對應的非平凡零點集合以及該集合與金鑰組態資訊轉換後的數對集合之關係進行加密;4)根據尋找到的非平凡零點所對應的質數,產生符合孿生質數猜想形式的孿生質數,並將該非平凡零點的質數與對應產生的該孿生質數建構成一模方陣,並與加密後的資料做為準備傳送的資料。而後該量子金鑰交換-子單元再於接收端執行一子例程,以傳送端提供的質數資料以及模方陣資料進行逆運算驗證,以確認加密資料交換的正確性。以上之各個子例程可基於相關習知技術而實現為軟體單元、硬體單元或以軟硬體結合方式實現,然此組合之量子金鑰交換-子單元可達成先前技術未提供之促進金鑰交換的功效,可將已隱藏於熱核函數內的量子金鑰組態,進一步轉換成可應用於金鑰交換程序的超奇異橢圓曲線參數,為一般的量子金鑰提供了兼具便利性與安全性且可透過具合理花費的裝置實作之金鑰交換與驗證流程。同時,以上的金鑰隱藏變換-單元量子金鑰交換-子單元之整合亦有效避免了許多PQC方案在金鑰交換過程中,先前技術的相關缺失。
在一實施例中,此發明之系統更包含一巴拿赫空間運算模組,該模組執行一組子例程,對於一將希爾伯特空間的金鑰訊息以一拓樸空間之一第一流形資料型態表示的資訊,進行一種巴拿赫空間運算方法,先將其轉換為巴拿赫空間的資料型態進行傳輸,其接收端再將完成接收的巴拿赫空間的資料型態轉換為希爾伯特空間的資料型態,以促進其解回原希爾伯特空間的金鑰訊息,以達到於資料傳輸過程中防制量子破密運算之功效,其中,該組子例程包括:1)使用絕妙定理(Theorema Egregium),對一第一流形資料進行從一拓樸空間至一巴拿赫空間之轉換,以得到一第二流形資料,其中該第一流形資料為該拓樸空間的一 流形資料型態,該第二流形資料為該巴拿赫空間的一流形資料型態;2)於該巴拿赫空間內,透過等距逼近之運算,以該第二流形資料找出金鑰所對應之最小同構交換群;3)使用柯西不等式的運算,進行光滑空間的收斂驗證,以確認該拓樸空間至巴拿赫空間之轉換的正確性;4)透過迭代運算,以進行維度轉換,從而對該第二流形資料進行多維度之交換群至一維之皮亞諾曲線的轉換,以得到維度轉換後資料,其中該維度轉換後的資料型態為一維之皮亞諾曲線;5)透過黎曼積分之運算,將該皮亞諾曲線的資料型態轉換為以一平面表示的一第一幾何資料;6)對該第一幾何資料進行一致凸空間的曲面轉換,以得到一曲面資料型態的一第二幾何資料;7)根據該第二幾何資料所表示之該曲面是否可順利對應至超自反巴拿赫空間,確認該一致凸空間的曲面轉換是否成功,並確認該一致凸空間的曲面轉換是否符合對偶可逆性;8)確認該第二幾何資料所表示之該曲面是否為可微分曲面,進而對該第二幾何資料所表示之該曲面進行降維與映射操作,僅保留其微弱之距離屬性,最後轉換為以一弱星拓樸(弱*拓樸、Weak-* Topology 或Weak-star Topology)結構的資料型態表示的一第三幾何資料;9)藉由對偶空間之線性操作,使該第三幾何資料所代表之該弱星拓樸結構轉入賦範空間;10)將該賦範空間之資料導入內積運算與完備性,使其藉由內積空間映射至希爾伯特空間,以促進於希爾伯特空間解出原本透過第一流形所攜帶的金鑰訊息。以上之各個子例程可基於相關習知技術而實現為軟體單元、硬體單元或以軟硬體結合方式實現,然此組合之巴拿赫空間運算模組可達成先前技術未提供之金鑰空間轉換功效,支援流形運算模組以巴拿赫空間的資料型態完成抗量子破密運算的金鑰交換程序後,再將該金鑰交換程序中使用的第一流形資料經由巴拿赫空間運算而轉換為希爾伯特空間的資料型態以解出原始金鑰,使得一般於希爾伯特 空間所進行的量子運算無法介入基於本發明的實施例所保護的金鑰交換程序。同時,以上的巴拿赫空間運算模組金鑰隱藏變換-單元以及量子金鑰交換-子單元之進一步的整合亦有效避免了許多量子金鑰加密系統在金鑰交換過程中,因為希爾伯特空間運算的限制所造成的問題。
藉此,上述本發明的多個實施例可實現基於金鑰變形、金鑰隱藏等技術思想以對抗量子運算破密攻擊的金鑰交換機制。此技術可實現為高強度的抗量子破密運算之金鑰交換裝置或系統,且可實現於欲進行通訊傳輸的發送端與接收端。在一些實施例中,此技術可兼容支援傳統金鑰與量子金鑰於不同的代數空間(mathematics spaces)進行運算,除了能夠在金鑰交換的過程中有效避免一般量子運算之破密攻擊之外,此系統之相關技術手段皆能透過具合理成本之裝置實現,有效克服現行多數PQC方案須透過高昂成本之設備運作的瓶頸。同時有效避免先前技術在現行PQC方案的實作缺失、市場上對稱與非對稱加密系統的漏洞、以及量子金鑰在希爾伯特空間的運算限制等問題。
此外,在一些實施例中,上述抗量子運算威脅之金鑰交換系統,其中該流形運算模組之金鑰運算單元中,金鑰變形運算-單元或金鑰隱藏變換-單元之實施可根據金鑰型態之需求選用。在該流形運算模組之金鑰運算單元中,僅實現金鑰變形運算-單元的例子下,對應的該線性空間結構-運算模組可以不必實現量子運算子-整合計算單元及可交換運算子-處理單元。在該流形運算模組之金鑰運算單元中,僅實現金鑰變形運算-單元的例子下,前述流形運算模組之金鑰交換單元可包括傳統金鑰交換-子單元,而不必實現量子金鑰交換-子單元。在該流形運算模組之金鑰運算單元中,僅實現金鑰隱藏變換-單元的例子下,前述流 形運算模組之金鑰交換單元可包括量子金鑰交換-子單元,而不必實現傳統金鑰交換-子單元。
此外,在一些實施例中,上述抗量子運算威脅之金鑰交換系統,其中該流形運算模組之金鑰運算單元中,對於量子金鑰而言,金鑰變形運算-單元與金鑰隱藏變換-單元為可合併使用的。量子金鑰可先實施金鑰變形運算,再實施金鑰隱藏變換,而後進入量子金鑰交換-子單元,以實現最高強度的安全機制。
此外,在一些實施例中,上述抗量子運算威脅之金鑰交換系統,其中該流形運算模組之金鑰運算單元中,對於量子金鑰而言,亦可單獨搭配金鑰變形運算-單元使用。量子金鑰可僅實施金鑰變形運算,而後進入傳統金鑰交換-子單元,以迴避在量子通道上已知的惡意偵測。
C10、C20:通訊裝置
C100、C200:通訊模組
LK:通訊連結
S1000、S1000A、S1000B、S1001、S1002、S1003:抗量子運算威脅之金鑰交換系統
M1001、M1001A、M1001B、M1001C:線性空間結構-運算模組
M1002、M1002A、M1002B、M1002C:流形運算模組
M1003:巴拿赫空間運算模組
U101:量子運算子-整合計算單元
U10101:么正變換運算-子單元
U10102:降維運算-子單元
U10103:正交基底篩選-子單元
U10104:內積運算-子單元
U10105:固有化運算-子單元
U10106:厄米特驗證-子單元
U10107:基態分析-子單元
U10108:拉普拉斯轉換-子單元
U10109:轉換運算-子單元
U102:可交換運算子-處理單元
U103:原根產生單元
U104:量子亂數產生單元
U105:進階數論-運算單元
U10501:代數環運算-子單元
U10502:伽羅瓦群運算-子單元
U10503:模次冪根連續平方運算-子單元
U201:金鑰變形運算-單元
U20101:偽黎曼流形運算-子單元
U20102:芬斯勒流形運算-子單元
U20103:卡拉比丘流形運算-子單元
U20104:平行化流形驗證-子單元
U202:金鑰隱藏變換-單元
U20201:辛流形運算-子單元
U20202:過濾與保存-子單元
D101:退相干過濾器
D102:機率過濾器
D103:訊息保存器
U20203:熱核函數轉換-子單元
U203:金鑰交換單元
U20301:傳統金鑰交換-子單元
D201:拓樸曲面轉換器
D202:非線性偏微分計算器
U20302:量子金鑰交換-子單元
U20303:量子導引-子單元
U20304:貝爾量測-子單元
D301:超奇異橢圓曲線加密器
D302:曼德博集合產生器
D303:非平凡零點產生器
D304:孿生質數產生器
D305:模方陣驗證器
U301:拓樸-巴拿赫空間轉換單元
U302:最小內同構分析單元
U303:光滑空間驗證單元
U304:皮亞諾曲線轉換單元
U305:黎曼積分運算單元
U306:一致凸空間轉換單元
U307:超自反巴拿赫空間驗證單元
U308:次自反巴拿赫空間運算單元
U309:弱星拓樸空間轉換單元
F210~F213:接收與傳送流程
SP101:拓樸空間
SP102:巴拿赫空間
SP103:一致凸空間
SP104:弱星拓樸空間
SP105:賦範空間
SP106:內積空間
SP107:希爾伯特空間
圖1係本發明之抗量子運算威脅之金鑰交換系統之一實施例的系統架構方塊圖。
圖2係圖1之抗量子運算威脅之金鑰交換系統之一實施例的架構方塊圖。
圖3係本發明之一實施例的使用場景示意圖。
圖4係抗量子運算威脅之金鑰交換系統的傳送與接收流程示意圖。
圖5係本發明之抗量子運算威脅之金鑰交換系統之一實施例的系統架構方塊圖。
圖6係圖5中量子運算子-整合計算單元之一實施例的架構方塊圖。
圖7係圖5中進階數論-運算單元之一實施例的架構方塊圖。
圖8係圖1中流形運算模組之一實施例的架構方塊圖。
圖9係圖8中過濾與保存-子單元之一實施例的架構方塊圖。
圖10A係圖8中金鑰交換單元之一實施例的架構方塊圖。
圖10B係圖8中金鑰交換單元之一實施例的架構方塊圖。
圖11係圖1中巴拿赫空間運算模組之一實施例的方法與流程示意圖。
圖12係抗量子運算威脅之金鑰交換系統的代數空間操作關係示意圖。
圖13係圖5中巴拿赫空間運算模組之一實施例的架構方塊圖。
圖14係抗量子運算威脅之金鑰交換系統之另一實施例的系統架構方塊圖。
圖15A係圖1中流行運算模組之其他可行實施例的架構方塊圖。
圖15B係圖1中流行運算模組之其他可行實施例的架構方塊圖。
圖16係抗量子運算威脅之金鑰交換系統之另一實施例的系統架構方塊圖。
圖17A係本發明之另一實施例的使用場景示意圖。
圖17B係本發明之另一實施例的使用場景示意圖。
圖17C係本發明之另一實施例的使用場景示意圖。
圖17D係本發明之另一實施例的使用場景示意圖。
為充分瞭解本發明之目的、特徵及功效,茲藉由下述具體之實施例,並配合所附之圖式,對本發明做詳細說明,說明如後:以下提供一種抗量子破密運算之金鑰交換系統(或可實現為裝置)的多個實施例,可兼容支援傳統金鑰或量子金鑰於不同的代數空間(mathematics spaces)進行運算,以助於完成安全的金鑰交換程序。在一此實施例 中,此系統更可進一步利用包括金鑰變形運算金鑰隱藏變換,以及用於傳統通訊連結和量子通訊連結的完整金鑰交換-子單元的技術來實現一種機制,以構建具有最高強度的安全性之解決方案。此外,在一些實施例中,對於量子金鑰交換系統,本發明可利用傳統通訊連結實現為結合金鑰變形運算金鑰交換架構的安全機制,其中該系統可以經由傳統通訊連結執行強化的量子金鑰交換過程以迴避來自第三方的惡意偵測,而此類惡意探測的行為通常集中在量子通道的傳輸上。
在一些實施例中,本發明實現了一種藉由巴拿赫空間運算,於特定代數空間(mathematics space)進行資料型態變換操作的機制,可避免以希爾伯特空間的資料型態在金鑰存取或是在金鑰解密的過程中,遭到量子運算破密的風險。在某些特殊的實施例中,本發明的傳統金鑰交換-子單元量子金鑰交換-子單元的技術也可以作為一種安全方案,分別用於目前的對稱和非對稱密碼密鑰系統,以強化保護於傳統通訊連結進行的金鑰交換過程。在一些實施例中,一種解決方案實現了金鑰變形運算傳統金鑰交換-子單元的技術組合,以延長傳統金鑰交換系統的生命週期,並在短期內節省了設備更換問題上的大量資本支出。
如圖1所示,其為抗量子運算威脅之金鑰交換系統的實施例的系統架構方塊圖。在一實施例中,可用於抗量子運算威脅之金鑰交換系統S1000包括線性空間結構-運算模組M1001、流形運算模組M1002以及巴拿赫空間運算模組M1003。該線性空間結構-運算模組M1001有效地提供了線性空間中各種轉換所需的基本運算,並有助於確保各種基本轉換運算的正確性;該流形運算模組M1002藉由一金鑰運算單元U200採用金鑰變形運算金鑰隱藏變換等方法,用 以對金鑰資料進行流形拓樸之運算,以得出已轉換的金鑰資料以便用於金鑰交換過程;金鑰交換單元U203於傳送端將金鑰運算單元U200提供的已轉換的金鑰資料轉換為一用於安全傳輸的資料型態,或於接收端識別並接收該用於安全傳輸的資料型態,以助於強化金鑰交換程序,其中,為促進量子金鑰傳輸的穩定性,如圖2所示,該金鑰交換單元更包含有一量子導引-子單元U20303於量子傳輸通道執行量子導引(quantum steering)機制,並有一貝爾量測-子單元U20304以便於量子傳輸通道分析目前進行的量子通訊是否存在退相干問題;而該巴拿赫空間運算模組M1003則協同該線性空間結構-運算模組M1001及該流形運算模組M1002,用以支援該流形運算模組M1002在拓樸空間將自有的金鑰資料型態轉為巴拿赫空間的資料型態以助於進行抗量子破密運算的金鑰交換程序後,再經由巴拿赫空間運算將自有的金鑰資料型態轉換為希爾伯特空間的資料型態,以解出原始金鑰資料。
繼續參考圖2,在一實施例中,一種實現上述量子導引-子單元U20303的方式是採用帶有光學元件的通訊模組(例如單光子導出模組、分光鏡、減光鏡等)、電子配件以及由韌體驅動的微控單元,用於在量子通道內執行量子導引機制,其中U20303的元件組合可以藉由安全的量子遙傳(quantum teleportation)以促進量子傳輸。而圖2的貝爾量測-子單元U20304的一種實現則是採用一通訊模組,該模組由一組光學元件(例如線性光學透鏡組、光子檢測器、分束器等),電子配件以及由韌體驅動的微控單元,用於執行貝爾測量過程以確認量子通訊是否存在退相干問題,並會觸發資料重送程序以確保通訊品質。以上關於量子導引-子單元U20303和貝爾量測-子單元U20304的實現方式僅出於說明之目的而僅作為一般參考,但並不意味著對該概念的任何限制,且本發明的實現 方式不限於此。例如,上述兩個元件也可以實現為通訊模組的一部分,並且微控單元(MCU)可以用ASIC,IOT裝置,FPGA等代替,進而將U20303和U20304都整合在一個量子通道的環境下,以促進並提高量子通訊的安全性和品質。
請參考圖3,其為圖1之抗量子運算威脅之金鑰交換系統的使用情景的實施例的示意圖。如圖3所示,通訊裝置C10、C20以一通訊連結LK進行通訊,通訊裝置C10、C20分別裝設或實現了如圖1所示意的抗量子運算威脅之金鑰交換系統S1000A、S1000B並連接至通訊裝置C10、C20中各自的通訊模組C100、C200,其中通訊模組C100、C200可以是傳統支援以電子電路或無線電波為傳輸通道的通訊模組,也可以是支援以光通道進行傳輸的量子通訊模組,透過通訊連結LK進行金鑰資料的發送或接收。通訊裝置C10、C20可進行各種如習知的金鑰交換程序,其中通訊連結LK可以為傳統的通訊通道(如有線或無線網路通訊),或可實現為量子通訊通道(如光量子通道)。通訊裝置C10、C20因為分別裝設或實現了如圖1所示意的抗量子運算威脅之金鑰交換系統S1000並使用於金鑰交換程序中,故可產生抗量子運算威脅之金鑰交換的效果。通訊裝置(如C10或C20)可以基於運算裝置(如電腦、伺服器或其他運算裝置)而實現,通訊模組(如C100或C200)可以利用通訊裝置(如C10或C20)中用以實現通訊的軟體、硬體或軟體硬體的組合,如有線或無線網路卡或通訊電路,或相關通訊通道中對應的通訊協定的程式的組合。舉例而言,當通訊裝置(如C10、C20)之間需要與進行金鑰交換程序時,可以運用實現於通訊裝置(如C10或C20)上的可用於抗量子運算威脅之金鑰交換系統S1000中的流形運算模組M1002,例如將金鑰透過流形運算模組M1002的金鑰運算單元U200進行金鑰的轉換,金鑰交換單元U203可進一步用以與該系統之巴拿赫空間運算模組M1003,以及該通訊裝置的通訊模組(如C100或C200)協同運 作,將U200導出的已轉換的金鑰資料再轉換為巴拿赫空間的資料型態,再由金鑰交換單元U203處理為用於安全傳輸的資料型態,再透過通訊連結LK傳送至接收端,以助於進行金鑰交換程序。因此,金鑰交換單元U203對已轉換的金鑰進行處理是使已轉換的金鑰能夠適合於透過對應的通訊連結LK來傳送或接收。當利用通訊裝置(如C10或C20)進行金鑰交換程序時,可以將通訊裝置的可用於抗量子運算之金鑰交換系統如圖3之S1000A、S1000B作配置以便與該通訊裝置的通訊模組(如C100或C200)協同運作,故可用於抗量子運算威脅之金鑰交換系統S1000是用以促進與強化通訊模組之間的金鑰交換程序,故不受通訊裝置之間所實作的金鑰交換程序所限制;例如,金鑰交換系統S1000可以函式庫、程式介面或硬體模組來實現,並供通訊裝置中實現金鑰交換程序的專屬程式、程式模組或硬體模組來呼叫或使用;又例如,可基於可用於抗量子運算威脅之金鑰交換系統S1000而實現為可執行的程式或硬體模組以用於金鑰交換程序,或將可用於抗量子運算之金鑰交換系統S1000實現為金鑰交換程序的部分。然而,本發明的實現並不受上述例子限制。金鑰交換程序可以為各種習知或基於習知的金鑰交換程序或其他合適的金鑰交換程序或通訊協定。
為了更清楚瞭解一較佳應用案例所適用的資料轉換流程,請參考圖4,其為圖3的使用場景的資料流程圖。如圖4所示,在發送端C10執行區塊F210-區塊F213,在接收端C20執行區塊F214-區塊F217。1)首先,如圖4區塊F210說明,在傳送端C10,系統S1000A驅動其金鑰運算單元U200根據傳統金鑰或是量子金鑰的需求進行金鑰變形或是金鑰變形加上金鑰隱藏的函數轉換過程,以取得一已轉換的金鑰資料;2)其次,如區塊F211說明,將已轉換的金鑰資料經由系統S1000A的巴拿赫空間運算模組M1003從一拓樸空間的流形資料型態轉換為一巴 拿赫空間的皮亞諾曲線之資料型態;3)接著,如區塊F212說明,根據上述已轉換的金鑰資料的資料來源,對上述皮亞諾曲線型態之金鑰資料,以系統S1000A的金鑰交換單元U203進行高強度的資料加密處理程序,以產生用於進行安全傳輸且難以被逆運算解析的金鑰交換資料;4)然後,如區塊F213說明,發送端C10的通訊模組C100將用於安全傳輸的資料型態藉由金鑰交換協定的傳輸通道LK送出;5)此後,在接收端C20,如區塊F214說明,通訊模組C200藉由金鑰交換協定的傳輸通道LK接收到來自傳送端發出的用於安全傳輸的資料型態;6)下一階段,如區塊F215說明,解密接收到的安全傳輸資料,系統S1000B驅動其巴拿赫空間運算模組M1003再將解密為皮亞諾曲線形式的金鑰資料轉換為巴拿赫空間的曲面型態;7)然後,如區塊F216說明,系統S1000B的巴拿赫空間運算模組M1003再利用巴拿赫空間的超自反與次自反操作,將該曲面型態的訊息資料降維與映射成弱星拓樸結構的資料型態,使其得以轉入賦範空間;8)最終,如區塊F217說明,系統S1000B的巴拿赫空間運算模組M1003再對賦範空間導入內積運算與完備性,使賦範空間的資料型態得以回到希爾伯特空間,才能在希爾伯特空間進一步解回原始金鑰。
以上主要說明本發明之基本系統架構(圖1~圖2)、通常使用場景(圖3),以及所傳輸的金鑰資料轉換流程(圖4)。為了更完整說明本發明各單元所實施的技術手段,以下先參考如圖5所示的抗量子運算威脅之金鑰交換系統S1001的實施例中,流形運算模組M1002A用於實現兼具金鑰變形運算及金鑰隱藏變換的金鑰資料型態轉換之技術。其次,提供抗量子運算威脅之金鑰交換系統的其他實施例。
關於依據本發明之實施例的抗量子運算威脅之金鑰交換系統(以下稱系統S1001),請參閱圖5所示,系統S1001包括一線性空間結構-運算模組M1001A;一流形運算模組M1002A;以及一巴拿赫空間運算模組M1003。
在同一實施例中,上述之線性空間結構-運算模組M1001A係包括:一可於線性空間支援量子基本運算的量子運算子-整合計算單元U101;一可用於維護原始量子訊息的完整性之可交換運算子-處理單元U102;一可選用解出的原根,以導出線性空間中適用的代數結構循環群之原根產生單元U103;一可提供原根產生單元選用原根的真隨機性之量子亂數產生單元U104;以及一可提供對代數結構資料的模次冪運算能力之進階數論-運算單元U105。
在一實施例中,量子運算子-整合計算單元U101執行以下子例程以支援量子組態與線性空間有關的基本運算,包括有:1)對線性矩陣進行么正變換;2)對多維空間之么正矩陣作降維處理;3)對向量空間基底驗證其正交性;4)對向量空間導入內積計算;5)對向量空間做固有化程序解出特徵值與特徵向量;6)對選用的量子運算子驗證其是否為厄米特運算子;7)藉由碰撞截面積計算量子自基態躍遷的機率;8)藉由拉普拉斯轉換,導出向量空間內互相垂直的波向量;以及9)採用轉換運算子,將向量空間轉換為共軛之複數空間。為實現以上子例程,如圖6所示,量子運算子-整合計算單元U101可採用指令集的形式實作以下子單元以實施相關子例程:一么正變換運算-子單元U10101,用於對線性矩陣進行么正變換;一降維運算-子單元U10102,用於對多維空間之么正矩陣(unitary matrix)作降維處理;一正交基底篩選-子單元U10103,用以驗證向量空間基底之正交性,排除非正交之基底;一內積運算-子單元U10104,用於對向量空間導入內積計算;一固有化運算-子單元U10105,對向量空間做固有化運算 (Eigenization),以導出向量空間之特徵值(Eigenvalue)與特徵向量(Eigenvector);一厄米特驗證-子單元U10106,用於確認選用的量子運算子是否為厄米特運算子(Hermitian operator)(例如,檢驗選用的運算子以及要進行操作的量子態之間是否成立
Figure 110110929-A0305-02-0022-1
之關係);一基態分析-子單元U10107,用以藉由碰撞截面積計算量子自基態躍遷的機率(例如,以費曼圖Feynman diagram的模型進行模擬運算),以分析各種接收到的量子態是否合理;一拉普拉斯轉換-子單元U10108,導出向量空間內互相垂直的波向量,以解出向量空間內的正交基底;一轉換運算-子單元U10109,用於選用合適的轉換運算子,將向量空間的量子態轉換為共軛之複數空間的量子態,以分析一量子金鑰組態是否具有退化狀態或評估其退化程度。以上之各個子單元除可實現為指令集外,亦可基於相關習知技術而實現為其他軟體單元、硬體單元或以軟硬體結合方式實現,然此組合之量子運算子-整合計算單元可花費有限的運算成本,有效率地為量子訊息提供各種於線性空間轉換所需的基本運算(例如:將量子訊息表達為希爾伯特空間基底的線性組合;抑或將基底以複平面表示...等運算),並且有助於確保各種基本轉換運算之正確性。
因此,基於對以上有關量子運算子-整合計算單元之個別相關技術思想之理解,可更進一步促進以下應用:1)拉普拉斯轉換-子單元之實作可用於協助一般量子運算有關解出向量空間中的正交基底之需求;2)轉換運算-子單元之實作,藉由向量空間與共軛之複數空間之間的轉換運算,可助於分析一般的量子組態是否具有退化狀態或評估其退化程度;3)基態分析-子單元之實作,藉由基態躍遷機率的推估運算,可助於分析於一般量子通訊環境中所接收到的量子組態是否合理。
在本較佳實施例中,為維護原始量子訊息的完整性,如圖5所示,上述量子運算子-整合計算單元U101的相關線性轉換運算的結果,可再進一步透過可交換運算子-處理單元U102,執行以下子例程:1)確認量子組態之固有值是否有退化的現象(例如根據本領域之習知技術:先對量測到的量子態進行非正交轉換,以導出投影於正交座標系的固有態eigen state);2)再確認導出的固有態是否可完成厄米特轉換(Hermitian Transform);3)若轉換後顯示有退化態,則先做相位修正;4)若仍有退化態,再以可交換運算子完備集(C.S.C.O.)去除退化問題,以維護原始訊息的完整性(根據本領域之習知技術以C.S.C.O.對量測到的量子態做矩陣運算,以恢復其完備性,例如利用坐標算符、動量算符、角動量算符、內羅內克函數、列維奇維塔符號等構成的對易關係:
Figure 110110929-A0305-02-0023-2
Figure 110110929-A0305-02-0023-3
,並且配合狄拉克假設
Figure 110110929-A0305-02-0023-4
,其中f,g為古典觀測量,其量子對應項為
Figure 110110929-A0305-02-0023-12
,
Figure 110110929-A0305-02-0023-11
,以嘗試藉由其古典觀測量恢復所對應的量子態);接著將已去退化的完備轉換結果,配合前述線性空間結構-運算模組M1001A之量子亂數產生單元U104與原根產生單元U103,可進一步利用原根(primitive root)以一簡化過程產生具有真隨機性的適用代數結構之循環群(例如根據本領域之習知技術:先以真隨機亂數產生一群G,接著以尤拉phi函數解出群秩|G|,再以Lagrange定理導出元素秩ord(a)其中a為群G的元素,再利用尤拉定理配合元素秩導出原根g,再以原根的模次乘冪運算出循環群),而此循環群之各個元素可藉由本領域之習知技術用於一已知金鑰的再編碼(例如:以多項式作為GF(23)之元素,進行位元對應編碼000→0,001→1,010→x,011→x+1,100→x2,101→x2+1,110→x2+x,111→x2+x+1,其中x的解為原根g)。
因此,基於以上有關可交換運算子-處理單元U102與量子運算子-整合計算單元U101之相關技術思想的組合,可進一步促進以下應用:1)可用於分析接收到的量子態是否有退化現象;2)藉由厄米特運算可分析觀測到的物理量是否合理;3)可用於分析接收到的資料是否具有希爾伯特空間的基底,以判斷所分析的資料是否為一與量子組態相關的資料。
如圖7所示同時參考圖5,於本較佳實施例中,上述線性空間結構-運算模組M1001A中所謂的可提供代數結構下的模次冪運算能力之進階數論-運算單元U105,至少包括以下三種子單元:一代數環運算-子單元U10501,提供雙重運算子用以支援代數結構環之維護與運算(例如:支援⊕與
Figure 110110929-A0305-02-0024-13
兩種算子以維護一代數環之運算);一伽羅瓦群運算-子單元U10502,藉由模多項式以支援伽羅瓦群(Galois group)之產生與運算(例如:以g 3 +g+1作為模多項式,支援對GF(2 3 )進行交換群相關的運算);以及一模次冪根連續平方運算-子單元U10503,用於利用尤拉定理與費馬小定理之運算程序,以處理模次冪根的連續平方計算,以解決原根推導需要繁複的模次冪運算問題(例如:要利用尤拉定理對群內各個元素a計算是否a φ(n) ≡1(mod n))。以上之各個子單元除可實現為指令集外,亦可基於相關習知技術而實現為其他軟體單元、硬體單元或以軟硬體結合方式實現,然此組合之進階數論-運算單元可提供具高複雜度的安全性代數結構,同時有效率地簡化模次冪根的運算程序。此外,有關進階數論-運算單元相關技術思想之組合可更進一步促進以下應用:1)利用代數環二元算子(⊕與
Figure 110110929-A0305-02-0024-15
)的指令集或軟體函式庫有助於量子邏輯閘的串連與並聯之模擬運算;2)加上可對伽羅瓦體支***換群之模多項式運算的指令集或函式庫,更有助於促進量子邏輯閘的線性組合運算之應用;3)支援尤拉定理與費馬小定理之組合的模次冪運算指令集或函式庫亦有助於加速量子閘組合所需的矩陣模次冪運算;4)同時基於此單元具備的模多項式運 算功效,若協同請求項1所揭露的技術思想,亦有助於密碼學領域中有關量子加密單向函數的實施;5)再進一步,利用此進階數論-運算單元相關技術思想之組合亦可促進開發各種線性方程組的量子算法,以支援設計對稱式的量子金鑰,並有助於開發適用各種量子金鑰的量子雜湊值算法(quantum hash function)。
接著如圖8所示同時參考圖5,在一實施例中,前述抗量子運算威脅之金鑰交換系統之流形運算模組M1002A至少可包含一金鑰變形運算-單元U201;一金鑰隱藏變換-單元U202;以及一金鑰交換單元U203。因此,在此實施例中,可用於抗量子運算威脅之金鑰交換系統S1001的金鑰運算單元U200包含金鑰變形運算-單元U201及金鑰隱藏變換-單元U202。當該金鑰為傳統金鑰時,該金鑰變形運算-單元U201用以對該金鑰資料進行變形運算,以得到已變形的傳統金鑰作為該已轉換的金鑰。當該金鑰為量子金鑰時,該金鑰隱藏變換-單元U202用以對該金鑰資料進行隱藏變換,以得到已隱藏的量子金鑰作為該已轉換的金鑰。
如圖8所示,在一實施例中,前述流形運算模組M1002A之金鑰變形運算-單元U201執行一組子例程,以進行一種金鑰變形運算,該運算是一種基於同態變形的代數結構轉換方法,該組子例程包括:1)基於偽黎曼度量之轉換,用以將金鑰資訊的編碼資料以一洛倫茲流形之模型表示;2)運用微分流形之運算,將洛倫茲流形之度量推廣至芬斯勒空間,使該金鑰資訊的編碼資料從洛倫茲流形的資料型態轉變為芬斯勒流形的資料型態;3)將該芬斯勒流形的資料型態於複三維空間,以卡拉比丘五次多項式將其表示為一卡拉比丘流形的資料型態;4)將該卡拉比丘流形的資料型態做一平行化驗證,根據平行化驗證轉換後的流形資料,判斷該卡拉比丘流形資料是否為一可平行化之流形資料,以確認此金鑰 變形運算的結果是否適用。為實現以上子例程,如圖8所示,該金鑰變形運算-單元U201可採用指令集的形式實作以下子單元以實施相關子例程:一偽黎曼流形運算-子單元U20101,基於偽黎曼度量之轉換,用以將金鑰資訊的編碼資料以一洛倫茲流形(Lorentzian manifold)之模型表示(例如:基於偽黎曼度量Rp,1轉換為g=dx1 2+...+dxp 2-dxp+1 2);一芬斯勒流形運算-子單元U20102,運用微分流形之運算,將洛倫茲流形之度量推廣至芬斯勒空間,使該金鑰資訊的編碼資料從洛倫茲流形的資料型態轉變為芬斯勒流形的資料型態(Finsler manifold);一卡拉比丘流形運算-子單元U20103,將該芬斯勒流形的資料型態於複三維空間,以卡拉比丘五次多項式將其表示為一卡拉比丘流形的資料型態(Calabi-Yau manifold);以及一平行化流形驗證-子單元U20104,將該卡拉比丘流形的資料型態做一平行化驗證,根據平行化驗證轉換後的流形資料,判斷該卡拉比丘流形資料是否為一可平行化之流形資料,以確認此金鑰變形運算的結果是否適用。以上之各個子單元除可實現為指令集外,亦可基於相關習知技術而實現為其他軟體單元、硬體單元或以軟硬體結合方式實現,同時參考圖3之說明與圖8可知此組合之金鑰變形運算-單元U201並非著眼於金鑰產生流程,而是對於已產生的金鑰提供先前技術未提供之金鑰變形功效,可將一金鑰資訊(例如傳統金鑰的編碼,或是量子金鑰的自旋與排列)藉由提升維度與更換基底的各項流形運算技術,轉換成一拓樸空間的函數表示方式,相當於在傳送端支援一種強化的加密函數之效果,此一變形將使得即使是使用希爾伯特空間基底的量子破密運算,於金鑰交換的過程中,也無法對傳統金鑰進行正確的分析。
故根據本發明所稱之金鑰變形之相關技術思想:1)採用洛倫茲流形對金鑰做第一階段的轉換,具有對金鑰資訊做升維處理、且原始金鑰資訊可完 整映射,同時資料型態的轉換具有限定條件的可逆性等功效,有助於促進密碼學單向函數所需的暗門設計之應用;2)其相關流形轉換之技術思想,乃基於基底抽換同構變形操作之運用,搭配巴拿赫空間運算模組之相關技術,可於非希爾伯特空間完成金鑰交換程序後,回到希爾伯特空間的資料型態基於原本的同構特性,可再用於驗證資訊交換的完整性,此技術應用於量子金鑰除可避免使用到退化的量子金鑰外,其應用並可促進自有交換協定的設計。
此外有關以上金鑰變形運算-單元相關技術思想之組合可進一步促進以下應用:1)揭露以同構變形實作轉換函數的技術思想,提供產業除了傳統密碼學以時間複雜度考量的安全性設計以外,可以有更多不同的安全性設計方向;2)資料維度的變換加上抽換基底的技術思想組合,促進了以非希爾伯特空間的資料型態對抗量子破密威脅的應用;3)利用卡拉比丘流形的資料型態所揭露的技術思想,亦促進了迴避泛函分析破密攻擊的應用;4)由於卡拉比丘流形的資料型態可藉由超凱勒流形(Hyperkähler manifold)轉換為辛流形,故導入此卡拉比丘流形的技術思想亦促進了與以下將要進一步說明的金鑰隱藏變換技術之整合與應用;5)此外,除了傳統金鑰的應用外,由於卡拉比丘流形的部分維度位於超弦模型的空間,故利用其完整群(holonomy)的特性,移動其基底向量亦可促進跨不同代數空間(mathematics spaces)對量子金鑰實作密碼學中相當於位元輪轉(bit rotate)功效之應用。
繼續參考圖8與圖5,在一實施例中,前述流形運算模組M1002A之金鑰隱藏變換-單元U202執行一組子例程,以進行一種金鑰隱藏變換,該變換是一種基於代數空間(mathematics space)與時間因子進行區塊化加密的資料變換方法,該組子例程包括:1)將量子金鑰相關組態之編碼資料以相空間進行辛流 形建模,以導出一線性辛空間模型,用以表示與該量子金鑰相關組態對應的編碼資料;2)對該量子金鑰相關組態進行驗證運算,以汰除退相干的量子態,同時避免使用發生機率過低的量子態,並保留組態對應的編碼資料經流形操作之保角映射後必要的邊緣訊息;其中,此處所指的邊緣訊息乃是映射前為一流形訊息,而映射後不位於流形內部,因而成為無法滿射的非流形訊息;以及3)利用狄拉克δ函數協同拉普拉斯算子,將線性辛空間模型所表示的量子金鑰相關組態對應的編碼資料,轉換成具時間因子的雅可比Θ函數型態,以達成量子金鑰隱藏變換之功效。為實現以上子例程,如圖8所示,該金鑰隱藏變換-單元U202可採用指令集的形式實作以下子單元以實施相關子例程:一辛流形運算-子單元U20201,將量子金鑰相關組態之編碼資料以相空間進行辛流形(Symplectic manifold)建模,以導出一線性辛空間模型,用以表示與該量子金鑰相關組態對應的編碼資料;一過濾與保存-子單元U20202,對該量子金鑰相關組態進行驗證運算,以汰除退相干的量子態,同時避免使用發生機率過低的量子態,並保留組態對應的編碼資料經流形操作之保角映射後必要的邊緣訊息(例如:基於習知流形轉換所需的保角映射conformal mapping操作,可能有部分元素無法滿足映射條件,此部分即為需要另作保留處理的邊緣訊息);以及一熱核函數轉換-子單元U20203,利用狄拉克δ函數協同拉普拉斯算子(Laplace operator),將多量子態的位置運算子導出的位置本徵態對應至複平面座標,使其得以轉換成雅可比Θ函數(Jacobi theta function)型態的熱核函數。以上之各個子單元除可實現為指令集外,亦可基於相關習知技術而實現為其他軟體單元、硬體單元或以軟硬體結合方式實現,然此組合之金鑰隱藏變換-單元U202可達成先前技術未提供之金鑰隱藏功效,將一量子金鑰之組態(例如自旋與排列)轉換成一與時間相關的函數表達方式(例如:以習知的泛函分 析方法,可將以辛流形建模的金鑰組態映射為熱核函數的型態),使得一般量子運算攻擊於金鑰交換的過程中,無法找到可適用量子運算的金鑰組態。然本實施例採用熱核函數做為上述一與時間相關的函數僅為本發明所主張的一種可行示例,基於此技術思想,仍存在有多種與時間相關的習知函數可支持金鑰組態轉換(例如:含時波函數
Figure 110110929-A0305-02-0029-6
,或是Rossler渾沌模型
Figure 110110929-A0305-02-0029-7
Figure 110110929-A0305-02-0029-9
)
如圖9所示,在一實施例中,上述金鑰隱藏變換-單元U202之過濾與保存-子單元U20202為實現所支援的子例程,其指令集或函式庫可再區分為以下元件:一退相干過濾器D101,可藉由厄米特轉換(Hermitian Transform)檢查是否具有退相干的量子態,進而汰除具有退相干量子態的金鑰組態,以確保金鑰交換過程中的不含已退相干的量子態;一機率過濾器D102,為了採用較不易退相干的量子態,基於測不準原理之應用,可透過設定一機率門檻,並根據波函數之相關運算(例如:將量子態表達為基態的線性組合,再以該線性組合各項的係數平方做為評估機率的依據),進而排除發生機率低於設定門檻的量子態;以及一訊息保存器D103,用於金鑰變形後,可能形成非流形邊緣,此時對於位於非流形邊緣的重要訊息,則透過此訊息保存器D103予以保留(如前一段落所述保角映射之處置)。以上之各個元件除可實現為指令集或函式庫外,亦可基於相關習知技術而實現為其他軟體單元、硬體單元或以軟硬體結合方式實現,然此組合之過濾與保存-子單元U20202可藉由上述示例之厄米特轉換(Hermitian Transform)與保角映射之例外處置等技術手段,確保金鑰交換過程中,傳送端與接收端執行金鑰隱藏變換的正確性與成功率。
因此基於對上述有關過濾與保存-子單元相關技術思想之理解,其組合更可分別促進以下應用:1)基於退相干過濾器的技術思想,可提供一般量子通訊系統藉由對退相干狀態的監控,促進對限定時段內出現大量退相干的異常事件之示警應用;2)基於退相干過濾器的技術思想,可提供一般量子通訊環境藉由對退相干狀態的監控,促進有關系統熵值的變化程度與方向的分析應用;3)基於以上對熵值的分析,可運用對馮紐曼熵的觀察,促進一般量子通訊系統對於違反熵增定律的事件提出示警之應用;4)其機率過濾器之實作,有關利用係數平方進行機率推估的示例,其技術思想亦促進了利用持續時段的機率和大於1做為觸發條件的量子通訊異常事件之示警應用;5)其訊息保存器對於非流行邊緣的處置示例,其技術思想亦促進了利用對非流形邊緣之訊息過多做為觸發條件的量子通訊異常事件之示警應用。
整體而言,再根據上述本發明所稱之金鑰隱藏之相關技術思想之說明,更可進一步理解:1)其實施態樣可完全基於軟體運算之結果,無須藉由硬體設備進行實驗量測;2)其實施功效相當於密碼學領域中對要交換的金鑰再進行高強度的加密處置;3)基於上述加密處置的技術思想,本發明有關金鑰隱藏之技術手段,相當於在加密過程中導入時間因子;4)基於上述加密處置的技術思想,關於金鑰隱藏採用辛流形之相關運算,相當於藉由相空間的建模操作,達到密碼學領域中高強度的區塊化加密功效;5)同時藉由過濾與保存-子單元的應用設計,亦避免了對退相干的量子態進行加密;6)此外,基於相關量子領域與熱力學領域對於本發明揭示運用狄拉克函數轉換至雅可比熱核函數之技術思想的理解,亦相當於說明了量子態的機率幅可利用其固有值與固有向量,藉由本徵態將位置發生的機率對應到正交的時頻座標體系,以做為具時間因子的熱核函數的輸入 參數,而此技術思想之運用可促進產業有關對量子金鑰進行單次加密的可行設計。
於本較佳實施例中,請參閱圖8所示,上述流形運算模組M1002A之金鑰交換單元U203可對傳送端或接收端使用已變形的金鑰或已隱藏的金鑰進行處理,以助於進行金鑰交換程序。在多數實施例中,該金鑰交換單元U203根據資料的輸入型態,採用對應的強化交換程序方法(或對應的多個運作),包括有:1)強化傳統金鑰交換程序方法(或對應的多個運作),對該流形運算模組之金鑰變形運算-單元U201所提供的已變形的金鑰資料,將其從流形資料型態轉換成代表曲率多項式之積分式的積分式資料,再將該積分式資料中表示的多項式予以參數化,再使用隨時間演化的偏微分方程,以助於強化傳統通道的金鑰交換程序;2)強化量子金鑰交換程序方法(或對應的多個運作),對該流形運算模組之金鑰隱藏變換-單元U202所提供的已隱藏的金鑰資料,將其已隱藏於熱核函數內的量子金鑰組態資料以數對之形式轉換至一無限迭代產生之複平面,並據以尋找對應座標所接近的非平凡零點,再將所有對應的非平凡零點集合與位於複平面的數對之向量關係,以及該複平面的產生參數,以一超奇異橢圓曲線加密,以助於強化金鑰交換與驗證之程序。
如圖8所示,在一實施例中,為適合用於傳統通訊模組與量子通訊模組,以實現對應的強化金鑰交換程序方法,該金鑰交換單元U203並包含有以下子單元:一傳統金鑰交換-子單元U20301;以及一量子金鑰交換-子單元U20302。其中,傳統金鑰交換-子單元U20301用於接收來自金鑰變形運算-單元U201的結果,以助於進行傳統通道中的金鑰交換程序;量子金鑰交換-子單元 U20302則用於接收來自金鑰隱藏變換-單元U202的結果,以助於進行量子金鑰的交換程序。
參考圖10A,在一些實施例中,上述金鑰交換單元U203之傳統金鑰交換-子單元U20301為實現強化傳統金鑰交換程序方法,可以指令集或函式庫實作以下元件:一拓樸曲面轉換器D201,對於來自U201的變形結果(即卡拉比丘流形的多項式型態)視為一複射影空間CP4中的非奇異五次超曲面,再根據阿蒂亞-辛格指標定理(Atiyah-Singer index theorem)協同陳-高斯-博內定理(Chern-Gauss-Bonnet theorem),將該超曲面藉由偶數維度的閉黎曼流形(closed even-dimensional Riemannian manifold)以曲率多項式的積分式表達;以及一非線性偏微分計算器D202,可將曲率多項式的各種曲率參數以可隨時間演化的非線性拋物線偏微分方程組攜帶,只有知道特定目標時間參數的傳送端與接收端可利用Tanh函數展開法解出各種正確的曲率參數。以上之各個元件除可實現為指令集或函式庫外,亦可基於相關習知技術而實現為其他軟體單元、硬體單元或以軟硬體結合方式實現,然此組合之傳統金鑰交換-子單元U20301可達成先前技術未提供之促進與強化金鑰交換程序的功效,可將已變形之金鑰其流形轉換成曲率多項式之積分式,並將此多項式予以參數化,再使用隨時間演化的偏微分方程,以助於傳統通道進行金鑰交換程序。
此外,有關上述傳統金鑰交換-子單元相關技術思想之組合,亦可分別促進以下應用:1)基於將曲面多項式以參數化的資料型態藉由與Tanh函數展開法搭配的非線性偏微分方程組做資料傳輸的示例,其技術思想亦促進了利用流形轉換的多項式協同時間因子以對抗泛函分析破密攻擊的應用;2)本技術組合支援以卡拉比丘流形的資料轉換形式做為拓樸曲面轉換器的輸入,其技術思 想亦促進了一種可支援在希爾伯特空間與巴拿赫空間之間做資料傳輸的應用;3)因此上述之技術若與以下將要進一步說明的巴拿赫空間運算模組之技術整合,亦促進了以巴拿赫空間的對偶空間操作驗證傳輸資料是否有異動之應用;4)由於傳輸使用的相關曲面參數與時間因子可設計其唯一性,其技術思想亦促進了一種高安全性的身分認證(authentication)應用;5)其資料串流因具有時間演化特性,無法利用複製流量破解其驗證機制,故此傳統金鑰交換-子單元相關技術思想之組合亦促進了一種防制流量複製破密的應用。
繼續參考圖10B所示,在一些實施例中,上述金鑰交換單元U203之量子金鑰交換-子單元U20302為實現強化量子金鑰交換程序方法,可以指令集或函式庫實作以下元件:一超奇異橢圓曲線加密器D301;一曼德博集合產生器D302;以及一非平凡零點產生器D303。其中,針對來自U202的金鑰隱藏變換結果,可利用曼德博集合產生器D302,將已隱藏於熱核函數內的量子金鑰組態資訊,從歐幾里得空間之座標體系轉換至一無限迭代產生之曼德博集(Mandelbrot set)複平面,使其成為以該複平面座標表示之數對集合,並可基於習知技術利用曼德博集定理三(若c
Figure 110110929-A0305-02-0033-17
M,則|Zn|≦2,n=1,2,...)對複平面的座標數對做分群處理,以便識別集合邊緣的複平面座標並將該集合邊緣以一複二次多項式表示;接著,非平凡零點產生器D303根據上述曼德博集複平面的碎形邊緣所表示的複二次多項式,尋找所有相對接近黎曼猜想之非平凡零點(non-trivial zero);而後,實作上述之超奇異橢圓曲線加密器D301,選定合適的超奇異橢圓曲線(super-singular elliptic curve),以符合伽羅瓦群的超奇異質數(Supersingular prime)作為生成點,產生可用於模擬ElGamal加密法的加密參數,對該複二次多項式、對應的非平凡零點集合以及該集合與金鑰組態資訊轉換後的數對集合之關係進行加密,以有 助於進一步進行金鑰交換與驗證之程序。以上之各個元件除可實現為指令集或函式庫外,亦可基於相關習知技術而實現為其他軟體單元、硬體單元或以軟硬體結合方式實現,然此組合之量子金鑰交換-子單元U20302可達成先前技術未提供之促進金鑰交換的功效,將已隱藏於熱核函數內的量子金鑰,進一步轉換成可應用於金鑰交換程序的超奇異橢圓曲線參數,為一般的量子金鑰提供了兼具便利性與安全性且可透過具合理花費的裝置實作之金鑰交換流程。
參考圖10B,在上述較佳實施例中,上述金鑰交換單元U203之量子金鑰交換-子單元U20302為確保量子金鑰交換之正確性與成功率,應再進一步實作以下兩種元件:一孿生質數產生器D304以及一模方陣驗證器D305。其中,該孿生質數產生器D304,於傳送端根據非平凡零點產生器D303尋找到的非平凡零點所對應的質數,產生符合孿生質數猜想形式的孿生質數(twin prime),並將非平凡零點的質數與其對應產生的孿生質數建構成一模數運算下的方矩陣;而後,上述之模方陣驗證器D305則支援接收端以接收到的來自D301所採用的超奇異質數及D304所產生的模方陣進行逆運算驗證,以確認加密資料交換的正確性。以上之各個元件除可實現為指令集或函式庫外,亦可基於相關習知技術而實現為其他軟體單元、硬體單元或以軟硬體結合方式實現,然此組合之量子金鑰交換-子單元U20302除具備金鑰交換之功效外,更可進一步確保量子金鑰交換之正確性與成功率。
此外,有關量子金鑰交換-子單元相關技術思想之組合,亦可分別促進以下應用:1)其金鑰資料的轉換基於曼德博集與超奇異橢圓曲線組合的示例,由於涉及碎形集合與曲線方程的組合轉換,其複雜度無法以傳統的指數與對數分析做評估,亦促進了一種有別於傳統的高複雜度設計應用;2)由於曼德博集 碎形的變化可做無限迭代,可提供龐大數量的可用交換群元素,此技術思想之示例亦促進了一種適合對量子金鑰組態做一次性加密設計的應用;3)基於上述一次性加密的技術組合,也促進了對於防制中間人攻擊的應用;4)由於相關技術組合僅涉及數學運算,同時軟體的實施亦不涉及巨量的運算資源即可具有實用的超高複雜度,也促進了一種以純軟體加密設計對抗量子破密運算的應用;5)由於本技術思想示例的非平凡零點集合與曼德博碎形的分群邊緣具有特殊關係,故此量子金鑰交換-子單元相關技術思想之組合亦促進了一種可驗證傳輸資料是否被篡改的應用。
如圖11所示並再參考圖5,在一些實施例中,上述之巴拿赫空間運算模組M1003A,該模組執行一組子例程,對於一將希爾伯特空間的金鑰訊息以一拓樸空間之一第一流形資料型態表示的資訊,進行一種巴拿赫空間運算方法,先將其轉換為巴拿赫空間的資料型態,再協同流形運算模組M1002A的金鑰交換單元U203以進行安全傳輸,系統之接收端先將接收的安全傳輸資料解密為巴拿赫空間的資料型態,巴拿赫空間運算模組M1003A再將該巴拿赫空間的資料型態轉換為希爾伯特空間的資料型態,以促進其解回原希爾伯特空間的金鑰訊息,以達到於資料傳輸過程中防制量子破密運算之功效,其中,該組子例程包括:1)如圖11,區塊F300,使用絕妙定理(Theorema Egregium),對一第一流形資料進行從一拓樸空間至一巴拿赫空間之轉換,以得到一第二流形資料,其中該第一流形資料為該拓樸空間的一流形資料型態,該第二流形資料為該巴拿赫空間的一流形資料型態;2)如圖11,區塊F301,於該巴拿赫空間內,透過等距逼近之運算,以該第二流形資料找出金鑰所對應之最小同構交換群;3)如圖11,區塊F302,使用柯西不等式的運算,進行光滑空間的收斂驗證,以確認該拓樸空間至巴拿赫 空間之轉換的正確性;4)如圖11,區塊F303,透過迭代運算,以進行維度轉換,從而對該第二流形資料進行多維度之交換群至一維之皮亞諾曲線的轉換,以得到維度轉換後資料,其中該維度轉換後的資料型態為一維之皮亞諾曲線;5)如圖11,區塊F304,透過黎曼積分之運算,將該皮亞諾曲線的資料型態轉換為以一平面表示的一第一幾何資料;6)如圖11,區塊F305,對該第一幾何資料進行一致凸空間的曲面轉換,以得到一曲面資料型態的一第二幾何資料;7)如圖11,區塊F306,根據該第二幾何資料所表示之該曲面是否可順利對應至超自反巴拿赫空間,確認該一致凸空間的曲面轉換是否成功,並確認該一致凸空間的曲面轉換是否符合對偶可逆性;8)如圖11,區塊F307,確認該第二幾何資料所表示之該曲面是否為可微分曲面,進而對該第二幾何資料所表示之該曲面進行降維與映射操作,僅保留其微弱之距離屬性,最後轉換為以一弱星拓樸(弱*拓樸、Weak-* Topology或Weak-star Topology)結構的資料型態表示的一第三幾何資料;9)如圖11,區塊F308,藉由對偶空間之線性操作,使該第三幾何資料所代表之該弱星拓樸結構轉入賦範空間;10)如圖11,區塊F309,將該賦範空間之資料導入內積運算與完備性,使其藉由內積空間映射至希爾伯特空間,以促進於希爾伯特空間解出原本透過第一流形所攜帶的金鑰訊息。其中,區塊F300~區塊F303之相關子例程被巴拿赫空間運算模組M1003A實施於通訊裝置之傳送端,而區塊F304~區塊F309之相關子例程則被巴拿赫空間運算模組M1003A實施於通訊裝置之接收端。
又,上述技術思想涉及各相關代數空間之操作,為促進相關技術領域開發者對本發明相關空間操作順序之瞭解,基於上述段落之說明,此處再提供圖12做為參考,對照圖12與圖11應可理解本發明所揭露的技術思想之一,其代數空間(mathematics spaces)操作順序為:先將希爾伯特空間SP107的金鑰利用流 形變換,轉為拓樸空間SP101的流形資料型態,再由拓樸空間轉入巴拿赫空間SP102,然後以巴拿赫空間的資料型態進行金鑰交換的傳輸,金鑰交換的接收端則將接收到的金鑰交換資料從巴拿赫空間SP102先操作至一致凸空間SP103,而後轉為弱星拓樸空間SP104的資料型態,再將其導入賦範空間SP105,以便藉由內積空間SP106回到希爾伯特空間SP107。
如圖13所示並參考圖5,在一些實施例中,上述之流形運算模組M1002A於拓樸空間用以助於完成如圖8之U203所實現之促進金鑰交換程序的處理後,可得一第一流形資料,接著巴拿赫空間運算模組M1003為實現如圖11區塊F300~區塊F309之相關子例程,可以指令集或函式庫實作以下元件:一拓樸-巴拿赫空間轉換單元U301,使用絕妙定理(Theorema Egregium),利用曲率的內蘊不變量(intrinsic invariant)與局部等距變換,將位於拓樸空間的第一流形資料轉入巴拿赫空間(Banach space)成為一第二流形資料;一最小內同構分析單元U302,於巴拿赫空間內,以該第二流形資料透過等距逼近之演算法,找出金鑰所對應之最小同構交換群;一光滑空間驗證單元U303,接著透過柯西不等式的運算,進行光滑空間的收斂驗證,以確認該拓樸空間至巴拿赫空間之轉換的正確性;一皮亞諾曲線轉換單元U304,透過迭代運算,以進行維度轉換,亦即對該第二流形資料於U302所導出的交換群,進行多維度至一維之皮亞諾曲線(Peano curve)之轉換,以得到一可表示為皮亞諾曲線之維度轉換後資料;一黎曼積分運算單元U305,透過黎曼積分之運算,將該維度轉換後資料轉換為以一平面表示的第一幾何資料;一一致凸空間轉換單元U306,將來自U305之第一幾何資料,進行一致凸空間(Uniformly Convex Banach Space)的曲面轉換,以得到以一曲面表示的第二幾何資料;一超自反巴拿赫空間驗證單元U307,由於一致凸空間唯一具有 一致凸性與範數的巴拿赫空間,而超自反巴拿赫空間的一個充要條件為『在該空間可賦予與原範數等價的一致凸範數』,故可根據該第二幾何資料所代表的曲面是否可藉由一致凸範數順利對應至超自反巴拿赫空間(super-reflexive Banach space),以確認一致凸空間的曲面轉換是否成功,並可確認U306的轉換是否符合對偶可逆性;一次自反巴拿赫空間(Sub-reflexive Banach space)運算單元U308,由於一致凸空間必為次自反空間,若確認已成功取得一位於一致凸空間之曲面,則可根據次自反空間的特性,確認該曲面上的各個單位球面達到極大值的條件其集合是否可對應為其共軛空間的範數叢集(normdense),若是則可據以確認該第二幾何資料所代表的曲面是否為可微分曲面,若該曲面上的各單位球面達極大值之條件都具備範數形式,表示此曲面具備可微分之距離屬性,可進而對該第二幾何資料所代表的曲面進行降維與映射操作,僅保留其微弱之距離屬性,同時可避免資訊流失,最後形成以一弱星拓樸(Weak-star Topology)結構所表示的第三幾何資料;一弱星拓樸空間轉換單元U309,透過對偶空間之線性操作,由於弱星拓樸結構仍具微弱之距離屬性,故可將該第三幾何資料所代表的弱星拓樸結構轉入賦範空間,再導入內積運算與完備性,將該賦範空間資料藉由內積空間映射至希爾伯特空間,使原本透過第一流形所攜帶的金鑰資訊回到希爾伯特空間,以便解回原始之金鑰。以上之各個單元除可實現為指令集或函式庫外,亦可基於相關習知技術而實現為其他軟體單元、硬體單元或以軟硬體結合方式實現,然此組合之巴拿赫空間運算模組可達成先前技術未提供之金鑰空間轉換功效。
此外,有關巴拿赫空間運算模組相關技術思想之組合,亦可分別促進以下應用:1)由於資料維度與組態基底異於常態資料所在的希爾伯特空間,故以巴拿赫空間的資料型態進行傳輸的示例無法被辨識出傳送端與接收端,可 促進一種防制利用分析傳輸協定破密的應用;2)由於巴拿赫資料的轉換涉及對偶空間的操作,一旦資料在傳輸途中被篡改即會導致對偶操作失敗,故相關之技術組合亦可促進一種相當於金鑰雜湊函數功效的應用;3)基於代數空間(mathematics space)的轉換關係,由於一個巴拿赫空間可同時支援多個希爾伯特空間,故相關技術思想之組合亦可促進多個量子金鑰同時做加密傳輸的應用;4)基於上述技術思想之組合,亦可利用多個希爾伯特空間同時支援多重個加密頻道的設計,也促進了一種可支援跳頻傳輸的量子金鑰交換之應用;5)由於巴拿赫空間的資料型態可有效迴避常見的暴力破密運算,故此巴拿赫空間運算模組相關技術思想之組合,對於不論是傳統編碼資料或是量子組態資料,亦促進了一種安全的暫存機制之應用。
基於上述說明,同時參考圖3~圖5,可知本發明對於一般已知的金鑰在交換過程中,提供了一種強化保護的流程與解決方案,以圖5的系統示例而言:其線性空間結構-運算模組M1001A之各部功能組合已足以模擬各類量子邏輯閘與循環群模多項式的運算,故可對已知的量子金鑰或是傳統金鑰進行自有的再編碼;以便利用流形運算模組M1002A的金鑰變形與金鑰隱藏等技術,轉換為一種高安全性的資料輸出型態,該輸出型態相當於同時具備在密碼學領域中所稱無法被逆運算破解的單向暗門函數、有身分認證特性的非對稱加密、以及可驗證傳輸資料完整性的單向雜湊函數等綜效且可防制泛函破密分析;同時藉由巴拿赫空間運算模組M1003,可將要進行通訊傳輸的金鑰資訊(例如:包含有流形轉換過程的保角保矩資訊、維度資訊、曲率資訊以及對應的張量與洛倫茲度量等資訊)從流形資料先映射轉換至非希爾伯特空間,完成傳輸接收後才將金鑰資訊轉回希爾伯特空間的資料型態,以助於流形資料的解編碼,以避免傳輸過程 中遭到量子運算暴力破密的可能威脅。此外,在一些實施例中,上述抗量子運算威脅之金鑰交換系統,其中該流形運算模組之金鑰運算單元中,金鑰變形運算-單元金鑰隱藏變換-單元可根據金鑰型態之需求選用,以下提供實施例說明實現方式。
抗量子運算威脅之金鑰交換系統可實現為應用於傳統金鑰使用的應用情景中。請參考圖14,其為抗量子運算威脅之金鑰交換系統的另一實施例的系統架構方塊圖。如圖14所示,可用於抗量子運算威脅之金鑰交換系統S1002,至少包括線性空間結構-運算模組M1001B、流形運算模組M1002B以及巴拿赫空間運算模組M1003。圖14的可用於抗量子運算威脅之金鑰交換系統S1002與圖5中可用於抗量子運算威脅之金鑰交換系統S1001的差別在於,流形運算模組M1002B可至少實現金鑰變形運算-單元U201;因此,線性空間結構-運算模組M1001B中量子運算子-整合計算單元U101以及可交換運算子-處理單元U102為可選的,故可不必實現量子運算子-整合計算單元U101與可交換運算子-處理單元U102。如圖14所示並參考圖15A,流形運算模組M1002B其金鑰運算單元僅選用金鑰變形運算-單元U201及對應的金鑰交換單元U203僅選用傳統金鑰交換-子單元U20301,其中可參照前述相對應的實施例(如圖8與圖10A)加以實現。本實施例或可節省本發明應用於傳統金鑰交換系統時,初期建置的設備成本。
抗量子運算威脅之金鑰交換系統可實現為應用於量子金鑰使用的應用情景中。請參考圖8,在抗量子運算威脅之金鑰交換系統的又一實施例中,對於量子金鑰而言,金鑰變形運算-單元U201與金鑰隱藏變換-單元U202為可合併使用的。量子金鑰可於U201先實施金鑰變形運算,再於U202實施金鑰隱藏變 換,而後進入量子金鑰交換-子單元U20302。此實施例可實現本發明之最高強度安全機制。
抗量子運算威脅之金鑰交換系統可實現為應用於量子金鑰使用的另一應用情景中。請參考圖8,在抗量子運算威脅之金鑰交換系統的又一實施例中,對於量子金鑰而言,亦可單獨搭配金鑰變形運算-單元U201使用。量子金鑰可於U201實施金鑰變形運算,而後進入傳統金鑰交換-子單元U20301。此實施例可實現本發明將量子金鑰予以偽裝後,以用於傳統通道進行金鑰交換程序,為一迴避式的安全機制。
抗量子運算威脅之金鑰交換系統可實現為應用於量子金鑰使用的另一應用情景中。請參考圖16,其為抗量子運算威脅之金鑰交換系統的又一實施例的系統架構方塊圖。如圖16所示,可用於抗量子運算威脅之金鑰交換系統S1003,至少包括線性空間結構-運算模組M1001C、流形運算模組M1002C以及巴拿赫空間運算模組M1003。圖16的可用於抗量子運算之金鑰交換系統S1003與圖5中可用於抗量子運算之金鑰交換系統S1001的差別在於,流形運算模組M1002C可僅實現金鑰隱藏變換-單元U202。如圖16所示並參考圖15B,流形運算模組M1002C的金鑰運算單元僅包含金鑰隱藏變換-單元U202及對應的金鑰交換單元U203僅包含量子金鑰交換-子單元U20302,其中可參照前述相對應的實施例(如圖8與圖10B)加以實現。
藉此,上述多個實施例可實現對抗量子運算威脅的金鑰交換機制。更可進一步據以實現金鑰變形或金鑰隱藏等機制,或兼具金鑰變形及金鑰隱藏等機制。此技術可實現為高強度的抗量子運算之金鑰交換裝置或系統,且可實現於通訊裝置的發送端與接收端。在一些實施例中,此技術可兼容支援傳統金鑰 或量子金鑰於不同的代數空間(mathematics spaces)進行運算,除了能夠在金鑰交換的過程中有效避免一般量子運算之破密攻擊之外,此系統之相關技術手段皆能透過具合理成本之運算裝置實現,有效克服現行多數PQC方案須透過高昂成本之設備運作的瓶頸。例如,對應於金鑰變形機制的實現方式,可以利用屬傳統電腦(其相對於量子電腦而言)的運算裝置(如具高效之處理器或圖形處理器的電腦或伺服器)來加以實現。至此,基於以上對本發明之線性空間結構運算模組流形運算模組以及巴拿赫空間運算模組等相關技術思想之理解,更可分別促進:1)以軟體模組模擬量子邏輯閘組合之相關應用;2)利用矩陣操作可實施的各種對偶、升降維度、映射等運算轉換,可應用於密碼學領域設計具備高安全性的自有單向函數;3)利用非希爾伯特空間與希爾特空間的資料型態轉換,可應用於設計各種防止暴力破密的傳輸協定。
除上述實施例之外,還有基於圖5的系統S1001的一個解決方案應用示例。該實施例採用常見的軟體定義網路(SDN,Software Defined Network)與網路功能虛擬化(NFV,Network Function Virtualization)的組合方式進行佈署。參考圖5與圖17A,該線性空間結構-運算模組M1001A可藉由SDN的方式實施於一特定的運算網路,例如,M1001A的管理軟體套件可安裝於圖17A所示的軟體控制伺服器SC001上,該伺服器本身也是SDN控制器的角色。同時,圖5所示組成線性空間結構-運算模組M1001A的各個軟體單元(U101~U105),也可以安裝於該特定運算網路的轉發設備上(forwarding device,如圖17A的FD001~FD005)。每個轉發設備(FD001~FD005)可以從伺服器SC001接收來自線性空間結構-運算模組M1001A的管理指令,並將每個軟體單元(U101~U105)的執行結果也回傳伺服器SC001。由於FD001~FD005是一般SDN的轉發設備,因此在每個轉發設備 上都存在解耦合控制器(decoupled controller,如圖17A的伺服器SC001藉由虛線所表示的通訊連結所接上的那些區塊),使得轉發設備FD001~FD005可以根據每個軟體單元(U101~U105)的功能性需求相互通訊。
繼續參考圖5與圖17A,例如,將一原根產生單元U103安裝在FD003上,一量子亂數產生單元U104安裝在FD004上。當系統S1001需要導出一個適用的循環群時,安裝在SC001上的M1001A的管理軟體套件將向FD003和FD004發送對應的指令,然後FD004上的解耦合控制器將協助把該量子亂數產生單元U104生成的量子亂數發送到FD003,使得該原根產生單元U103可藉此在線性空間中利用真隨機性的亂數產出適用的代數循環群。此外,根據各單元的功能性需求,轉發設備也可以是塔式工作站(tower station)或虛擬機(virtual machine)等。例如,用於支持可交換運算子-處理單元U102的轉發設備可以由一運算設備來實現,像是圖17B所示的具有平行系統的微型伺服器PS001,此類運算設備含有多個實體處理器以及可同時存取的記憶體單元,以支持量子運算所需的一些矩陣操作。又例如,用於執行原根產生單元U103的轉發設備也可以只由諸如IOT(物聯網)裝置的運算設備來實現。
參考以上解決方案之示例,流形運算模組M1002A與巴拿赫空間運算模組M1003亦可採用類似的方式實現。於此方案中,系統S1001的組成模組(M1001A、M1002A以及M1003)都在以NFV方式進行協調的基礎架構上運作,但是用於實現金鑰交換單元U203的轉發裝置要能作為量子通訊的收發器。然而上述系統S1001的圖式僅作為說明之參考,基於本發明之技術思想,其應用並不限於此。舉例而言,在一些實施例中,所有用於實現系統各個模組的SDN可以被整合到具有各種微系統的大型伺服器中。如圖17C所示並參考圖17A,在S1001的 另一個示例中,可以將用於執行進階數論-運算單元U105的轉發設備FD005設計為另一種運算設備,例如一種具有多個嵌入式FPGA(Field Programmable Gate Array)的運算工作平台WB001,該運算工作平台包括一具有時脈產生器、相位調校電路以及多個FPGA模組的主機板,該主機板可以對不同的FPGA模組(例如,FPGA001~FPGA003)藉由驅動時脈產生器或選擇性配合相位調整,以提供不同使用者定義的時脈,使其得以執行進階數論-運算單元U105的各個子單元(例如,圖5所示的U10501~U10503)。
在S1001的同一示例中,該巴拿赫空間運算模組M1003的各單元(如圖13所示的U301~U309),可參考圖17D以指令集的形式實現為非暫時性機器可讀媒體(non-transitory machine-readable medium,例如固態儲存磁碟SSD)所組成之儲存陣列SDA001的一部分。例如,將U301~U309對應之指令集儲存於SSD001~SSD009,其中,該固態儲存磁碟陣列SDA001安裝於一伺服器,而該伺服器也是一個具有多個實體處理器的SDN控制器。根據上述設計,可將M1003的管理軟體套件安裝於該SDN控制器,而該套件可存取SSD001~SSD009以協調指令集形式的U301~U309由一個或多個處理器執行,以進行拓樸空間與巴拿赫空間之間的各種資料型態的轉換程序。
本發明在上文中已以多個實施例揭露,然熟習本項技術者應理解的是,該實施例僅用於描述本發明,而不應解讀為限制本發明之範圍。應注意的是,舉凡與該實施例等效之變化與置換,均應視為涵蓋於本發明之範疇內。因此,本發明之保護範圍當以申請專利範圍所界定者為準。
S1000:可對抗量子運算威脅之金鑰交換系統
M1001:線性空間結構-運算模組
M1002:流形運算模組
M1003:巴拿赫空間運算模組
U200:金鑰運算單元
U203:金鑰交換單元

Claims (13)

  1. 一種用於金鑰交換程序以對抗量子運算破密威脅的系統,其包括:一線性空間結構-運算模組,用於至少支援線性空間基本運算,該線性空間結構-運算模組包含:一原根產生單元,用於導出線性空間中,適用的循環群;一量子亂數產生單元,用以對原根產生單元提供真隨機性;以及一進階數論-運算單元,用以提供對代數結構資料的模次冪運算能力;一流形運算模組,協同該線性空間結構-運算模組,用於支援對金鑰資料以流形拓樸進行運算,該流形運算模組包含:一金鑰運算單元,用以對金鑰資料進行流形拓樸之運算,以得出已轉換的金鑰資料;以及一金鑰交換單元,於傳送端將金鑰運算單元提供的已轉換的金鑰資料轉換為自有的傳輸資料型態,或於接收端識別並接收自有的傳輸資料型態,以助於強化金鑰交換程序,其中,為促進量子金鑰傳輸的穩定性,該金鑰交換單元包含有一量子導引-子單元於量子傳輸通道執行量子導引(quantum steering)機制,並有一貝爾量測-子單元以便於量子傳輸通道分析目前進行的量子通訊是否存在退相干問題;以及一巴拿赫空間運算模組,協同該線性空間結構-運算模組及該流形運算模組,用以支援該流形運算模組在拓樸空間將自有的金鑰資料型態轉為巴拿赫空間的資料型態以助於進行抗量子破密運算的金鑰交換程序後,再經由巴拿赫空間運算將自有的金鑰資料型態轉換為希爾伯特空間的資料型態,以解出原始金鑰資料。
  2. 如請求項1所述之用於金鑰交換程序以對抗量子運算破密威脅的系統,其中該流形運算模組之金鑰運算單元根據金鑰型態之需求選用以下至少一個單元:一金鑰變形運算-單元,用以對一傳統金鑰或一量子金鑰進行金鑰變形運算,藉由代數空間(mathematics space)的度量攜帶金鑰資訊的編碼資料,再對其進行維度變換,以得到一已變形的金鑰資料作為該已轉換的金鑰資料,其中該已轉換的金鑰資料為一流形資料型態;一金鑰隱藏變換-單元,用以對一量子金鑰,或一來自金鑰變形運算-單元的已變形的金鑰資料,進行金鑰隱藏變換,藉由相空間建模以及時間因子進行跨代數空間的區塊化加密,以得到一已隱藏的金鑰資料作為該已轉換的金鑰資料,其中該已轉換的金鑰資料為一具有金鑰組態資訊的熱核函數參數型態。
  3. 如請求項1所述之用於金鑰交換程序以對抗量子運算破密威脅的系統,其中該線性空間結構-運算模組更包含:一量子運算子-整合計算單元,用以於線性空間支援量子基本運算;以及一可交換運算子-處理單元,用於維護原始量子訊息的完整性;其中該量子運算子-整合計算單元執行多個運作,該等運作包含:對線性矩陣進行么正變換;對多維空間之么正矩陣作降維處理;對向量空間基底驗證其正交性;對向量空間導入內積計算;對向量空間做固有化程序解出特徵值與特徵向量;對選用的量子運算子驗證其是否為厄米特運算子;藉由碰撞截面積計算量子自基態躍遷的機率;藉由拉普拉斯轉換,導出向量空間內互相垂直的波向量;以及 採用轉換運算子,將向量空間轉換為共軛之複數空間。
  4. 如請求項3所述之用於金鑰交換程序以對抗量子運算破密威脅的系統,其中該系統提供用於維護原始量子訊息完整性的多個運作,該等運作包括:對量測到的量子態進行非正交轉換,以導出投影於正交座標系的固有態(eigen state);確認導出的固有態是否可完成厄米特轉換(Hermitian Transform);若厄米特轉換後顯示有退化態,則先做相位修正;若相位修正後仍有退化態,再以可交換運算子完備集(C.S.C.O.)去除退化問題,以維護原始訊息的完整性。
  5. 如請求項1所述之用於金鑰交換程序以對抗量子運算破密威脅的系統,其中該線性空間結構-運算模組之進階數論-運算單元,包含:一代數環運算-子單元,提供雙重運算子用以支援代數結構環之維護與運算;一伽羅瓦群運算-子單元,可藉由模多項式以支援伽羅瓦群之產生與運算;一模次冪根連續平方運算-子單元,用於利用尤拉定理與費馬小定理之運算程序,以處理模次冪根的連續平方計算。
  6. 如請求項2所述之用於金鑰交換程序以對抗量子運算破密威脅的系統,其中為確保金鑰交換過程中,傳送端與接收端執行金鑰隱藏變換的正確性與成功率,該金鑰隱藏變換-單元更包含:一退相干過濾器,利用厄米特轉換(Hermitian Transform)過濾掉退相干的量子態;一機率過濾器,透過設定一機率門檻,並根據波函數之運算結果,排除發生機率低於設定門檻的量子態; 一訊息保存器,保留量子金鑰組態對應的編碼資料經流形操作之保角映射後必要的邊緣訊息。
  7. 如請求項1所述之用於金鑰交換程序以對抗量子運算破密威脅的系統,其中該流形運算模組之金鑰交換單元,根據資料的輸入型態,採用對應的強化交換程序的多個運作,該等運作包括:強化傳統金鑰交換程序的運作,對該流形運算模組之金鑰變形運算-單元所提供的已變形的金鑰資料,將其從流形資料型態轉換成代表曲率多項式之積分式的積分式資料,再將該積分式資料中表示的多項式予以參數化,再使用隨時間演化的偏微分方程,以助於強化傳統通道的金鑰交換程序;強化量子金鑰交換程序的運作,對該流形運算模組之金鑰隱藏變換-單元所提供的已隱藏的金鑰資料,將其已隱藏於熱核函數內的量子金鑰組態資料以數對之形式轉換至一無限迭代產生之複平面,並據以尋找對應座標所接近的非平凡零點,再將所有對應的非平凡零點集合與位於複平面的數對之向量關係,以及該複平面的產生參數,以一超奇異橢圓曲線加密,以助於強化金鑰交換與驗證之程序。
  8. 如請求項2所述之用於金鑰交換程序以對抗量子運算破密威脅的系統,其中該流形運算模組,更包含有一傳統金鑰交換-子單元以助於強化傳統通道的金鑰交換程序,其中該傳統金鑰交換-子單元包含:一拓樸曲面轉換器,對於來自該金鑰變形運算-單元的流形資料,利用陳-高斯-博內定理,藉由偶數維度的閉黎曼流形以曲率多項式的積分式表達;一非線性偏微分計算器,用於將曲率多項式的各種曲率參數以可隨時間演化的非線性拋物線偏微分方程式攜帶。
  9. 如請求項2所述之用於金鑰交換程序以對抗量子運算破密威脅的系統,其中該流形運算模組,更包含有一量子金鑰交換-子單元以助於強化量 子通道的金鑰交換程序,其中該量子金鑰交換-子單元於傳送端執行資料傳送前的多個運作,該等運作包括:將已隱藏於熱核函數內的量子金鑰組態資訊轉換至一無限迭代產生之曼德博集複平面,使其成為以該複平面座標表示之數對集合;根據曼德博集複平面的碎形邊緣所表示的複二次多項式,尋找所有相對接近黎曼猜想之非平凡零點;選定合適的超奇異橢圓曲線,以符合伽羅瓦群的超奇異質數作為生成點,產生可用於模擬ElGamal加密法的加密參數,對該複二次多項式、對應的非平凡零點集合以及該集合與金鑰組態資訊轉換後的數對集合之關係進行加密;根據尋找到的非平凡零點所對應的質數,產生符合孿生質數猜想形式的孿生質數,並將該非平凡零點的質數與對應產生的該孿生質數建構成一模方陣;並且於接收端執行資料驗證運作,以接收到的質數資料以及模方陣資料進行逆運算驗證,以確認加密資料交換的正確性。
  10. 一種用於金鑰交換系統以對抗量子運算破密威脅的方法,其包括:利用線性空間結構運算的組合,對於具備希爾伯特空間資料型態的量子金鑰或傳統金鑰,可選用量子運算指令、交換子運算指令、原根運算指令、代數運算指令等指令組合,以進行各類量子邏輯閘的模擬與循環群模多項式的運算,進而對已知的量子金鑰或是傳統金鑰進行自有的再編碼,以取得一相當於金鑰資訊的編碼資料;再利用包含與流形運算相關的金鑰變形運算以及與轉換時間函數相關的金鑰隱藏變換之中至少一種運算,將該金鑰資訊的編碼資料轉換為一種高安全性的資料輸出型態,再根據資料來源,採用含時偏微分方程組或是複平面轉換加密的方法,將該資料輸出型態轉換為安全傳輸資料,使得該安全傳輸資料具有無法 被逆運算破解、可身分認證,以及可驗證傳輸資料完整性且可防制泛函破密分析之功效;以及對於上述金鑰變形運算或金鑰隱藏變換的輸出資料,在轉換為上述安全傳輸資料之前,同時可再藉由巴拿赫空間的資料型態轉換運算,將該輸出資料先從拓樸空間的流形資料型態映射轉換為巴拿赫空間的皮亞諾曲線之資料型態;完成安全傳輸接收後,再解密出巴拿赫空間的皮亞諾曲線之資料型態,而後將巴拿赫空間的皮亞諾曲線之資料型態轉回希爾伯特空間的資料型態,再進行流形資料型態的解編碼,以解出相當於原始希爾伯特空間的金鑰資訊的編碼資料,再還原為原始對應的量子金鑰或傳統金鑰,以達到避免傳輸過程中遭到量子運算暴力破密之功效。
  11. 如請求項10所述之用於金鑰交換系統以對抗量子運算破密威脅的方法,其中該金鑰變形運算是一種基於同態變形的代數結構轉換方法,其包括:基於偽黎曼度量之轉換,用以將金鑰資訊的編碼資料以一洛倫茲流形之模型表示;運用微分流形之運算,將洛倫茲流形之度量推廣至芬斯勒空間,使該金鑰資訊的編碼資料從洛倫茲流形的資料型態轉變為芬斯勒流形的資料型態;將該芬斯勒流形的資料型態於複三維空間,以卡拉比丘五次多項式將其表示為一卡拉比丘流形的資料型態;將該卡拉比丘流形的資料型態做一平行化驗證,根據平行化驗證轉換後的流形資料,判斷該卡拉比丘流形資料是否為一可平行化之流形資料,以確認此金鑰變形運算的結果是否適用。
  12. 如請求項10所述之用於金鑰交換系統以對抗量子運算破密威脅的方法,其中該金鑰隱藏變換是一種基於代數空間(mathematics space)與時間因子進行區塊化加密的資料變換方法,其包括:將量子金鑰相關組態之編碼資料以相空間進行辛流形建模,以導出一線性辛空間模型用以表示與該量子金鑰相關組態對應的編碼資料;對該量子金鑰相關組態進行驗證運算,以汰除退相干的量子態,同時避免使用發生機率過低的量子態,並保留組態對應的編碼資料經流形操作之保角映射後必要的邊緣訊息;利用狄拉克δ函數協同拉普拉斯算子,將線性辛空間模型所表示的量子金鑰相關組態對應的編碼資料,轉換成具時間因子的雅可比Θ函數型態,以達成量子金鑰隱藏變換之功效。
  13. 一種用於金鑰交換系統以對抗量子運算破密威脅的方法,其包括:利用線性空間之運算與操作的組合,以取得一相當於金鑰資訊的自有編碼資料;再利用金鑰變形運算以及金鑰隱藏變換等技術手段,將該金鑰資訊之編碼資料轉換為一種高安全性的資料輸出型態,該資料輸出型態可視為一拓樸空間的第一流形資料;使用絕妙定理(Theorema Egregium),對一第一流形資料進行從一拓樸空間至一巴拿赫空間之轉換,以得到一第二流形資料,其中該第一流形資料表示於該拓樸空間的一流形,該第二流形資料表示於該巴拿赫空間的一流形;於該巴拿赫空間內,透過等距逼近之運算,以該第二流形資料找出金鑰所對應之最小同構交換群; 使用柯西不等式的運算,進行光滑空間的收斂驗證,以確認該拓樸空間至巴拿赫空間之轉換的正確性;透過迭代運算,以進行維度轉換,從而對該第二流形資料進行多維度之交換群至一維之皮亞諾曲線的轉換,以得到維度轉換後資料,其中該維度轉換後的資料型態為一維之皮亞諾曲線,以便再進一步轉換為用於安全傳輸之資料;接收該用於安全傳輸之資料並解密為皮亞諾曲線型態的資料後,再透過黎曼積分之運算,將該皮亞諾曲線型態的資料轉換為以一平面表示的一第一幾何資料;對該第一幾何資料進行一致凸空間的曲面轉換,以得到一曲面資料型態的一第二幾何資料;根據該第二幾何資料所表示之該曲面是否可順利對應至超自反巴拿赫空間,確認該一致凸空間的曲面轉換是否成功,並確認該一致凸空間的曲面轉換是否符合對偶可逆性;確認該第二幾何資料所表示之該曲面是否為可微分曲面,進而對該第二幾何資料所表示之該曲面進行降維與映射操作,僅保留其微弱之距離屬性,最後轉換為以一弱星拓樸結構的資料型態表示的一第三幾何資料;藉由對偶空間之線性操作,使該第三幾何資料所代表之該弱星拓樸結構轉入賦範空間;將該賦範空間之資料導入內積運算與完備性,使其藉由內積空間映射至希爾伯特空間,以促進於希爾伯特空間解出原本透過第一流形所攜帶的與金鑰訊息有關的自有編碼資料,再還原為原始對應的量子金鑰或傳統金鑰,以達到避免金鑰交換過程中遭到量子運算暴力破密之功效。
TW110110929A 2020-03-27 2021-03-25 用於促進與強化金鑰交換程序的抗量子運算威脅之系統與方法 TWI804832B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
TW109110653 2020-03-27
TW109110653 2020-03-27
US16/885,312 2020-05-28
US16/885,312 US11218303B2 (en) 2020-03-27 2020-05-28 Quantum attack-resistant system to facilitate and enhance processes of cryptography key exchange

Publications (2)

Publication Number Publication Date
TW202137730A TW202137730A (zh) 2021-10-01
TWI804832B true TWI804832B (zh) 2023-06-11

Family

ID=77857596

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110110929A TWI804832B (zh) 2020-03-27 2021-03-25 用於促進與強化金鑰交換程序的抗量子運算威脅之系統與方法

Country Status (2)

Country Link
US (1) US11218303B2 (zh)
TW (1) TWI804832B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11240014B1 (en) 2019-09-10 2022-02-01 Wells Fargo Bank, N.A. Systems and methods for post-quantum cryptography optimization
US11477016B1 (en) 2019-09-10 2022-10-18 Wells Fargo Bank, N.A. Systems and methods for post-quantum cryptography optimization
US11626983B1 (en) 2019-09-10 2023-04-11 Wells Fargo Bank, N.A. Systems and methods for post-quantum cryptography optimization
US11533175B1 (en) 2020-01-30 2022-12-20 Wells Fargo Bank, N.A. Systems and methods for post-quantum cryptography on a smartcard
US11838410B1 (en) 2020-01-30 2023-12-05 Wells Fargo Bank, N.A. Systems and methods for post-quantum cryptography optimization
US11449799B1 (en) * 2020-01-30 2022-09-20 Wells Fargo Bank, N.A. Systems and methods for post-quantum cryptography optimization
US11322050B1 (en) * 2020-01-30 2022-05-03 Wells Fargo Bank, N.A. Systems and methods for post-quantum cryptography optimization
US11438148B2 (en) * 2020-03-27 2022-09-06 Ahp-Tech Inc. Quantum computing-threat-resistant method and system for use on cryptography key exchanging processes
TWI796862B (zh) * 2021-12-03 2023-03-21 國立勤益科技大學 主從式架構之驗證隱匿方法及系統
CN115202616A (zh) * 2022-06-24 2022-10-18 上海途擎微电子有限公司 模乘器、安全芯片、电子设备及加密方法
WO2024107244A2 (en) * 2022-07-14 2024-05-23 Black Spire, LLC A deterministic method and system for generating an ephemeral cryptographic key, a key establishment protocol, encryption system and method, decryption system and method, and system and method for storage of keying elements as an overall cryptographic system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI466523B (zh) * 2010-06-29 2014-12-21
TWI487308B (zh) * 2013-05-29 2015-06-01 國立成功大學 量子通訊方法
TW201904231A (zh) * 2017-06-01 2019-01-16 挪威商斯外普公司 漸進式金鑰加密演算法
US20190319801A1 (en) * 2019-06-28 2019-10-17 Intel Corporation Efficient post-quantum anonymous attestation with signature-based join protocol and unlimited signatures
US20190325166A1 (en) * 2019-06-28 2019-10-24 Intel Corporation Post quantum public key signature operation for reconfigurable circuit devices

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7324647B1 (en) * 2000-10-23 2008-01-29 Bbn Technologies Corp. Quantum cryptographic key distribution networks with untrusted switches
US7983422B2 (en) * 2003-07-25 2011-07-19 Hewlett-Packard Development Company, L.P. Quantum cryptography
US10250387B1 (en) * 2016-05-18 2019-04-02 Patrick Joseph Guerin Quantum computer resistant algorithm cryptographic key generation, storage, and transfer device
US10742420B1 (en) * 2018-03-09 2020-08-11 Wells Fargo Bank, N.A. Quantum-resistant double signature system
US11991271B2 (en) * 2018-07-31 2024-05-21 International Business Machines Corporation System and method for quantum resistant public key encryption
US10708046B1 (en) * 2018-11-08 2020-07-07 Nxgen Partners Ip, Llc Quantum resistant blockchain with multi-dimensional quantum key distribution
TWI798517B (zh) * 2019-12-31 2023-04-11 阿證科技股份有限公司 可用於量子加密解密與編碼之系統
US11394536B2 (en) * 2020-01-22 2022-07-19 Cisco Technology, Inc Session key distribution independent of third parties
US10817590B1 (en) * 2020-02-26 2020-10-27 Amera IoT Inc. Method and apparatus for creating and using quantum resistant keys
US11985226B2 (en) * 2020-12-23 2024-05-14 Intel Corporation Efficient quantum-attack resistant functional-safe building block for key encapsulation and digital signature

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI466523B (zh) * 2010-06-29 2014-12-21
TWI487308B (zh) * 2013-05-29 2015-06-01 國立成功大學 量子通訊方法
TW201904231A (zh) * 2017-06-01 2019-01-16 挪威商斯外普公司 漸進式金鑰加密演算法
US20190319801A1 (en) * 2019-06-28 2019-10-17 Intel Corporation Efficient post-quantum anonymous attestation with signature-based join protocol and unlimited signatures
US20190325166A1 (en) * 2019-06-28 2019-10-24 Intel Corporation Post quantum public key signature operation for reconfigurable circuit devices

Also Published As

Publication number Publication date
US20210306144A1 (en) 2021-09-30
US11218303B2 (en) 2022-01-04
TW202137730A (zh) 2021-10-01

Similar Documents

Publication Publication Date Title
TWI804832B (zh) 用於促進與強化金鑰交換程序的抗量子運算威脅之系統與方法
US11121878B2 (en) Authentication using key distribution through segmented quantum computing environments
Feng et al. AAoT: Lightweight attestation and authentication of low-resource things in IoT and CPS
Qureshi et al. PUF-RAKE: A PUF-based robust and lightweight authentication and key establishment protocol
US11438148B2 (en) Quantum computing-threat-resistant method and system for use on cryptography key exchanging processes
Roy et al. IESCA: An efficient image encryption scheme using 2-D cellular automata
US11614918B1 (en) Generating quantum representations of hexadecimal data
Mattsson et al. Quantum-resistant cryptography
CN117527223B (zh) 一种基于格的抗量子密码的分布式解密方法及***
CN114417382A (zh) 数据传输加解密方法、装置、设备及存储介质
Aizpurua et al. Hacking Cryptographic Protocols with Advanced Variational Quantum Attacks
Su et al. Improved quantum signature scheme with weak arbitrator
Iqbal et al. A Survey on Post Quantum Cryptosystems: Concept, Attacks, and Challenges in IoT Devices
TWM596498U (zh) 促進與強化金鑰交換程序的可對抗量子運算之系統
Roy et al. A novel cryptosystem using cellular automata
CN113765658A (zh) 分布式云计算架构中物联网设备的认证和密钥协商协议方法
Kachurova et al. Lattice-based cryptography: A quantum approach to secure the iot technology
Saffer et al. Lightweight cryptography method in the internet of things using elliptic curve and crow search algorithm
Chapman Using Graphic Based Systems to Improve Cryptographic Algorithms
CN111971677A (zh) 用于移动装置的防篡改数据编码
CN115567929B (zh) 密钥管理方法和装置、电子设备和存储介质
Abdul-Jabbar Secure QR-code generation in healthcare
Roy et al. OTK-based PUF CRP obfuscation for IoT device authentication
EP4407926A1 (en) Identity authentication for qkd protocols
Grote et al. Simulation and Application Purpose of a Randomized Secret Key with Quantum Key Distribution