TWI801384B - 用於行動裝置通訊之天線控制的系統及方法 - Google Patents

用於行動裝置通訊之天線控制的系統及方法 Download PDF

Info

Publication number
TWI801384B
TWI801384B TW107116357A TW107116357A TWI801384B TW I801384 B TWI801384 B TW I801384B TW 107116357 A TW107116357 A TW 107116357A TW 107116357 A TW107116357 A TW 107116357A TW I801384 B TWI801384 B TW I801384B
Authority
TW
Taiwan
Prior art keywords
antenna
communication device
communication
location
mobile device
Prior art date
Application number
TW107116357A
Other languages
English (en)
Other versions
TW201929929A (zh
Inventor
蒂莫西 西蒙 盧卡斯
丹尼爾 利亞姆 菲茨杰拉德
羅德尼 伊恩 蘭姆
Original Assignee
澳大利亞商伊門斯機器人控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/AU2018/050090 external-priority patent/WO2018145153A1/en
Application filed by 澳大利亞商伊門斯機器人控股有限公司 filed Critical 澳大利亞商伊門斯機器人控股有限公司
Publication of TW201929929A publication Critical patent/TW201929929A/zh
Application granted granted Critical
Publication of TWI801384B publication Critical patent/TWI801384B/zh

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一種通訊系統,包含:第一及第二通訊裝置,各通訊裝置包含一天線、一定位系統,其決定該第一及第二通訊裝置其中至少一者的位置,及一控制系統,其自該位置系統接收指示該位置的位置資訊、決定該第一及第二通訊裝置的一相對位置,並根據該相對位置選擇性控制該第一及第二通訊裝置其中至少一者的一傳輸天線,藉此使該第一及第二通訊裝置之間的通訊最佳化。

Description

用於行動裝置通訊之天線控制的系統及方法
本申請案係關於一控制天線,使第一及第二通訊裝置進行通訊的系統及方法,在一特定實施例中,此系統及方法使用行動裝置將通訊最佳化。
本文中與任何公開參考文獻(或自其中衍生的資訊)或任何習知內容(或自其中衍生的資訊)相關的敘述,皆非且不應被視為認可、承認或以任何形式建議公開參考文獻(或自其中衍生的資訊)或習知內容屬於本發明所屬技術領域中通常知識的一部分。
提供多人遊戲場地進行遊戲為習知做法,如進行雷射槍戰遊戲(laser tag)。在此遊戲當中,每位玩家皆穿戴如紅外線感應器等器材,該器材可被其他玩家發射的雷射擊中。
近年來開發的虛擬實境(VR)及擴增實境(AR)系統,可提供內容給穿戴式顯示裝置,如頭戴式顯示器(HMD),該裝置基於相對空間位置及/或方向顯示資訊供穿戴者觀看。此系統會基於與顯示裝置的姿勢(位置及方向)相關的資訊生成影像,因此當顯示裝置移動時,影像會隨之更新以反映顯示裝置 的新姿勢。
為避免穿戴者暈眩,由蒐集姿勢資訊到生成對應影像的時間差必須減到最小,尤其在當顯示裝置快速移動時。有鑑於此,再加上對生成高畫質擬真影像的需求,便需要搭配能有效運作的處理硬體。於是,目前的高端系統通常需要使用靜態桌機,再透過高速頻寬及低延遲連線使桌機連線至顯示裝置。如此一來,現有的系統如HTC ViveTM、Oculus RiftTM及Playstation VRTM等,皆須在電腦及頭戴式顯示器之間建立較不尋常的連線,為相當不便利的情形。
雖然目前已經開發出無線系統,但搭配現有的硬體設施仍無法應付多人遊戲情境中的傳輸需求。
關於無線傳輸系統,另一需求是須確保訊號強度及頻寬合適恰當,並將延遲減至最小。在此情況下,於相位天線陣列中使用波束成形技術時,陣列通常會進行掃掠(sweep)程序,此時,波束會掃掠接收者所在的整塊區域,以界定可使接收訊號達到最強的波束組態。一般而言,掃掠程序會花費一些時間,如20毫秒,可能導致傳輸頻寬減少、延遲增加,使得傳輸情況不盡理想。此外,當波束控制程序失去對相應天線的連線時,必須加大掃掠範圍並執行縮減聚焦程序,以便重新搜尋到天線,結果會導致延遲繼續拉長,若該程序在數位實境下使用,通常也會同時導致影像訊號及頭部追蹤發生遺漏情形。最後,為了使整個系統重新連線,更會造成延遲繼續拉長。
另一項在多人遊戲場地中會出現的相關問題是,使用不同頭戴裝置進行無線通訊時,訊號會彼此干擾。此時,頭戴裝置和基地台之間的通訊 模式通常為雙向,兩者也各自配有天線,可進行訊號掃掠以使訊號最佳化。多個頭戴裝置進行掃掠時可能造成大幅干擾,最後導致資料封包遺失並破壞訊號品質。
概括而言,本發明之一方面提供一種通訊系統,其包含:一第一通訊裝置及第二通訊裝置,各通訊裝置包含一天線;一定位系統,其決定該第一通訊裝置及該第二通訊裝置其中至少一者的位置;及一控制系統,其:自該定位系統接收一表示其位置的位置指示;決定該第一通訊裝置及該第二通訊裝置的相對位置;及根據該相對位置,選擇性控制該第一通訊裝置及該第二通訊裝置其中至少一者的傳輸天線,藉此使該第一及第二通訊裝置之間的通訊最佳化。
在一具體實施例中,該位置係環境中的位置。
在一具體實施例中,該定位系統係一位置系統,其決定一相對於環境的姿勢,且其中該控制系統:決定該第一通訊裝置及該第二通訊裝置的相對姿勢;及根據該相對姿勢選擇性控制一傳輸天線。
在一具體實施例中,該控制系統控制該天線,以達成下列目的至少一者:調整天線方向;實施波束控制技術;及實施波束成形技術。
在一具體實施例中,該第一通訊裝置及該第二通訊裝置其中至少一者包含複數個天線,且其中該控制系統根據該相對位置,從該複數個天線中分別選擇一天線。
在一具體實施例中,該控制系統:決定該第一及第二通訊裝置的 相對移動;及根據該相對移動控制一傳輸天線。
在一具體實施例中,該控制系統根據多個位置指示追蹤至少一通訊裝置的移動,並根據該移動控制該天線。
在一具體實施例中,該控制系統至少部分使用相對移動及預測演算法決定該第一通訊裝置及該第二通訊裝置的相對位置。
在一具體實施例中,該控制系統:決定訊號強度;根據該訊號強度決定初始通訊裝置的位置;及根據一或多個位置指示決定行動裝置的位置變化。
在一具體實施例中,該定位模組包含一感測器,且根據來自該感測器的訊號決定通訊裝置的位置。
在一具體實施例中,該感測器包含一測距感測器,其決定該通訊裝置與環境之間的距離。
在一具體實施例中,該定位模組使用同步定位及建圖演算法決定該通訊裝置的位置。
在一具體實施例中,該天線係下列至少其一:相位天線陣列;及移動式定向天線。
在一具體實施例中,該控制系統:在環境內決定該第一通訊裝置及該第二通訊裝置的相對位置;接收一環境地圖;及至少部分根據該相對位置及環境地圖控制該天線。
在一具體實施例中,該環境地圖係遮蔽地圖及反射地圖其中至少 一者。
在一具體實施例中,該控制系統接收一遮蔽地圖,其界定多個遮蔽位置;及傳輸路徑,以避免遮蔽情形;以及根據該相對位置及遮蔽地圖選擇性控制該至少一天線。
在一具體實施例中,該控制系統:偵測一通訊裝置的遮蔽;控制天線以調整傳輸方向,藉此與該通訊裝置重新建立通訊;決定一通訊裝置的位置;及使用該通訊裝置的位置及該傳輸方向更新遮蔽地圖。
在一具體實施例中,該控制系統:決定至少一其他通訊裝置的一位置;及根據該至少一其他通訊裝置的位置控制該天線。
在一具體實施例中,該控制系統:決定被該至少一其他通訊裝置使用的一通訊通道;及根據該其他通訊裝置的通訊通道,選擇性控制被該天線使用的通訊通道。
在一具體實施例中,該第一通訊裝置係一靜態裝置,且其中該控制系統使用該第二通訊裝置的位置及該第一通訊裝置的已知位置決定該相對位置。
在一具體實施例中,該第一通訊裝置係一靜態裝置,且其中該控制系統使用該第二通訊裝置的位置及該第一通訊裝置的已知位置決定該相對位置。
在一具體實施例中,該已知位置於初始化程序期間決定。
在一具體實施例中,該通訊裝置包含:一行動裝置,其包含:一 定位模組,其決定相對於一環境的一行動裝置位置;一行動裝置收發器,其透過行動裝置天線傳送並接收訊號;及一行動裝置處理器,其透過該行動裝置收發器傳送表示該行動裝置位置的位置指示;及一基地台,其包含:一基地台傳輸系統,其傳送並接收訊號,以和該行動裝置建立通訊,且該基地台傳輸系統包含至少一天線;及一控制系統,其:透過該基地台傳輸系統,自該行動裝置接收該位置指示;決定該行動裝置的位置;及根據該行動裝置的位置選擇性控制該至少一天線,藉此使該基地台與行動裝置之間的通訊最佳化。
在一具體實施例中,該行動裝置包含下列至少其一:一數位實境頭戴式裝置及一行動通訊裝置。
在一具體實施例中,該行動裝置及基地台透過下列至少其一通訊:蜂巢式網路通訊協定;短距無線通訊協定;及5G網路。
概括而言,本發明之一方面針對一第一通訊裝置及一第二通訊裝置提供一種通訊方法,各通訊裝置包含一天線,該方法包含:使用一定位系統決定該第一通訊裝置及該第二通訊裝置其中至少一者的位置;及使用一控制系統,以自該定位系統接收表示其位置的位置指示;決定該第一通訊裝置及該第二通訊裝置的相對位置;及根據該相對位置選擇性控制該第一通訊裝置及該第二通訊裝置其中至少一者的傳輸天線,藉此使該第一通訊裝置及該第二通訊裝置之間的通訊最佳化。
概括而言,本發明之一方面提供一種通訊系統,其包含:一行動裝置,該行動裝置包含:一定位模組,其決定相對於一環境的一行動裝置位置; 一行動裝置收發器,其傳送並接收訊號;及一行動裝置處理器,其透過該行動裝置收發器傳送表示該行動裝置之位置的位置指示;及一基地台,其包含:一基地台傳輸系統,其傳送並接收訊號,以和該行動裝置進行通訊,該基地台傳輸系統包含至少一天線;及一控制系統,其:透過該基地台傳輸系統,自該行動裝置接收該位置指示;決定該行動裝置的位置;及根據該行動裝置的位置,選擇性控制該至少一天線,藉此使該基地台與行動裝置之間的通訊最佳化。
概括而言,本發明之一方面提供一種提供行動裝置與基地台之間通訊的方法,其包含:於該行動裝置內使用一定位模組決定相對於一環境的一行動裝置位置;及於一行動裝置處理器內,透過一行動裝置收發器傳送表示該行動裝置之位置的一位置指示;及於該基地台的一控制系統內:透過該基地台傳輸系統,自該行動裝置接收該位置指示,該基地台傳輸系統包含至少一天線;決定該行動裝置的位置;及根據該行動裝置的位置,選擇性控制該至少一天線,藉此使該基地台與行動裝置之間的通訊最佳化。
概括而言,本發明之一方面提供一種使一第一通訊裝置與一第二通訊裝置進行通訊的天線控制系統,各通訊裝置包含一天線,該天線控制系統經配置以:自一定位系統接收一位置指示,該位置指示表示該第一通訊裝置及該第二通訊裝置其中至少一者的位置;決定該第一通訊裝置與該第二通訊裝置的相對位置;及根據該相對位置,選擇性控制至少一傳輸天線,藉此使該等通訊裝置之間的通訊最佳化。
在一具體實施例中,該控制系統控制該天線,以達到下列目的至 少其一:調整天線方向;實施波束控制技術;及實施波束成形技術。
在一具體實施例中,該第一通訊裝置及該第二通訊裝置其中至少一者包含複數個天線,且其中該控制系統根據該相對位置,從該複數個天線中選擇各別的一天線。
在一具體實施例中,該控制系統:決定該第一通訊裝置及該第二通訊裝置的相對移動;及根據該相對移動控制一傳輸天線。
在一具體實施例中,該控制系統至少部分利用相對移動及預測演算法控制一傳輸天線。
在一具體實施例中,該控制系統根據多個位置指示追蹤至少一通訊裝置的移動,並根據該移動控制該天線。
在一具體實施例中,該控制系統:決定訊號強度;根據該訊號強度決定初始通訊裝置的位置;及根據一或多個位置指示決定一行動裝置的位置的一變化。
在一具體實施例中,該位置指示係使用同步定位及建圖演算法決定。
在一具體實施例中,該天線係下列至少其一:相位天線陣列;及移動式定向天線。
在一具體實施例中,該控制系統:在環境內決定該第一通訊裝置及該第二通訊裝置的相對位置;接收一環境地圖;及至少部分根據該相對位置及環境地圖控制該傳輸天線。
在一具體實施例中,該環境地圖係遮蔽地圖及反射地圖至少一者。
在一具體實施例中,該控制系統:接收一遮蔽地圖,該遮蔽地圖界定遮蔽位置及傳輸路徑,以避免遮蔽情形;以及根據該相對位置及遮蔽地圖,選擇性控制該至少一天線。
在一具體實施例中,該控制系統:偵測一通訊裝置的遮蔽;控制天線以調整傳輸方向,藉此與該通訊裝置重新建立通訊;決定一通訊裝置的位置;及使用該通訊裝置的位置及該傳輸方向更新遮蔽地圖。
在一具體實施例中,該控制系統:決定至少一其他通訊裝置的位置;及根據該其他通訊裝置其中至少一者的位置控制該傳輸天線。
在一具體實施例中,該控制系統:決定被該至少一其他通訊裝置使用的通訊通道;及根據該至少一其他通訊裝置的通訊通道,選擇性控制被該天線使用的通訊通道。
在一具體實施例中,該第一通訊裝置係一靜態裝置,且其中該控制系統使用該第二通訊裝置的位置及該第一通訊裝置的已知位置決定該相對位置。
在一具體實施例中,該第一通訊裝置係一靜態裝置,且其中該控制系統使用該第二通訊裝置的位置及該第一通訊裝置的已知位置決定該相對位置。
在一具體實施例中,該已知位置於初始化程序期間決定。
在一具體實施例中,該等通訊裝置包含一行動裝置及一基地台,其中該控制系統經配置以:自一行動裝置接收一位置指示,該位置指示表示行動裝置相對於環境的位置;決定該行動裝置的位置;及根據該行動裝置的相對位置選擇性控制至少一天線,藉此使該基地台及行動裝置之間的通訊最佳化。
在一具體實施例中,該天線使用下列至少其一進行通訊:蜂巢式網路通訊協定;短距無線通訊協定;及5G網路。
概括而言,本發明之一方面針對一第一通訊裝置及一第二通訊裝置之間的通訊提供一種天線控制方法,各通訊裝置包含一天線,該天線控制方法於一控制系統內包含:自一定位系統接收一位置指示,該位置指示表示該第一及第二通訊裝置其中至少一者的位置;決定該第一及第二通訊裝置的相對位置;及根據該相對位置選擇性控制至少一傳輸天線,藉此使該等通訊裝置之間的通訊最佳化。
概括而言,本發明之一方面針對行動裝置通訊提供一種天線控制系統,其經配置以:自一行動裝置接收一位置指示,該位置指示表示行動裝置相對於環境的位置;決定該行動裝置的位置;及根據該行動裝置的位置選擇性控制該至少一天線,藉此使該基地台及該行動裝置之間的通訊最佳化。
概括而言,本發明之一方面針對行動裝置通訊提供一種天線控制方法,其於一天線控制系統內包含:自一行動裝置接收一位置指示,該位置指示表示行動裝置相對於環境的位置;決定該行動裝置的位置;及根據該行動裝置的位置選擇性控制該至少一天線,藉此使該基地台及行動裝置之間的通訊最佳化。
應可理解,本發明的概括形式及其各自特徵可合併使用、變換使用及/或單獨使用,且針對各概括形式敘述的內容皆不具限制性。
100:系統
101:場地
110:內容系統
120:顯示系統
120.1:顯示裝置/頭戴式裝置
120.2:關聯控制器
130:定位系統
140:傳輸系統
141:傳輸系統天線
150:控制系統
210:內容引擎
221:收發器/收發器模組
222:顯示系統(裝置)天線
231:定位處理系統
232:定位模組
233:信標
241:傳輸模組
242:多工器
251:控制器
252:控制器
300-340:步驟
322:解碼器
342:編碼器
400-490:步驟
511:微處理器
512:記憶體
513:輸入/輸出裝置
514:外接介面
515:匯流排
521:接收器
522:解碼器
523:記憶體
524:輸出部
541:輸入介面
542:編碼器
543:記憶體
544:發送器
644:電動機
645:電動機
651:控制器輸入部
652:控制器處理器
653:控制器記憶體
654:控制器輸出部
731:定位模組收發器
732:定位模組處理器
733:定位模組記憶體
734:定位模組天線
735:微處理器
736:記憶體
737:輸入/輸出裝置
738:外接介面
739:匯流排
800-870:步驟
921:解碼器輸入緩衝器
922:解碼器處理裝置
923:解碼器輸出緩衝器
924:收發器
925:資料緩衝器
941:編碼器輸入緩衝器
942:編碼器處理裝置
943:編碼器輸出緩衝器
944:收發器
945:資料緩衝器
1100:通訊網路
1110:處理系統
1120:行動裝置
1121:收發器
1122:天線
1123:處理器
1124:記憶體
1125:輸入/輸出裝置
1126:匯流排
1130:定位系統
1131:定位處理系統
1132:定位模組
1141:傳輸系統天線/基地台天線
1142:傳輸模組
1150:控制系統
1151:控制器
1152:控制模組
1160:基地台
1200-1260:步驟
1320:行動裝置/通訊裝置
1321:收發器
1322:天線
1323:處理器
1324:記憶體
1325:輸入/輸出裝置
1326:匯流排
1332:定位模組
1352:控制模組
以下參考所附圖式,針對本發明的多個示例及具體實施例進行說明,其中:第一圖為一系統的第一示例的示意圖,該系統用於在一多人遊戲場地中向複數個使用者顯示內容;第二A圖為一系統的第二示例的示意圖,該系統用於在一多人遊戲場地中向複數個使用者顯示內容;第二B圖為一示意圖,其顯示第二A圖系統中的一信標位置示例;第二C圖為一系統的第二示例的示意圖,該系統用來在一多人遊戲場地中向複數個使用者顯示內容;第三圖為一流程示例的流程圖,該流程用於配置第二A圖的系統;第四圖為一流程圖,其顯示第二A圖的系統運作示例;第五圖為一示意圖,其顯示第二A圖系統使用的傳輸系統的示例;第六圖為一示意圖,其顯示第二A圖裝置的控制系統的示例;第七A圖為一示意圖,其顯示第二A圖系統使用的定位系統的示例;第七B圖為一示意圖,其顯示第二C圖系統使用的定位系統的示例; 第八圖為一編碼流程示例的流程圖;第九圖為一示意圖,其顯示一編碼系統的示例;第十圖為一示意圖,其顯示該顯示系統的遮蔽情形;第十一圖為一示意圖,其顯示用來使行動裝置與基地台進行通訊的系統示例;第十二圖為一流程圖,其顯示第十一圖的系統運作示例;第十三圖為一示意圖,其顯示用來使多個通訊裝置進行通訊的系統示例。
以下參考第一圖,說明在多人遊戲場地中使用的一個系統示例,其用來向複數個玩家顯示內容。
在本示例中,系統100專門用於場地101中,該場地含多個使用穿戴式顯示系統120的使用者。每一穿戴式顯示系統120皆穿戴於一特定使用者身上,且一般包含一顯示裝置120.1,該顯示裝置120.1用於顯示內容流,且可選擇性包含一或多個關聯控制器120.2,讓使用者能和被顯示的內容互動。應可理解,一般也會包含收發器及顯示系統天線等關聯元件、感測器及處理元件配置,並將其與穿戴式系統整合。
內容流通常包含一或多個影像,且更常包含基於顯示器相對位置及/或方向而生成及/或顯示的影像序列,此為VR和AR應用中常出現的情形。在一示例中,該穿戴式顯示系統可因此被視為現有的商業顯示裝置,如HTC ViveTM、Oculus RiftTM或Playstation VRTM頭戴式裝置、Microsoft HoloLensTM等,然而應可理解這些裝置並非必要,且亦可使用任何合適的配置。
此系統進一步包含會產生複數個內容流的一內容系統110,每一內容流與一對應顯示系統相關聯。該內容系統可具任何適當形式,且於一示例中包含一或多個處理系統,如用於產生該內容的電腦系統。
該裝置進一步包含一定位系統130,其可偵測場地101中每一顯示系統120的位置。該定位系統可具任何適當形式,且可為VR/AR系統的一部分或為一獨立的定位系統,以下將舉出定位系統實例並予以說明。
此系統包含一傳輸系統140,其包含多個傳輸系統天線141,該等天線將內容傳送至穿戴式顯示系統及/或自穿戴式顯示系統接收資料。該傳輸系統通常包含產生待傳輸訊號所需的處理電子元件,且可包含商業用無線收發器,以及任何額外的必要元件,如於傳輸前進行訊號編碼的編碼器。該等天線可具備任何適當形式,且通常包含可提供足夠傳輸頻寬及低延遲的定向天線,以將內容流傳送至穿戴式顯示系統120。
為使傳輸系統天線141與顯示系統120之間的傳輸最佳化,此系統進一步包含一控制系統150,其根據定位系統130決定場地內每一顯示系統的位置,並根據每一顯示系統的位置選擇性控制傳輸系統天線141,藉此將各內容流傳送至對應的顯示系統。
執行控制程序的方式視傳輸系統天線141的實施方式而定,特別是視其組態方式而定。舉例而言,傳輸系統天線141可包含移動式天線,其控制 程序包含改變天線141的空間方向。或者,傳輸系統天線141可為靜態,且各自被置於場地內不同的位置,其控制程序包含根據穿戴式顯示系統120的位置,透過各個不同的傳輸系統天線141傳送內容流。
因此,應可理解以上所描述的系統可使內容被傳送至場地101內的多個穿戴式顯示系統,具體而言,係透過控制一或多個傳輸系統天線141的方式,藉此使內容透過一或多個定向天線被傳送至顯示系統,無論顯示系統位於何處。執行該程序的目的,在於以最大程度增強有效訊號的傳輸強度,使得可用頻寬增至最大並使延遲維持最少的程度,同時減少不同顯示系統之間的干擾。舉例而言,有鑑於訊號掃掠一方面可能導致延遲變得較長,另一方面可能在內容傳送至其他顯示系統或自其他顯示系統傳送時造成干擾,執行該程序可消除進行訊號掃掠的需求,以使訊號強度最大化。利用此配置即可執行大規模多人無線VR或AR系統,否則此需求一般而言無法達成。
應可理解,顯示系統120通常包含顯示系統天線(未圖示),其可用於將資料傳送回傳輸系統。經傳送的資料可包含產生內容時可能需要的位置及/或相對位置及方向資料,也同時包含其他資料,例如經內建相機系統(on-board camera system)所擷取的資訊、使用者透過控制輸入部提供的輸入指令等。在本示例中,可執行一類比程序,其中控制系統運作時會控制顯示系統天線,使得訊號能傳送回傳輸系統,接著經過接收並處理。同樣地,此程序包含控制定向顯示系統天線,使得傳輸方向能指向傳輸系統天線141或其他接收天線,藉此減少傳輸訊號至其他顯示系統或自其他顯示系統傳輸訊號時彼此之間的干擾,並且消 除或減少執行訊號掃掠的需求,此程序有利於維持訊號強度及頻寬,同時減少延遲。
以下說明更多其他特徵。
在一示例中,控制系統150根據一對應顯示系統120的位置,控制複數個傳輸系統天線141每一者的空間方向。此步驟可透過任何適當方式完成,但通常藉由使每個天線141包含能使天線移動的傳動裝置完成,該傳動裝置由控制系統150啟動,以調整天線141的空間方向,進而使天線141的空間方向追蹤對應顯示系統120的位置。如此一來,可採取的移動方式視偏好的實施方式而定,但通常至少包含平移作動,以便於使用者在場地內移動時進行追蹤;移動方式也可視需要包含傾斜作動,使得天線141與使用者的位置能形成最佳夾角,例如天線安裝高度與使用者形成的夾角,以及天線141與使用者之間的水平距離。
系統100除了包含空間方向可調整的傳輸系統天線141,也可包含多個分散於場地各處的傳輸系統天線141,且控制系統150會根據每一顯示系統120的位置,控制向一特定顯示系統120傳送內容流的傳輸系統天線141。在一示例中,上述步驟經由將傳輸系統天線141配置為提供涵蓋整個場地101的天線覆蓋範圍,並根據使用者所在位置挑選欲使用的傳輸系統天線141。在本示例中,應可理解的是需要多個傳輸系統天線141提供涵蓋各個區域的天線覆蓋範圍,以因應多個使用者同時處於同一區域中的情形。
另外一種可能的情形是,傳輸系統天線141可進一步改為包含一相位天線陣列,且該控制系統使用波束控制技術及/或波束成形技術控制該天線 陣列。在本示例中,該天線通常會使用一相位陣列,其包含每一天線上的元件,以便控制經傳輸訊號的形狀和方向。此控制程序可於單一天線上的不同元件之間執行,或將天線上的多個元件視為一單獨的可配置陣列,執行方式係透過在不同元件和天線之間進行相位調整或切換。在所謂的波束成形程序中,可針對該等元件實施適當控制以產生干擾波形。至於所謂的波束控制,係指透過即時改變訊號相位以動態調整波束波形,但又不改變天線元件或其他硬體的過程。相位陣列波束成形技術會產生波束,波束會經由電子式波束控制技術被導向目標接收天線,且無須實際移動天線。應可理解其提供另一種將訊號導向穿戴式顯示裝置的機制。
應可理解類似程序可用於顯示系統天線。舉例而言,該顯示系統可包含多個天線,每一顯示系統天線皆依據需求挑選,視該顯示系統及基地台的相對位置而定。該顯示系統另外且/或可改成包含一相位陣列天線,該天線經由波束控制及/或波束成形技術控制,以便控制該波束的方向及/或形狀。
控制系統150通常包含用來控制每一傳輸系統天線141的各別控制器。在本示例中,每一傳輸系統天線141自一給定內容源(如自一各別內容引擎)分別傳送一內容流,且該控制器替各別內容流決定對應顯示系統120的位置,並據此控制傳輸系統天線141。對每一傳輸系統天線141提供一單獨的控制器可簡化控制流程,此時僅需要自定位系統130取得各別顯示系統120的位置,再將該位置提供給該控制器。
同樣地,可對各穿戴式顯示系統提供一各別控制系統,該控制系 統可與該顯示系統整合或位於遠端,視偏好的實施方式而定。然而應可理解此並非必要,且可使用一單獨的中央控制器,替多個不同的顯示系統同時在基地台及顯示系統端進行天線整合。
通常,控制系統110包含複數個內容引擎,每一內容引擎皆針對對應顯示系統產生內容流。該內容引擎可為一邏輯上分散的實體,如經伺服器等處理系統執行的各別軟體應用程式,或可代表一實體上獨立的硬體系統,如針對特定顯示系統產生內容流的各別電腦系統。應可理解的是,使用專屬內容引擎有助於在對應顯示系統產生內容流時,延遲情形可降到最少。
在一示例中,內容系統110根據定位系統130或一獨立位置系統決定一顯示系統120的位置及/或方向,具體而言係顯示裝置120.1的位置及/或方向。內容系統110接著基於顯示裝置120.1的位置及/或方向產生內容流。因此,應可理解該內容係基於該顯示系統使用者的特定視角而產生。此程序可經由使用定位系統130追蹤顯示系統120並控制傳輸系統天線141完成。然而亦可透過另一不同的系統完成此程序。
舉例而言,擴增或虛擬實境系統可包含各自的位置系統,以決定顯示器的位置及/或方向,亦可將此位置系統作為定位系統130,以確認該顯示系統位於場地101內的位置。舉例而言,該顯示系統可包含一或多個內部感測器,該等感測器可在所謂由內而外追蹤(inside-out tracking)的流程中,利用像是同步定位及建圖(SLAM)演算法決定該顯示系統相對於環境的位置及方向。或者,該系統亦可在由外而內追蹤(outside-in tracking)流程中使用外部感測器,如追 蹤站。使用現有追蹤系統決定該顯示系統的位置,可減少使用獨立定位系統的需求,然而應可理解,此方式可能無法提供充足資訊以便準確決定該位置,或者本身並不容易執行,因此可能必須使用一獨立定位系統130。
在一示例中,定位系統130包含多個位於場地101內的信標,以及一定位處理裝置,其基於一顯示系統120相對於該等信標其中至少兩者的位置,以及場地內信標的已知位置,決定該顯示系統的位置。因此在本示例中,信標位於場地內已知位置上,使得顯示系統120相對於該等信標的位置可用於確認場地內顯示系統120的位置。
應可理解,此流程可透過多種方式完成。舉例而言,該信標可用於透過適當感測技術感測顯示系統120的位置。然而更常見的做法是,每一顯示系統120包含一定位模組,該定位模組偵測來自該等信標其中至少兩者的訊號、計算該顯示系統相對於該等信標其中至少兩者的位置,接著透過無線通訊系統將位置資料傳輸至定位處理裝置,該位置資料表示該相對位置。因此,在本示例中,每一顯示系統決定各自相對於該等信標的位置、將此訊息傳送至定位處理裝置,使得該定位處理裝置能確認場地101內顯示系統120的位置。
有鑑於此,應可理解本流程可包含使用該定位處理裝置進行計算,或可單純包含自該位置資料接收表示該位置的一位置指示,該位置僅由顯示系統120進行計算。因此,該位置可於該顯示系統內部決定,且可被傳送至該控制系統,或者將表示一位置的位置資訊(如信標訊號強度)提供給該控制系統,使其能決定該位置。
在本示例中,由該等信標傳輸的訊號,其性質會視偏好的實施方式而定,但通常該等訊號為電磁訊號(如射頻訊號),其被一偵測器(如一定位模組天線)所偵測。一定位模組處理器接著使用偵測到的電磁訊號,例如基於該訊號的性質(如訊號強度、傳遞時間(time of flight)等),計算該顯示系統相對於該信標的位置。
除此之外,雖然該等信標可為獨立實體,應可理解在另一示例中,該等信標可構成該傳輸系統的一部分,例如可與傳輸系統天線141整合,且本文中關於獨立信標的敘述不必然具限制性。
在一示例中,該定位模組包含一感測器(如一測距感測器),以使該顯示系統能根據來自該感測器的訊號決定該位置,如利用SLAM演算法。此流程可包含使用一雷射測距儀(LIDAR),或透過一或多個影像擷取裝置來完成,該一或多個影像擷取裝置使用立體影像或多個由不同行動裝置的姿勢擷取的影像,如此一來,即可決定該行動裝置相對於環境的位置。因此,舉例而言,置於該顯示系統前方的一或多個相機可比對兩個或多個畫格的共用物件,以計算並產生三維空間中的一相機位置,該相機位置對應於置於該顯示系統前方的相機。具體而言,該SLAM流程通常包含決定該顯示系統及環境的分隔狀況,並以點雲形式呈現。在初始配置程序期間會產生一場地三維模型,其中包含該等天線的位置。可將該顯示系統於點雲中的位置與該三維模型比較,以決定該顯示系統相對於該等天線的位置。此流程可用於依需求控制天線位置。同樣地,此決定程序可於內建顯示系統上執行,或由該顯示系統將測距資訊傳送出去,於遠端處 決定該位置。
應可理解,內建慣性量測單元(IMU)可提供三個自由度的頭部追蹤,此裝置通常提供有限的平移追蹤,因此可利用SLAM或其他可提供平移追蹤的程序進行由內而外追蹤,以提供三維空間中的一頭部絕對位置,具體而言係提供六個自由度的位置資訊,包含平移與轉動資訊。此技術可讓使用者在環境中穿梭移動,一般稱為大空間定位虛擬實境、擴增實境或混合實境(World Scale VR/AR/MR)。
應可理解,可取得姿勢訊息時,此訊息可被進一步用來強化天線控制流程。具體而言,在本示例中,該控制系統可決定該穿戴式顯示系統與傳輸系統天線的相對姿勢,並根據該相對姿勢選擇性控制一傳輸天線,如一傳輸系統天線141或顯示系統天線。
無論該顯示系統位置的決定結果為何,應可理解若基於經決定的顯示系統實體位置,進而實施天線定位及/或波束控制或波束成形技術,即可消除掃掠需求,以便透過所接收的訊號強度回饋決定位置。如此一來,可使該控制系統的運算速度加快,並更快定位/控制該天線,以減少延遲及訊號遺漏情形。當一包含許多天線的陣列被以多樣組態置於房間內各處時,此實施方式會更具價值,因為能夠提供使用者下一刻的位置、應選擇哪一天線進行傳輸等資訊,並據此建立一預測模型。
執行預測流程時,可基於與顯示系統上顯示內容相關的資訊,如基於針對顯示內容的預期回應來預測移動,及/或基於人體移動模型,如納入移 位的實體限制考量執行預測。此外,位置資訊可用於追蹤該顯示系統長時間的移動,此資訊可被進一步用於訓練預測演算法,以決定該顯示系統下一刻可能的位置。此流程有助於確保波束控制/天線定位技術已實施,使得該追蹤系統能維持在該天線波束的視野(field of view)內,藉此減少延遲並維持頻寬。具體而言,此流程可使該系統決定一穿戴式顯示系統的移動,並根據經決定的移動或選擇性利用預測演算法控制一傳輸天線。在本示例中,該系統通常會根據該多個位置指示追蹤一穿戴式顯示系統的移動,並根據該移動情形控制該天線。
另外,亦可將一具備高更新率的慣性量測單元置於該天線上,或使用頭戴式顯示器有效利用該慣性量測單元,以提供能輔助由內向外追蹤技術的更多向量修正資訊,並縮短追蹤用相機每秒格率間的時間延遲。
當該顯示系統受遮蔽而無法被天線偵測時,亦可使用該位置資料因應此狀況,例如當一使用者U彎腰時,身體會介於傳輸系統天線141及顯示系統120之間,如第十圖所示。
現有的系統會控制天線以便搜尋顯示系統120,搜尋方式為針對傳輸方向進行掃掠,直到該顯示系統接收到訊號為止,該訊號通常反射自牆壁或天花板。辨識遮蔽情形時通常會出現延遲現象,在進行掃掠步驟並重新建立通訊時,會出現更多延遲現象。
為避免以上情形,在一示例中,該控制系統接收一遮蔽地圖,其界定場地內的遮蔽位置以及傳輸路徑,以避免遮蔽情形發生。在本示例中,若該控制系統偵測到該顯示系統可能處於被遮蔽的位置,便可根據每一顯示系統的 位置及該遮蔽地圖選擇性控制該等天線,藉此確保通訊持續進行無礙。此流程可透過多種方式執行,且可包含控制該天線的方向性,以使例如該傳輸過程的訊號自一表面(如天花板或牆壁)反射,或可包含對另一天線進行傳輸,且該天線與該顯示系統之間的視線良好不受阻。
完成以上流程需要產生遮蔽地圖,產生方式通常為偵測顯示系統的遮蔽情形;控制一或多個天線以調整傳輸方向,藉此重新與該顯示系統建立通訊;決定顯示系統的位置;根據該顯示系統的位置及傳輸方向更新遮蔽地圖。
此流程可即時執行,當遮蔽位置資料被使用時,該系統便可進行學習,且實施掃掠步驟時,該系統亦學習房間內反射路徑或其他替代傳輸路徑。此流程雖然會導致延遲,應可理解此現象僅會出現一次,未來不會繼續發生。
另一種情形且/或另一種可能是,該遮蔽地圖可事先在一例行校正或初始化程序中被系統學習。在本示例中,一使用者可在受到提示的情況下,將該顯示系統移至該「場地」內的「一定義點」。舉例而言,該顯示系統可顯示一位置點供使用者觀看,該使用者可移動至該位置,以判斷遮蔽現象是否發生。此流程亦可包含要求該使用者進行特定動作,如彎腰或類似動作。如此一來,應可理解該些特定動作可透過該顯示系統的位置辨識,例如當該使用者彎腰時,該顯示系統的位置會比一般情形更接近地面。一旦發生遮蔽現象,即可執行掃掠步驟或對該等天線進行其他重新配置,直到通訊重新建立為止。此時,所使用的傳輸路徑會被儲存為該遮蔽地圖的一部分,供之後提取使用。
亦可針對反射訊號執行一類似流程,過程中使用一反射地圖辨識 反射訊號出現的時機。此流程可用來避免反射發生,如避免反射訊號對訊號品質造成干擾或遺漏,但亦可作為避免遮蔽現象的機制,如在訊號會被遮蔽時,允許使用反射訊號以維持傳輸。
應可理解,可將該等顯示系統置於場地內的特定位置,以實施類似校正程序,且/或該校正程序為掃描場地,以辨識有機會用來反射訊號的物件,如地面、天花板或其他物件。
應可理解,若能夠有效利用反射訊號,便可於可能不合適的位置上放置天線。舉例而言,該天線可被整合入一基地台供家庭環境使用,且上述遮蔽現象及/或反射建圖程序可搭配位於較不合適位置(如一低處、咖啡桌上、電視機頂端等)的基地台,即可有效利用反射訊號。
根據先前文獻的描述,利用反射訊號的目的皆為用於傳送內容至一顯示系統,但應可理解,此流程亦可用於訊號被傳送至一行動裝置的其他情況。
因此,執行遮蔽建圖程序可加快天線控制流程的速度,包含方向性、波束成形或波束控制等控制流程,且可預測即將發生的遮蔽狀況,以根據儲存的環境資料進行適當調整。
該天線控制流程亦可用來將與其他顯示裝置的干擾情形減到最小。舉例而言,在傳輸訊號時,該控制系統可決定至少一個其他穿戴式顯示系統的位置,並根據該至少一個其他穿戴式顯示系統的位置以控制該天線,目的為例如避免被傳輸的訊號造成影響,干擾被傳送至該其他穿戴式顯示裝置或自該裝 置傳輸的訊號。在本程序中,該控制系統可決定該至少一個其他穿戴式顯示系統所使用的通訊通道,且根據該至少一個其他穿戴式顯示系統所使用的通訊通道,選擇性控制該天線所使用的通訊通道。若兩個使用同一通道的顯示系統同時出現在場地的同一區域內,便可執行此步驟改變通訊通道,以避免傳送至每一顯示系統/自每一顯示系統傳送的訊號互相干擾。
位置資料可透過任何適當方式被傳送至定位處理裝置。在一示例中,使用一網狀網路執行此步驟,該網狀網路由多個穿戴式顯示系統120的無線通訊系統定位模組建立,具體而言,係由每一穿戴式顯示系統120的各別定位模組建立。此一網狀網路可透過低耗電通訊科技,使資料自顯示系統120傳送至該定位處理裝置,以減少耗電量並且避免干擾發生,且干擾係由多個定位模組嘗試透過直接通訊通道,並使用該定位處理裝置更新自身位置資訊而導致。然而,由於此流程可能導致額外的延遲,因此在其他示例中,較佳的方式為使用直接的點對點通訊。
應可理解,當一中央定位處理裝置自多個系統120接收位置資料時,該定位處理裝置會決定顯示系統120的身分及位置,並根據顯示系統120或定位模組的身分,提供一表示各別顯示系統120位置的一位置指示給控制系統150。具體而言,此流程可透過直接傳送一位置指示給特定控制器來完成,該特定控制器與由該身分決定的各別顯示系統120相關聯,或可單純透過提供一位置資訊給控制系統150來完成,該位置資訊表示該顯示系統的位置及身分,且視需要被指派給各別控制器。在任一情形下,應可理解顯示系統120應與一特定控制器及傳 輸系統天線141相關聯,以確保該內容流被傳送給正確的顯示系統120。應可進一步理解,此架設方式可於一初始架設階段中被配置,或可於每次使用一顯示系統120時被動態配置。
在一示例中,該系統進一步包含複數個編碼器,每一編碼器壓縮各別內容流,藉此產生被壓縮且傳送至顯示系統120的一內容流。壓縮該資料可縮小須傳送的資料大小,以使該資料能利用現行的802.11ac或802.11ad技術,輕易透過可用的無線頻寬傳輸。在本示例中,每一顯示系統120通常包含一解碼器,以將被壓縮的內容流解壓縮。
一可使用的適當壓縮方案示例,於皆處於待審階段的美國專利臨時申請案第62/351,738號以及澳洲專利臨時申請案第2016905048號中皆有說明,兩案國際公開號為WO2017/214671,其內容皆以交叉引用方式併入本文中。
每一顯示系統120亦通常包含一接收該內容流的接收器,以及一顯示處理裝置,其可使該內容流於顯示器上顯示。
在一特定示例中,系統100對應每一顯示系統120,包含一產生該內容流的內容引擎;一針對該內容流編碼,以產生壓縮內容流的編碼器;一傳輸系統天線141;一透過傳輸系統天線141及控制器傳送該壓縮內容流的發送器,該控制器根據一定位系統提供的資訊決定顯示系統120的位置,並根據顯示系統120的位置控制傳輸系統天線141的方向。因此應可理解,在本實施例中,每一顯示系統120都具備內容引擎、編碼器、天線、發送器及控制器等專門提供該內容給顯示裝置120.1的硬體,以確保傳輸該內容時延遲情形減到最少,這點在VR及 AR應用時非常重要。
上述配置的另一優點在於可搭配現有的VR或AR頭戴式裝置,以一翻新型態實施。
因此概括而言,顯示系統120包含一顯示裝置120.1以及一處理裝置,該處理裝置可使該內容流於顯示器120.1上顯示。此顯示系統搭配一關聯內容系統110,整體可對應至一傳統VR或AR系統。另外,該系統包含一接收器模組,其透過無線傳輸方式自一傳輸系統接收該內容流,該傳輸系統包含多個將內容傳送至複數個穿戴式顯示系統的天線,以及一定位模組,其偵測來自多個信標其中至少兩者的訊號、計算該顯示系統相對於該至少兩信標的位置,以及透過一無線通訊系統傳送表示該位置的位置資料給一定位處理裝置,藉此使該定位處理裝置決定該顯示系統的位置。
在本示例中,應可理解該接收器模組可附接於一顯示系統輸出部,以便透過無線傳輸的方式,將提供給該顯示系統且將顯示於頭戴式裝置上的內容予以接收。另外,該定位模組於該顯示系統之外獨立運作,與一遠端定位處理裝置相互作用,使得場地內該顯示系統的位置可被決定。由此應可理解,此流程可使該系統更容易與一現有的VR或AR頭戴式系統相合,且無須針對該VR/AR頭戴式系統或者控制電子元件進行調整。
因此,定位系統130、傳輸系統140及控制系統150可被當作一附加元件系統實施,且可與現有的VR或AR頭戴式裝置共同運作。除此之外,本文雖提及獨立定位、傳輸及控制系統等相關內容,但應可理解此內容僅為方便參照之 用,實際操作上可使用一單獨底層硬體系統實施以上系統。
應可理解的是,上述技術在通訊上的應用面可以更廣,例如用來使一行動裝置及基地台之間及/或兩部通訊裝置之間的通訊最佳化。在一示例中,可實施此技術以使該基地台、行動裝置或通訊裝置使用波束控制及/或波束成形技術進行通訊,而無須在該行動裝置移動時進行掃掠步驟以維持訊號強度,如此一來,便可同時使傳輸最佳化並減少延遲。
在一示例中,此程序包含使用一行動裝置,如行動電話、平板電腦、智慧型手機、穿戴式顯示裝置等,該行動裝置包含一定位模組,其決定行動裝置相對於環境的位置。該行動裝置進一步包含一行動裝置收發器,其具有一可傳送、接收訊號的天線;以及一可傳送位置資訊的行動裝置處理器,該位置資訊透過該行動裝置收發器傳輸表示該行動裝置的一位置指示。該基地台包含一可傳送及接收訊號的基地台傳輸系統,以和該行動裝置進行通訊,該基地台傳輸系統包含至少一基地台天線。另包含一控制系統,其透過該基地台傳輸系統自該行動裝置接收該位置指示,並使用此位置指示決定該行動裝置的位置。可使用該行動裝置的位置,據此選擇性控制基地台或行動裝置天線,以使該基地台及行動裝置間的通訊最佳化。
因此,應可理解在上述配置中,該基地台內的一天線控制系統使用一行動裝置的位置資訊,該位置由該行動裝置內的一定位模組決定,以便追蹤該行動裝置的位置,並控制該基地台傳輸系統或該行動裝置的一或多個天線。
可使用此系統以進行定向及/或成形傳輸;具體而言,可實施波束 控制及/或波束成形技術,而無須執行訊號掃掠步驟或測定已接收的訊號強度,以上皆可能導致傳輸延遲增加,干擾其他裝置的情形也會因此增加。
對於數位實境應用,如混合實境、虛擬實境及/或擴增實境而言,尤其需要消除掃掠步驟的需求,因為延遲可能會影響使用者體驗。在一特定示例中,此程序有助於減少傳輸延遲,使得數位實境內容在分散式運算環境(如雲端環境)中產生,同時使該內容透過一行動通訊網路,如5G網路,被傳送至一穿戴式裝置,如專用穿戴式顯示系統及/或智慧型手機,而不產生明顯的傳輸延遲。
同樣地,此程序可套用於其他通訊系統中,其包含第一及第二通訊裝置,每一者包含一天線。在本示例中,可包含一定位系統,其決定該第一及第二通訊裝置其中至少一者的位置,且一控制系統用於自該定位系統接收表示該位置的一位置指示、決定該第一及第二通訊裝置的相對位置,並根據該相對位置選擇性控制該第一及第二通訊裝置其中至少一者的傳輸天線,藉此使該第一及第二通訊裝置之間的通訊最佳化。
在本示例中,可於該等通訊裝置兩者或其一之上設置該定位系統及/或控制系統。舉例而言,每一通訊裝置可單獨設置定位及控制系統,以使每一通訊裝置決定自身位置並控制自身天線。舉例而言,該定位系統可決定該通訊裝置相對於環境的位置,並與其他裝置交換位置資訊,使得相對位置可被決定。或者亦可於該等裝置其中一者(如一基地台)上設置該定位及/或控制系統,或使該定位及/或控制系統分散於該等裝置間。無論該等程序於何處執行,所用方法皆相當類似,類似之處在於皆使用一獨立定位系統決定該等通訊裝置之相對 位置,使得確保通訊最佳化時無須依賴訊號掃掠步驟,進而維持通訊品質並減少延遲。
以下說明更多其他特徵。
在一示例中,該控制系統控制天線方向,此控制步驟係藉由例如實際移動該天線以追蹤該行動裝置及/或通訊裝置的方式;或者,該控制系統執行波束控制及/或波束成形技術,藉此控制訊號傳輸。然而應可理解此程序非必要,且可根據偏好的實施方式,針對傳輸系統執行任何適當控制。舉例而言,該第一及第二通訊裝置其中一者(包括基地台及/或行動裝置)可包含複數個天線,且該控制系統根據該相對位置自該複數個天線中各挑選一天線。
雖然該系統可決定該行動裝置的即時位置,但此流程並非必要,且在一示例中,該控制系統根據該多個位置指示追蹤通訊裝置或行動裝置的移動,並根據該移動控制該天線。此步驟可用來進行預測,如基於歷史移動模式預測之後的通訊或行動裝置的位置,使得控制能於該通訊或行動裝置移動時同步進行。因此,舉例而言,該控制系統可決定該第一及第二通訊裝置的相對移動,並根據該相對移動控制傳輸天線,或選擇性根據預測演算法進行控制。預測可根據與顯示系統上顯示內容相關的資訊進行,如根據針對顯示內容的預期回應來預測移動,及/或根據人體移動模型,如納入移位的實體限制考量進行預測。
亦可理解,當通訊裝置或行動裝置的絕對位置係未知時,也可以應用移動追蹤技術。具體而言,可在此情形下使用標準掃掠技術,針對一給定行動裝置的位置定時使訊號傳輸最佳化,並根據該行動裝置自各別位置移動的情 形對該天線進行控制。在本示例中,該控制系統通常決定訊號強度、根據該訊號強度決定行動裝置的初始位置,並根據一或多個位置指示決定行動裝置的位置變化。因此,該控制系統可使用傳統掃掠步驟,針對行動裝置的初始起始位置使訊號強度最大化,並使用該行動裝置由該初始起始位置移動的相關資訊,對該天線進行調整,如實施波束控制及/或波束成形技術。此步驟有助於降低執行掃掠步驟所需的頻率,亦可用於決定波束控制/波束成形技術的實施方式,如將掃掠步驟涵蓋的區域面積最小化,以決定最大訊號強度。
在本示例中,應可理解校正步驟可定時執行,以確保追蹤程序帶來最佳訊息強度。亦可理解,與所接收訊息強度相關的訊息,具體而言為低於門檻值的強度值,可被用來啟動進一步掃掠,使得移動追蹤無法如預期有效運作時,可有效校正移動追蹤。
在一示例中,該定位模組包含一感測器,並根據自該感測器傳送的訊號決定該通訊或行動裝置的位置。視偏好的實施方式而定,該感測器可具備任何適當形式。舉例而言,該感測器可包含一測距感測器,其藉由如利用同步定位及建圖(SLAM)演算法,以決定該通訊或行動裝置與環境之間的距離。應可理解,視偏好的實施方式而定,此步驟可經由相當多種方式完成。舉例而言,該感測器可為一雷射測距儀(LIDAR),其測量該通訊或行動裝置與一或多個該環境中的物件之間的距離。另外,該感測器也可包含一或多個影像擷取裝置,如前所述,其使用立體影像或多個由不同行動裝置姿勢擷取的影像,以決定該行動裝置相對於環境的位置。
該通訊或行動裝置包含一數位實境頭戴式裝置,例如構成上述多人VR遊戲場地的一部分。然而,此方法並非必要且概括而言,任何行動通訊裝置如智慧型手機、平板電腦等皆可應用此方法,也就是不一定會構成數位實境顯示系統的一部分。
就以上程序而言,亦可利用前述與多人遊戲場地應用相關的程序。舉例而言,此程序允許建立遮蔽或反射地圖。在本示例中,該控制系統可決定場地內第一及第二通訊裝置的相對位置;接收環境地圖,如遮蔽地圖或反射地圖;及至少部分根據相對位置及該環境地圖控制該傳輸天線,如透過控制天線以選擇能避免遮蔽的傳輸路徑。同樣地,該控制系統可偵測通訊裝置的遮蔽情形;控制天線以調整傳輸方向,藉此與該通訊裝置重建通訊;決定通訊裝置的位置;及根據該通訊裝置的位置及該傳輸方向更新遮蔽地圖。
亦可控制此系統以避免干擾其他通訊裝置,如透過決定至少一個其他通訊裝置的位置,及根據該至少一個其他通訊裝置的位置控制該傳輸天線。此流程可包含選擇一通訊通道以進一步減少干擾。
當該第一通訊裝置為一靜態裝置(如一基地台)時,該控制系統可利用該第二通訊裝置的位置,以及該第一通訊裝置的已知位置決定該相對位置,此已知位置可於初始化程序期間決定。
由此,應可理解該行動裝置可透過種類繁多的各式通訊協定與該基地台通訊,包括但不限於蜂巢式網路通訊協定、短距無線通訊協定、5G網路等。同樣地,視偏好的實施方式而定,該天線可為相位天線陣列及/或移動式定 向天線。
關於可在場地中提供多人VR或AR遊戲體驗的系統,以下將參考第二A圖及第二B圖,以描述該系統的一具體示例。然而應可理解可使用類似的配置,以便在更一般的情形下和其他通訊裝置(如行動裝置)建立通訊。
就本示例而言,本文敘述三個顯示系統120,但應可理解此內容僅作為示例說明之用,實際操作上該系統可隨任意數量的顯示系統120擴增,該等顯示系統可於一給定場地101內供實際操作使用。
在本示例中,內容系統110包含複數個內容引擎210。每一內容引擎210的性質視偏好的實施方式而變,但通常包含一硬體及/或軟體系統組合,其功能為視需要根據自顯示系統120接收的訊號產生AR或VR內容,且包含任何關聯硬體,如關聯基地台。
該系統進一步包含傳輸系統140,其包含每一傳輸系統天線141專用的傳輸模組241。在使用傳輸系統天線141進行傳輸前,傳輸模組241可用於針對該內容流執行合適的編碼程序。傳輸模組241可包含一硬體及/或軟體元件組合,且在一示例中包含一專用編碼器,以下將描述該編碼器的一示例。傳輸系統天線141通常為定向天線,如適用802.11ac或802.11ad無線傳輸系統的天線,該無線傳輸系統方向可調整。此天線可包含使用方向可調整的移動式天線,及/或包含波束控制/波束成形技術的天線。因此應可理解,本文中與天線相關的敘述,應被理解為涵蓋空間方向及/或有效方向,其經由波束成型技術或其他適當程序控制。
傳輸系統天線141受控制系統150控制,控制系統150包含針對每一傳輸系統天線141的專用控制器251,其通常具備硬體及/或軟體介面,用來控制該天線的方向。
每一傳輸系統天線141皆用於將該壓縮內容流傳送給各別穿戴式顯示系統120,其通常包含一收發器模組221,收發器模組221與一或多個顯示系統天線222耦接,使得該壓縮內容流在被提供給顯示裝置120.1以便正常顯示前,即可被接收並解碼。
用於決定每一穿戴式顯示系統位置的定位系統130,通常包含一定位處理系統231,其與多個定位模組232以無線方式進行通訊,且對應每一顯示系統120包含一各別定位模組232。定位模組232自多個信標233(beacons)接收訊號,信標233被置於場地101內各處,如第二B圖中的示例所示。定位模組232決定該各別穿戴式顯示器相對於該等信標的位置,並透過一網狀網路將此訊息傳送至定位處理系統231,其決定該顯示系統的各別位置,並如圖所示,將此各別位置傳送給各別控制器251。
因此,應可理解以上系統包含一多通道配置,每一內容通道包含一各別內容引擎、控制器及天線,使得內容可被傳送至一對應顯示系統。此配置使內容被同時提供給多個顯示系統,有助於增加可擴增性。
以下將參考第二C圖說明另一種配置。就本示例而言,僅示範使用單一內容通道,然應可理解此僅為便於說明示例之目的,實際操作上仍可使用多個通道。此外,將以第二A圖中使用的元件編號來指稱相似的功能特徵,不再 詳加描述該等特徵。
從圖中示例應可理解,所述系統包含一內容系統110,其針對各通道具有一內容引擎210。傳輸系統140包含用於該通道的一專用傳輸模組241,其經由一多工器242或其他類似的訊號路由裝置,連接至多個傳輸系統天線141。在本示例中,該等傳輸系統天線141為具有已定義視野的定向天線,該通道的多個傳輸系統天線141係用以提供涵蓋整個場地的天線覆蓋範圍。在本示例中,多工器242用以控制傳輸系統天線141,同時內容也被提供給傳輸系統天線141,因此使得內容可被傳送到各別的顯示系統120。為完成上述程序,多工器242係由控制系統150所控制,控制系統150包含一專用控制器251用於控制各別多工器242,也就是控制各別通道。
使用時,先以定位系統130決定每一穿戴式顯示系統120的位置,控制器251接著控制多工器242,以確保內容是由最適當的傳輸系統天線141進行傳送。
在本示例中,由顯示系統120進行的資料傳送,例如位置資料的傳送,係經由接收內容的相同通道進行,具體而言是經由收發器221及天線222將資料傳送到傳輸系統天線141。若是資料中包含了位置資料,傳輸系統140會將該位置資料傳送給定位處理系統231。此外,顯示系統120包含一控制器252,藉由其運作以控制顯示系統天線222,因此使得顯示系統天線222可藉由使用適當的控制技術(例如在多個不同的顯示系統天線222之間切換,或使用相位天線陣列以運用波束成形/控制技術)予以控制。
雖然以上示例描述了使用多個天線於單一通道,且天線是可控制的,應可理解上述方法並不互斥,而可結合運用。舉例而言,如果該場地的範圍較大,可以針對每一通道使用多個可移動天線,每一天線覆蓋各別區域,使得使用者在不同區域間移動時可切換不同的使用天線,並且每一天線都是可控制的,因此可基於各別區域內穿戴式系統的位置調整天線的指向。
以下將參考第三圖,說明配置上述系統的一流程示例。
在本示例中,於步驟300,當場地已完成初步設置時,在場地內的各個位置安裝該等信標233;於步驟310,將每一信標位置的一指示及信標識別碼(identifier)予以記錄。上述資訊一般是作為信標資料記錄於一單獨的資料庫中,該資料庫可由定位處理系統231進行存取。
於步驟320,將每一控制器的一專用天線的一位置予以記錄。就此而言,需獲得場地內傳輸系統天線141的位置,以確保控制器能夠精準追蹤顯示系統120,特別是在使用者移動時,確保控制器能夠產生控制訊號使天線移動至正確位置。
於步驟330,將每一顯示系統120與各自的一內容通道進行關聯。就此而言,顯示系統120通常會在一單獨的內容引擎註冊,以確保內容流可被提供給正確的顯示系統120。
於步驟340,將顯示系統120的定位模組232與同一內容通道的控制器251關聯,使得此關聯可用於確保顯示系統120(即內容傳送目標)的位置能被正確識別。在一示例中,欲完成此步驟,係將定位模組232(其附接於顯示系 統120)的一識別碼與對應的控制器251之間建立起關聯,並將該關聯的一指示作為註冊資料,記錄於定位處理系統231可存取的一單獨資料庫中。
然而應可理解的是,顯示系統120亦可包含測距感測器及/或成像裝置,以基於所感測到的環境資訊產生位置資料。前述環境資訊可與定位處理系統231所執行的SLAM演算法搭配使用,因此可獲得顯示裝置的所在位置。
以下將參考第四圖,說明傳送內容的一流程示例。
在本示例中,於步驟400,一顯示系統120的定位模組232偵測該顯示系統的一位置,並於步驟410產生位置資料。在本示例中,該顯示系統的位置係相對於信標233的位置而決定,於此情形,該位置資料通常會指示各個信標所關聯的一識別碼,以及相對於該信標的位置,例如該信標的方向及/或距離及定位模組的一識別碼。然而應可理解的是,如果執行其他定位方法,例如使用內建感測器(on-board sensor)偵測周圍環境,則位置資料亦可包含影像及/或測距資料。
於步驟420,該位置資料被傳輸至定位處理系統231。在第二A圖描繪的示例中,此步驟是透過多個定位模組232之間所建立的網狀網路執行,使得位置資料能夠直接被傳輸至定位處理系統231。或者,在第二C圖描繪的示例中,此步驟是透過顯示裝置之收發器221與天線222,先將上述位置資料傳送至傳輸系統天線141與傳輸系統140,接著再將該位置資料路由傳送到定位處理系統231而達成。無論採上述何種方式,都能夠讓定位處理系統231於步驟430決定該顯示系統在場地內的所在位置。特別是,定位處理系統231利用該等信標識別碼, 從信標資料中決定該等信標的位置,接著再根據相對於該等信標的位置,計算出顯示系統的定位;或者於適用情形,亦可利用SLAM演算法決定。
在第二C圖例示的配置中,顯示裝置天線222為可控制的,因此在步驟432,顯示裝置相對於傳輸系統天線141的位置資訊會被傳送到該顯示裝置,使得控制器252能夠於步驟434控制顯示裝置天線222。具體而言,此步驟包含控制天線的方向及/或波束形狀,使得資料傳輸可以導向傳輸系統天線141,藉此最佳化位置資料及其他資料的傳輸,同時避免干擾其他顯示裝置。
於步驟440,定位處理系統231基於註冊資料及定位模組識別碼,決定應向其提供位置資訊的控制器251。於步驟450,將位置資訊提供給各別控制器,使得控制器能夠計算所需的天線位置/波束形狀改變,並據此於步驟460控制天線的位置/波束形狀。
在上述流程進行的同時,於步驟470,內容引擎會產生一內容流的下一個內容部分,於步驟480進行編碼,並於步驟490經由對應的天線進行傳送。此流程將會不斷重複,使得顯示系統120於該場地內移動時,內容流會持續經由指向該顯示系統的天線進行傳送。
以下將參考第五圖,進一步詳述一內容產生與傳輸系統之示例。
在本示例中,提供給每一顯示系統的內容是由各別的內容引擎210產生,內容引擎210通常包含一處理系統,其包含至少一微處理器511、一記憶體512、一選擇性的輸入/輸出裝置513(例如鍵盤及/或顯示器),以及一外接介面514,如圖所示,上述元件經由一匯流排515互相連接。在本示例中,可利用 外接介面514來連接內容引擎210與周邊設備,例如通訊網路、儲存裝置、周邊裝置等等。圖中僅示出單一外接介面514,然而此僅為便於說明示例,實際操作上可包含多個使用不同方法(例如乙太網路、串列埠、USB、無線連接等等)的連接介面。在本示例中,該外接介面包含至少一資料連接介面(例如USB)、一視訊連接介面(例如DisplayPort、HDMI、Thunderbolt等等),以及一無線連接介面連接到頭戴式裝置120.1及/或關聯控制器120.2。
使用時,微處理器511將會執行指令,使得所需程序能夠被執行,指令是以應用程式軟體的形式儲存於記憶體512之中,具體而言,執行指令將使得內容可基於頭戴式裝置120.1及/或關聯控制器120.2發出的訊號產生,以及視需要可基於其他周邊設備(例如ViveTM VR系統的基地台)發出的訊號產生。應用程式軟體可包含一或多個軟體模組,並可於適當的執行環境中予以執行,例如作業系統環境等。
基於上述說明,應可理解處理系統210可以由任何適當的處理系統構成,例如經過適當程式化的個人電腦等。在一特定示例中,處理系統210為一標準處理系統,例如基於英特爾架構的處理系統,其執行儲存在永久性(例如硬碟)儲存器(但並非必需)之中的軟體應用程式。然而應可理解該處理系統亦可以是任何電子處理裝置,例如微處理器、微晶片處理器、邏輯閘配置、視需要與實作邏輯關聯的韌體,例如現場可程式閘陣列(FPGA),或其他任何電子裝置、系統或配置。
此外,雖然所示的處理系統210為一整體,應可理解在實際操作 上,處理系統210可由多個實體裝置構成,該等實體裝置可視需要分散在多個不同的地理位置,例如作為一雲端環境的部分組件。
處理系統210輸出一內容流,該內容流被傳送到傳輸系統140。傳輸系統140包含一輸入介面541、一編碼器542、一選擇性的記憶體543以及一發送器544。使用時,該內容流由輸入介面541接收並轉送至編碼器542,編碼器542繼而進行運作以壓縮該內容流,所述運作可視需要依據儲存在記憶體543之中的編碼方案及/或其他指令進行。後文將參照第九圖對編碼器542的運作進一步詳述。
經過壓縮的資料會被傳輸到發送器544,發送器544將壓縮的內容流格式化以供傳送之用並產生訊號,該等訊號會依據一無線通訊協定(例如802.11ac或802.11ad),經由傳輸系統天線141進行傳送。經壓縮資料會由顯示系統天線222所接收,並傳輸到收發器模組221。收發器模組221包含一接收器521、一解碼器522、一選擇性的記憶體523以及一輸出部524。使用時,接收器521會將接收到的訊號轉換為一壓縮內容流,該壓縮內容流被轉送至解碼器522進行解碼,解碼後形成一非壓縮內容流。上述解碼流程通常依據儲存於記憶體523內的一壓縮方案執行,後文將參照第九圖對解碼器522的運作示例進一步詳述。解壓縮後的影像流接著會被提供給輸出部524,輸出部524通常為一HDMI、顯示器端口或其他類似介面,其直接與頭戴式裝置120.1上的一對應輸入部連接,使得該內容流能夠被提供給頭戴式裝置120.1並被該裝置顯示。
以下將參考第六圖,進一步詳述一控制系統示例。
在本示例中,每一控制器251係與安裝在各別天線座上的電動機 644、645連接,該等電動機用於控制天線的平移及傾斜作動。每一控制器251包含一控制器輸入部651、一控制器處理器652、一控制器記憶體653以及一控制器輸出部654。
使用時,控制器輸入部651從定位系統130接收一獨立的顯示系統120之一位置指示,並將該位置指示提供給控制器處理器652。控制器處理器652利用對應顯示系統120之定位資訊,以及在該場地內已知的傳輸系統天線141之位置資訊,決定該傳輸系統天線141所需的方向,並據以產生控制電動機644、645的控制訊號,上述操作係基於記憶體653內所儲存的指令執行。該等控制訊號接著經由輸出部654提供,藉此對電動機644、645進行控制操作。
因此,使用時,控制器處理器652將會執行指令(指令以應用程式軟體的形式儲存於記憶體653內)以產生電動機控制訊號,並經由輸出部(例如一介面)提供該等訊號。據此,應可理解該控制器251可以由任何適當的控制器構成,例如經適當程式化的處理系統,或由電子處理裝置構成,例如微處理器、微晶片處理器、邏輯閘配置、視需要與實作邏輯關聯的韌體,例如現場可程式閘陣列(FPGA),或其他任何電子裝置、系統或配置。
以下將參考第七A圖,進一步詳述第二A圖系統中的一定位系統示例。
在本示例中,該定位系統包含多個定位模組232,其中每一定位模組232包含一定位模組收發器731與定位模組天線734耦接,以及一定位模組處理器732、一定位模組記憶體733。
系統中亦包含多個信標233,其所廣播的訊號將包含一信標識別碼的一指示,表示各信標的識別資訊,且該等信標的信號將可被定位模組232偵測。
具體而言,從信標233發出的訊號將由定位模組收發器731接收,並轉送至定位模組處理器732進行分析。定位模組處理器732根據儲存於定位模組記憶體733內的指令分析該等訊號,以決定信標識別碼以及顯示系統120相對於信標之一位置指示,例如基於信號強度及/或傳遞時間(time of flight)決定。定位模組處理器732接著產生位置資料,其中包含相對於各信標的位置指示、各信標的信標識別資訊、及指示定位模組識別資訊的一定位模組識別碼,定位模組處理器732並將上述資料傳輸到定位處理系統231。在一特定示例中,上述流程藉由定位模組232建立起的網狀網路達成。
因此,應可理解定位模組232可以由任何適當的、具備無線傳輸功能的處理系統構成,包括由電子處理裝置構成,例如微處理器、微晶片處理器、邏輯閘配置、視需要與實作邏輯關聯的韌體,例如現場可程式閘陣列(FPGA),或其他任何電子裝置、系統或配置。
同樣地,該等信標可為任何適當形式,並可包含任何能夠產生訊號從而獲得位置資訊的適當無線***信標,例如低功耗藍牙信標,這類信標實例為本領域的已知技術。
位置資料會被提供給定位處理系統231,其通常包含至少一微處理器735、一記憶體736、一選擇性的輸入/輸出裝置737(例如鍵盤及/或顯示器) 以及一外接介面738,如圖所示,上述元件經由一匯流排739互相連接。在本示例中,可利用外接介面738將定位處理系統231與網狀網路及控制系統150連接,例如透過一或多個通訊網路等進行連接。圖中僅示出單一外接介面738,然而此僅為便於說明示例,實際操作上可包含多個使用不同方法(例如乙太網路、串列埠、USB、無線連接等等)的連接介面。
使用時,微處理器735將會執行指令,使得所需程序能夠被執行,指令是以應用程式軟體的形式儲存於記憶體736之中。應用程式軟體可包含一或多個軟體模組,並可於適當的執行環境中予以執行,例如作業系統環境等。
基於上述說明,應可理解定位處理系統231可以由任何適當的處理系統構成,例如經過適當程式化的個人電腦或伺服器等。在一特定示例中,定位處理系統231為一標準處理系統,例如基於英特爾架構的處理系統,其執行儲存在永久性(例如硬碟)儲存器(但並非必需)之中的軟體應用程式。然而應可理解該處理系統亦可以是任何電子處理裝置,例如微處理器、微晶片處理器、邏輯閘配置、視需要與實作邏輯關聯的韌體,例如現場可程式閘陣列(FPGA),或其他任何電子裝置、系統或配置。
使用時,定位處理系統231接收來自各定位模組232的位置資料,並利用該位置資料決定對應顯示系統的位置。為完成上述程序,定位處理系統231先利用信標識別碼決定各個信標在場地內的所在位置;信標位置通常在初始的配置過程中建立,且對應資料會被儲存在一資料庫中供後續查找。定位處理系統231接著利用相對於各信標的位置,以及所有信標的位置,決定顯示系統在場 地內的位置。接下來,定位處理系統231利用定位模組識別碼與各別控制器251之間的關聯,決定用於控制各別顯示系統120天線的控制器251。如此將使得定位處理系統231能夠提供相關的位置資訊給控制器251,進而讓控制器能夠控制天線位置。
以下將參考第七B圖,進一步詳述第二A圖系統中的一定位系統示例。
在本示例中,該定位系統與上述第七A圖所示者大致相似,在此使用相同的元件編號來指稱類似的功能特徵,不再進一步詳述該等特徵。
本示例的不同處在於,定位模組232與顯示系統221及天線222耦接,使得位置資料能夠經由傳輸系統天線141及傳輸系統140,被傳送到定位處理系統231。
以下將參考第八圖,說明編碼及解碼一內容流的方法示例,該方法藉由壓縮及後續解壓縮影像資料完成。
在本示例中,於步驟800,從影像資料中獲取像素資料,該像素資料代表在一或多個影像當中的一像素陣列。該像素資料可使用任何適當方式獲取,視影像資料的格式而定。在一示例中,獲取像素資料僅藉由從影像資料中選擇一特定的位元組序列達成。像素陣列通常對應於預定數量的像素,例如多個影像其中一者的8x8像素塊,然而亦可使用其他像素陣列。
於步驟810,對像素資料實施轉換以決定一頻率係數集合,該等頻率係數指示了該像素陣列的頻率分量。所述轉換通常為一頻率轉換,例如傅立葉 轉換或類似者,在一示例中為二維離散餘弦轉換(2D DCT)。所述轉換可以任何適當方式實施,例如使用已知的轉換技術,然而在一示例中係以高度平行方式執行,因此可減少處理時間。
於步驟820,至少有部分頻率係數藉由使用一位元編碼方案被選擇性編碼,因此產生包含已編碼頻率係數的一集合。所述位元編碼方案定義了編碼每一頻率係數所使用的位元數,同時所有頻率係數為選擇性編碼,因此至少有部分的已編碼頻率係數具有不同位元數,且至少有一頻率係數不予採用,使得該已編碼頻率係數集合小於該頻率係數集合。
上述程序可以任何適當方式達成,且可包含放棄某些頻率係數,再針對其餘的頻率係數以不同的位元數進行編碼,藉此使得用於編碼頻率係數所需的位元數減至最少。或者,上述程序可包含以零位元編碼某些頻率係數,藉此在編碼步驟中有效放棄部分頻率係數。
被放棄不採用的特定頻率分量會根據偏好的實施方式而有不同。一般而言會放棄較高頻率的分量,因為這類分量佔據較小規模且其對應於影像中的劇烈轉變,也就表示其對於整體影像品質的貢獻度較少。如此可使得較高頻率分量係數被放棄不用,且不會對所感知的影像品質產生明顯的不利影響。除了放棄對應於較高頻率的頻率分量外,上述程序亦可對較高頻率分量的頻率係數使用較少的位元進行編碼,藉此減少頻率係數編碼時所需的整體位元數。
編碼程序執行後,於步驟830,利用已編碼頻率係數即可產生已壓縮影像資料。舉例而言,此步驟可藉由建立位元組流(byte stream)執行,一位 元組流包含了多個序列的已編碼頻率係數,並可選擇性包含辨識影像起始點等等的額外資訊,例如旗標或其他標記。
據此,上述程序藉由選擇性編碼頻率係數,而能夠產生已壓縮影像資料,該程序利用一編碼方案進行選擇性編碼,此編碼方案會放棄至少部分編碼係數,並以不同的位元數(例如根據頻率係數的規模而定)對其餘係數進行編碼。因此,規模較小的係數可用較少的位元數編碼,而不會產生資訊損失。所使用的位元編碼方案定義了每一頻率係數進行編碼時使用的位元數,因此同一方案可用於對已壓縮的影像資料進行解壓縮,以執行準確的解壓縮,並且允許所使用的位元編碼方案可被配置為針對當前情況將壓縮最佳化。
就本程序而言,於步驟840,依據所述位元編碼方案,從已壓縮影像資料中決定多個已編碼頻率係數的一集合。具體而言,藉由選擇組成下一頻率係數的下一個位元數,用於編碼每一頻率係數的位元數相關資訊允許所接收的已壓縮影像資料被分割成該等已編碼頻率係數。
於步驟850,依據所述位元編碼方案對該等已編碼頻率係數執行選擇性位元解碼,藉此產生多個頻率係數的一集合。就本程序而言,執行此步驟是為了將每一已編碼頻率係數轉換為一頻率係數,此外並針對編碼過程中被放棄不用的頻率係數另外產生頻率係數。具體而言,通常執行此步驟以產生空值(null value)的多個頻率係數,藉此重新建立完整的多個頻率係數的一集合。
接下來可對前述頻率係數集合執行逆轉換,以決定像素資料,該像素資料代表在一或多個影像當中的一像素陣列。具體而言,此步驟是以逆頻率 轉換方式執行,例如執行傅立葉逆轉換、二維離散餘弦逆轉換(2D IDCT)等。
據此,上述流程藉由使用一位元編碼方案對頻率係數進行選擇性編碼,使得影像資料可被編碼,並接著使用相同的位元編碼方案對已編碼頻率係數進行解碼。此外,所使用的該位元編碼方案可為適應性編碼方案,可根據許多標準做出適用性調整,例如根據欲編碼的影像資料性質、編碼的特定通道等。如此將可執行該位元編碼方案,並能夠最大化可完成的壓縮量。
除了上述優點之外,該編碼方案可採高度平行方式執行,例如使每一頻率係數進行平行編碼。如此將使得整個流程能夠更快速地執行,因此減少延遲情形,減少延遲對許多應用來說至為重要,例如虛擬實境應用中,影像是為回應一顯示裝置的移動而產生,因此必須快速地傳送到該顯示裝置進行顯示。
以下將參考第九圖,說明一編碼與解碼系統之示例。
編碼器342通常包含一編碼器輸入緩衝器941,其與一編碼器處理裝置942、一編碼器輸出緩衝器943以及一收發器944耦接。編碼器342另可包含一資料緩衝器945,其與收發器944耦接。
使用時,接收影像資料(在一特定示例中為內容流),並在傳送給編碼器處理裝置942進行壓縮之前,先將該影像資料暫時儲存於輸入緩衝器941。就此步驟而言,所述編碼器輸入緩衝器通常先緩衝影像當中接下來七列像素所對應的影像資料,繼而再緩衝下一列像素當中的接下來八個像素。如此一來,編碼器處理裝置942將能夠從已緩衝的影像資料中,獲取接下來8x8像素塊的像素資料,並開始編碼。
上述程序一旦完成後,接下來的八個像素會被緩衝處理,且重複此步驟直到第一批八列像素的所有像素資料都被獲取並進行編碼。此程序會重複對同一影像當中的其餘像素列執行,直到獲取整個影像的所有像素資料,在此時點,下一幅影像也以類似方式開始進行處理。因此依上述方式執行後,編碼器輸入緩衝器始終不需要儲存超過七行以及八個像素的影像資料,也就可以降低記憶體需求。此外,在獲取像素資料後,即使接下來八個像素的影像資料尚未完成緩衝,都可使用該編碼程序立即處理像素資料。如此將大幅減少處理時間,並有助於將整體延遲情形減至最少。
所獲得的已壓縮影像資料接著被儲存在編碼器輸出緩衝器943,例如藉由順序讀入已編碼位元,藉此執行並列轉串列(parallel to serial)的位元組編碼,完成後再經由收發器944傳輸到解碼器322。收發器944亦可用於傳輸其他資料,例如透過編碼器資料緩衝器945從頭戴式顯示器(HMD)接收的感測器資料。
緩衝器941、943、945可以是任何適當形式的暫存器,視偏好的實施方式而定,在一示例中可包含高效能的FIFO(先進先出)場儲存晶片等。輸入緩衝器941通常連接於一HDMI端口,而資料緩衝器945則連接於一USB端口,因此兩者可同樣連接到電腦系統。
收發器944可以採任何適當形式,但在一示例中,其能夠使編碼器與解碼器之間進行短距離無線電通訊,例如經由點對點的WiFiTM直接連接、60GHz無線傳輸技術等。
處理裝置942可以是任何能夠執行本文所述壓縮程序的裝置。處理器942可包含一通用的處理裝置,其依據儲存在記憶體中的軟體指令運作。然而在一示例中,為了確保適當的快速壓縮時間,該處理裝置包含了客製硬體,其經過配置以執行壓縮程序。該處理裝置可包含視需要與實作邏輯關聯的韌體,例如現場可程式閘陣列(FPGA),或其他任何電子裝置、系統或配置。在一較佳示例中,編碼器處理裝置942經過配置,可就各獨立通道及各別DCT執行平行處理,並對各個頻率係數執行平行編碼。因此,雖然示例中僅使用單一個編碼器處理裝置942,實際操作上可使用多個編碼器處理裝置942,分別對每一通道執行平行編碼。若是有一個通道(例如Y通道)未被編碼,則該編碼器處理裝置可能在傳送各別資料到編碼器輸出緩衝器943時逕採延遲手段,以確保仍能與已編碼的CbCr通道同步。
解碼器322通常包含一收發器924,其與一解碼器輸入緩衝器921耦接,而解碼器輸入緩衝器921同時又與一解碼器處理裝置922及一解碼器輸出緩衝器923耦接。解碼器322可另包含一資料緩衝器925,其與收發器924耦接。
使用時,經由收發器924從編碼器342接收已壓縮影像資料,並將其暫存於輸入緩衝器921,之後再將該資料轉送至解碼器處理裝置922進行解壓縮。解壓縮後的影像資料接著會被儲存至解碼器輸出緩衝器923,之後再被傳輸到顯示裝置120。收發器924亦可用於傳輸其他資料,例如透過解碼器資料緩衝器925從顯示裝置120.1接收到的感測器資料。
緩衝器921、923、925可以是任何適當形式的暫存器,視偏好的實 施方式而定,在一示例中可包含高效能的FIFO(先進先出)場儲存晶片等。輸出緩衝器923通常連接於一HDMI端口,而資料緩衝器925則連接於一USB端口,因此兩者可同樣連接到顯示裝置。
收發器924可以採任何適當形式,但在一示例中,其能夠使編碼器與解碼器之間進行短距離無線電通訊,例如經由點對點的WiFiTM直接連接、60GHz無線傳輸技術等。
處理裝置922可包含一通用的處理裝置,其依據儲存在記憶體中的軟體指令運作。然而在一示例中,為了確保較少的解壓縮時間,該處理裝置包含了客製硬體,其經過配置以執行解壓縮程序。該處理裝置可包含視需要與實作邏輯關聯的韌體,例如現場可程式閘陣列(FPGA),或其他任何電子裝置、系統或配置。在一較佳示例中,解碼器處理裝置922經過配置,可就各獨立通道及各別DCT執行平行處理,並對各個頻率係數執行平行編碼。同樣地,雖然示例中僅使用單一個解碼器處理裝置922,實際操作上可使用多個編碼器處理裝置942,分別對每一通道執行平行編碼。若是有一個通道(例如Y通道)未被編碼,則該解碼器處理裝置可能在傳送各別資料到解碼器輸出緩衝器923時逕採延遲手段,以確保仍能與已編碼的CbCr通道同步。
以下將參考第十一圖,說明可使基地台與行動裝置之間進行通訊的一系統之示例。
在本示例中,該系統包含一處理系統1110,其與一通訊網路1100耦接,通訊網路例如為網際網路、私人網路(例如802.11網路、廣域網路WAN 等)。在本示例中,處理系統1110經過配置,用於經由基地台1160與行動裝置1120進行通訊,而基地台1160則利用一行動通訊網路(例如3G、4G、5G網路等)與該行動裝置通訊,並提供持續性的連接連至通訊網路1100。
處理系統1110可採任何適當形式,在一示例中該處理系統為一伺服器,其經配置用於產生內容以在行動裝置1120上顯示,內容例如為數位實境內容、多媒體內容、網頁等。在一示例中,處理系統1110包含一內容引擎,該內容引擎包含硬體及/或軟體系統的組合,該等系統可運作以產生AR或VR內容,其運作可選擇性地基於顯示系統120以及任何關聯硬體(例如關聯基地台)所接收到的訊號。雖然所示的處理系統1110為一整體,應可理解該處理系統1110可分散在多個不同的地理位置,例如該處理系統1110係作為一雲端環境的部分組件所使用。然而上述配置方式並非必要,亦可採行其他合適的配置。
在本示例中,行動裝置1120包含一收發器1121與天線1122,以及處理器1123、記憶體1124、輸入/輸出裝置1125(例如觸控螢幕、喇叭、麥克風),上述元件經由一匯流排1126互相連接。行動裝置1120亦包含一定位模組1132,其可為任何形式的定位模組,例如GPS模組或其他定位系統(例如使用距離感測技術測繪當地環境地圖的系統)。或者,該定位模組可判定位置上的變化,例如為一慣性量測單元,或者可以是一加速度計,其可量測行動裝置所做的移動。行動裝置1120亦包含一控制模組1152用於控制天線1122,特別是控制一相位天線陣列的波束成形/波束控制。雖然示例中使用一獨立的控制模組,亦可採替代方式將此模組的功能併入作為處理器1123所執行的功能,視偏好的實施方式而定。
使用時,處理器1123將會執行指令,使得所需程序能夠被執行,指令是以應用程式軟體的形式儲存於記憶體1124之中。應用程式軟體可包含一或多個軟體模組,並可於適當的執行環境中予以執行,例如作業系統環境等。因此行動裝置1120通常為例如AR、VR或混合實境顯示系統、行動電話、智慧型手機、平板電腦等的裝置。然而上述形式並非必要,該行動裝置亦可為一可攜式運算裝置,例如筆記型電腦等。
在本示例中,基地台1160包含一傳輸系統1140,其包含了傳輸模組1142與關聯天線1141。雖然示例中使用單一模組與天線,應可理解在實際操作上,可使用多個天線與多個模組。傳輸模組1142可用於在透過傳輸系統天線1141進行傳送之前,先對內容流執行適當編碼。傳輸模組1142可包含硬體及/或軟體元件的組合,且在一示例中包含了類似於前文所述的專用編碼器。傳輸系統天線1141通常為一定向的相位陣列天線,可透過電子式波束控制/波束成形技術調整其方向性。傳輸系統天線1141由一控制系統1150控制,控制系統1150包含一控制器1151,其通常為一基於硬體及/或軟體運作的控制器,用於控制天線方向。
基地台1160並包含一定位系統1130,其包含一定位處理系統1131用於決定行動裝置1120的位置。定位系統1130自行動裝置1120的定位模組1132接收位置資料,該位置資料通常根據所在地環境或全球環境中的相對位置關係定義該行動裝置。該定位系統接著決定行動裝置1120相對於基地台1160的位置,特別是相對於基地台天線1141的位置,使得控制器1150能夠據以控制天線1141。
應可理解基地台1160通常亦包含與行動通訊網路基地台相關的 其他基礎設施和組件,在此不予以贅述。
以下將說明與行動裝置進行通訊的一流程示例。就本示例而言,以下說明假設所述通訊已依據標準的蜂巢式網路通訊協定建立,並且在基地台1160的有效範圍內。
在本示例中,於步驟1200,行動裝置1120的定位模組1132決定該行動裝置於環境中所在的一位置,並將指示其位置的位置資料提供給基地台1160。於步驟1210,基地台1160通常會執行一訊號掃掠,掃掠訊號傳送方向以基於最強的訊號建立行動裝置1120所在的一位置。此步驟可與行動裝置決定位置資料同步執行,或可在位置資料產生後執行,允許來自被使用的位置資料的一大概位置,限縮訊號掃掠的程度。
無論順序為何,於步驟1220,基地台1160的定位系統1130接下來使用行動裝置1120提供的位置資料以及訊號掃掠的結果,設定一初始相對位置,並將該初始相對位置傳回行動裝置1120。
於步驟1230,一旦行動裝置1120進行移動,定位模組將會更新位置資訊,並將位置資料提供給基地台1160。行動裝置1120的定位模組1132以及基地台1160的定位系統1130可更新相對位置,允許各自的控制器1152、1151能夠分別控制行動裝置天線1122以及基地台天線1141,如所示步驟1240及1250。
如此一來,於步驟1260,行動裝置與基地台將能夠進行通訊,而步驟1230至步驟1260會不斷重複執行,因此不需要再執行訊號掃掠步驟,即可持續進行通訊。
因此,應可理解上述流程提供了一個最佳化行動裝置1120與基地台1160通訊的機制,而無需持續執行訊號掃掠。如此將可減少延遲情形,同時能夠讓行動裝置與基地台之間維持最佳訊號,因此可最大程度地提高傳輸頻寬。
兼用訊號掃掠與行動裝置1120傳來的位置資料執行初始定位,將可建立起具有高度準確性的行動裝置與基地台相對位置資訊。接下來,行動裝置的位置可基於該裝置相對於環境所做的移動而進行更新,例如使用來自慣性感測器的訊號、SLAM演算法等等。也就是說,定位模組1132不需要建立起準確的初始位置資訊,這在無法以適當方式確定絕對位置的情形下(例如無法獲取GPS服務)將會很有幫助。然而應可理解,如果行動裝置能夠提供其相對於基地台環境足夠準確的絕對位置資訊,則可不需要初始的訊號掃掠步驟。
此外,應可理解在某些情形下,可能有必要定時重複訊號掃掠步驟,例如在追蹤行動裝置1120之移動及/或位置的過程中發生訊號飄移(drift)情形時。
以下將參考第十三圖,說明可使兩部通訊裝置進行通訊的一系統示例。
在本示例中,該系統包含兩部通訊裝置1320.1、1320.2,每一通訊裝置1320均包含一收發器1321與天線1322,以及處理器1323、記憶體1324、輸入/輸出裝置1325(例如觸控螢幕、喇叭、麥克風),上述元件經由一匯流排1326互相連接。各通訊裝置亦包含一定位模組1332,其可為任何形式的定位模組,例如GPS模組或其他定位系統(例如使用距離感測技術測繪當地環境地圖的系統)。 或者,該定位模組可判定位置上的變化,例如為一慣性量測單元,或者可以是一加速度計,其可量測通訊裝置所做的移動。各通訊裝置亦包含一控制模組1352用於控制天線1322,特別是控制一相位天線陣列的波束成形/波束控制。雖然示例中使用一獨立的控制模組,亦可採替代方式將此模組的功能併入作為處理器1323所執行的功能,視偏好的實施方式而定。
使用時,處理器1323將會執行指令,使得所需程序能夠被執行,指令是以應用程式軟體的形式儲存於記憶體1324之中。應用程式軟體可包含一或多個軟體模組,並可於適當的執行環境中予以執行,例如作業系統環境等。因此通訊裝置1320通常為例如AR、VR或混合實境顯示系統、行動電話、智慧型手機、平板電腦等的裝置。然而上述形式並非必要,該等通訊裝置可為任何形式。此外,雖然所示的該等通訊裝置具有大致相似的配置,此並非必要條件,該等通訊裝置可具有不同形式,例如包含一電腦系統與一AR、VR或混合實境顯示系統。
在本示例中,兩部通訊裝置各別的定位模組1332會交換位置資訊,因此可據以建立初始的相對位置資訊。本示例之系統所執行的其他步驟大致與前文所述步驟類似,因此不再進一步予以詳述。
綜上,以上所述的各種系統所使用的配置,係利用一裝置在所處環境中的相對位置追蹤該裝置的位置,藉此達到控制該裝置進行定向傳輸的目的。所述控制可包括:控制與該裝置分開的一天線,以控制向該裝置進行的傳輸;以及控制一內建天線(on-board antenna),以控制該天線向另一天線進行的傳輸。在一示例中,所述控制方法被用於控制傳輸的方向,並可視需要使用波束成形及 /或波束控制技術。
能夠控制天線並實現傳輸最佳化,將有助於最大程度地提高可用頻寬。此外,在達成前述目標的同時,又能夠將執行訊號掃掠(在先前技術中通常用於獲得定位資訊)的需求消除,因此可大幅減少延遲情形,並減少不必要的訊號傳輸(且訊號傳輸可能導致裝置之間產生干擾)。然而應可理解的是,雖然本文所述的較佳方法避開了訊號掃掠步驟,惟此並非必要條件,亦可選擇替代方式將執行訊號掃掠的需求減至最低,例如降低訊號掃掠的執行頻率或減少波束掃掠的區域,藉此最大程度地減少執行掃掠的時間,並減少掃掠時執行的訊號傳輸量。
以上敘述以較廣泛的方式說明了兩種主要實施例,一是在多人遊戲環境中提供數位內容,一是使兩部通訊裝置進行通訊。然而應可理解的是,關於多人遊戲場地的實施例僅為更廣泛通訊流程的其中一種特定示例,故一實施例中運用的特徵或流程,也可以在另一實施例中實現。因此,關於一實施例中所運用的特徵或流程之敘述,不應視為具有限制性,且各種特徵或流程也可以在適當情形下變換使用。
雖然本文多使用「位置」這一用詞,應可理解該用詞意欲涵蓋所在地點、位置之意,地點、位置等用詞具有類似意義且可互相變換使用。
此外,應可理解本文中關於天線的敘述若指稱單數形式,不應視為具有限制性,相關技術應用於系統時可包含複數個天線。
綜言之,本文所述系統提供了一種可使得現有VR或AR硬體適用 於多人遊戲場地的機制。所述方法流程也可有更廣泛的應用,可讓通訊裝置彼此的位置資訊用於最佳化通訊執行。更明確而言,可利用位置資訊達成控制一定向天線(例如相位陣列天線)之目的,藉此而可基於兩通訊裝置相對的位置或所在點、方向,執行波束控制及/或波束成形,如此一來將能夠減少及/或消除執行波束掃掠的必要性;波束掃掠會大幅增加通訊延遲情形,並導致傳輸的分布範圍更加擴大,而增加與其他裝置發生干擾的機會。
在本發明說明書與以下的申請專利範圍中,除上下文另有要求外,「包含」、「包括」等用語應理解其所指之意為涵納所述物件個體,或涵納物件、步驟之群體,但不排除其他物件個體或群體。
所屬技術領域中具通常知識者應可理解,顯而易見的,本發明可透過諸多改變與修飾實現。所有對於本技術領域中具通常知識者而言顯而易見的此等改變與修飾,皆應視為落入廣義的本發明之精神與範圍內。
100:系統
101:場地
110:內容系統
120:顯示系統
120.1:顯示裝置/頭戴式裝置
120.2:關聯控制器
130:定位系統
140:傳輸系統
141:傳輸系統天線
150:控制系統

Claims (17)

  1. 一種通訊系統,其包含:a)一第一通訊裝置及一第二通訊裝置,其中該第一通訊裝置包含一第一天線,且該第二通訊裝置包含一第二天線;b)一定位系統包含一感測器,該感測器使用來自感測器的訊號,以感測相對於一環境的該第一通訊裝置的位置;及c)一重複的控制系統:i)自該定位系統接收表示相對於該環境的該第一通訊裝置的位置的該位置指示;ii)回應接收該位置指示,從該位置指示決定該第一通訊裝置及該第二通訊裝置的一相對移動,至少部分使用該第一通訊裝置的位置變化;及iii)回應決定相對移動,藉由根據從位置指示決定的相對運動實施第二天線的波束成形來控制該第二天線,使得來自該第二天線的傳輸描準該第一天線。
  2. 如申請專利範圍第1項的通訊系統,其中該定位系統係該第一通訊裝置內的一位置系統,該位置系統決定該第一通訊裝置相對於該環境的一姿勢,且其中該控制系統至少部分地使用該第一通訊裝置的姿勢變化來決定該第一通訊裝置與該第二通訊裝置的相對移動。
  3. 如申請專利範圍第1項的通訊系統,其中該第一通訊裝置及該第二通訊裝置其中至少一者包含複數個天線,且其中該控制系統根據該相對位置,從該複數個天線中分別選擇一天線。
  4. 如申請專利範圍第1項的通訊系統,其中該控制系統:a)至少部分地使用一相對移動與一預測演算法來決定該第一通訊裝置與該第二通訊裝置的一預測的相對位置;及b)藉由根據該預測的相對位置實施波束成形來控制該第二天線,從而使得來自第二天線的傳輸描準第一天線。
  5. 如申請專利範圍第1項的通訊系統,其中該感測器包含一測距感測器,該測距感測器決定該通訊裝置與該環境之間的距離,且其中該定位系統使用一同步定位和建圖演算法來決定該通訊裝置的位置。
  6. 如申請專利範圍第1項的通訊系統,其中該控制系統:a)在該環境內決定該第一通訊裝置及該第二通訊裝置的一相對位置;b)接收一環境地圖;及c)至少部分根據相對位置及該環境地圖控制該天線。
  7. 如申請專利範圍第1項的通訊系統,其中該控制系統:a)接收一遮蔽地圖,該遮蔽地圖界定i)多個遮蔽位置;及ii)一傳輸路徑,以避免遮蔽情形;及b)根據該相對位置及該遮蔽地圖,選擇性控制該至少一天線。
  8. 如申請專利範圍第1項的通訊系統,其中該第二通訊裝置係一靜態裝置,且其中該控制系統使用該第一通訊裝置的位置及該第二通訊裝置的一已知位置決定該相對移動。
  9. 如申請專利範圍第8項的通訊系統,其中該已知位置於一初始化程序期間決定。
  10. 如申請專利範圍第1項的通訊系統,其中該定位系統包含以下至少其一:a)一GPS模組;b)一同步定位及建圖系統;及c)該環境中提供的一或多個信標。
  11. 如申請專利範圍第1項的通訊系統,其中該定位系統設於該第一通訊裝置內。
  12. 如申請專利範圍第1項的通訊系統,其中該控制系統設於該第二通訊裝置內。
  13. 一種通訊系統,包含:a)一行動裝置,包含:i)一定位模組,決定相對於一環境的一行動裝置位置;ii)一行動裝置收發器,透過一行動裝置天線傳送並接收訊號;及iii)一行動裝置處理器,透過該行動裝置收發器,傳送表示該行動裝置之位置的一位置指示;及b)一行動通訊網路基地台,包含:i)一基地台傳輸系統,傳送並接收訊號,以和該行動裝置建立通訊,且 該基地台傳輸系統包含至少一天線;及ii)一控制系統,其(1)透過該基地台傳輸系統,自該行動裝置接收該位置指示;(2)回應接收該位置指示,使用該位置指示決定該行動裝置的位置;(3)使用該行動裝置的位置,決定該行動裝置與基地台的相對位置;及(4)藉由使用該位置指示,以決定在該行動裝置與該基地台的相對位置上,實施至少一基地台天線的波束成形來選擇性地控制該至少一天線,使得來自該基地台天線的傳輸描準行動裝置的天線。
  14. 如申請專利範圍第13項的通訊系統,其中該行動裝置包含下列至少其一:a)一數位實境頭戴式裝置;及b)一行動通訊裝置。
  15. 如申請專利範圍第13項的通訊系統,其中該行動裝置及基地台透過下列至少其一通訊:a)一蜂巢式網路通訊協定;b)一短距無線通訊協定;及c)一5G網路。
  16. 一種一第一通訊裝置及一第二通訊裝置的通訊方法,各通訊裝置包含一天線,該方法包含:a)使用一定位系統包含一感測器,該感測器感測相對於一環境的該第一通訊裝置的位置;及 b)使用一控制系統以i)自該定位系統接收表示相對於環境的該第一通訊裝置的位置的該位置指示;ii)回應接收該位置指示,從該位置指示決定該第一通訊裝置及該第二通訊裝置的一相對移動,至少部分使用該第一通訊裝置的位置變化;及iii)回應決定相對移動,藉由根據從位置指示決定的相對運動實施第二天線的波束成形來控制該第二天線,使得來自該第二天線的傳輸描準該第一天線。
  17. 一種使一第一通訊裝置與一第二通訊裝置進行通訊的天線控制系統,各通訊裝置包含一天線,該天線控制系統經配置以:a)自一定位系統接收表示相對於環境的該第一通訊裝置的位置的位置指示;b)回應接收該位置指示,從該位置指示決定該第一通訊裝置與該第二通訊裝置的一相對移動,至少部分使用該第一通訊裝置的位置變化;及c)回應決定相對移動,藉由根據從位置指示決定的相對運動實施第二天線的波束成形來控制該第二天線,使得來自該第二天線的傳輸描準該第一天線。
TW107116357A 2017-09-01 2018-05-15 用於行動裝置通訊之天線控制的系統及方法 TWI801384B (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US201762553334P 2017-09-01 2017-09-01
US62/553,334 2017-09-01
PCT/AU2018/050090 WO2018145153A1 (en) 2017-02-08 2018-02-07 Antenna control for mobile device communication
WOPCT/AU2018/050090 2018-02-07
??PCT/AU2018/050090 2018-02-07

Publications (2)

Publication Number Publication Date
TW201929929A TW201929929A (zh) 2019-08-01
TWI801384B true TWI801384B (zh) 2023-05-11

Family

ID=68315862

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107116357A TWI801384B (zh) 2017-09-01 2018-05-15 用於行動裝置通訊之天線控制的系統及方法

Country Status (1)

Country Link
TW (1) TWI801384B (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259991B1 (en) * 1999-02-10 2001-07-10 X-Cyte Inc. Environmental location system
US20070037528A1 (en) * 2005-08-12 2007-02-15 Chinh Doan Wireless communication device using adaptive beamforming
US20140128032A1 (en) * 2011-06-20 2014-05-08 Prasad Muthukumar Smart Active Antenna Radiation Pattern Optimising System For Mobile Devices Achieved By Sensing Device Proximity Environment With Property, Position, Orientation, Signal Quality And Operating Modes
TW201501408A (zh) * 2013-03-19 2015-01-01 Dexerials Corp 天線裝置及電子機器
TW201541709A (zh) * 2014-03-28 2015-11-01 Dexerials Corp 天線裝置、電子機器及天線裝置之電感調整方法
TW201608837A (zh) * 2014-08-20 2016-03-01 Lg電子股份有限公司 在無線通訊系統中傳輸信號的方法及裝置
TW201621654A (zh) * 2014-09-03 2016-06-16 英特爾股份有限公司 具有用以感應在磁性層其上應變的介面之自旋轉移力矩記憶體及邏輯裝置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6259991B1 (en) * 1999-02-10 2001-07-10 X-Cyte Inc. Environmental location system
US20070037528A1 (en) * 2005-08-12 2007-02-15 Chinh Doan Wireless communication device using adaptive beamforming
US20140128032A1 (en) * 2011-06-20 2014-05-08 Prasad Muthukumar Smart Active Antenna Radiation Pattern Optimising System For Mobile Devices Achieved By Sensing Device Proximity Environment With Property, Position, Orientation, Signal Quality And Operating Modes
TW201501408A (zh) * 2013-03-19 2015-01-01 Dexerials Corp 天線裝置及電子機器
TW201541709A (zh) * 2014-03-28 2015-11-01 Dexerials Corp 天線裝置、電子機器及天線裝置之電感調整方法
TW201608837A (zh) * 2014-08-20 2016-03-01 Lg電子股份有限公司 在無線通訊系統中傳輸信號的方法及裝置
TW201621654A (zh) * 2014-09-03 2016-06-16 英特爾股份有限公司 具有用以感應在磁性層其上應變的介面之自旋轉移力矩記憶體及邏輯裝置

Also Published As

Publication number Publication date
TW201929929A (zh) 2019-08-01

Similar Documents

Publication Publication Date Title
US20220091808A1 (en) Antenna Control for Mobile Device Communication
US11150857B2 (en) Antenna control for mobile device communication
US12044774B2 (en) Dual purpose millimeter wave frequency band transmitter
US20210112289A1 (en) Low latency wireless virtual reality systems and methods
CN109076249B (zh) 用于视频处理和显示的***和方法
CN109952135B (zh) 具有差分渲染和声音定位的无线头戴式显示器
KR102211669B1 (ko) 비디오 전송
CN116134809A (zh) 用于传输3d xr媒体数据的方法和设备
US10937220B2 (en) Animation streaming for media interaction
KR20220133892A (ko) 무선 가상 및 증강 현실 시스템의 레이턴시 숨기기
KR102437276B1 (ko) 바디 움직임 기반의 클라우드 vr 장치 및 방법
CN113366338A (zh) 用于头戴式显示器的无线数据传输***
US20230069407A1 (en) Remote operation apparatus and computer-readable medium
TWI801384B (zh) 用於行動裝置通訊之天線控制的系統及方法
EP3665656A1 (en) Three-dimensional video processing
WO2019034804A2 (en) THREE-DIMENSIONAL VIDEO PROCESSING
US10096149B2 (en) Direct motion sensor input to rendering pipeline
US20180239419A1 (en) Wireless transceiver system using beam tracking
US20220103224A1 (en) Information processing device and method
US20220038852A1 (en) Information processing device and information processing method
KR20240048207A (ko) 사용자의 상황 정보 예측 기반 확장현실 디바이스의 영상 스트리밍 방법 및 장치