TWI798851B - Micro-channel lifting valve device - Google Patents

Micro-channel lifting valve device Download PDF

Info

Publication number
TWI798851B
TWI798851B TW110136734A TW110136734A TWI798851B TW I798851 B TWI798851 B TW I798851B TW 110136734 A TW110136734 A TW 110136734A TW 110136734 A TW110136734 A TW 110136734A TW I798851 B TWI798851 B TW I798851B
Authority
TW
Taiwan
Prior art keywords
material layer
liquid
valve device
layer
fluid
Prior art date
Application number
TW110136734A
Other languages
Chinese (zh)
Other versions
TW202315681A (en
Inventor
陳文逸
曹嘉文
張昌晏
賴藝芳
Original Assignee
國立中央大學
台塑石化股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中央大學, 台塑石化股份有限公司 filed Critical 國立中央大學
Priority to TW110136734A priority Critical patent/TWI798851B/en
Application granted granted Critical
Publication of TWI798851B publication Critical patent/TWI798851B/en
Publication of TW202315681A publication Critical patent/TW202315681A/en

Links

Images

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

A micro-channel lifting valve device is provided, including a base material layer, a liquid absorbent layer and a control gate. The base material layer has fluid channels. The liquid absorbent layer is disposed on the base material layer. When the control gate is not in contact with the liquid absorbent layer, the fluid flows in the fluid channel. When the control gate descends towards the liquid absorbent layer and applies force and squeezes a part of the liquid absorbent layer, the liquid absorbent layer is partially deformed and porosity thereof is changed by the force and squeezing, so as to control the flow rate of the fluid in the fluid channel. When the control gate descends to the bottom of the liquid absorbent layer, the fluid in the fluid channel cannot pass.

Description

微流道升降閥門裝置Microchannel lift valve device

本發明是有關於一種微流道裝置,且特別是有關於一種微流道升降閥門裝置。The present invention relates to a micro-channel device, and in particular to a micro-channel lifting valve device.

微流道裝置是生命科學、化學科學與資訊科學信號檢測和處理方法研究的重要技術平台。在此技術領域中,通常需要精確有效地控制反應物、樣品及試劑等流體在微流道裝置中的流動及混合,微流道中流體流速及流通與否的控制閥門成為了此項技術的關鍵所在。在現有技術中,習知的微流道閥門可分為主動式及被動式的閥門。主動式的閥門包括使用記憶金屬、磁力驅動或磁石、氣動式薄膜或利用紙張摺疊及部分紙張開合作為閥門。至於被動式的閥門方面,由於無需致動的部份便能發揮作用,因此,提供了另一種有效控制流體的方式,此類型閥門包括毛細閥、高分子單向閥或疏水閥等。現今在紙張上控制液體流速的方式多為紙張表面改質、添加高黏性流體以改變黏性、或高分子溶解閥及熱響應式水膠等化學方式。Microfluidic device is an important technical platform for the research of signal detection and processing methods in life science, chemical science and information science. In this technical field, it is usually necessary to accurately and effectively control the flow and mixing of fluids such as reactants, samples, and reagents in microchannel devices. The control valves for fluid flow rate and flow in microchannels have become the key to this technology. where. In the prior art, known microchannel valves can be divided into active and passive valves. Active valves include the use of memory metals, magnetic drives or magnets, pneumatic membranes, or the use of paper folding and partial paper opening as valves. As for passive valves, since they can function without actuating parts, another way to effectively control fluid is provided. This type of valves includes capillary valves, polymer one-way valves or steam traps, etc. Nowadays, the methods of controlling the flow rate of liquid on paper are mostly chemical methods such as paper surface modification, adding high-viscosity fluid to change the viscosity, or polymer dissolving valves and heat-responsive water glue.

基於上述,發展出一種結合微流道的主動控制優勢以及紙基的易取得及低成本優點之微流道裝置,為目前所需研究的重要課題。Based on the above, the development of a microfluidic device that combines the advantages of active control of microfluidics with the advantages of easy availability and low cost of paper base is an important subject of current research.

本發明提供一種微流道升降閥門裝置,利用閥門尖端施加壓力(因為接觸面積小)擠壓施力於紙質基材或其他可吸附液體的基材,透過改變紙質基材或其他可吸附液體的基材上孔隙度大小藉以達到流速改變。The invention provides a micro-channel lifting valve device, which uses the valve tip to apply pressure (because the contact area is small) to squeeze and apply force to the paper substrate or other substrates that can absorb liquid. The size of the porosity on the substrate allows the flow rate to vary.

本發明的微流道升降閥門裝置包括基質材料層、液體吸附材料層以及控制閥門。基質材料層具有流體通道。液體吸附材料層配置於基質材料層上。當控制閥門未與液體吸附材料層接觸時,流體在流體通道內流動。當控制閥門朝向液體吸附材料層下降且施力於擠壓部分液體吸附材料層時,液體吸附材料層受到施力擠壓產生部分變形及孔隙度大小改變,以控制流體通道中流體的流速。當控制閥門下降至液體吸附材料層的底部時,流體通道中流體無法通過。The micro-channel lifting valve device of the present invention comprises a matrix material layer, a liquid adsorption material layer and a control valve. The matrix material layer has fluid channels. The liquid absorbent material layer is arranged on the matrix material layer. Fluid flows in the fluid channel when the control valve is not in contact with the layer of liquid absorbent material. When the control valve descends toward the liquid-absorbing material layer and applies force to extrude part of the liquid-absorbing material layer, the liquid-absorbing material layer is partially deformed and porosity changes due to the pressing force, so as to control the flow rate of the fluid in the fluid channel. When the control valve is lowered to the bottom of the liquid absorbent material layer, the fluid in the fluid channel cannot pass through.

在本發明的一實施例中,微流道升降閥門裝置更包括緩衝層,配置於基質材料層與液體吸附材料層之間。In an embodiment of the present invention, the micro-channel lifting valve device further includes a buffer layer disposed between the matrix material layer and the liquid-absorbing material layer.

在本發明的一實施例中,緩衝層的材料包括聚二甲基矽氧烷(Polydimethylsiloxane,PDMS)、聚酯纖維、聚苯乙烯-聚乙烯-聚丁烯-聚苯乙烯(SEBS)或熱塑性聚胺酯(TPU)。In one embodiment of the present invention, the material of the buffer layer includes polydimethylsiloxane (Polydimethylsiloxane, PDMS), polyester fiber, polystyrene-polyethylene-polybutylene-polystyrene (SEBS) or thermoplastic Polyurethane (TPU).

在本發明的一實施例中,基質材料層包括硬質材料,硬質材料包括金屬、玻璃、矽晶圓或高分子材料。In an embodiment of the present invention, the matrix material layer includes a hard material, and the hard material includes metal, glass, silicon wafer or polymer material.

在本發明的一實施例中,利用升降裝置調控控制閥門的上升與下降。In an embodiment of the present invention, a lifting device is used to regulate and control the rising and falling of the valve.

在本發明的一實施例中,升降裝置包括馬達、旋鈕或按壓式裝置。In an embodiment of the present invention, the lifting device includes a motor, a knob or a push-type device.

在本發明的一實施例中,利用機械加工製程或化學加工製程在基質材料層中形成流體通道。In an embodiment of the present invention, the fluid channels are formed in the matrix material layer by mechanical processing or chemical processing.

在本發明的一實施例中,機械加工製程包括車床洗削。In an embodiment of the invention, the machining process includes lathe washing.

在本發明的一實施例中,化學加工製程包括光罩蝕刻。In one embodiment of the invention, the chemical processing process includes photomask etching.

在本發明的一實施例中,控制閥門的材料包括硬質材料、熱塑性材料或熱固性材料。In an embodiment of the present invention, the material of the control valve includes hard material, thermoplastic material or thermosetting material.

在本發明的一實施例中,液體吸附材料層的材料包括紙質基材、多孔性纖維基材或氣凝膠。In an embodiment of the present invention, the material of the liquid-absorbing material layer includes a paper substrate, a porous fiber substrate or an airgel.

基於上述,本發明的微流道升降閥門裝置包括基質材料層、液體吸附材料層以及控制閥門。液體吸附材料層具有易取得、低成本、具生物相容性及毛細現象的優點,不須任何外在壓力介入,即可使流體流動。基質材料層則可由硬質材料構成,存在易加工特性,透過在基質材料層上形成流體通道,控制流體流動方向並使流體集中於液體吸附材料層上。本發明的微流道升降閥門裝置也可應用於即時定量聚合酶連鎖反應(quantitative real-time PCR,qPCR)或FET等技術領域。Based on the above, the microchannel lift valve device of the present invention includes a matrix material layer, a liquid adsorption material layer and a control valve. The liquid adsorption material layer has the advantages of easy acquisition, low cost, biocompatibility and capillary phenomenon, and can make the fluid flow without any external pressure intervention. The matrix material layer can be made of hard material, which is easy to process. Through the formation of fluid channels on the matrix material layer, the direction of fluid flow can be controlled and the fluid can be concentrated on the liquid adsorption material layer. The microchannel lift valve device of the present invention can also be applied to technical fields such as real-time quantitative polymerase chain reaction (quantitative real-time PCR, qPCR) or FET.

下文列舉實施例並配合所附圖式來進行詳細地說明,但所提供之實施例並非用以限制本發明所涵蓋的範圍。此外,圖式僅以說明為目的,並未依照原尺寸作圖。為了方便理解,下述說明中相同的元件將以相同之符號標示來說明。.The following examples are listed and described in detail with the accompanying drawings, but the provided examples are not intended to limit the scope of the present invention. In addition, the drawings are for illustrative purposes only and are not drawn to original scale. In order to facilitate understanding, the same components in the following description will be described with the same symbols. .

圖1至圖3是依照本發明的一實施例的一種微流道升降閥門裝置的局部操作示意圖。1 to 3 are partial operation schematic diagrams of a microchannel lift valve device according to an embodiment of the present invention.

請先參照圖1至圖3,本實施例的微流道升降閥門裝置包括基質材料層10、液體吸附材料層20以及控制閥門30(Control gate)。基質材料層10具有流體通道(未繪示),可利用機械加工製程或化學加工製程在基質材料層10中形成流體通道,以確保所有液體樣品吸附在液體吸附材料層20上,機械加工製程可包括車床洗削,化學加工製程可包括光罩蝕刻,較佳例如是以8000 rpm(旋轉速度)和每秒5mm(供給速率)研磨洗削,但本發明並不以此為限。液體吸附材料層20配置於基質材料層10上。更詳細而言,基質材料層10可包括硬質材料,硬質材料可包括金屬、玻璃、矽晶圓或高分子材料,較佳例如是熱塑性材料(PMMA),具有高透光度、高強度、低成本、耐化學藥劑且容易加工等特性,但本發明並不以此為限。控制閥門30的材料可包括硬質材料、熱塑性材料或熱固性材料。熱塑性材料可包括聚乙烯(PE)、聚氯乙烯(PVC)、聚丙烯(PP)、聚苯乙烯(PS)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚碳酸酯(PC)、聚對苯二甲酸二丁酯(PBT)、聚醯胺(PA)、聚縮醛(POM)、改質聚氧化二甲基苯(m-PPE)或聚乙烯對苯二甲酸酯(PET),成型方式可包括射出成型、押出成型或吹製成型,但本發明並不以此為限。熱固性材料可包括酚甲醛樹脂、尿素樹脂、環氧樹脂、矽氧樹脂、三聚氰銨或不飽合樹脂,成型方式可包括壓縮成型、轉注成形或澆鑄成形,但本發明並不以此為限。液體吸附材料層20的材料則可包括紙質基材,亦可使用多孔性纖維基材、氣凝膠或其他可吸附液體的材料。氣凝膠(Aerogel)常使用金屬烷氧化物為前驅物,經水解和縮合後製作濕凝膠後,再經過超臨界乾燥或常壓乾燥將濕凝膠中的溶劑去除,得到奈米級網狀多孔結構。然而,本發明並不以此為限。透過使用紙質基材或其他可吸附液體的材料,即可通過毛細作用吸收流體,無需外部泵或電源。Please refer to FIG. 1 to FIG. 3 , the microchannel lifting valve device of this embodiment includes a matrix material layer 10 , a liquid adsorption material layer 20 and a control valve 30 (Control gate). The matrix material layer 10 has a fluid channel (not shown), and a fluid channel can be formed in the matrix material layer 10 using a mechanical processing process or a chemical processing process to ensure that all liquid samples are adsorbed on the liquid adsorption material layer 20. The mechanical processing process can be Including lathe cleaning, the chemical processing process may include photomask etching, such as abrasive cleaning at 8000 rpm (rotation speed) and 5 mm per second (feed rate), but the invention is not limited thereto. The liquid absorbent material layer 20 is disposed on the matrix material layer 10 . In more detail, the matrix material layer 10 may include a hard material, and the hard material may include metal, glass, silicon wafer or polymer material, such as thermoplastic material (PMMA), which has high light transmittance, high strength, low Cost, chemical resistance and easy processing, but the present invention is not limited thereto. The material of the control valve 30 may include a rigid material, a thermoplastic material or a thermoset material. Thermoplastic materials can include polyethylene (PE), polyvinyl chloride (PVC), polypropylene (PP), polystyrene (PS), acrylonitrile-butadiene-styrene copolymer (ABS), polycarbonate (PC ), polybutylene terephthalate (PBT), polyamide (PA), polyacetal (POM), modified polyoxyxylene (m-PPE) or polyethylene terephthalate (PET), the molding method may include injection molding, extrusion molding or blow molding, but the present invention is not limited thereto. The thermosetting material may include phenol-formaldehyde resin, urea resin, epoxy resin, silicone resin, melamine or unsaturated resin, and the molding method may include compression molding, transfer molding or casting molding, but the present invention is not intended as such limit. The material of the liquid-absorbing material layer 20 may include paper substrate, porous fiber substrate, aerogel or other materials capable of absorbing liquid. Aerogel often uses metal alkoxides as precursors. After hydrolysis and condensation to make wet gels, the solvent in the wet gels is removed by supercritical drying or normal pressure drying to obtain nanoscale nets. porous structure. However, the present invention is not limited thereto. By using a paper substrate or other liquid-absorbent material, fluid is absorbed by capillary action without the need for an external pump or power source.

請參照圖1至圖3,本發明的微流道升降閥門裝置可以是存在封閉空間的封閉式裝置。更詳細而言,可在液體吸附材料層20以及控制閥門30上額外配置一層上蓋層(未繪示),將液體吸附材料層20以及控制閥門30配置於基質材料層10以及上蓋層之間。上蓋層可包括硬質材料,硬質材料可包括金屬、玻璃、矽晶圓或高分子材料,較佳例如是熱塑性材料(PMMA),但本發明並不以此為限。透過將基質材料層10以及上蓋層鎖上螺絲後,即可形成存在封閉空間的封閉式裝置,以減少汙染。Please refer to FIG. 1 to FIG. 3 , the microchannel lifting valve device of the present invention may be a closed device with a closed space. In more detail, an additional cover layer (not shown) can be arranged on the liquid absorbent material layer 20 and the control valve 30 , and the liquid absorbent material layer 20 and the control valve 30 are arranged between the matrix material layer 10 and the upper cover layer. The upper cover layer may include hard material, and the hard material may include metal, glass, silicon wafer or polymer material, such as thermoplastic material (PMMA), but the invention is not limited thereto. By screwing the matrix material layer 10 and the upper cover layer, a closed device with a closed space can be formed to reduce pollution.

請先參照圖1,當控制閥門30未與液體吸附材料層20接觸時,流體在流體通道內流動(Open mode),如圖1中的箭頭方向所示。請參照圖2,當控制閥門30朝向液體吸附材料層20下降且施力於部分液體吸附材料層20時,液體吸附材料層20受到施力產生部分變形,根據變形量的大小,以控制流體通道中流體的流速(Control mode),如圖2中的箭頭方向所示。控制閥門30可用不同角度施力擠壓於液體吸附材料層20,再施力擠壓至流體通道,以達到減緩流速的效果。在本實施例中,例如是透過控制閥門30由上往下施力,但本發明並不以此為限,控制閥門30亦可由其他方向施力。此時,控制閥門30可朝向液體吸附材料層20繼續下降,或遠離液體吸附材料層20上升。當控制閥門30遠離液體吸附材料層20上升時,可使液體吸附材料層20恢復原狀,並逐漸減緩對流體通道中流體的流速控制。相對地,如圖3所示,當控制閥門30下降至液體吸附材料層20的底部時,流體通道中流體無法通過,以達到閥門關閉的效果(Close mode),如圖3中的箭頭方向及叉號所示。Please refer to FIG. 1 , when the control valve 30 is not in contact with the liquid absorbent material layer 20 , the fluid flows in the fluid channel (Open mode), as shown by the direction of the arrow in FIG. 1 . Please refer to FIG. 2 , when the control valve 30 descends toward the liquid-absorbing material layer 20 and exerts a force on part of the liquid-absorbing material layer 20, the liquid-absorbing material layer 20 is partially deformed by the applied force, and the fluid channel is controlled according to the amount of deformation. The flow rate of the fluid (Control mode), as shown in the direction of the arrow in Figure 2. The control valve 30 can be pressed against the liquid absorbent material layer 20 at different angles, and then pressed against the fluid channel, so as to achieve the effect of slowing down the flow rate. In this embodiment, for example, the force is applied from top to bottom through the control valve 30 , but the present invention is not limited thereto, and the control valve 30 can also apply force from other directions. At this time, the control valve 30 can continue to descend toward the liquid-absorbing material layer 20 or rise away from the liquid-absorbing material layer 20 . When the control valve 30 rises away from the liquid absorbent material layer 20, the liquid absorbent material layer 20 can be restored to its original state, and the flow rate control of the fluid in the fluid channel is gradually slowed down. In contrast, as shown in Figure 3, when the control valve 30 descends to the bottom of the liquid absorbent material layer 20, the fluid in the fluid channel cannot pass through to achieve the effect of closing the valve (Close mode), as shown in the direction of the arrow in Figure 3 and indicated by a cross.

在本實施例中,主要可利用升降裝置(未繪示)調控控制閥門30的上升與下降。升降裝置可包括(步進)馬達、旋鈕或按壓式裝置,但本發明並不以此為限。此外,控制閥門30的形狀例如可以是片狀、圓形或圓柱型,但本發明並不以此為限,控制閥門30的形狀可採用任何其他能對流體通道進行施力的結構設計。控制閥門30作為主動控制閥來減緩液體流速,而液體吸附材料層20的孔隙率則用以調節流體的速度並增加延遲時間,當應用於核酸研究時,可優化核酸吸收的操作時間。更詳細而言,控制閥門30施力擠壓於液體吸附材料層20,液體吸附材料層20的孔隙度因此被壓縮,藉以調控液體通過體積以及流速,可改變液體吸附材料層20的孔隙度大小以將液體流速減緩達到增加液體停留於特定區域的延遲時間。此外,更可因應不同研究應用需求,在液體吸附材料層20上改質抗體以純化外泌體,在液體吸附材料層20上化學改質二氧化矽以吸附裂解外泌體後微小核糖核酸。In this embodiment, the ascending and descending of the valve 30 can be regulated and controlled mainly by using a lifting device (not shown). Lifting means may comprise (stepper) motors, knobs or push-type means, but the invention is not limited thereto. In addition, the shape of the control valve 30 can be, for example, a sheet, circular or cylindrical shape, but the present invention is not limited thereto, and the shape of the control valve 30 can adopt any other structural design capable of exerting force on the fluid channel. The control valve 30 acts as an active control valve to slow down the flow rate of the liquid, while the porosity of the liquid absorbent material layer 20 is used to adjust the flow rate and increase the delay time, which can optimize the operation time of nucleic acid absorption when applied to nucleic acid research. In more detail, the control valve 30 presses against the liquid-absorbing material layer 20, thereby compressing the porosity of the liquid-absorbing material layer 20, so as to regulate the passing volume and flow rate of the liquid, thereby changing the porosity of the liquid-absorbing material layer 20. By slowing down the flow rate of the liquid to increase the delay time for the liquid to stay in a specific area. In addition, to meet different research and application requirements, antibodies can be modified on the liquid adsorption material layer 20 to purify exosomes, and silicon dioxide can be chemically modified on the liquid adsorption material layer 20 to absorb microRNA after cleavage of exosomes.

圖4是依照本發明的另一實施例的一種微流道升降閥門裝置的局部操作示意圖。圖4所示的實施例相似於圖1至圖3所示的實施例,故相同元件以相同標號表示且在此不予贅述。Fig. 4 is a schematic diagram of a partial operation of a microchannel lifting valve device according to another embodiment of the present invention. The embodiment shown in FIG. 4 is similar to the embodiments shown in FIGS. 1 to 3 , so the same components are denoted by the same reference numerals and will not be repeated here.

請參照圖4,本實施例與上述實施例不同之處在於,本實施例的微流道升降閥門裝置,更包括緩衝層40,配置於基質材料層10與液體吸附材料層20之間。控制閥門30可用不同角度施力於液體吸附材料層20,再施力至緩衝層40及流體通道,以達到減緩流速的效果。更詳細而言,控制閥門30作為主動控制閥來減緩液體流速,而液體吸附材料層20的孔隙率則用以調節流體的速度並增加延遲時間,當應用於核酸研究時,可優化核酸吸收的操作時間。更詳細而言,控制閥門30施力擠壓於液體吸附材料層20,液體吸附材料層20的孔隙度因此被壓縮,藉以調控液體通過體積以及流速,可改變液體吸附材料層20的孔隙度大小以將液體流速減緩達到增加液體停留於特定區域的延遲時間。此外,更可因應不同研究應用需求,在液體吸附材料層20上改質抗體以純化外泌體,在液體吸附材料層20上化學改質二氧化矽以吸附裂解外泌體後微小核糖核酸。Please refer to FIG. 4 , the difference between this embodiment and the above embodiments is that the microfluidic lifting valve device of this embodiment further includes a buffer layer 40 disposed between the matrix material layer 10 and the liquid adsorption material layer 20 . The control valve 30 can apply force to the liquid-absorbing material layer 20 at different angles, and then apply force to the buffer layer 40 and the fluid channel, so as to achieve the effect of slowing down the flow velocity. In more detail, the control valve 30 acts as an active control valve to slow down the liquid flow rate, while the porosity of the liquid absorbent material layer 20 is used to adjust the fluid speed and increase the delay time, which can optimize the nucleic acid absorption rate when applied to nucleic acid research. Operating time. In more detail, the control valve 30 presses against the liquid-absorbing material layer 20, thereby compressing the porosity of the liquid-absorbing material layer 20, so as to regulate the passing volume and flow rate of the liquid, thereby changing the porosity of the liquid-absorbing material layer 20. By slowing down the flow rate of the liquid to increase the delay time for the liquid to stay in a specific area. In addition, to meet different research and application requirements, antibodies can be modified on the liquid adsorption material layer 20 to purify exosomes, and silicon dioxide can be chemically modified on the liquid adsorption material layer 20 to absorb microRNA after cleavage of exosomes.

在本實施例中,緩衝層40的材料可包括聚二甲基矽氧烷(Polydimethylsiloxane,PDMS)、聚酯纖維、聚苯乙烯-聚乙烯-聚丁烯-聚苯乙烯(SEBS)或熱塑性聚胺酯(TPU),較佳例如是將10:1(A:B)混合PDMS液體以400rpm速度旋轉塗佈在基質材料層10上,放入烘箱80℃8小時,取出裝置並刮除基質材料層10的流體通道中殘餘的PDMS膜,但本發明並不以此為限。在基質材料層10上配置緩衝層40可降低基質材料層10的粗糙度,且透過緩衝層40的疏水效果,可將液體集中於流體通道、控制其流動方向以及避免漏液問題。聚苯乙烯-聚乙烯-聚丁烯-聚苯乙烯(SEBS)的性質資料如下:型號例如是G1657M,苯乙烯/橡膠比例例如是13/87,熔融指數例如是22 g/10 min,二嵌段含量例如是30%,可購於美國科騰高性能聚合物公司。熱塑性聚胺酯(TPU I)的性質資料如下:型號例如是HE-3285ALE,熔點例如是140℃,熔融指數例如是7.03 g/10 min,熔融黏度例如是2818 POISE,可購於臺灣展宇聚氨酯股份有限公司。黏著性熱塑性聚氨酯(TPU II)的性質資料如下:型號例如是HE-3580AU,熔點例如是100℃至110℃,熔融指數例如是7.25 g/10 min,熔融黏度例如是3000 POISE,可購於臺灣展宇聚氨酯股份有限公司。聚酯纖維可包括高回彈聚酯纖維(HRPET)或低熔點聚酯纖維(LDPET)。高回彈聚酯纖維(HRPET)的性質資料如下:纖維細度例如是4D,纖維長度例如是51 mm,纖維例如是皮芯結構,皮層熔點例如是170℃至180℃,芯層熔點例如是250℃,單纖強力例如是3.0 g/ d,可購於遠東新世紀股份有限公司。低熔點聚酯纖維(LDPET)的性質資料如下:纖維細度例如是4D,纖維長度例如是51 mm,纖維例如是皮芯結構,皮層熔點例如是110℃,芯層熔點例如是265℃,單纖強力例如是3.4 g/ d,可購於遠東新世紀股份有限公司。In this embodiment, the material of the buffer layer 40 may include polydimethylsiloxane (Polydimethylsiloxane, PDMS), polyester fiber, polystyrene-polyethylene-polybutylene-polystyrene (SEBS) or thermoplastic polyurethane (TPU), preferably for example, a 10:1 (A:B) mixed PDMS liquid is spin-coated on the matrix material layer 10 at a speed of 400rpm, put in an oven at 80°C for 8 hours, take out the device and scrape off the matrix material layer 10 residual PDMS membrane in the fluid channel, but the present invention is not limited thereto. Disposing the buffer layer 40 on the matrix material layer 10 can reduce the roughness of the matrix material layer 10, and through the hydrophobic effect of the buffer layer 40, the liquid can be concentrated in the fluid channel, the flow direction can be controlled, and the leakage problem can be avoided. The properties of polystyrene-polyethylene-polybutylene-polystyrene (SEBS) are as follows: the model is G1657M, the styrene/rubber ratio is 13/87, the melt index is 22 g/10 min, The segment content is, for example, 30%, which can be purchased from Kraton Performance Polymers, USA. The properties of thermoplastic polyurethane (TPU I) are as follows: the model is HE-3285ALE, the melting point is 140°C, the melt index is 7.03 g/10 min, and the melt viscosity is 2818 POISE, which can be purchased from Taiwan Chance Polyurethane Co., Ltd. company. The properties of adhesive thermoplastic polyurethane (TPU II) are as follows: the model is HE-3580AU, the melting point is 100°C to 110°C, the melt index is 7.25 g/10 min, and the melt viscosity is 3000 POISE, which can be purchased in Taiwan Zhanyu Polyurethane Co., Ltd. Polyester fibers may include high resilience polyester fibers (HRPET) or low melting point polyester fibers (LDPET). The properties of high resilience polyester fiber (HRPET) are as follows: the fiber fineness is 4D, the fiber length is 51 mm, the fiber is a sheath-core structure, the melting point of the skin is 170°C to 180°C, and the melting point of the core is, for example, At 250°C, the single fiber strength is, for example, 3.0 g/d, which can be purchased from Far Eastern New Century Co., Ltd. The properties of low-melting polyester fiber (LDPET) are as follows: the fiber fineness is 4D, the fiber length is 51 mm, the fiber is a sheath-core structure, the melting point of the skin layer is 110°C, and the melting point of the core layer is 265°C. The fiber strength is, for example, 3.4 g/d, which can be purchased from Far Eastern New Century Co., Ltd.

請參照圖4,本發明的微流道升降閥門裝置可以是存在封閉空間的封閉式裝置。更詳細而言,可在液體吸附材料層20、控制閥門30以及緩衝層40上額外配置一層上蓋層(未繪示),將液體吸附材料層20、控制閥門30以及緩衝層40配置於基質材料層10以及上蓋層之間。上蓋層可包括硬質材料,硬質材料可包括金屬、玻璃、矽晶圓或高分子材料,較佳例如是熱塑性材料(PMMA),但本發明並不以此為限。透過將基質材料層10以及上蓋層鎖上螺絲後,即可形成存在封閉空間的封閉式裝置,以減少汙染。Please refer to FIG. 4 , the microchannel lifting valve device of the present invention may be a closed device with a closed space. In more detail, an additional cover layer (not shown) can be arranged on the liquid absorbent material layer 20, the control valve 30 and the buffer layer 40, and the liquid absorbent material layer 20, the control valve 30 and the buffer layer 40 are arranged on the base material Between layer 10 and the upper cover layer. The upper cover layer may include hard material, and the hard material may include metal, glass, silicon wafer or polymer material, such as thermoplastic material (PMMA), but the invention is not limited thereto. By screwing the matrix material layer 10 and the upper cover layer, a closed device with a closed space can be formed to reduce pollution.

圖5是依照本發明的又一實施例的一種微流道升降閥門裝置的結構示意圖。圖6是依照本發明的又一實施例的一種微流道升降閥門裝置的剖面示意圖。圖7是依照本發明的又一實施例的一種微流道升降閥門裝置的局部操作示意圖。圖5至圖7所示的實施例相似於圖4所示的實施例,故相同元件以相同標號表示且在此不予贅述。Fig. 5 is a schematic structural view of a microchannel lifting valve device according to another embodiment of the present invention. Fig. 6 is a schematic cross-sectional view of a microchannel lifting valve device according to another embodiment of the present invention. Fig. 7 is a schematic diagram of a partial operation of a microchannel lifting valve device according to another embodiment of the present invention. The embodiments shown in FIG. 5 to FIG. 7 are similar to the embodiment shown in FIG. 4 , so the same components are denoted by the same reference numerals and will not be repeated here.

請先參照圖5、圖6及圖7,本實施例的微流道升降閥門裝置包括基質材料層10、液體吸附材料層20、緩衝層40以及上蓋層50。基質材料層10可具有流體通道12以及用來鎖上螺絲的孔洞14,基質材料層10的表面上可配置緩衝層40,緩衝層40介於基質材料層10與液體吸附材料層20之間。在本實施例中,可利用機械加工製程或化學加工製程在基質材料層10中形成流體通道12,以確保所有液體樣品吸附在液體吸附材料層20上,機械加工製程可包括車床洗削,化學加工製程可包括光罩蝕刻,較佳例如是以8000 rpm(旋轉速度)和每秒5mm(供給速率)研磨洗削,但本發明並不以此為限。上蓋層50可具有用來***控制閥門的溝槽52以及用來鎖上螺絲的孔洞54及56。在本實施例中,孔洞14及56主要是透過將基質材料層10以及上蓋層50鎖上螺絲後,即可形成存在封閉空間的封閉式裝置,以減少汙染;而孔洞54則與溝槽52配置在一起,當控制閥門30配置於溝槽52中時,螺絲60可穿過孔洞54進而調整控制閥門30的上升或下降,控制閥門30可用不同角度施力於液體吸附材料層20,再施力至緩衝層40及基質材料層10上的流體通道12,以達到減緩流速的效果。然而,本發明並不以此為限,亦可依據實際需求,選用螺絲以外的方式將基質材料層10以及上蓋層50進行密封,也可選用螺絲以外的方式進行控制閥門30上升或下降的調控。Please refer to FIG. 5 , FIG. 6 and FIG. 7 , the microchannel lifting valve device of this embodiment includes a matrix material layer 10 , a liquid-adsorbing material layer 20 , a buffer layer 40 and an upper cover layer 50 . The matrix material layer 10 may have a fluid channel 12 and a hole 14 for locking screws. A buffer layer 40 may be disposed on the surface of the matrix material layer 10 . The buffer layer 40 is interposed between the matrix material layer 10 and the liquid absorbent material layer 20 . In this embodiment, the fluid channel 12 can be formed in the matrix material layer 10 using a mechanical processing process or a chemical processing process to ensure that all liquid samples are adsorbed on the liquid adsorbing material layer 20. The mechanical processing process can include lathe washing, chemical processing, etc. The processing may include photomask etching, preferably grinding and washing at 8000 rpm (rotation speed) and 5 mm per second (feed rate), but the invention is not limited thereto. The upper cover layer 50 may have a groove 52 for inserting a control valve and holes 54 and 56 for locking screws. In this embodiment, the holes 14 and 56 are mainly formed by locking the base material layer 10 and the upper cover layer 50 with screws to form a closed device with a closed space to reduce pollution; and the holes 54 and the groove 52 Arranged together, when the control valve 30 is disposed in the groove 52, the screw 60 can pass through the hole 54 to adjust the rise or fall of the control valve 30, the control valve 30 can apply force to the liquid absorbent material layer 20 at different angles, and then apply force to the buffer layer 40 and the fluid channel 12 on the matrix material layer 10 to achieve the effect of slowing down the flow velocity. However, the present invention is not limited thereto. According to actual needs, methods other than screws can be used to seal the matrix material layer 10 and the upper cover layer 50, and methods other than screws can also be used to control the rise or fall of the valve 30. .

基於上述,本發明的微流道升降閥門裝置包括基質材料層、液體吸附材料層以及控制閥門。液體吸附材料層具有易取得、低成本、具生物相容性及毛細現象的優點,不須任何外在壓力介入,即可使流體流動。基質材料層則可由硬質材料構成,存在易加工特性,透過在基質材料層上形成流體通道,控制流體流動方向並使流體集中於液體吸附材料層上。此外,本發明微流道升降閥門裝置可更包括緩衝層,配置於基質材料層與液體吸附材料層之間。緩衝層的彈性特性可使控制閥門均勻施加壓力在液體吸附材料層上,並可減少微流道粗糙度,以達到更密合的效果。利用主動控制的控制閥門施力,減緩流體在液體吸附材料層上的流速。因此,本發明結合液體吸附材料層的低成本且無需外力的特點,微流道主動控制閥門施力於液體吸附材料層造成流速變化的作用機制、調控液體流量及分配液體流向,以及閥門與液體吸附材料層施力擠壓產生內部孔隙形變,根據形變量大小達到控制流速之目的。Based on the above, the microchannel lift valve device of the present invention includes a matrix material layer, a liquid adsorption material layer and a control valve. The liquid adsorption material layer has the advantages of easy acquisition, low cost, biocompatibility and capillary phenomenon, and can make the fluid flow without any external pressure intervention. The matrix material layer can be made of hard material, which is easy to process. Through the formation of fluid channels on the matrix material layer, the direction of fluid flow can be controlled and the fluid can be concentrated on the liquid adsorption material layer. In addition, the microfluidic lift valve device of the present invention may further include a buffer layer disposed between the matrix material layer and the liquid adsorption material layer. The elastic properties of the buffer layer can make the control valve evenly apply pressure on the liquid adsorption material layer, and can reduce the roughness of the micro-channel to achieve a tighter effect. The force is applied by an actively controlled control valve to slow down the flow rate of the fluid over the layer of liquid absorbent material. Therefore, the present invention combines the low cost of the liquid adsorption material layer and the characteristics of no external force, the microchannel actively controls the action mechanism of the valve exerting force on the liquid adsorption material layer to cause the flow rate change, regulates the liquid flow rate and distributes the liquid flow direction, and the valve and liquid The adsorption material layer is extruded to produce internal pore deformation, and the purpose of controlling the flow rate is achieved according to the deformation.

10:基質材料層 12:流體通道 14、54、56:孔洞 20:液體吸附材料層 30:控制閥門 40:緩衝層 50:上蓋層 52:溝槽 60:螺絲10: Matrix material layer 12: Fluid channel 14, 54, 56: holes 20: Liquid absorbent material layer 30: Control valve 40: buffer layer 50: upper cover layer 52: Groove 60: screw

圖1至圖3是依照本發明的一實施例的一種微流道升降閥門裝置的局部操作示意圖。 圖4是依照本發明的另一實施例的一種微流道升降閥門裝置的局部操作示意圖。 圖5是依照本發明的又一實施例的一種微流道升降閥門裝置的結構示意圖。 圖6是依照本發明的又一實施例的一種微流道升降閥門裝置的剖面示意圖。 圖7是依照本發明的又一實施例的一種微流道升降閥門裝置的局部操作示意圖。 1 to 3 are partial operation schematic diagrams of a microchannel lift valve device according to an embodiment of the present invention. Fig. 4 is a schematic diagram of a partial operation of a microchannel lifting valve device according to another embodiment of the present invention. Fig. 5 is a schematic structural view of a microchannel lifting valve device according to another embodiment of the present invention. Fig. 6 is a schematic cross-sectional view of a microchannel lifting valve device according to another embodiment of the present invention. Fig. 7 is a schematic diagram of a partial operation of a microchannel lifting valve device according to another embodiment of the present invention.

10:基質材料層 10: Matrix material layer

20:液體吸附材料層 20: Liquid absorbent material layer

30:控制閥門 30: Control valve

Claims (11)

一種微流道升降閥門裝置,包括: 基質材料層,具有流體通道; 液體吸附材料層,配置於所述基質材料層上;以及 控制閥門, 其中當所述控制閥門未與所述液體吸附材料層接觸時,流體在所述流體通道內流動, 當所述控制閥門朝向所述液體吸附材料層下降且施力於部分所述液體吸附材料層時,所述液體吸附材料層受到施力產生部分變形及孔隙度大小改變,以控制所述流體通道中所述流體的流速, 當所述控制閥門下降至所述液體吸附材料層的底部時,所述流體通道中所述流體無法通過。 A microchannel lifting valve device, comprising: a matrix material layer having fluid channels; a layer of liquid absorbent material disposed on the layer of matrix material; and control valve, wherein fluid flows within said fluid channel when said control valve is not in contact with said layer of liquid absorbent material, When the control valve descends toward the liquid-absorbing material layer and applies a force to a part of the liquid-absorbing material layer, the liquid-absorbing material layer is subjected to force to generate partial deformation and change in porosity, so as to control the fluid channel The flow rate of the fluid described in, When the control valve is lowered to the bottom of the liquid absorbent material layer, the fluid in the fluid channel cannot pass through. 如請求項1所述的微流道升降閥門裝置,更包括緩衝層,配置於所述基質材料層與所述液體吸附材料層之間。The microchannel lifting valve device according to claim 1 further includes a buffer layer disposed between the matrix material layer and the liquid adsorption material layer. 如請求項2所述的微流道升降閥門裝置,其中所述緩衝層的材料包括聚二甲基矽氧烷(Polydimethylsiloxane,PDMS)、聚酯纖維、聚苯乙烯-聚乙烯-聚丁烯-聚苯乙烯(SEBS)或熱塑性聚胺酯(TPU)。The microfluidic lifting valve device as described in claim 2, wherein the material of the buffer layer includes polydimethylsiloxane (Polydimethylsiloxane, PDMS), polyester fiber, polystyrene-polyethylene-polybutylene- Polystyrene (SEBS) or thermoplastic polyurethane (TPU). 如請求項1所述的微流道升降閥門裝置,其中所述基質材料層包括硬質材料,所述硬質材料包括金屬、玻璃、矽晶圓或高分子材料。The microfluidic lifting valve device according to claim 1, wherein the matrix material layer includes hard materials, and the hard materials include metal, glass, silicon wafer or polymer materials. 如請求項1所述的微流道升降閥門裝置,其中利用升降裝置調控所述控制閥門的上升與下降。The micro-channel lifting valve device according to claim 1, wherein the lifting device is used to control the rising and falling of the control valve. 如請求項5所述的微流道升降閥門裝置,其中所述升降裝置包括馬達、旋鈕或按壓式裝置。The micro-channel lifting valve device according to claim 5, wherein the lifting device includes a motor, a knob or a push-type device. 如請求項1所述的微流道升降閥門裝置,其中利用機械加工製程或化學加工製程在所述基質材料層中形成所述流體通道。The microfluidic lift valve device as claimed in claim 1, wherein the fluid channel is formed in the matrix material layer by mechanical processing or chemical processing. 如請求項7所述的微流道升降閥門裝置,其中所述機械加工製程包括車床洗削。The micro-channel lifting valve device as claimed in item 7, wherein the machining process includes lathe washing. 如請求項7所述的微流道升降閥門裝置,其中所述化學加工製程包括光罩蝕刻。The microfluidic lift valve device as claimed in item 7, wherein the chemical processing process includes photomask etching. 如請求項1所述的微流道升降閥門裝置,其中所述控制閥門的材料包括硬質材料、熱塑性材料或熱固性材料。The microchannel lifting valve device according to claim 1, wherein the material of the control valve includes hard material, thermoplastic material or thermosetting material. 如請求項1所述的微流道升降閥門裝置,其中所述液體吸附材料層的材料包括紙質基材、多孔性纖維基材或氣凝膠。The microchannel lifting valve device as claimed in claim 1, wherein the material of the liquid-absorbing material layer includes a paper substrate, a porous fiber substrate or an aerogel.
TW110136734A 2021-10-01 2021-10-01 Micro-channel lifting valve device TWI798851B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110136734A TWI798851B (en) 2021-10-01 2021-10-01 Micro-channel lifting valve device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110136734A TWI798851B (en) 2021-10-01 2021-10-01 Micro-channel lifting valve device

Publications (2)

Publication Number Publication Date
TWI798851B true TWI798851B (en) 2023-04-11
TW202315681A TW202315681A (en) 2023-04-16

Family

ID=86943088

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110136734A TWI798851B (en) 2021-10-01 2021-10-01 Micro-channel lifting valve device

Country Status (1)

Country Link
TW (1) TWI798851B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200702660A (en) * 2003-11-21 2007-01-16 Ebara Corp Microfluidic treatment method and device
CN105344389A (en) * 2008-05-16 2016-02-24 哈佛大学 Microfluidic system, method, and apparatus
US9975118B2 (en) * 2007-11-15 2018-05-22 Seng Enterprises Ltd. Device for the study of living cells
CN112808331A (en) * 2020-12-15 2021-05-18 扬州大学 Pressure porous valve chip and detection method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200702660A (en) * 2003-11-21 2007-01-16 Ebara Corp Microfluidic treatment method and device
US9975118B2 (en) * 2007-11-15 2018-05-22 Seng Enterprises Ltd. Device for the study of living cells
CN105344389A (en) * 2008-05-16 2016-02-24 哈佛大学 Microfluidic system, method, and apparatus
CN112808331A (en) * 2020-12-15 2021-05-18 扬州大学 Pressure porous valve chip and detection method thereof

Also Published As

Publication number Publication date
TW202315681A (en) 2023-04-16

Similar Documents

Publication Publication Date Title
Songok et al. based microfluidics: fabrication technique and dynamics of capillary-driven surface flow
Zhang et al. Bioinspired smart peristome surface for temperature-controlled unidirectional water spreading
Nunes et al. Cyclic olefin polymers: emerging materials for lab-on-a-chip applications
Wang et al. Inner surface design of functional microchannels for microscale flow control
US8585013B2 (en) Magnetic microvalve using metal ball and method of manufacturing the same
CN203925955U (en) A kind of electromagnetism Micropump based on micro-fluidic chip
Zhang et al. Switchable direction of liquid transport via an anisotropic microarray surface and thermal stimuli
US20110266151A1 (en) Microfluidic systems with electronic wettability switches
JP2012112724A (en) Liquid feeder
CN105370917B (en) A kind of microfluidic control valve for microfluidic control
Zhang et al. Bioinspired unidirectional liquid transport micro-nano structures: A review
TWI798851B (en) Micro-channel lifting valve device
CN103100451A (en) Temperature response micro-pump based on micro-fluidic chip and preparation method thereof
CN103157525B (en) Preparation method of micro-fluid one-way valve device based on silicon nano-pillar array
CN103041877A (en) Photo-response micro-fluid self-driven micro-fluidic chip and preparation method thereof
US9791068B2 (en) Lifting gate polydimethylsiloxane microvalves and pumps for microfluidic control
CN103075572A (en) Micro-fluidic chip-based pH (Potential of Hydrogen) response micro valve and preparation method thereof
Ryu et al. Precision patterning of PDMS thin films: a new fabrication method and its applications
CN103062497A (en) Intelligent micro valve based on micro-fluidic chip and production method thereof
CN103062479A (en) Magnetic responsive micro valve based on micro-fluidic chip and production method thereof
CN107448648A (en) A kind of overall plastic micro one-way valve and its processing method
CN103041881A (en) PH-responded micro-fluid self-driven micro-fluidic chip and preparation method thereof
Wang et al. Steady flow of pressure-driven water-in-oil droplets in closed-open-closed microchannels
CN103071553A (en) Microfluidic chip-based electrical response micropump and manufacturing method thereof
CN103084228A (en) Micro-fluidic-chip-based photoresponse micropump and manufacture method thereof