TWI797821B - 電源開關電晶體之尺寸設定方法及其系統 - Google Patents

電源開關電晶體之尺寸設定方法及其系統 Download PDF

Info

Publication number
TWI797821B
TWI797821B TW110141558A TW110141558A TWI797821B TW I797821 B TWI797821 B TW I797821B TW 110141558 A TW110141558 A TW 110141558A TW 110141558 A TW110141558 A TW 110141558A TW I797821 B TWI797821 B TW I797821B
Authority
TW
Taiwan
Prior art keywords
power
voltage
load current
current
logic circuit
Prior art date
Application number
TW110141558A
Other languages
English (en)
Other versions
TW202319951A (zh
Inventor
簡順榮
Original Assignee
美商矽成積體電路股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商矽成積體電路股份有限公司 filed Critical 美商矽成積體電路股份有限公司
Priority to TW110141558A priority Critical patent/TWI797821B/zh
Priority to US17/676,882 priority patent/US20230147226A1/en
Application granted granted Critical
Publication of TWI797821B publication Critical patent/TWI797821B/zh
Publication of TW202319951A publication Critical patent/TW202319951A/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/01Modifications for accelerating switching
    • H03K19/017Modifications for accelerating switching in field-effect transistor circuits
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption
    • H03K19/0013Arrangements for reducing power consumption in field effect transistor circuits

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Direct Current Feeding And Distribution (AREA)
  • Electronic Switches (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

本發明提供一種電源開關電晶體之尺寸設定方法。第一負載電流係擷取步驟擷取第一邏輯電路之第一負載電流。第二負載電流係擷取步驟擷取第二邏輯電路之第二負載電流。限制電壓降計算步驟係根據速度比例值、第一負載電流及第二負載電流計算限制電壓降。基準供應電流計算步驟係根據限制電壓降計算基準供應電流。模擬供應電流計算步驟係根據基準供應電流、限制電壓降及線電壓值計算模擬供應電流。尺寸設定步驟係比對第一負載電流與模擬供應電流以計算尺寸參數,並根據尺寸參數設定電源開關電晶體之尺寸。藉此,保持邏輯電路的高反應速度。

Description

電源開關電晶體之尺寸設定方法及其系統
本發明是關於一種電源開關電晶體之尺寸設定方法及其系統,特別是關於一種使用邏輯電路之負載電流以設定電源開關電晶體的尺寸,且配置電源開關電晶體的邏輯電路仍然保持高速傳輸。
近年來,由於整合半導體材料的電子電路裝置逐漸增加,對於低功率消耗技術的需求亦逐漸增加,其中一個低功率消耗技術就是於邏輯電路中配置多重臨界電壓互補式金氧半導體(Multi-Threshold CMOS;MTCMOS)。MTCMOS是一種有效的電源開關控制技術,其藉由適當地交互使用高臨界電壓電晶體與低臨界電壓電晶體,進而降低邏輯電路的漏電流與功率消耗,並維持邏輯電路所需之速度表現。
然而,許多作為邏輯閘的MTCMOS經常過載,對邏輯電路的速度影響很大。過載的邏輯閘速度會變慢的主要原因是源汲端的大幅壓降導致了閘源端電壓(Vgs)變 小。為了解決前述情況的有效方式即是針對MTCMOS的負載(即邏輯電路)來配置符合負載的MTCMOS最小尺寸。
有鑒於此,如何建立出一種可以滿足邏輯電路所需速度的電源開關電晶體之尺寸設定方法及其系統,實為民眾所殷切企盼,亦係相關業者須努力研發突破之目標及方向。
因此,本發明之目的在於提供一種電源開關電晶體之尺寸設定方法及其系統,其利用邏輯電路的負載電流來計算電源開關電晶體的尺寸,並確保邏輯電路可以保持高速傳輸。
依據本發明的一實施方式提供一種電源開關電晶體之尺寸設定方法,其包含一第一負載電流擷取步驟、一第二負載電流擷取步驟、一限制電壓降計算步驟、一基準供應電流計算步驟、一模擬供應電流計算步驟以及一尺寸設定步驟。第一負載電流擷取步驟係驅動一運算處理單元擷取一第一邏輯電路之一第一負載電流。第一邏輯電路經由至少一電源開關電晶體與至少一電源線連接至至少一電源電壓以產生第一負載電流,且前述至少一電源線具有至少一線電壓值。第二負載電流擷取步驟係驅動運算處理單元擷取一第二邏輯電路之一第二負載電流。第二邏輯電路連接至前述至少一電源電壓以產生第二負載電流。限制電 壓降計算步驟係驅動運算處理單元設定一速度比例值並儲存速度比例值至一儲存單元。運算處理單元對速度比例值、第一負載電流及第二負載電流進行一電壓計算程序,以計算出前述至少一電源開關電晶體與第一邏輯電路之間的一限制電壓降。基準供應電流計算步驟係驅動運算處理單元根據限制電壓降計算前述至少一電源開關電晶體之一基準供應電流。模擬供應電流計算步驟係驅動運算處理單元對基準供應電流、限制電壓降及前述至少一線電壓值進行一電流計算程序,以計算出前述至少一電源開關電晶體之一模擬供應電流。尺寸設定步驟係驅動運算處理單元比對第一負載電流與模擬供應電流以計算出一尺寸參數,然後根據尺寸參數設定前述至少一電源開關電晶體之一尺寸。
藉此,本發明之電源開關電晶體之尺寸設定方法針對自身速度需求來設定速度比例值,並根據速度比例值比較配有電源開關電晶體的第一邏輯電路與直接連接電源電壓的第二邏輯電路以計算出限制電壓降,進而設定可滿足速度比例值的電源開關電晶體之尺寸,且確保各種邏輯電路仍保持高速傳輸。
前述實施方式之其他實施例如下:前述第一邏輯電路的結構可與第二邏輯電路的結構相同。
前述實施方式之其他實施例如下:前述第一邏輯電路可包含複數電晶體,且第一負載電流擷取步驟可藉由二電源開關電晶體與二電源線連接二電源電壓至第一邏輯電 路之一第一電源域與一第二電源域,使第一邏輯電路內的此些電晶體操作於一飽和區並產生第一負載電流。
前述實施方式之其他實施例如下:前述第二邏輯電路包含複數電晶體,且第二負載電流擷取步驟可連接二電源電壓至第二邏輯電路之一第一電源域與一第二電源域,使第二邏輯電路內的此些電晶體操作於一飽和區並產生第二負載電流。
前述實施方式之其他實施例如下:前述電壓計算程序可包含速度比例值、第一負載電流、第二負載電流、前述至少一電源電壓、一臨界電壓及前述至少一電源線與第一邏輯電路之間的一端電壓。速度比例值表示為S,第一負載電流表示為I MTCOMS ,第二負載電流表示為I non_MTCOMS ,前述至少一電源電壓表示為V DD ,臨界電壓表示為V th ,端電壓表示為V QL 且符合下式:
Figure 110141558-A0305-02-0007-1
此外,運算處理單元可根據速度比例值限制端電壓與前述至少一電源電壓之一差值為限制電壓降。
前述實施方式之其他實施例如下:前述基準供應電流計算步驟可包含一預設子步驟與一推算子步驟。預設子步驟係驅動運算處理單元將限制電壓降預設為前述至少一電源開關電晶體之一汲源極電壓,使前述至少一電源開關電晶體操作於一線性區。推算子步驟係驅動運算處理單元根據汲源極電壓推算基準供應電流。
前述實施方式之其他實施例如下:前述電流計算程序可包含模擬供應電流、基準供應電流、限制電壓降及前述至少一線電壓值。模擬供應電流表示為I supplyR_unit ,基準供應電流表示為I supply_unit ,限制電壓降表示為V drop ,前述至少一線電壓值表示為V line 且符合下式:
Figure 110141558-A0305-02-0008-2
前述實施方式之其他實施例如下:前述至少一電源開關電晶體可為一多重臨界電壓互補式金氧半導體(Multi-Threshold CMOS;MTCMOS)。
依據本發明的另一實施方式提供一種電源開關電晶體之尺寸設定系統,其包含至少一電源電壓、至少一電源開關電晶體、至少一電源線、一第一邏輯電路、一第二邏輯電路、一儲存單元以及一運算處理單元。前述至少一電源開關電晶體電性連接前述至少一電源電壓。前述至少一電源線電性連接前述至少一電源開關電晶體並具有至少一線電壓值。第一邏輯電路電性連接前述至少一電源線,並產生一第一負載電流。第二邏輯電路電性連接前述至少一電源電壓,並產生一第二負載電流。儲存單元用以存取前述至少一線電壓值、一電壓計算程序及一電流計算程序。運算處理單元訊號連接儲存單元,並經配置以實施一第一負載電流擷取步驟、一第二負載電流擷取步驟、一限制電壓降計算步驟、一基準供應電流計算步驟、一模擬供應電流計算步驟及一尺寸設定步驟。具體而言,第一負載 電流擷取步驟係擷取第一負載電流。第二負載電流擷取步驟係擷取第二負載電流。限制電壓降計算步驟係設定一速度比例值並儲存速度比例值至儲存單元,然後對速度比例值、第一負載電流及第二負載電流進行電壓計算程序,以計算出前述至少一電源開關電晶體與第一邏輯電路之間的一限制電壓降。基準供應電流計算步驟係根據限制電壓降計算前述至少一電源開關電晶體之一基準供應電流。模擬供應電流計算步驟係對基準供應電流、限制電壓降及前述至少一線電壓值進行電流計算程序,以計算出前述至少一電源開關電晶體之一模擬供應電流。尺寸設定步驟係比對第一負載電流與模擬供應電流以計算出一尺寸參數,然後根據尺寸參數設定前述至少一電源開關電晶體之一尺寸。
藉此,本發明之電源開關電晶體之尺寸設定系統利用運算處理單元擷取不同負載情況的負載電流以計算出限制電壓降,並設定可滿足速度比例值的電源開關電晶體之尺寸,且確保各種邏輯電路仍保持高速傳輸。
前述實施方式之其他實施例如下:前述第一邏輯電路的結構可與第二邏輯電路的結構相同。
前述實施方式之其他實施例如下:前述第一邏輯電路可包含複數電晶體,且第一負載電流擷取步驟係藉由二電源開關電晶體與二電源線連接二電源電壓至第一邏輯電路之一第一電源域與一第二電源域,使第一邏輯電路內的此些電晶體操作於一飽和區並產生第一負載電流。
前述實施方式之其他實施例如下:前述第二邏輯電 路可包含複數電晶體,且第二負載電流擷取步驟係連接二電源電壓至第二邏輯電路之一第一電源域與一第二電源域,使第二邏輯電路內的此些電晶體操作於一飽和區並產生第二負載電流。
前述實施方式之其他實施例如下:前述電壓計算程序可包含速度比例值、第一負載電流、第二負載電流、前述至少一電源電壓、一臨界電壓及前述至少一電源線與第一邏輯電路之間的一端電壓。速度比例值表示為S,第一負載電流表示為I MTCOMS ,第二負載電流表示為I non_MTCOMS ,前述至少一電源電壓表示為V DD ,臨界電壓表示為V th ,端電壓表示為V QL 且符合下式:
Figure 110141558-A0305-02-0010-3
此外,運算處理單元可根據速度比例值限制端電壓與前述至少一電源電壓之一差值為限制電壓降。
前述實施方式之其他實施例如下:前述基準供應電流計算步驟可包含一預設子步驟與一推算子步驟。預設子步驟係驅動運算處理單元將限制電壓降預設為前述至少一電源開關電晶體之一汲源極電壓,使前述至少一電源開關電晶體操作於一線性區。推算子步驟係驅動運算處理單元根據汲源極電壓推算基準供應電流。
前述實施方式之其他實施例如下:前述電流計算程序可包含模擬供應電流、基準供應電流、限制電壓降及前述至少一線電壓值。模擬供應電流表示為I supplyR_unit ,基準供 應電流表示為I supply_unit ,限制電壓降表示為V drop ,前述至少一線電壓值表示為V line 且符合下式:
Figure 110141558-A0305-02-0011-4
前述實施方式之其他實施例如下:前述至少一電源開關電晶體可為一多重臨界電壓互補式金氧半導體(Multi-Threshold CMOS;MTCMOS)。
100:電源開關電晶體之尺寸設定方法
110:第一負載電流
120:第二負載電流
130:速度比例值
140:限制電壓降
150:基準供應電流
160:模擬供應電流
170:尺寸參數
200:電源開關電晶體之尺寸設定系統
260:儲存單元
261:線電壓值
262:電壓計算程序
263:電流計算程序
264:電晶體參數
270:運算處理單元
S02:第一負載電流擷取步驟
S04:第二負載電流擷取步驟
S06:限制電壓降計算步驟
S08:基準供應電流計算步驟
S081:預設子步驟
S082:推算子步驟
S10:模擬供應電流計算步驟
S12:尺寸設定步驟
LC1,240:第一邏輯電路
LC2,250:第二邏輯電路
VDD,VSS,210:電源電壓
Isupply:供應電流
ENb:反相致能信號
EN:致能信號
VMTH,VMTL:端電壓
VMTHz0:第一電源域
VMTLz0:第二電源域
Q1,Q2,220:電源開關電晶體
M1,M2,230:電源線
為讓本發明之上述和其他目的、特徵、優點與實施例能更明顯易懂,所附圖式之說明如下:第1圖係繪示依照本發明一第一實施例的電源開關電晶體之尺寸設定方法的流程示意圖;第2圖係繪示第1圖的電源開關電晶體之尺寸設定方法之第一負載電流擷取步驟中的第一邏輯電路、電源開關電晶體及電源線之示意圖;第3圖係繪示第1圖的電源開關電晶體之尺寸設定方法之第二負載電流擷取步驟中的第二邏輯電路之示意圖;以及第4圖係繪示依照本發明一第二實施例的電源開關電晶體之尺寸設定系統的示意圖。
以下將參照圖式說明本發明之複數個實施例。為明確說明起見,許多實務上的細節將在以下敘述中一併說 明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施例中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之;並且重複之元件將可能使用相同的編號表示之。
此外,本文中當某一元件(或單元或模組等)「連接/連結」於另一元件,可指所述元件是直接連接/連結於另一元件,亦可指某一元件是間接連接/連結於另一元件,意即,有其他元件介於所述元件及另一元件之間。而當有明示某一元件是「直接連接/連結」於另一元件時,才表示沒有其他元件介於所述元件及另一元件之間。而第一、第二、第三等用語只是用來描述不同元件,而對元件本身並無限制,因此,第一元件亦可改稱為第二元件。且本文中之元件/單元/電路之組合非此領域中之一般周知、常規或習知之組合,不能以元件/單元/電路本身是否為習知,來判定其組合關係是否容易被技術領域中之通常知識者輕易完成。
請參閱第1圖,其係繪示依照本發明一第一實施例的電源開關電晶體之尺寸設定方法100的流程示意圖。如第1圖所示,電源開關電晶體之尺寸設定方法100包含一第一負載電流擷取步驟S02、一第二負載電流擷取步驟S04、一限制電壓降計算步驟S06、一基準供應電流計算步驟S08、一模擬供應電流計算步驟S10以及一尺寸設定步驟S12。
第一負載電流擷取步驟S02係驅動一運算處理單元擷取一第一邏輯電路之一第一負載電流110,其中第一邏輯電路係經由至少一電源開關電晶體與至少一電源線連接至一電源電壓以產生第一負載電流110。此外,前述至少一電源線具有至少一線電壓值,其儲存至一儲存單元。
第二負載電流擷取步驟S04係驅動運算處理單元擷取一第二邏輯電路之一第二負載電流120,其中第二邏輯電路連接至電源電壓以產生第二負載電流120。
限制電壓降計算步驟S06係驅動運算處理單元設定一速度比例值130並儲存速度比例值130至儲存單元。運算處理單元對速度比例值130、第一負載電流110及第二負載電流120進行一電壓計算程序,以計算出前述至少一電源開關電晶體與第一邏輯電路之間的一限制電壓降140。
基準供應電流計算步驟S08係驅動運算處理單元根據限制電壓降140計算前述至少一電源開關電晶體之一基準供應電流150。
模擬供應電流計算步驟S10係驅動運算處理單元對基準供應電流150、限制電壓降140及前述至少一線電壓值進行一電流計算程序,以計算出前述至少一電源開關電晶體之一模擬供應電流160。
尺寸設定步驟S12係驅動運算處理單元比對第一負載電流110與模擬供應電流160以計算出一尺寸參數170,然後根據尺寸參數170設定前述至少一電源開關電 晶體之一尺寸。
藉此,使用者可自行要求對應不同規格的第一邏輯電路之速度需求來設定速度比例值130,並利用本發明之電源開關電晶體之尺寸設定方法100計算出尺寸參數170,且配置合適尺寸的電源開關電晶體給予第一邏輯電路,進而最大限度地減少面積損失和待機功耗。以下段落將配合後續之圖式以詳細說明本發明之電源開關電晶體之尺寸設定方法100之運作機制。
請一併參閱第1圖、第2圖及第3圖,其中第2圖係繪示第1圖的電源開關電晶體之尺寸設定方法100之第一負載電流擷取步驟S02中的第一邏輯電路LC1、電源開關電晶體Q1、Q2及電源線M1、M2之示意圖;以及第3圖係繪示第1圖的電源開關電晶體之尺寸設定方法100之第二負載電流擷取步驟S04中的第二邏輯電路LC2之示意圖。須先說明的是,本實施例之第一邏輯電路LC1的結構與第二邏輯電路LC2的結構相同,亦即第一邏輯電路LC1與第二邏輯電路LC2係為相同的邏輯電路;換言之,第3圖的第二邏輯電路LC2即為第2圖第一邏輯電路LC1的內部電路圖。
如第2圖所示,第一負載電流擷取步驟S02係藉由一電源開關電晶體Q1與一電源線M1連接電源電壓VDD至第一邏輯電路LC1之一第一電源域VMTHz0,使第一邏輯電路LC1內的電晶體(即對應第3圖的第二邏輯電路LC2內的電晶體)操作於飽和區並產生第一負載電流 110。此外,第一負載電流擷取步驟S02亦藉由另一電源開關電晶體Q2與另一電源線M2連接另一電源電壓VSS至第一邏輯電路LC1之一第二電源域VMTLz0,使前述的電晶體同樣地操作於飽和區並產生另一第一負載電流(未另標號)。一般而言,邏輯電路中的供電可分為多個獨立的區塊,這區塊稱作電源域(Power Domain)。本發明的第一電源域VMTHz0即為第一邏輯電路LC1中的高壓電源域;反之,第二電源域VMTLz0即為第一邏輯電路LC1中的低壓電源域。
另外,本實施例的電源開關電晶體Q1、Q2可均為一多重臨界電壓互補式金氧半導體(Multi-Threshold CMOS;MTCMOS)。具體而言,電源開關電晶體Q1為PMOS電晶體,電源開關電晶體Q2為NMOS電晶體。電源開關電晶體Q1的閘極端電性連接一反相致能信號ENb,其用以控制電源開關電晶體Q1的啟閉。電源開關電晶體Q1的汲極端電性連接電源電壓VDD。電源開關電晶體Q1的源極端與電源線M1之間的一端電壓表示為VMTH。同理,電源開關電晶體Q2的閘極端電性連接一致能信號EN,其用以控制電源開關電晶體Q2的啟閉。電源開關電晶體Q2的汲極端電性連接電源電壓VSS。電源開關電晶體Q2的源極端與電源線M2之間的一端電壓表示為VMTL,其中電源線M1與電源線M2係為相同的線材,並具有相同的線電壓值。
如第3圖所示,第二邏輯電路LC2係為一23級 環形振盪器(Ring Oscillator),其係由23組反向器(Inverter)串聯所組成。於本實施例中,第二邏輯電路LC2包含一個NAND閘及22組反向器。第二邏輯電路LC2的扇出數(Fan Out)為3,且第二邏輯電路LC2內的各個反向器可包含複數個電晶體(未另繪示)。詳細地說,第二負載電流擷取步驟S04係連接電源電壓VDD與電源電壓VSS至第二邏輯電路LC2之一第一電源域(即每個反向器的源極端所連接的高壓電源域)與一第二電源域(即每個反向器的源極端所連接的低壓電源域),使第二邏輯電路LC2內的電晶體操作於飽和區並產生第二負載電流120。
連接電源開關電晶體Q1的第一邏輯電路LC1之反應速度會低於未連接任何電源開關的第二邏輯電路LC2之反應速度。當第一負載電流110大於流經電源開關電晶體Q1的供應電流Isupply(如第2圖所示)時,第一邏輯電路LC1的充電時間會增加。若是供電範圍越遠(即電源線M1越長),則必須考慮電源線M1的電阻值。詳細地說,本發明欲確保第一邏輯電路LC1之反應速度僅能略低於第二邏輯電路LC2之反應速度,因此可由運算處理單元設定速度比例值130,並透過速度比例值130限制電源線M1所造成的電壓降,以保持電源開關電晶體Q1的高反應速度。
於限制電壓降計算步驟S06中,電壓計算程序可包含速度比例值130、第一負載電流110、第二負載電流 120、電源電壓VDD、電源開關電晶體Q1的一臨界電壓及電源線M1與第一邏輯電路LC1之間的端電壓(即第一電源域VMTHz0的電壓值)。速度比例值130表示為S,第一負載電流110表示為I MTCOMS ,第二負載電流120表示為I non_MTCOMS ,電源電壓VDD表示為V DD ,電源開關電晶體Q1的臨界電壓表示為V th ,電源線M1與第一邏輯電路LC1之間的端電壓表示為V QL 且符合下列式子(1):
Figure 110141558-A0305-02-0017-5
詳細地說,由於第一邏輯電路LC1與第二邏輯電路LC2內的電晶體均操作於飽和區,因此第一負載電流110與第二負載電流120均屬於飽和區電流。第一負載電流110根據習知的飽和區公式符合下列式子(2),且第二負載電流120根據習知的飽和區公式符合下列式子(3):I MTCOMS =K(V QL -V th )2 (2); I non_MTCOMS =K(V DD -V th )2 (3)。
其中,K為一製程互導參數(Process Transconductance Parameter),其會在式子(1)中抵消。此外,電源線M1與第一邏輯電路LC1之間的端電壓符合下列式子(4):
Figure 110141558-A0305-02-0017-6
其中,R M1為電源線M1之一電阻值值。一般而言,當第一邏輯電路LC1後端所連接的負載(未另繪示)相同 時,第一邏輯電路LC1的第一負載電流110與對應負載的充電時間會成反比。本發明定義對應第一邏輯電路LC1的一速度參數會正比於充電時間,因此前述的速度參數即反比於第一負載電流110。接著,在式子(1)中運算處理單元根據速度比例值130限制電源線M1與第一邏輯電路LC1之間的端電壓與電源電壓VDD之一差值為限制電壓降140。
舉例來說,本實施例的電源電壓VDD等於1.1伏特(V DD =1.1V),電源開關電晶體Q1的臨界電壓等於0.25伏特(V th =0.25V),速度比例值130被設定為5%(S=0.05)。運算處理單元將上述參數代入式子(1),即可推導出電源線M1與第一邏輯電路LC1之間的端電壓只能比電源電壓VDD小於21毫伏特,此21毫伏特即為限制電壓降140。於其他實施例中,使用者可自行要求對應不同規格的第一邏輯電路之速度需求來設定速度比例值,且本發明不以此為限。
另外,本發明之基準供應電流計算步驟S08可包含一預設子步驟S081與一推算子步驟S082。預設子步驟S081係驅動運算處理單元將限制電壓降140預設為電源開關電晶體Q1之一汲源極電壓,使電源開關電晶體Q1操作於一線性區。推算子步驟S082係驅動運算處理單元根據電源開關電晶體Q1之汲源極電壓推算基準供應電流150。進一步來說,電源開關電晶體Q1的供應電流Isupply係處於線性區,因為電源電壓VDD減去電源開 關電晶體Q1的源極端與電源線M1之間的端電壓VMTH會小於電源電壓VDD減去電源開關電晶體Q1的臨界電壓。倘若電源線M1的線長很短且忽略不計電源線M1的電阻值,運算處理單元將限制電壓降140(即21毫伏特)設為電源開關電晶體Q1之汲源極電壓,並將限制電壓降140代入習知的線性區公式且符合下列式子(5):
Figure 110141558-A0305-02-0019-7
I D 是基準供應電流150,V DS 是限制電壓降140(V DS =21mV),V GS 是電源開關電晶體Q1之一閘源極電壓(V GS =VDD-VSS=1.1-0=1.1V),μ p 是線性區載子遷移率(Carrier Mobility),W是電源開關電晶體Q1的通道寬度(W=3.6μm)、L是電源開關電晶體Q1的通道長度(L=0.08μm),C ox 是閘極氧化層的單位電容大小(Unit Capacity),V th 是電源開關電晶體Q1的臨界電壓(V th =0.25V),其中線性區載子遷移率μ p 與閘極氧化層的單位電容大小C ox 係由電晶體的製程所決定之參數。運算處理單元將上述參數代入式子(5),即可計算出基準供應電流150等於20微安培(I D =20μA)。此基準供應電流150代表在電源開關電晶體Q1的汲極電流為20微安培的情況下,第一邏輯電路LC1的反應速度相對於第二邏輯電路LC2的反應速度僅會小於5%。
另一方面,若是電源開關電晶體Q1與第一邏輯電路LC1之間的供電範圍較遠時,則開始需要考慮到電源線 M1的電阻值且計算電源線M1兩端的跨壓。於模擬供應電流計算步驟S10中,運算處理單元對基準供應電流150、限制電壓降140及電源線M1兩端的線電壓值進行電流計算程序,以計算出電源開關電晶體Q1之模擬供應電流160。
進一步來說,電流計算程序可包含模擬供應電流160、基準供應電流150、限制電壓降140及電源線M1兩端的線電壓。模擬供應電流160表示為I supplyR ,基準供應電流150表示為I supply_unit ,限制電壓降140表示為V drop ,電源線M1兩端的線電壓表示為V line 且符合下式子(6):
Figure 110141558-A0305-02-0020-8
其中,V line =I MTCOMS R M1I MTCOMS =0.5mA,R M1=20ohm(線長為100μm),V drop =21mV,I supply_unit =20μA。運算處理單元將上述參數代入式子(6),即可計算出模擬供應電流160(I supplyR_unit =20*0.52381)。
接續進行尺寸設定步驟S12,運算處理單元比對第一負載電流110與模擬供應電流160以計算出尺寸參數170,然後根據尺寸參數170設定電源開關電晶體Q1的尺寸大小。詳細地說,運算處理單元將第一負載電流110除以模擬供應電流160以產生尺寸參數170,再將尺寸參數170乘上電源開關電晶體Q1的通道長度與通道寬度,以計算出電源開關電晶體Q1的尺寸大小,其符合下列式子(7)與式子(8):
Figure 110141558-A0305-02-0021-9
Figure 110141558-A0305-02-0021-10
其中,Multi是尺寸參數170,I MTCOMS 是第一負載電流110,I supplyR_unit 是模擬供應電流160,電源開關電晶體Q1的長度尺寸大小表示為S L ,電源開關電晶體Q1的寬度尺寸大小表示為S W L是電源開關電晶體Q1的通道長度,W是電源開關電晶體Q1的通道寬度。
下述表一列示出在本發明之尺寸參數170,其對應不同電源線M1的線長與電阻值(即不同的供電範圍)以及不同第一邏輯電路LC1的第一負載電流110。須說明的是,表一主要係針對速度比例值130為5%的情況,且本發明不以此為限。
Figure 110141558-A0305-02-0021-18
Figure 110141558-A0305-02-0022-13
在上述表一中,當電源線M1的線長為10μm且第一負載電流110為840μA時,使用者可配置對應的尺寸參數170(Multi=48)來設定電源開關電晶體Q1的尺寸大小,並依此類推。藉此,使用者可利用本發明之電源開關電晶體之尺寸設定方法100設定出能滿足速度比例值130的電源開關電晶體Q1之尺寸大小,且確保各種邏輯電路仍保持高速傳輸。
請一併參閱第1圖至第4圖,其中第4圖係繪示依照本發明一第二實施例的電源開關電晶體之尺寸設定系統200的示意圖。如第4圖所示,電源開關電晶體之尺寸設定系統200包含一電源電壓210、一電源開關電晶體220、一電源線230、一第一邏輯電路240、一第二邏輯電路250、一儲存單元260以及一運算處理單元270。電源開關電晶體220電性連接電源電壓210。電源線230電性連接電源開關電晶體220並具有一線電壓值261。第一邏輯電路240電性連接電源線230並產生一第一負載電流110。第二邏輯電路250電性連接電源電壓210,並產生一第二負載電流120,其中第一邏輯電路240的結構與第二邏輯電路250的結構相同。儲存單元260用以存取線電壓值261、一電壓計算程序262、一電流計算程序263及電源開關電晶體220的電晶體參數264。運算處理單元270訊號連接儲存單元260。此外,運算處理單元270係擷取第一負載電流110與第二負載電流120的峰值電流 (Peak Current),並經配置以實施電源開關電晶體之尺寸設定方法100。運算處理單元270可為一數位訊號處理器(Digital Signal Processor;DSP)、一微處理器(Micro Processing Unit;MPU)、一中央處理器(Central Processing Unit;CPU)或其他電子處理器,但本發明不以此為限。
藉此,本發明之電源開關電晶體之尺寸設定系統200利用運算處理單元270根據第一負載電流110與第二負載電流120以計算出限制電壓降140,並設定可滿足速度比例值130的電源開關電晶體220之尺寸大小,且確保連接電源開關電晶體220的第一邏輯電路240仍保持高速傳輸。
綜上所述,本發明具有下列優點:其一,可避免配置過大尺寸的電源開關電晶體予邏輯電路,進而減少電路成本。其二,確保配有電源開關電晶體的邏輯電路仍具有高速傳輸。其三,可減少使用者在產品開發上對於電源開關電晶體的尺寸配置之佈局時間,藉以加快開發時程。
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
100:電源開關電晶體之尺寸設定方法
110:第一負載電流
120:第二負載電流
130:速度比例值
140:限制電壓降
150:基準供應電流
160:模擬供應電流
170:尺寸參數
S02:第一負載電流擷取步驟
S04:第二負載電流擷取步驟
S06:限制電壓降計算步驟
S08:基準供應電流計算步驟
S081:預設子步驟
S082:推算子步驟
S10:模擬供應電流計算步驟
S12:尺寸設定步驟

Claims (16)

  1. 一種電源開關電晶體之尺寸設定方法,包含以下步驟:一第一負載電流擷取步驟,係驅動一運算處理單元擷取一第一邏輯電路之一第一負載電流,該第一邏輯電路經由至少一電源開關電晶體與至少一電源線連接至至少一電源電壓以產生該第一負載電流,且該至少一電源線具有至少一線電壓值;一第二負載電流擷取步驟,係驅動該運算處理單元擷取一第二邏輯電路之一第二負載電流,該第二邏輯電路連接至該至少一電源電壓以產生該第二負載電流;一限制電壓降計算步驟,係驅動該運算處理單元設定一速度比例值並儲存該速度比例值至一儲存單元,該運算處理單元對該速度比例值、該第一負載電流及該第二負載電流進行一電壓計算程序,以計算出該至少一電源開關電晶體與該第一邏輯電路之間的一限制電壓降;一基準供應電流計算步驟,係驅動該運算處理單元根據該限制電壓降計算該至少一電源開關電晶體之一基準供應電流;一模擬供應電流計算步驟,係驅動該運算處理單元對該基準供應電流、該限制電壓降及該至少一線電壓值進行一電流計算程序,以計算出該至少一電源開關電晶體之一模擬供應電流;以及一尺寸設定步驟,係驅動該運算處理單元比對該第一負 載電流與該模擬供應電流以計算出一尺寸參數,然後根據該尺寸參數設定該至少一電源開關電晶體之一尺寸。
  2. 如請求項1所述之電源開關電晶體之尺寸設定方法,其中該第一邏輯電路的結構與該第二邏輯電路的結構相同。
  3. 如請求項1所述之電源開關電晶體之尺寸設定方法,其中該第一邏輯電路包含複數電晶體,且該第一負載電流擷取步驟包含:係藉由二該電源開關電晶體與二該電源線連接二該電源電壓至該第一邏輯電路之一第一電源域與一第二電源域,使該些電晶體操作於一飽和區並產生該第一負載電流。
  4. 如請求項1所述之電源開關電晶體之尺寸設定方法,其中該第二邏輯電路包含複數電晶體,且該第二負載電流擷取步驟包含:係連接二該電源電壓至該第二邏輯電路之一第一電源域與一第二電源域,使該些電晶體操作於一飽和區並產生該第二負載電流。
  5. 如請求項1所述之電源開關電晶體之尺寸設定方法,其中該電壓計算程序包含該速度比例值、該第一負載電流、該第二負載電流、該至少一電源電壓、一臨界 電壓及該至少一電源線與該第一邏輯電路之間的一端電壓,該速度比例值表示為S,該第一負載電流表示為I MTCOMS ,該第二負載電流表示為I non_MTCOMS ,該至少一電源電壓表示為V DD ,該臨界電壓表示為V th ,該端電壓表示為V QL 且符合下式:
    Figure 110141558-A0305-02-0028-14
    其中,該運算處理單元根據該速度比例值限制該端電壓與該至少一電源電壓之一差值為該限制電壓降。
  6. 如請求項1所述之電源開關電晶體之尺寸設定方法,其中該基準供應電流計算步驟包含:一預設子步驟,係驅動該運算處理單元將該限制電壓降預設為該至少一電源開關電晶體之一汲源極電壓,使該至少一電源開關電晶體操作於一線性區;及一推算子步驟,係驅動該運算處理單元根據該汲源極電壓推算該基準供應電流。
  7. 如請求項1所述之電源開關電晶體之尺寸設定方法,其中該電流計算程序包含該模擬供應電流、該基準供應電流、該限制電壓降及該至少一線電壓值,該模擬供應電流表示為I supplyR_unit ,該基準供應電流表示為I supply_unit ,該限制電壓降表示為V drop ,該至少一線電壓值表示為V line 且符合下式:
    Figure 110141558-A0305-02-0028-15
  8. 如請求項1所述之電源開關電晶體之尺寸設定方法,其中該至少一電源開關電晶體為一多重臨界電壓互補式金氧半導體(Multi-Threshold CMOS;MTCMOS)。
  9. 一種電源開關電晶體之尺寸設定系統,包含:至少一電源電壓;至少一電源開關電晶體,電性連接該至少一電源電壓;至少一電源線,電性連接該至少一電源開關電晶體並具有至少一線電壓值;一第一邏輯電路,電性連接該至少一電源線,並產生一第一負載電流;一第二邏輯電路,電性連接該至少一電源電壓,並產生一第二負載電流;一儲存單元,用以存取該至少一線電壓值、一電壓計算程序及一電流計算程序;以及一運算處理單元,訊號連接該儲存單元,該運算處理單元經配置以實施包含以下步驟之操作:一第一負載電流擷取步驟,係擷取該第一負載電流;一第二負載電流擷取步驟,係擷取該第二負載電流;一限制電壓降計算步驟,係設定一速度比例值並儲存該速度比例值至該儲存單元,然後對該速度比例值、該第一負載電流及該第二負載電流進行該電壓計算程序,以計算出該至少一電源開關電晶體與該第一邏輯電路之 間的一限制電壓降;一基準供應電流計算步驟,係根據該限制電壓降計算該至少一電源開關電晶體之一基準供應電流;一模擬供應電流計算步驟,係對該基準供應電流、該限制電壓降及該至少一線電壓值進行該電流計算程序,以計算出該至少一電源開關電晶體之一模擬供應電流;及一尺寸設定步驟,係比對該第一負載電流與該模擬供應電流以計算出一尺寸參數,然後根據該尺寸參數設定該至少一電源開關電晶體之一尺寸。
  10. 如請求項9所述之電源開關電晶體之尺寸設定系統,其中該第一邏輯電路的結構與該第二邏輯電路的結構相同。
  11. 如請求項9所述之電源開關電晶體之尺寸設定系統,其中該第一邏輯電路包含複數電晶體,且該第一負載電流擷取步驟包含:係藉由二該電源開關電晶體與二該電源線連接二該電源電壓至該第一邏輯電路之一第一電源域與一第二電源域,使該些電晶體操作於一飽和區並產生該第一負載電流。
  12. 如請求項9所述之電源開關電晶體之尺寸設定系統,其中該第二邏輯電路包含複數電晶體,且該第二 負載電流擷取步驟包含:係連接二該電源電壓至該第二邏輯電路之一第一電源域與一第二電源域,使該些電晶體操作於一飽和區並產生該第二負載電流。
  13. 如請求項9所述之電源開關電晶體之尺寸設定系統,其中該電壓計算程序包含該速度比例值、該第一負載電流、該第二負載電流、該至少一電源電壓、一臨界電壓及該至少一電源線與該第一邏輯電路之間的一端電壓,該速度比例值表示為S,該第一負載電流表示為I MTCOMS ,該第二負載電流表示為I non_MTCOMS ,該至少一電源電壓表示為V DD ,該臨界電壓表示為V th ,該端電壓表示為V QL 且符合下式:
    Figure 110141558-A0305-02-0031-16
    其中,該運算處理單元根據該速度比例值限制該端電壓與該至少一電源電壓之一差值為該限制電壓降。
  14. 如請求項9所述之電源開關電晶體之尺寸設定系統,其中該基準供應電流計算步驟包含:一預設子步驟,係驅動該運算處理單元將該限制電壓降預設為該至少一電源開關電晶體之一汲源極電壓,使該至少一電源開關電晶體操作於一線性區;及一推算子步驟,係驅動該運算處理單元根據該汲源極電壓推算該基準供應電流。
  15. 如請求項9所述之電源開關電晶體之尺寸設定系統,其中該電流計算程序包含該模擬供應電流、該基準供應電流、該限制電壓降及該至少一線電壓值,該模擬供應電流表示為I supplyR_unit ,該基準供應電流表示為I supply_unit ,該限制電壓降表示為V drop ,該至少一線電壓值表示為V line 且符合下式:
    Figure 110141558-A0305-02-0032-17
  16. 如請求項9所述之電源開關電晶體之尺寸設定系統,其中該至少一電源開關電晶體為一多重臨界電壓互補式金氧半導體(Multi-Threshold CMOS;MTCMOS)。
TW110141558A 2021-11-08 2021-11-08 電源開關電晶體之尺寸設定方法及其系統 TWI797821B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110141558A TWI797821B (zh) 2021-11-08 2021-11-08 電源開關電晶體之尺寸設定方法及其系統
US17/676,882 US20230147226A1 (en) 2021-11-08 2022-02-22 Size setting method for power switch transistor and system thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110141558A TWI797821B (zh) 2021-11-08 2021-11-08 電源開關電晶體之尺寸設定方法及其系統

Publications (2)

Publication Number Publication Date
TWI797821B true TWI797821B (zh) 2023-04-01
TW202319951A TW202319951A (zh) 2023-05-16

Family

ID=86228634

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110141558A TWI797821B (zh) 2021-11-08 2021-11-08 電源開關電晶體之尺寸設定方法及其系統

Country Status (2)

Country Link
US (1) US20230147226A1 (zh)
TW (1) TWI797821B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116629178B (zh) * 2023-07-24 2023-10-31 合肥晶合集成电路股份有限公司 逻辑电路设计装置及逻辑电路设计方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040071026A1 (en) * 2000-06-05 2004-04-15 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit device operating with low power consumption
US6900690B2 (en) * 2001-05-22 2005-05-31 The Regents Of The University Of California Low-power high-performance integrated circuit and related methods
US7400175B2 (en) * 2006-05-31 2008-07-15 Fujitsu Limited Recycling charge to reduce energy consumption during mode transition in multithreshold complementary metal-oxide-semiconductor (MTCMOS) circuits
US20090174469A1 (en) * 2007-12-11 2009-07-09 Fujitsu Limited Sizing and Placement of Charge Recycling (CR) Transistors in Multithreshold Complementary Metal-Oxide-Semiconductor (MTCMOS) Circuits
TWI360878B (en) * 2007-05-11 2012-03-21 Sony Corp Semiconductor integrated circuit and operation met
US8373493B2 (en) * 2010-09-15 2013-02-12 Duke University Power switch design and method for reducing leakage power in low-power integrated circuits
TWI442546B (zh) * 2007-11-07 2014-06-21 Sony Corp 半導體積體電路

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040071026A1 (en) * 2000-06-05 2004-04-15 Mitsubishi Denki Kabushiki Kaisha Semiconductor integrated circuit device operating with low power consumption
US6900690B2 (en) * 2001-05-22 2005-05-31 The Regents Of The University Of California Low-power high-performance integrated circuit and related methods
US7400175B2 (en) * 2006-05-31 2008-07-15 Fujitsu Limited Recycling charge to reduce energy consumption during mode transition in multithreshold complementary metal-oxide-semiconductor (MTCMOS) circuits
TWI360878B (en) * 2007-05-11 2012-03-21 Sony Corp Semiconductor integrated circuit and operation met
TWI442546B (zh) * 2007-11-07 2014-06-21 Sony Corp 半導體積體電路
US20090174469A1 (en) * 2007-12-11 2009-07-09 Fujitsu Limited Sizing and Placement of Charge Recycling (CR) Transistors in Multithreshold Complementary Metal-Oxide-Semiconductor (MTCMOS) Circuits
US8373493B2 (en) * 2010-09-15 2013-02-12 Duke University Power switch design and method for reducing leakage power in low-power integrated circuits

Also Published As

Publication number Publication date
US20230147226A1 (en) 2023-05-11
TW202319951A (zh) 2023-05-16

Similar Documents

Publication Publication Date Title
JP3633061B2 (ja) 半導体集積回路装置
US7256622B2 (en) AND, OR, NAND, and NOR logical gates
Chun et al. A novel leakage power reduction technique for CMOS circuit design
JP2004186666A (ja) 半導体集積回路装置
TWI797821B (zh) 電源開關電晶體之尺寸設定方法及其系統
US7109758B2 (en) System and method for reducing short circuit current in a buffer
Lee et al. Simultaneous subthreshold and gate-oxide tunneling leakage current analysis in nanometer CMOS design
KR100735756B1 (ko) 반도체 집적 회로
US7844923B2 (en) Semiconductor integrated circuit designing method, semiconductor integrated circuit device, and electronic device
Nagar et al. Implementation of transistor stacking technique in combinational circuits
Aggarwal et al. A low voltage wide swing level shifted FVF based current mirror
US9166585B2 (en) Low power inverter circuit
JP2009533929A (ja) 電子回路
Sreekala et al. Subthreshold leakage power reduction by feedback sleeper-stack technique
Dadoria et al. A novel approach for leakage power reduction in deep submicron technologies in CMOS VLSI circuits
Moghaddam et al. A low-voltage level shifter based on double-gate MOSFET
Berg et al. Ultra low-voltage and high speed dynamic and static cmos precharge logic
CN109144158B (zh) 集成电路芯片的静态电流供给电路
Verma et al. Review of various GDI techniques for low power digital circuits
US6271706B1 (en) Divided voltage de-coupling structure
Mehrotra et al. Hysteretic behavior of PGP FDSOI NCFETs with hafnium oxide based ferroelectrics
Yadav et al. Performance comparison of ONOFIC and LECTOR based approaches for Leakage Power Reduction
CN116260332A (zh) 电源开关晶体管的尺寸设定方法及其***
Yang et al. Analysis and design considerations of static CMOS logics under process, voltage and temperature variation in 90nm CMOS process
EP4383574A1 (en) Logic gate circuit, latch, and trigger