TWI797631B - Method for detecting the object by changing the refractive index in the metal surface plasma principle (spp) - Google Patents

Method for detecting the object by changing the refractive index in the metal surface plasma principle (spp) Download PDF

Info

Publication number
TWI797631B
TWI797631B TW110119519A TW110119519A TWI797631B TW I797631 B TWI797631 B TW I797631B TW 110119519 A TW110119519 A TW 110119519A TW 110119519 A TW110119519 A TW 110119519A TW I797631 B TWI797631 B TW I797631B
Authority
TW
Taiwan
Prior art keywords
refractive index
incident light
variable refractive
index medium
variable
Prior art date
Application number
TW110119519A
Other languages
Chinese (zh)
Other versions
TW202246756A (en
Inventor
杜翌群
文逸 施
***
Original Assignee
國立成功大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立成功大學 filed Critical 國立成功大學
Priority to TW110119519A priority Critical patent/TWI797631B/en
Publication of TW202246756A publication Critical patent/TW202246756A/en
Application granted granted Critical
Publication of TWI797631B publication Critical patent/TWI797631B/en

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

The present invention relates to a method for detecting theobject by changing the refractive index in the metal surface plasma principle (SPP). In Kretschmann's principle of plasma polarization on metal surfaces, the wavelength of an incident light is fixed, and the incident angle of the incident light into a variable refractive index medium is fixed too;then, according to the different objects on the dielectric metal, the refractive index of the variable refractive index medium is changed, so that the incident light can form a surface plasma polarization under the conditions of a fixed wavelength and incident angle; the variable refractive index medium, such as liquid crystal, changes the molecular arrangement of the liquid crystal by changing the temperature or electric field to change its refractive index. The present invention further provides a Kretschmannbiodetector using the above method.

Description

在金屬表面電漿原理(SPP)中透過改變折射率以檢測待測物的 方法及生物檢測器 In the metal surface plasmon principle (SPP), the detection of the analyte is performed by changing the refractive index. Methods and Biodetectors

本發明係有關於一種在金屬表面電漿原理(SPP)中透過改變折射率以檢測待測物的方法及生物檢測器,特別是指在Kretschmann的金屬表面電漿極化原理中,使入射光在固定波長及入射角的條件下,透過改變折射率使介電金屬形成表面電漿極化(SPP)的發明,並可據以作為生物檢測器使用。 The present invention relates to a method and a biodetector for detecting analytes by changing the refractive index in the metal surface plasmon principle (SPP), especially refers to the Kretschmann's metal surface plasmonic polarization principle, which makes the incident light Under the condition of fixed wavelength and incident angle, the invention of surface plasmon polarization (SPP) can be formed on the dielectric metal by changing the refractive index, and it can be used as a biological detector.

參閱維基百科,表面電漿(Surface Plasmon)是金屬表面電子在電磁波作用下產生集體振盪的現象,有局域表面電漿共振(Local Surface Plasmon Resonance,LSPR)以及表面電漿極化(Surface Plasmon Polariton,SPPs)兩種。 Refer to Wikipedia. Surface Plasmon is a phenomenon in which electrons on the surface of a metal generate collective oscillations under the action of electromagnetic waves. There are Local Surface Plasmon Resonance (LSPR) and Surface Plasmon Polariton (Surface Plasmon Polariton). , SPPs) two kinds.

Kretschmann開發一種以光波激發表面電漿的結構,其在稜鏡表面鍍上金屬薄膜,再以入射光波的能量激發金屬薄膜產生表面電漿。而在金屬薄膜表面附加待測物時,需要以不同能量來激發表面電漿,因此可據以將表面電漿(Surface Plasmon)用於生命科學、醫療檢測、藥物篩選、食品檢測、環境監測、法醫鑑定及藥物動力學等檢測用途。 Kretschmann developed a structure that uses light waves to excite surface plasmons, which coats the metal film on the surface of the shell, and then uses the energy of incident light waves to excite the metal film to generate surface plasmons. When attaching the analyte on the surface of the metal film, it is necessary to excite the surface plasmon with different energies, so the surface plasmon (Surface Plasmon) can be used in life sciences, medical testing, drug screening, food testing, environmental monitoring, Forensic identification and pharmacokinetic testing purposes.

Kretschmann提出金屬表面產生表面電漿(SPP)須滿足表面電漿極化公式(Kretschmann-Varied prism method):

Figure 110119519-A0305-02-0004-1
k0=2π/λ Kretschmann proposed that the surface plasmon (SPP) generated on the metal surface must satisfy the surface plasmon polarization formula (Kretschmann-Varied prism method):
Figure 110119519-A0305-02-0004-1
k 0 =2π/λ

其中,k0為真空下的波向量,λ為入射光的波長,n1為稜鏡的 折射率,θi為入射光的入射角,

Figure 110119519-A0305-02-0004-2
為分析物材料的介電常數,
Figure 110119519-A0305-02-0004-3
為金屬薄膜的實部。 Among them, k 0 is the wave vector in vacuum, λ is the wavelength of the incident light, n 1 is the refractive index of the light, θi is the incident angle of the incident light,
Figure 110119519-A0305-02-0004-2
is the dielectric constant of the analyte material,
Figure 110119519-A0305-02-0004-3
is the real part of the metal film.

習知的Kretschmann檢測器要檢測不同待測物時,可以透過改變入射光的入射角θi(稱為角度觸發響應)或改變入射光的波長λ(稱為光譜觸發響應)來實現。 When the conventional Kretschmann detector wants to detect different analytes, it can be realized by changing the incident angle θi of incident light (called angle trigger response) or changing the wavelength λ of incident light (called spectral trigger response).

但是使用改變入射光的入射角θi的角度觸發響應方式,其入射角需小於90度,因而能夠檢測的物質受限,且要改變入射光的的入射角θi需要使用了大型設備來旋轉光發射器及光接收器;而使用改變入射光的波長λ的光譜觸發響應方式,需要使用的多波長的雷射光設備昂貴。 However, using the angle-triggered response method of changing the incident angle θi of the incident light, the incident angle must be less than 90 degrees, so the substances that can be detected are limited, and changing the incident angle θi of the incident light requires the use of large-scale equipment to rotate the light emission devices and optical receivers; while using the spectral trigger response method of changing the wavelength λ of the incident light, the multi-wavelength laser light equipment that needs to be used is expensive.

基於前案的缺失,本發明提出一種在金屬表面電漿原理(SPP)中透過改變折射率以檢測待測物的方法,包括:在Kretschmann的金屬表面電漿極化原理中,固定一入射光的波長,以及固定該入射光進入一可變折射率介質之一入射角。根據該介電金屬上之一待測物,使用一控制單元改變該可變折射率介質之折射率,藉以使該入射光在固定之波長及入射角的條件下,直接通過該可變折射率介質而指向該介電金屬,使該介電金屬形成表面電漿極化,並直接接收該入射光接觸該介電金屬後通過該可變折射率介質的一反射光。 Based on the lack of the previous case, the present invention proposes a method for detecting the object to be measured by changing the refractive index in the metal surface plasmon principle (SPP), including: in Kretschmann's metal surface plasmon polarization principle, fixing an incident light wavelength, and an incident angle of the incident light entering a variable refractive index medium is fixed. According to an object to be tested on the dielectric metal, a control unit is used to change the refractive index of the variable refractive index medium, so that the incident light directly passes through the variable refractive index under the conditions of fixed wavelength and incident angle The medium is directed to the dielectric metal, so that the dielectric metal forms surface plasma polarization, and directly receives a reflected light that passes through the variable refractive index medium after the incident light touches the dielectric metal.

本發明再提出一種在金屬表面電漿原理(SPP)中透過改變折射率以檢測待測物的生物檢測器,該生物檢測器使用上述Kretschmann的金屬表面電漿極化原理,包括:一可變折射率介質,係可改變折射率;一光發射器,以固定的入射角直接連接該可變折射率介質,可發出固定波長的一入射光直接進入該可變折射率介質;一介電金屬,設置在該可變折射率介質上,該介電金屬吸收該入射光後形成表面電漿極化;一光接收器,直接連接該可變折射率介質,該光接收器接收該入射光接觸該介電金屬後的一反射光;一控制單元,連接該可變折射率介質,以控制該可變折射率介質改變其折射率。 The present invention further proposes a biodetector that detects the object to be tested by changing the refractive index in the metal surface plasmon principle (SPP). The biodetector uses the above-mentioned metal surface plasma polarization principle of Kretschmann, including: a variable The refractive index medium can change the refractive index; a light emitter is directly connected to the variable refractive index medium at a fixed incident angle, and can emit an incident light of a fixed wavelength directly into the variable refractive index medium; a dielectric metal , set on the variable refractive index medium, the dielectric metal absorbs the incident light to form surface plasmon polarization; a light receiver, directly connected to the variable refractive index medium, the light receiver receives the incident light contact A reflected light behind the dielectric metal; a control unit connected with the variable refractive index medium to control the variable refractive index medium to change its refractive index.

進一步,該可變折射率介質係液晶,該控制單元係溫控單元,並透過溫度控制改變其折射率。 Further, the variable refractive index medium is liquid crystal, and the control unit is a temperature control unit, and the refractive index is changed through temperature control.

進一步,該可變折射率介質係液晶,該控制單元係導電單元,並透過電場控制改變其折射率。 Further, the variable refractive index medium is liquid crystal, the control unit is a conductive unit, and the refractive index is changed through electric field control.

進一步,該入射光使用之波長介於450奈米至650奈米之間。 Further, the wavelength of the incident light is between 450 nm and 650 nm.

根據上述技術特徵可達成以下功效:本發明在Kretschmann的金屬表面電漿極化原理中,採用固定入射光的入射角及波長,而藉由控制可變折射率介質的折射率來讓介電金屬形成表面電漿極化,稱為折射率觸發響應。 According to the above-mentioned technical characteristics, the following effects can be achieved: in the principle of Kretschmann’s metal surface plasmonic polarization, the present invention adopts the fixed incident angle and wavelength of incident light, and makes the dielectric metal by controlling the refractive index of the variable refractive index medium Formation of surface plasmonic polarization, known as index-triggered response.

折射率觸發響應中:1.不需使用如同角度觸發響應的大型設備來旋轉光發射器及光接收器,因此也沒有入射角度的限制,待測物的種類不受限。2.因為入射光的波長固定,不需使用昂貴的多波長的雷射光設備。 In the refractive index trigger response: 1. There is no need to use large-scale equipment like the angle trigger response to rotate the light emitter and light receiver, so there is no limitation on the incident angle, and the types of objects to be measured are not limited. 2. Because the wavelength of the incident light is fixed, there is no need to use expensive multi-wavelength laser light equipment.

1:可變折射率介質 1: variable refractive index medium

2:光發射器 2: Optical transmitter

3:介電金屬 3: Dielectric metal

4:光接收器 4: Optical receiver

5:控制單元 5: Control unit

6:待測物 6: The object to be tested

[第一圖]係為本發明實施例之裝置的示意圖。 [The first figure] is a schematic diagram of the device of the embodiment of the present invention.

[第二圖]係為本發明實施例在真空環境中,介電金屬放置折射率為1.33RIU之待測物時,介電金屬的反射率與可變折射率介質的折射率的關係曲線圖。 [The second figure] is a graph showing the relationship between the reflectivity of the dielectric metal and the refractive index of the variable refractive index medium when the dielectric metal is placed in a vacuum environment with an object to be measured with a refractive index of 1.33 RIU. .

[第三圖]係為本發明實施例使用不同波長的入射光時,不同待測物的折射率與形成表面電漿極化時的可變折射率介質的折射率的關係曲線圖。 [Figure 3] is a graph showing the relationship between the refractive index of different objects to be tested and the refractive index of the variable refractive index medium when surface plasmon polarization is formed when incident light of different wavelengths is used in the embodiment of the present invention.

[第四圖]係為本發明實施例在真空環境中,介電金屬上放置不同折射率的待測物時,介電金屬的反射率與可變折射率介質的折射率的關係曲線圖。 [Figure 4] is a graph showing the relationship between the reflectivity of the dielectric metal and the refractive index of the variable refractive index medium when objects with different refractive indices are placed on the dielectric metal in a vacuum environment according to the embodiment of the present invention.

[第五圖]係為本發明實施例在真空環境中,介電金屬尚未放置待測物且使用不同波長的入射光時,介電金屬的反射率與可變折射率介質的折射率的關係曲線圖。 [The fifth figure] is the relationship between the reflectivity of the dielectric metal and the refractive index of the variable refractive index medium in the vacuum environment of the embodiment of the present invention, when the dielectric metal has not placed the object to be measured and incident light of different wavelengths is used Graph.

[第六圖]係為本發明實施例在真空環境中,介電金屬尚未放置待測物且使用不同波長的入射光使介電金屬形成表面電漿極化時,介電金屬的反射率與可變折射率介質的折射率的關係曲線圖。 [Figure 6] is the embodiment of the present invention. In a vacuum environment, when the dielectric metal has not placed the object to be measured and the incident light of different wavelengths is used to make the dielectric metal form surface plasma polarization, the reflectivity of the dielectric metal and A plot of the refractive index of a variable-index medium.

[第七圖]係為本發明實施例在入射光波長為630nm下,該可變折射率介質的檢測範圍FIWHM與折射率介於1.25RIU至1.36RIU之間的待測物的關係圖。 [Figure 7] is a relationship diagram between the detection range FIWHM of the variable refractive index medium and the object to be tested with a refractive index between 1.25RIU and 1.36RIU under the incident light wavelength of 630nm according to the embodiment of the present invention.

[第八圖]係為本發明實施例中,FOM(靈敏度除以FIWHM)與該待測物的折射率的關係圖。 [Figure 8] is a relationship diagram between FOM (sensitivity divided by FIWHM) and the refractive index of the object to be measured in an embodiment of the present invention.

[第九圖]係為本發明使用折射率觸發響應與習知使用角度觸發響應在相同條件下之靈敏度對比圖。 [Figure 9] is a sensitivity comparison chart of the present invention using the refractive index trigger response and the conventional angle trigger response under the same conditions.

綜合上述技術特徵,本發明透過在金屬表面電漿原理(SPP)中改變折射率以檢測待測物及生物檢測器的主要功效將可於下述實施例清楚呈現。 Based on the above technical features, the present invention detects the analyte and the main function of the biodetector by changing the refractive index in the metal surface plasmon principle (SPP) will be clearly presented in the following embodiments.

參閱第一圖所示,本發明係依據Kretschmann的金屬表面電漿極化原理,本實施例之生物檢測器包括:一可變折射率介質1。一光發射器2,以固定的入射角直接連接該可變折射率介質1,本實施例該入射角的角度為68.5度。一介電金屬3,設置在該可變折射率介質1上,本實施例使用厚度為52nm的銀金屬。一光接收器4,直接連接該可變折射率介質1。一控制單元5,連接該可變折射率介質1,以控制該可變折射率介質1改變其折射率。其中,該可變折射率介質1例如使用液晶,由於液晶的分子排列會因為溫度的變化或電場的變化而改變,因而可改變其折射率,因此該控制單元5可使用溫控單元,並透過溫度控制改變其折射率,或者,該控制單元5可使用導電單元,並透過電場控制改變其折射率。 Referring to the first figure, the present invention is based on Kretschmann's metal surface plasmonic polarization principle, and the biological detector of this embodiment includes: a variable refractive index medium 1 . A light emitter 2 is directly connected to the variable refractive index medium 1 at a fixed incident angle, which is 68.5 degrees in this embodiment. A dielectric metal 3 is disposed on the variable refractive index medium 1, and this embodiment uses silver metal with a thickness of 52nm. A light receiver 4 is directly connected to the variable refractive index medium 1 . A control unit 5 is connected with the variable refractive index medium 1 to control the variable refractive index medium 1 to change its refractive index. Wherein, the variable refractive index medium 1 uses liquid crystal, for example, because the molecular arrangement of the liquid crystal will change due to the change of temperature or the change of electric field, so its refractive index can be changed, so the control unit 5 can use a temperature control unit, and through Temperature control changes its refractive index, or, the control unit 5 can use a conductive unit and change its refractive index through electric field control.

本實施例之可變折射率介質1採用以下之新型態液晶,其反應式及化學結構如下:

Figure 110119519-A0305-02-0008-4
The variable refractive index medium 1 of this embodiment adopts the following new type of liquid crystal, and its reaction formula and chemical structure are as follows:
Figure 110119519-A0305-02-0008-4

Kretschmann的金屬表面電漿極化原理如下(如先前技術所述):

Figure 110119519-A0305-02-0008-5
Kretschmann's principle of plasmonic polarization of metal surfaces is as follows (as described in the prior art):
Figure 110119519-A0305-02-0008-5

該光發射器2發出一入射光直接進入該可變折射率介質1,該入射光會激發該介電金屬3之表面形成表面電漿極化。由於該介電金屬3上的待測物6不同,需要不同的激發能量,本實施例採用固定入射光的入射角及波長,並根據該介電金屬3上之待測物6,例如DNA、RNA等生物檢體,而使用該控制單元5改變該可變折射率介質1之折射率,藉以使該入射光在固定之波長及入射角的條件下,在該介電金屬3表面形成表面電漿極化。 The light emitter 2 emits an incident light directly into the variable refractive index medium 1, and the incident light excites the surface of the dielectric metal 3 to form surface plasmon polarization. Since the objects to be measured 6 on the dielectric metal 3 are different and require different excitation energies, this embodiment adopts a fixed incident angle and wavelength of the incident light, and according to the objects to be measured 6 on the dielectric metal 3, such as DNA, RNA and other biological samples, and use the control unit 5 to change the refractive index of the variable refractive index medium 1, so that the incident light can form a surface charge on the surface of the dielectric metal 3 under the conditions of a fixed wavelength and incident angle. pulp polarization.

參閱第二圖所示,在真空環境下(free space),且該介電金屬3上放置折射率為1.33RIU之待測物時,使用入射光波長630nm,該可變折射率介質1的折射率為1.52RIU時,該介電金屬3有最小的反射率,意謂此時該介電金屬3 形成表面電漿極化,而該可變折射率介質1的檢測範圍大約在1.52RIU至1.54RIU之間。參第三圖所示,使用不同波長的入射光對折射率介於1.25RIU至1.36RIU之間的待測物6進行檢測,本實施例之可變折射率介質1可配合不同波長的入射光檢測不同折射率範圍的待測物6,該可變折射率介質1的折射率與不同待測物6之折射率二者大致呈線性關係,其關係式為:n1=Si×n3+Intercept Referring to the second figure, in a vacuum environment (free space), and when an object to be measured with a refractive index of 1.33RIU is placed on the dielectric metal 3, the incident light wavelength is 630nm, and the refractive index of the variable refractive index medium 1 is When the reflectivity is 1.52RIU, the dielectric metal 3 has the minimum reflectivity, which means that the dielectric metal 3 forms surface plasmon polarization at this time, and the detection range of the variable refractive index medium 1 is about 1.52RIU to 1.54 Between RIUs. Referring to the third figure, incident light of different wavelengths is used to detect the object 6 whose refractive index is between 1.25RIU and 1.36RIU. The variable refractive index medium 1 of this embodiment can match incident light of different wavelengths To detect objects 6 with different refractive index ranges, the refractive index of the variable refractive index medium 1 and the refractive index of different objects 6 are roughly linearly related, and the relationship is: n 1 =S i ×n 3 +Intercept

其中,n1為該可變折射率介質1的折射率,Si為靈敏度,n3為該待測物6的折射率,Intercept為誤差值。 Wherein, n 1 is the refractive index of the variable refractive index medium 1 , S i is the sensitivity, n 3 is the refractive index of the object to be measured 6 , and Intercept is an error value.

參閱下表,係該可變折射率介質1的折射率n1,靈敏度Si,該待測物6的折射率n3,為誤差Intercept的對應表:

Figure 110119519-A0305-02-0009-6
Referring to the following table, the refractive index n 1 of the variable refractive index medium 1, the sensitivity S i , and the refractive index n 3 of the object to be measured 6 are the corresponding table of the error Intercept:
Figure 110119519-A0305-02-0009-6

參閱第四圖所示,在該介電金屬3上放置折射率介於1.3RIU至1.4RIU之間的不同待測物6時,該可變折射率介質1的折射率仍然在1.52RIU至1.54RIU的範圍內,因此本發明之可變折射率介質1可適應大部分的待測物6,而使用角度觸發響應則很難檢測具有如此大範圍折射率的待測物6。 Referring to the fourth figure, when placing different objects 6 with a refractive index ranging from 1.3RIU to 1.4RIU on the dielectric metal 3, the refractive index of the variable refractive index medium 1 is still 1.52RIU to 1.54 Within the range of RIU, the variable refractive index medium 1 of the present invention can adapt to most of the objects 6 to be tested, but it is difficult to detect objects 6 with such a wide range of refractive index using the angle trigger response.

參閱第五圖及第六圖所示,在真空環境下(free space),且該介電金屬3尚未放置待測物時,使用入射光之波長介於450nm至650nm進行表面電漿極化測試,可發現在不同入射光波長下,該介電金屬3形成表面電漿極化時,該可變折射率介質1的折射率及該介電金屬3的反射率隨著該入射光的波長增 加而遞減。在此範圍的入射光波長下,該可變折射率介質1的折射率大約在1.8RIU至1.45RIU之間,是較佳選用的入射光波長範圍。 Referring to Figures 5 and 6, in a vacuum environment (free space), and when the dielectric metal 3 has not placed the object to be tested, use the wavelength of incident light between 450nm and 650nm to conduct a surface plasmon polarization test , it can be found that under different incident light wavelengths, when the dielectric metal 3 forms surface plasmon polarization, the refractive index of the variable refractive index medium 1 and the reflectivity of the dielectric metal 3 increase with the wavelength of the incident light Add and subtract. Under this range of incident light wavelengths, the refractive index of the variable refractive index medium 1 is approximately between 1.8RIU and 1.45RIU, which is a preferred incident light wavelength range.

參閱第七圖所示,係在入射光波長為630nm下,該可變折射率介質1的檢測範圍FIWHM(full index width at half-maximum)與折射率介於1.25RIU至1.36RIU之間的待測物6的關係圖,其中FIWHM只有約0.007的變化,示意了檢測的高精度。參閱第八圖所示,係根據第八圖的檢測範圍FIWHM,將靈敏度除以FIWHM,並定義為FOM,FOM與該待測物6的折射率的關係圖,其中FOM在折射率介於1.25

Figure 110119519-A0305-02-0010-16
n3
Figure 110119519-A0305-02-0010-17
1.36的整個範圍上的值大於40,同樣示意了檢測的高精度。 As shown in the seventh figure, under the incident light wavelength of 630nm, the detection range FIWHM (full index width at half-maximum) of the variable refractive index medium 1 and the target range of the refractive index between 1.25RIU and 1.36RIU The relationship diagram of the measured object 6, in which the FIWHM has only a change of about 0.007, shows the high precision of the detection. Referring to the eighth figure, it is based on the detection range FIWHM in the eighth figure, divide the sensitivity by FIWHM, and define it as FOM, the relationship between FOM and the refractive index of the object under test 6, wherein the FOM is between 1.25 and 1.25
Figure 110119519-A0305-02-0010-16
n3
Figure 110119519-A0305-02-0010-17
The values over the entire range of 1.36 are greater than 40, again illustrating the high precision of the detection.

參閱第九圖所示,係在相同條件下使用折射率觸發響應與習知使用角度觸發響應之靈敏度對比,可發現本發明之折射率觸發響應有較低的誤差範圍,而有相對較高的靈敏度。 Referring to Figure 9, the sensitivity comparison between using the refractive index trigger response and the conventional angle trigger response under the same conditions shows that the refractive index trigger response of the present invention has a lower error range and a relatively higher sensitivity.

綜合上述實施例之說明,當可充分瞭解本發明之操作、使用及本發明產生之功效,惟以上所述實施例僅係為本發明之較佳實施例,當不能以此限定本發明實施之範圍,即依本發明申請專利範圍及發明說明內容所作簡單的等效變化與修飾,皆屬本發明涵蓋之範圍內。 Based on the description of the above-mentioned embodiments, it is possible to fully understand the operation of the present invention, use and the effect that the present invention produces, but the above-mentioned embodiments are only preferred embodiments of the present invention, and should not be used to limit the implementation of the present invention. The scope, that is, the simple equivalent changes and modifications made according to the patent scope of the present invention and the content of the description of the invention, all fall within the scope of the present invention.

1:可變折射率介質 1: variable refractive index medium

2:光發射器 2: Optical transmitter

3:介電金屬 3: Dielectric metal

4:光接收器 4: Optical receiver

5:控制單元 5: Control unit

6:待測物 6: The object to be tested

Claims (6)

一種在金屬表面電漿原理(SPP)中透過改變折射率以檢測待測物的方法,包括有:在Kretschmann的金屬表面電漿極化原理中,固定一入射光的波長,且該入射光的波長介於500奈米至630奈米之間,以及固定該入射光進入一可變折射率介質之一入射角,其中該可變折射率介質係為一液晶;使該入射光直接通過該可變折射率介質而指向該介電金屬,以激發該介電金屬之表面形成表面電漿極化,並直接接收該入射光接觸該介電金屬後通過該可變折射率介質的一反射光;在該介電金屬上置放一待測物;藉由選擇波長介於500奈米至630奈米之間的入射光並固定該入射光的波長,同時固定該入射光的入射角,使該入射光在固定波長及固定入射角的條件下,僅透過使用一控制單元改變該可變折射率介質之折射率,使介電金屬因不同的所述待測物與不同的折射率獲得不同的激發能量,以檢測不同的所述待測物;其中,該待測物的折射率介於1.2828RIU至1.3369RIU之間,該可變折射率介質之折射率控制在1.5218RIU至1.5382RIU之間,以使檢測誤差在-0.166RIU至-0.29RIU之間,靈敏度維持在1.268至1.42之間。 A method for detecting an analyte by changing the refractive index in the metal surface plasmon principle (SPP), comprising: in Kretschmann's metal surface plasmon polarization principle, fixing the wavelength of an incident light, and the incident light having a wavelength between 500 nm and 630 nm, and fixing an incident angle of the incident light into a variable refractive index medium, wherein the variable refractive index medium is a liquid crystal; causing the incident light to pass directly through the variable refractive index medium The variable refractive index medium points to the dielectric metal to excite the surface of the dielectric metal to form surface plasmon polarization, and directly receives a reflected light that passes through the variable refractive index medium after the incident light contacts the dielectric metal; Place an object to be measured on the dielectric metal; by selecting incident light with a wavelength between 500 nm and 630 nm and fixing the wavelength of the incident light, and fixing the incident angle of the incident light at the same time, the Under the condition of fixed wavelength and fixed incident angle, only by using a control unit to change the refractive index of the variable refractive index medium, the dielectric metal can obtain different Excitation energy to detect different analytes; wherein, the analyte has a refractive index between 1.2828RIU and 1.3369RIU, and the refractive index of the variable refractive index medium is controlled between 1.5218RIU and 1.5382RIU , so that the detection error is between -0.166RIU and -0.29RIU, and the sensitivity is maintained between 1.268 and 1.42. 如請求項1所述在金屬表面電漿原理(SPP)中透過改變折射率以檢測待測物的方法,其中,該控制單元係溫控單元,並透過溫度控制改變該可變折射率介質的折射率。 As described in claim 1, the method for detecting the object to be tested by changing the refractive index in the metal surface plasmon principle (SPP), wherein the control unit is a temperature control unit, and changes the variable refractive index medium through temperature control refractive index. 如請求項1所述在金屬表面電漿原理(SPP)中透過改變折射率以檢測待測物的方法,其中,該控制單元係導電單元,並透過電場控制改變該可變折射率介質的折射率。 As described in claim 1, the method for detecting the object under test by changing the refractive index in the metal surface plasmon principle (SPP), wherein the control unit is a conductive unit, and the refraction of the variable refractive index medium is changed through electric field control Rate. 一種在金屬表面電漿原理(SPP)中透過改變折射率以檢測待測物的生物檢測器,包括有:一可變折射率介質,係可改變折射率,該可變折射率介質係液晶;一光發射器,以固定的入射角直接連接該可變折射率介質,可發出固定波長的一入射光直接進入該可變折射率介質,且該入射光波長介於500奈米至630奈米之間;一介電金屬,設置在該可變折射率介質上,該介電金屬吸收該入射光後形成表面電漿極化;一光接收器,直接連接該可變折射率介質,該光接收器接收該入射光接觸該介電金屬後的一反射光;一控制單元,連接該可變折射率介質,以控制該可變折射率介質改變其折射率;藉由選擇波長介於500奈米至630奈米之間的入射光並固定該入射光的波長,同時固定該入射光的入射角,使該入射光在固定波長及固定入射角的條件下,僅透過使用該控制單元改變該可變折射率介質之折射率,使介電金屬因不同的待測物與不同的折射率獲得不同的激發能量,以檢測不同的所述待測物;其中,該待測物的折射率介於1.2828RIU至1.3369RIU之間,該可變折射率介質之折射率控制在1.5218RIU至1.5382RIU之間,以使檢測誤差在-0.166RIU至-0.29RIU之間,靈敏度維持在1.268至1.42之間。 A biodetector for detecting analytes by changing the refractive index in the metal surface plasmon principle (SPP), including: a variable refractive index medium, which can change the refractive index, and the variable refractive index medium is liquid crystal; A light emitter, directly connected to the variable refractive index medium at a fixed incident angle, can emit a fixed wavelength of incident light directly into the variable refractive index medium, and the incident light wavelength is between 500 nm and 630 nm Between; a dielectric metal, set on the variable refractive index medium, the dielectric metal absorbs the incident light to form surface plasmon polarization; a light receiver, directly connected to the variable refractive index medium, the light receiving A device receives a reflected light after the incident light touches the dielectric metal; a control unit is connected to the variable refractive index medium to control the variable refractive index medium to change its refractive index; by selecting a wavelength between 500 nanometers The incident light between 630 nanometers and the wavelength of the incident light are fixed, and the incident angle of the incident light is fixed at the same time, so that the incident light can be changed only by using the control unit under the condition of a fixed wavelength and a fixed incident angle. The refractive index of the variable refractive index medium enables the dielectric metal to obtain different excitation energies due to different analytes and different refractive indices, so as to detect different analytes; wherein, the refractive index of the analyte is between Between 1.2828RIU and 1.3369RIU, the refractive index of the variable refractive index medium is controlled between 1.5218RIU and 1.5382RIU, so that the detection error is between -0.166RIU and -0.29RIU, and the sensitivity is maintained between 1.268 and 1.42 . 如請求項4所述在金屬表面電漿原理(SPP)中透過改變折射率以檢測待測物的生物檢測器,其中,該控制單元係溫控單元,並透過溫度控制改變該可變折射率介質的折射率。 As described in claim 4, the biological detector for detecting the analyte by changing the refractive index in the metal surface plasmon principle (SPP), wherein the control unit is a temperature control unit, and the variable refractive index is changed through temperature control The refractive index of the medium. 如請求項4所述在金屬表面電漿原理(SPP)中透過改變折射率以檢測待測物的生物檢測器,其中,該控制單元係導電單元,並透過電場控制改變該可變折射率介質的折射率。 As described in Claim 4, the biodetector for detecting the object to be detected by changing the refractive index in the metal surface plasmon principle (SPP), wherein the control unit is a conductive unit, and the variable refractive index medium is changed through electric field control the refractive index.
TW110119519A 2021-05-28 2021-05-28 Method for detecting the object by changing the refractive index in the metal surface plasma principle (spp) TWI797631B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW110119519A TWI797631B (en) 2021-05-28 2021-05-28 Method for detecting the object by changing the refractive index in the metal surface plasma principle (spp)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110119519A TWI797631B (en) 2021-05-28 2021-05-28 Method for detecting the object by changing the refractive index in the metal surface plasma principle (spp)

Publications (2)

Publication Number Publication Date
TW202246756A TW202246756A (en) 2022-12-01
TWI797631B true TWI797631B (en) 2023-04-01

Family

ID=85793776

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110119519A TWI797631B (en) 2021-05-28 2021-05-28 Method for detecting the object by changing the refractive index in the metal surface plasma principle (spp)

Country Status (1)

Country Link
TW (1) TWI797631B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4844613A (en) * 1986-11-03 1989-07-04 Stc Plc Optical surface plasmon sensor device
US5351127A (en) * 1992-06-17 1994-09-27 Hewlett-Packard Company Surface plasmon resonance measuring instruments
US20030164947A1 (en) * 2000-04-18 2003-09-04 Matthias Vaupel Spr sensor
CN107219199A (en) * 2017-07-24 2017-09-29 深圳大学 Novel angle modulation SPR imaging systems based on 4F systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4844613A (en) * 1986-11-03 1989-07-04 Stc Plc Optical surface plasmon sensor device
US5351127A (en) * 1992-06-17 1994-09-27 Hewlett-Packard Company Surface plasmon resonance measuring instruments
US20030164947A1 (en) * 2000-04-18 2003-09-04 Matthias Vaupel Spr sensor
CN107219199A (en) * 2017-07-24 2017-09-29 深圳大学 Novel angle modulation SPR imaging systems based on 4F systems

Also Published As

Publication number Publication date
TW202246756A (en) 2022-12-01

Similar Documents

Publication Publication Date Title
TWI364533B (en) A method for improving surface plasmon resonance by using conducting metal oxide as adhesive layer
US6161437A (en) Method and apparatus for evaluating an analyte
Descrovi et al. Coupling of surface waves in highly defined one-dimensional porous silicon photonic crystals for gas sensing applications
CN112461787B (en) Lithium niobate optical sensor and method based on Bloch surface wave
WO2019019562A1 (en) Terahertz surface plasmon resonance sensing device and using method
CN105911025A (en) Distributed spiral core optical fiber surface plasmon resonance sensor and measurement method thereof
CN101825568B (en) Device for detecting medium refraction index change by utilizing spectrum intensity change
CN106338497B (en) A kind of surface plasma body resonant vibration microscopic imaging device and method
CN101294900B (en) High-fineness cavity surface plasma resonance sensing equipment
Descrovi et al. Surface label-free sensing by means of a fluorescent multilayered photonic structure
TWI797631B (en) Method for detecting the object by changing the refractive index in the metal surface plasma principle (spp)
Wong et al. Application of spectral surface plasmon resonance to gas pressure sensing
RU2645008C1 (en) Device for measuring the length of infrared surface of the electromagnetic wave
Canning et al. Large dynamic range SPR measurements using a ZnSe prism
KR100927378B1 (en) Gas sensor chip with thick sensing layer, and manufacturing method thereof
Xia et al. Study of surface plasmon resonance sensor based on polymer-tipped optical fiber with barium titanate layer
Zhang et al. Graphene based surface plasmon resonance gas sensor with magnetic field control for terahertz
Mehan et al. Surface plasmon resonance based refractive index sensor for liquids
JP6414407B2 (en) Raman spectroscopic device and electronic device
CN112525859B (en) Surface plasmon resonance sensing measurement method, device and system
EP1519187A1 (en) Surface plasmon resonance sensor and sensor unit for accurately measuring small refractive index fluctuations
Su et al. A high sensitivity THz detector
RU2681427C1 (en) Device for measuring the length of infrared surface of the electromagnetic wave
Yan et al. Realization of Surface Plasmon Resonance sensor based on wavelength modulation by using 50nm broadband light source
Ding et al. Improved SPR technique for determination of the thickness and optical constants of thin metal films