TWI793186B - 層合體及硬化密封體之製造方法 - Google Patents

層合體及硬化密封體之製造方法 Download PDF

Info

Publication number
TWI793186B
TWI793186B TW107134885A TW107134885A TWI793186B TW I793186 B TWI793186 B TW I793186B TW 107134885 A TW107134885 A TW 107134885A TW 107134885 A TW107134885 A TW 107134885A TW I793186 B TWI793186 B TW I793186B
Authority
TW
Taiwan
Prior art keywords
layer
resin layer
energy ray
curable resin
mass
Prior art date
Application number
TW107134885A
Other languages
English (en)
Other versions
TW202014302A (zh
Inventor
佐藤明德
高麗洋佑
阿久津高志
垣內康彦
岡本直也
山田忠知
中山武人
Original Assignee
日商琳得科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日商琳得科股份有限公司 filed Critical 日商琳得科股份有限公司
Priority to TW107134885A priority Critical patent/TWI793186B/zh
Publication of TW202014302A publication Critical patent/TW202014302A/zh
Application granted granted Critical
Publication of TWI793186B publication Critical patent/TWI793186B/zh

Links

Images

Landscapes

  • Laminated Bodies (AREA)

Abstract

本發明為有關一種層合體,其為具有:能量線硬化性樹脂層(I),與支撐該能量線硬化性樹脂層(I)的支撐層(II);其中,前述能量線硬化性樹脂層(I),為具有具黏著性的表面,前述支撐層(II)為具有基材(Y)及黏著劑層,該基材(Y)及黏著劑層之至少一者為含有熱膨脹性粒子,前述由能量線硬化性樹脂層(I)硬化形成的硬化樹脂層(I’)與前述支撐層(II),經使前述熱膨脹性粒子進行膨脹之處理,而於其界面形成分離。

Description

層合體及硬化密封體之製造方法
本發明為有關層合體及硬化密封體之製造方法。
近年來,伴隨電子機器之小型化、輕量化及高機能化,半導體晶片,多以趨近其尺寸之方式進行實際的封裝。該些封裝,亦稱為CSP(裸晶封裝;Chip Scale Package)。CSP可列舉如,以晶圓尺寸處理至封裝的最後步驟為止而完成的WLP(Wafer Level Package)、以較晶圓尺寸為更大的面板尺寸處理至封裝的最後步驟為止而完成的PLP(Panel Level Package)等。
WLP及PLP可區分為扇入(Fan-In)型與扇出(Fan-Out)型。扇出(Fan-Out)型的WLP(以下,亦稱為「FOWLP」)及PLP(以下,亦稱為「FOPLP」)製程中,半導體晶片被密封材以較晶片尺寸為更大的區域方式被覆,而形成半導體晶片的硬化密封體,而導線重佈層(RDL)及外部電極,不僅形成於半導體晶片的線路面,亦形成於密封材的表面區域中。
FOWLP及FOPLP,例如,可經由使複數的半導體晶片載置於暫時固定用薄片之載置步驟,與以熱硬化性密封材被覆之被覆步驟,與使該密封材熱硬化而製得硬化密封體之硬化步驟,與使該硬化密封體與暫時固定用薄片分離之分離步驟,與於露出的半導體晶片側之表面,形成導線重佈層(RDL)之導線重佈層(RDL)形成步驟之方式製得(以下,進行被覆步驟及硬化步驟之加工,亦稱為「密封加工」)。
專利文獻1中,揭示一種於基材的至少一側面上,設置含有熱膨脹性微小球的熱膨脹性黏著層的供切斷電子零件用的暫時固定用加熱剝離型黏著薄片。FOWLP及FOPLP之製造中,推測也可使用專利文獻1記載之加熱剝離型黏著薄片。    [先前技術文獻]    [專利文獻]
[專利文獻1] 專利第3594853號公報
[發明所欲解決之問題]
但,於製造專利文獻1記載的以黏著薄片作為暫時固定用薄片所使用的硬化密封體時,硬化密封體受到熱收縮時會有翹曲之傾向。此點,推測因被密封於硬化密封體中的半導體晶片,存在靠近與暫時固定用薄片相鄰接之面側,故於硬化密封體中,產生了熱膨脹係數較小但於半導體晶片中的存在比例相對更高之側的區域,與熱膨脹係數較大、硬化樹脂的存在比例相對更高之側的區域,而由兩區域的熱收縮率之差異而發生應力所造成者。該問題,於FOWLP、FOPLP等的封裝尺寸越大時,有著更顯著之傾向。      發生翹曲之硬化密封體,例如,於隨後步驟之進行硬化密封體研削時,將容易發生破裂、硬化密封體使用裝置進行運送之際,使用手臂收受傳遞硬化密封體時,將容易發生失調等問題。
而抑制硬化密封體變形之方法,例如,已有研究使用具備有設有一含有熱膨脹性粒子的熱膨脹性黏著層的暫時固定層與熱硬化性樹脂層之層合體的方法。即,實施於該層合體所具備的熱硬化性樹脂層上載置半導體晶片之載置步驟及被覆步驟,其後,使熱硬化性樹脂層及密封材熱硬化,製得附有硬化樹脂層的硬化密封體後,使熱膨脹性粒子發泡,而使附有硬化樹脂層的硬化密封體與暫時固定層形成分離之方法。依該方法時,因硬化樹脂層具有作為硬化密封體之抗變形層的機能,故可製得可抑制變形發生的硬化密封體。
另一方面,依上述方法時,因使熱膨脹性粒子發泡之處理,與使熱硬化性樹脂層硬化之處理等任一者皆為加熱處理,故於使熱硬化性樹脂層硬化的加熱處理中,於暫時固定層中的熱膨脹性粒子會有產生發泡之情形。依本發明者等的研究結果,得知於熱硬化性樹脂層充份硬化之前,若暫時固定層中的熱膨脹性粒子產生發泡時,於隨後的分離步驟中,暫時固定層的分離性會有惡化之情形。      因此,極期待有一種可以適用於將抗變形層的硬化樹脂層供予硬化密封體,形成附有硬化樹脂層的硬化密封體之後,可使硬化樹脂層與暫時固定層容易分離以製造硬化密封體的層合體。
本發明為鑑於上述問題,而以提出一種具有支撐層與硬化性樹脂層,其可於將密封對象物固定於前述硬化性樹脂層的表面,進行密封加工的同時,亦可提供作為該密封加工所形成的硬化密封體之抗翹曲層的硬化樹脂層,且可使前述硬化樹脂層與前述支撐層容易分離的層合體,及使用該層合體的硬化密封體之製造方法為目的。        [解決問題之方法]
本發明者們,就解決上述問題經過深入研究結果,發現經由下述的本發明,即可解決上述問題,因而完成本發明。      即,本發明為有關以下的[1]~[11]。      [1] 一種層合體,其特徵為具有      能量線硬化性樹脂層(I),與      支撐該能量線硬化性樹脂層(I)的支撐層(II);      能量線硬化性樹脂層(I),為具有具黏著性的表面,      支撐層(II)為具有基材(Y)及黏著劑層(X),該基材(Y)及黏著劑層(X)之至少一者為含有熱膨脹性粒子,      由能量線硬化性樹脂層(I)硬化形成的硬化樹脂層(I’)與支撐層(II),經使前述熱膨脹性粒子膨脹之處理,而於該界面形成分離。      [2] 如上述[1]記載之層合體,其中,      由能量線硬化性樹脂層(I)硬化形成的硬化樹脂層(I’)之23℃的儲存彈性率E’,為1.0×107 ~1.0×1013 Pa。      [3] 如上述[1]或[2]記載之層合體,其中,      能量線硬化性樹脂層(I)之厚度為1~500μm。      [4] 如上述[1]~[3]中任一項記載的層合體,其中,      能量線硬化性樹脂層(I)之可見光穿透率為5%以上。      [5] 如上述[1]~[4]中任一項記載的層合體,其中,      基材(Y)為具有含有前述熱膨脹性粒子的膨脹性基材層(Y1)。      [6] 如上述[5]記載之層合體,其中,      黏著劑層(X)為非膨脹性黏著劑層。      [7] 如上述[5]或[6]記載之層合體,其中,      黏著劑層(X)與能量線硬化性樹脂層(I)為直接層合者。      [8] 如上述[5]~[7]中任一項記載之層合體,其中,      基材(Y)為具有非膨脹性基材層(Y2)及膨脹性基材層(Y1),      支撐層(II)為依序具有非膨脹性基材層(Y2)、膨脹性基材層(Y1),及黏著劑層(X)      黏著劑層(X)與能量線硬化性樹脂層(I)為直接層合者。      [9] 如上述[1]~[8]中任一項記載的層合體,其為用於形成包含前述密封對象物的硬化密封體者,      其係於能量線硬化性樹脂層(I)的表面的一部份載置密封對象物,      以能量線照射能量線硬化性樹脂層(I),而形成由能量線硬化性樹脂層(I)硬化形成的硬化樹脂層(I’),      於前述密封對象物,與該密封對象物的至少周邊部份的硬化樹脂層(I’)之表面,以熱硬化性密封材被覆,      該密封材熱硬化後,經使前述熱膨脹性粒子膨脹之處理,使硬化樹脂層(I’)與支撐層(II)於該界面形成分離。      [10] 如上述[9]記載之層合體,其係用於防止前述硬化密封體之翹曲。      [11] 一種硬化密封體之製造方法,其為使用上述[1]~[10]中任一項記載的層合體製造硬化密封體之方法,其特徵為,具有下述步驟(i)~(iv):      步驟(i):於前述層合體所具有的能量線硬化性樹脂層(I)的表面之一部份,載置密封對象物之步驟      步驟(ii):以能量線照射能量線硬化性樹脂層(I),形成由能量線硬化性樹脂層(I)硬化形成的硬化樹脂層(I’)之步驟      步驟(iii):於前述密封對象物,與該密封對象物的至少周邊部份的硬化樹脂層(I’)之表面,以熱硬化性密封材被覆,使該密封材熱硬化,而形成包含前述密封對象物的硬化密封體之步驟      步驟(iv):經使前述熱膨脹性粒子膨脹之處理,使硬化樹脂層(I’)與支撐層(II),於該界面形成分離,而製得附有硬化樹脂層的硬化密封體之步驟。        [發明之效果]
本發明之內容,為提供一種具有支撐層與硬化性樹脂層,其可於將密封對象物固定於前述硬化性樹脂層的表面,進行密封加工的同時,亦可提供作為該密封加工所形成的硬化密封體之抗翹曲層的硬化樹脂層,且可使前述硬化樹脂層與前述支撐層容易分離的層合體,及使用該層合體的硬化密封體之製造方法。
本說明書中,作為對象之層是否為「非膨脹性層」之判斷方式為,進行3分鐘膨脹處理後,依下述算式算出該處理前後的體積變化率未達5%之情形,則將該層判斷為「非膨脹性層」。又,若上述體積變化率為5%以上之情形時,該層則判斷為「膨脹性層」。      ・體積變化率(%)={(處理後之前述層的體積-處理前之前述層的體積)/處理前之前述層的體積}×100      又,「進行膨脹處理」,例如,為含有熱膨脹性粒子的層之情形,於該熱膨脹性粒子的開始膨脹溫度(t),進行3分鐘的加熱處理即可。
本說明書中,「有效成份」係指,作為對象的組成物所含有的成份中,去除稀釋溶劑後的成份之意。
本說明書中,質量平均分子量(Mw)為,使用凝膠滲透色層分析(GPC)法測定之標準聚苯乙烯換算之值,具體而言為基於實施例記載之方法測定之值。
本說明書中,例如,「(甲基)丙烯酸」為表示「丙烯酸」與「甲基丙烯酸」等二者,其他的類似用語亦為相同。
本說明書中,較佳的數值範圍(例如,含量等的範圍)中,以階段性記載的下限值及上限值,為各自獨立且可進行組合者。例如,「較佳為10~90,更佳為30~60」之記載,可分別以「較佳的下限值(10)」與「更佳的上限值(60)」進行組合,而為「10~60」者。
本說明書中所例示的各成份及材料,於無特別限定下,可單獨使用1種亦可、將2種以上合併使用亦可,為2種以上合併使用之情形,該些之組合及比例可作任意之選擇。
本說明書中,「能量線」係指,電磁波或電荷粒子線中具有能量子者之意,其例如,紫外線、輻射線、電子線等。紫外線,例如,可使用作為紫外線光源的高壓水銀燈、融合燈(Fusion Light)、氙氣燈、螢光燈或LED燈等進行照射。電子線,為照射使用電子線加速器等所發生之電子者。      本說明書中,「能量線硬化性」係指,具有經照射能量線而硬化的性質之意,「非能量線硬化性」係指,具有經照射能量線而硬化的性質之意。
[層合體]      本發明之一態樣之層合體,為具有能量線硬化性樹脂層(I),與支撐該能量線硬化性樹脂層(I)的支撐層(II)。      能量線硬化性樹脂層(I)為具有具黏著性表面者。      支撐層(II)為具有基材(Y)及黏著劑層(X),該基材(Y)及黏著劑層(X)的至少一者為含有熱膨脹性粒子。
本發明之一態樣之層合體中,使支撐層(II)中的熱膨脹性粒子經進行膨脹處理,可使由能量線硬化性樹脂層(I)硬化形成的硬化樹脂層(I’)與支撐層(II),於其界面形成分離。即,本發明之一態樣之層合體,經由加熱膨脹處理,使熱膨脹性粒子膨脹,而於該含有熱膨脹性粒子的層之表面生成凹凸,因而減少支撐層(II)與由能量線硬化性樹脂層(I)硬化形成的硬化樹脂層(I’)的接觸面積。其結果可於支撐層(II)與硬化樹脂層(I’)的界面上,僅使用些許力量時即可容易使其整體分離。      又,本發明之一態樣之層合體中,因於能量線硬化性樹脂層(I)硬化之際,無須進行加熱處理,故於使能量線硬化性樹脂層(I)硬化之際,支撐層(II)中的熱膨脹性粒子不會產生膨脹,而可使由支撐層(II)與由能量線硬化性樹脂層(I)硬化形成的硬化樹脂層(I’)的具有優良分離性者。
本發明之一態樣之層合體,為適合使用於形成包含前述密封對象物的硬化密封體之方法,該方法為:      於能量線硬化性樹脂層(I)的表面的一部份載置密封對象物、以能量線照射能量線硬化性樹脂層(I),而形成由能量線硬化性樹脂層(I)硬化形成的硬化樹脂層(I’),於前述密封對象物,與該密封對象物的至少周邊部份的硬化樹脂層(I’)之表面,以熱硬化性密封材被覆,該密封材熱硬化後,經使前述熱膨脹性粒子膨脹之處理,使硬化樹脂層(I’)與支撐層(II)於該界面形成分離。      依上述方法形成的硬化密封體,於半導體晶片存在比例相對高之側之面,為具備硬化樹脂層(I’)者。其結果推測可縮小硬化密封體的2個表面間之收縮應力的差異,而製得可有效地抑制變形的硬化密封體。      即,本發明之一態樣之層合體,適合作為硬化密封體之抗翹曲用的抗翹曲用層合體。      於該情形,本發明之一態樣之層合體,因具有較熱硬化性樹脂層得以更容易調高黏著力的能量線硬化性樹脂層(I),故可使密封對象物更能確實地固定於表面的一部份。又,相對於熱硬化性樹脂層,於高溫下進行加熱時,主要於硬化的初期階段中會產生軟化,而容易造成晶片偏移之可能性而言,能量線硬化型黏著劑組成物,則會因能量線的照射而硬化,而不會軟化,故可迴避伴隨硬化過程中所發生的晶片偏移現象。
<層合體之構成內容>      隨後,將參考圖式說明本發明之一態樣的層合體之構成。      圖1~3為,表示本發明之第一態樣~第三態樣的層合體之構成的層合體之截面模式圖。又,以下的本發明之第一態樣~第三態樣之層合體中,貼附於支撐體的黏著劑層(X)(或第2黏著劑層(X2))的黏著表面(即,與支撐體為相反側的表面),及與能量線硬化性樹脂層(I)的支撐層(II)側為相反側的表面,亦可再具有層合剝離材之構成。
[第一態樣的層合體]      本發明之第一態樣的層合體,例如圖1所示之層合體1a、1b。      層合體1a、1b為,具備能量線硬化性樹脂層(I),與具有基材(Y)及黏著劑層(X)的支撐層(II),其具有由基材(Y),與能量線硬化性樹脂層(I)直接層合之構成。      又,本發明之第一態樣之層合體中,黏著劑層(X)的黏著表面為貼附於支撐體(未標示於圖式)。
支撐層(II)為,至少於任一層中含有熱膨脹性粒子者,層合體1a中,基材(Y)為僅由含有熱膨脹性粒子的膨脹性基材層(Y1)的單層所構成之基材。      基材(Y),如圖1(a)所示之層合體1a般,可為僅由膨脹性基材層(Y1)所形成的單層構成之基材,或如圖1(b)所示層合體1b般,為具有膨脹性基材層(Y1)及非膨脹性基材層(Y2)的多層構成之基材。基材(Y)具有膨脹性基材層(Y1)及非膨脹性基材層(Y2)時,基材(Y)可為僅由膨脹性基材層(Y1)及非膨脹性基材層(Y2)所構成者。      又,又以具有膨脹性基材層(Y1)與非膨脹性基材層(Y2)為直接層合之構成者為佳。
如圖1(a)所示之層合體1a,於經由加熱膨脹處理,使膨脹性基材層(Y1)所含有的熱膨脹性粒子膨脹,而於基材(Y)表面形成凹凸,而可降低能量線硬化性樹脂層(I)於事前硬化的硬化樹脂層(I’)的接觸面積。      此時,黏著劑層(X)的黏著表面為貼附於未標示於圖式的支撐體。黏著劑層(X)與支撐體為以極為密著之方式貼附,故即使膨脹性基材層(Y1)的黏著劑層(X)側的表面,發生會產生凹凸的力量時,黏著劑層(X)也容易產生抗衡的力量。因此,於基材(Y)的黏著劑層(X)側的表面,將不易形成凹凸。      其結果,於層合體1a中,於支撐層(II)的基材(Y)與硬化樹脂層(I’)之界面P,只要使用些許力量即可使其整體容易分離。      又,層合體1a所具有的黏著劑層(X),為由對支撐體具有高黏著力的黏著劑組成物所形成,故可於界面P上容易形成分離。
又,就抑制熱膨脹性粒子所產生的應力傳達至黏著劑層(X)側之觀點,如圖1(b)所示之層合體1b般,基材(Y)以具有膨脹性基材層(Y1)及非膨脹性基材層(Y2)者為佳。      膨脹性基材層(Y1)的熱膨脹性粒子之膨脹產生的應力,因受到非膨脹性基材層(Y2)之抑制,故難以傳達到黏著劑層(X)。      因此,於黏著劑層(X)的支撐體側的表面將不易生成凹凸,而黏著劑層(X)與支撐體之密著性,於加熱膨脹處理前後幾乎未有變化,而可保持良好的密著性。如此,於膨脹性基材層(Y1)的能量線硬化性樹脂層(I)側的表面更容易形成凹凸,其結果,使得支撐層(II)的膨脹性基材層(Y1)與硬化樹脂層(I’)之界面P,只要使用些許力量即可使其整體容易分離。      又,如圖1(b)所示之層合體1b般,膨脹性基材層(Y1)與能量線硬化性樹脂層(I)以直接層合,且具有於非膨脹性基材層(Y2)的膨脹性基材層(Y1)之相反側的表面上層合黏著劑層(X)之構成為佳。
[第二態樣的層合體]      本發明之第二態樣的層合體,可列舉如,圖2所示之層合體2a、2b。      層合體2a、2b中,支撐層(II)所具有的黏著劑層(X)為,具有第1黏著劑層(X1)及第2黏著劑層(X2),且具有以第1黏著劑層(X1)及第2黏著劑層(X2)挾夾基材(Y),而第1黏著劑層(X1)的黏著表面,與能量線硬化性樹脂層(I)為直接層合之構成。      又,本發明之第二態樣之層合體中,第2黏著劑層(X2)的黏著表面為貼附於支撐體(未標示於圖式)。
本發明之第二態樣的層合體中,基材(Y)以具有含有熱膨脹性粒子的膨脹性基材層(Y1)者為佳。      基材(Y),如圖2(a)所示之層合體2a般,可為僅由膨脹性基材層(Y1)所形成的單層構成之基材,或如圖2(b)所示層合體2b般,亦可為具有膨脹性基材層(Y1)及非膨脹性基材層(Y2)所形成的多層構成之基材。
又,如上所述般,就為加熱膨脹處理前後可使第2黏著劑層(X2)與支撐體保持良好密著性的層合體之觀點,如圖2(b)所示般,基材(Y)以具有膨脹性基材層(Y1)及非膨脹性基材層(Y2)者為佳。      又,第二態樣之層合體中,於使用具有膨脹性基材層(Y1)及非膨脹性基材層(Y2)的基材(Y)時,如圖2(b)所示般,以具有於膨脹性基材層(Y1)的能量線硬化性樹脂層(I)側的表面上層合第1黏著劑層(X1),於與非膨脹性基材層(Y2)的膨脹性基材層(Y1)為相反側的表面上層合第2黏著劑層(X2)之構成者為佳。
第二態樣之層合體,經由加熱膨脹處理,可使構成基材(Y)的膨脹性基材層(Y1)中的熱膨脹性粒子進行膨脹,而於膨脹性基材層(Y1)的表面形成凹凸。      隨後,因經由於膨脹性基材層(Y1)的表面所生成的凹凸,而押壓至第1黏著劑層(X1)上,而使第1黏著劑層(X1)的黏著表面亦形成凹凸之過程,而可降低第1黏著劑層(X1)與能量線硬化性樹脂層(I)於事前硬化而得的硬化樹脂層(I’)的接觸面積。其結果,可於支撐層(II)的第1黏著劑層(X1)與硬化樹脂層(I’)的界面P,只要使用些許力量即可使其整體容易分離。      又,本發明之第二態樣之層合體,就於界面P上,只要使用些許的力量即可使其整體容易分離之層合體的觀點,支撐層(II)所具有的基材(Y)的膨脹性基材層(Y1),與第1黏著劑層(X1)以具有直接層合之構成者為佳。
[第三態樣的層合體]      本發明之第三態樣的層合體,可列舉如,圖3所示之層合體3。      圖3所示之層合體3為具有,於基材(Y)的一側之表面側,具有含有熱膨脹性粒子的膨脹性黏著劑層的第1黏著劑層(X1),且於基材(Y)的另一側之表面側,具備有具非膨脹性黏著劑層的第2黏著劑層(X2)之支撐層(II),且第1黏著劑層(X1)與能量線硬化性樹脂層(I)為直接層合之構成。      層合體3中,第2黏著劑層(X2)的黏著表面,為貼附於支撐體(未標示於圖式)。      又,本發明之第三態樣的層合體所具有的基材(Y),以由非膨脹性基材層所構成者為佳。
本發明之第三態樣之層合體,經由加熱膨脹處理,可使膨脹性黏著劑層的第1黏著劑層(X1)中之熱膨脹性粒子進行膨脹,而於第1黏著劑層(X1)的表面生成凹凸,而降低第1黏著劑層(X1)與能量線硬化性樹脂層(I)於事前硬化而得的硬化樹脂層(I’)的接觸面積。      另一方面,第1黏著劑層(X1)的基材(Y)側的表面,因層合基材(Y),故難以生成凹凸。      因此,經由加熱膨脹處理時,可容易於第1黏著劑層(X1)的能量線硬化性樹脂層(I)側的表面形成凹凸,其結果,於支撐層(II)的第1黏著劑層(X1)與硬化樹脂層(I’)的界面P,只要使用些許力量即可使其整體容易分離。
本發明之一態樣之層合體,可僅由支撐層(II)及能量線硬化性樹脂層(I)所構成者亦可,具有支撐層(II)及能量線硬化性樹脂層(I)以外的其他之層者亦可。其他之層的例示,例如,設置於能量線硬化性樹脂層(I)的支撐層(II)為相反側之面之黏著劑層等。      又,本發明之一態樣之層合體,就於加熱膨脹處理時以外的步驟中,可無須進行極力加熱之觀點,以不具有熱硬化性樹脂層者為佳。但,此處的熱硬化性樹脂層,係指具有熱硬化性,且非能量線硬化性之層之意。
<層合體的各種物性>    (剝離力(F0 ))      於能量線硬化性樹脂層(I)的硬化前與加熱膨脹處理前,就可充份固定密封對象物,且不會對密封作業造成不良影響之觀點,支撐層(II)與能量線硬化性樹脂層(I)的密著性以越高者為佳。      基於上述觀點,本發明之一態樣之層合體中,能量線硬化性樹脂層(I)於硬化前且於進行加熱膨脹處理前,於支撐層(II)與能量線硬化性樹脂層(I)的界面P上形成分離之際之剝離力(F0 ),較佳為100mN/25mm以上,更佳為130mN/25mm以上,特佳為160mN/25mm以上,又,較佳為50000mN/25mm以下。      又,剝離力(F0 )為依下述測定方法所測定之值。        <剝離力(F0 )之測定>      將層合體於23℃、50%RH(相對濕度)的環境下,靜置24小時後,將黏著膠布(琳德股份有限公司製、製品名「PL-SHIN」)貼附於能量線硬化性樹脂層(I)的表面。      隨後,將層合體的支撐層(II)側介由黏著劑貼附於玻璃板(股份有限公司U-KOU商會製、浮板玻璃、3mm(JIS R 3202品))。其次,將貼附有層合體的上述玻璃板之端部,固定於萬能拉伸試驗機(東方科技股份有限公司製、製品名「TENSILON UTM-4-100」)的下部夾具。      隨後,以將層合體的支撐層(II)與能量線硬化性樹脂層(I)的界面P上形成剝離之方式,以萬能拉伸試驗機的上部夾具固定黏著膠布及支撐層(II)。隨後,於與上述為相同之環境下,基於JIS Z 0237:2000,使用180˚拉伸剝離法,以拉伸速度300mm/分鐘,於界面P形成剝離之際所測定的剝離力,設為「剝離力(F0 )」。
(剝離力(F1 ))      本發明之一態樣之層合體中,由能量線硬化性樹脂層(I)硬化而形成硬化樹脂層(I’)之後,經由加熱膨脹處理,而於支撐層(II)與硬化樹脂層(I’)的界面P形成分離時的剝離力(F1 ),就於界面P上可僅使用些許力量即可容易整體分離之觀點,通常為2000mN/25mm以下,較佳為1000mN/25mm以下,更佳為500mN/25mm以下,更較佳為150mN/25mm以下,特佳為100mN/25mm以下,最佳為50mN/25mm以下,最最佳為0mN/25mm。      剝離力(F1 )為0mN/25mm時,為包含即使進行剝離力之測定,但因剝離力過低而無法測定之情形。      又,剝離力(F1 )為依下述測定方法所測定之值。        <剝離力(F1 )之測定>      將層合體於23℃、50%RH(相對濕度)的環境下,靜置24小時後,將黏著膠布(琳德股份有限公司製、製品名「PL-SHIN」)貼附於層合體的能量線硬化性樹脂層(I)的表面。      隨後,將層合體的支撐層(II)側介由黏著劑貼附於玻璃板(股份有限公司U-KOU商會製、浮板玻璃、3mm(JIS R 3202品))。      其次,將紫外線以照度215mW/cm2 、光量187mJ/cm2 之條件照射3次,使能量線硬化性樹脂層(I)硬化,而形成硬化樹脂層(I’)。隨後,將玻璃板及層合體於最大膨脹溫度下加熱3分鐘,使層合體的膨脹性基材層(Y1)中之熱膨脹性粒子膨脹。其後,與上述之剝離力(F0 )之測定相同般,依相同條件,將於支撐層(II)與硬化樹脂層(I’)的界面P進行剝離之際所測定的剝離力設為「剝離力(F1 )」。      又,剝離力(F1 )之測定中,使用萬能拉伸試驗機的上部夾具,固定層合體的支撐層(II)之際,即可於界面P上使硬化樹脂層(I’)完全分離,但無固定之情形,則結束測定,此時的剝離力(F1 )則為「0mN/25mm」。
(黏著劑層(X)的黏著力)      本發明之一態樣之層合體中,於室溫(23℃)下,支撐層(II)所具有的黏著劑層(X)(第1黏著劑層(X1)及第2黏著劑層(X2))的黏著力,較佳為0.1~10.0N/25mm,更佳為0.2~8.0N/25mm,特佳為0.4~6.0N/25mm,最佳為0.5~4.0N/25mm。      支撐層(II)具有第1黏著劑層(X1)及第2黏著劑層(X2)時,第1黏著劑層(X1)及第2黏著劑層(X2)的黏著力,分別以上述範圍為佳,但就提高與支撐體的密著性,且可容易於界面P形成整體分離之觀點,貼附於支撐體的第2黏著劑層(X2)的黏著力,以較第1黏著劑層(X1)的黏著力為更高者為較佳。
(能量線硬化性樹脂層(I)的黏著力)      本發明之一態樣之層合體,就與密封對象物具有良好密著性之觀點,能量線硬化性樹脂層(I)於載置密封對象物側的表面(即,與支撐層(II)為相反側之面),為具有黏著性。      具體而言,於室溫(23℃)下,能量線硬化性樹脂層(I)於載置密封對象物側的表面之黏著力,就可充份固定密封對象物之觀點,較佳為0.05N/25mm以上,更佳為0.10N/25mm以上,特佳為0.50N/25mm以上。上述表面之黏著力的上限值並未有特別之限定,通常為50N/25mm以下,亦可為40N/25mm以下、30N/25mm以下。
又,本說明書中,該些之黏著力,為依下述測定方法測定之值。        <黏著力之測定>      於剝離薄膜上所形成的黏著劑層(X)或能量線硬化性樹脂層(I)的表面,層合厚度50μm之PET薄膜(東洋紡股份有限公司製、製品名「COSMO-SHUNE A4100」)。      隨後,將黏著劑層(X)或能量線硬化性樹脂層(I)的表面,貼附於被附著體的不銹鋼鋼板(SUS304 360番研磨),於23℃、50%RH(相對濕度)的環境下,靜置24小時後,於相同環境下,依JIS Z 0237:2000為基準,使用180˚拉伸剝離法,以拉伸速度300mm/分鐘之條件,測定其於23℃下之黏著力。
(基材(Y)的拉伸強度值)      支撐層(II)所具有的基材(Y),為非黏著性基材。      本發明之一態樣中,有關是否為非黏著性基材之判斷,為對於作為對象的基材之表面,為依JIS Z 0237:1991為基準所測定的拉伸強度值為50mN/5mmφ時,則判斷該基材為「非黏著性基材」。又,上述拉伸強度值為50mN/5mmφ以上時,該基材則判斷為「黏著性基材」。      本發明之一態樣所使用的支撐層(II)所具有的基材(Y)的表面中之拉伸強度值,通常為未達50mN/5mmφ,較佳為未達30mN/5mmφ,更佳為未達10mN/5mmφ,特佳為未達5mN/5mmφ。      基材(Y)的表面中之拉伸強度值,為依下述測定方法所測定之值。        <拉伸強度值之測定>      將作為測定對象的基材切斷為一邊10mm的正方形之後,於23℃、50%RH(相對濕度)的環境下靜置24小時,作為試驗樣品。於23℃、50%RH(相對濕度)環境下,使用黏性試驗機(日本特殊測器股份有限公司製、製品名「NTS-4800」),依JIS Z0237:1991為基準測定試驗樣品的表面之拉伸強度值。具體而言,以直徑5mm的不銹鋼鋼製偵測器,以1秒鐘、接觸荷重0.98N/cm2 接觸試驗樣品表面後,再測定該偵測器以10mm/秒鐘的速度,由試驗樣品表面離開時所必要的力量,該所得之值,作為該試驗樣品的拉伸強度值。
隨後,將說明構成本發明之一態樣的層合體之各層內容。
<支撐層(II)>      本發明之一態樣的層合體所具有的支撐層(II)為,具有基材(Y)及黏著劑層(X),且該基材(Y)及黏著劑層(X)中至少一者為含有熱膨脹性粒子者。如上所述,支撐層(II)為經由加熱膨脹處理,而由支撐對象物的能量線硬化性樹脂層(I)分離之層,即所謂具有作為暫時固定層的機能之層。      含有熱膨脹性粒子的層,為包含於基材(Y)的構成內容之情形,與包含於黏著劑層(X)之構成內容之情形中,本發明之一態樣所使用的支撐層(II)可分為以下的態樣。      ・第一態樣的支撐層(II):具備具有含有熱膨脹性粒子的膨脹性基材層(Y1)的基材(Y)之支撐層(II)。      ・第二態樣的支撐層(II):於基材(Y)的兩面側,具有含有作為熱膨脹性粒子的膨脹性黏著劑層之第1黏著劑層(X1),作為非膨脹性黏著劑層之第2黏著劑層(X2)的支撐層(II)。
[第一態樣的支撐層(II)]      第一態樣的支撐層(II),如圖1~2所示般,基材(Y)為具有含有熱膨脹性粒子的膨脹性基材層(Y1)者。      第一態樣的支撐層(II)中,界面P,就只要使用些許的力量即可使其整體容易分離之觀點,黏著劑層(X)以非膨脹性黏著劑層為佳。      具體而言,圖1所示之層合體1a、1b所具有的支撐層(II)中,黏著劑層(X)以非膨脹性黏著劑層為佳。      又,圖2所示之層合體2a、2b所具有的支撐層(II)中,第1黏著劑層(X1)及第2黏著劑層(X2)的任一者以皆為非膨脹性黏著劑層為佳。      如第一態樣的支撐層(II)所示般,因基材(Y)具有膨脹性基材層(Y1),故黏著劑層(X)無須具有膨脹性,而無須受到賦予膨脹性的組成、構成及製程等所拘束。如此,於設計黏著劑層(X)之際,例如,可以對於黏著性等的性能、生產性、經濟性等,除膨脹性以外的期待性能作優先之設計,而可提高黏著劑層(X)的設計自由度。
第一態樣的支撐層(II)的加熱膨脹處理前的基材(Y)的厚度,較佳為10~1000μm,更佳為20~700μm,特佳為25~500μm,最佳為30~300μm。
第一態樣的支撐層(II)的加熱膨脹處理前的黏著劑層(X)的厚度,較佳為1~60μm,更佳為2~50μm,特佳為3~40μm,最佳為5~30μm。
又,本說明書中,例如,如圖2所示般,支撐層(II)為具有複數的黏著劑層(X)時,上述「黏著劑層(X)的厚度」係指,各個黏著劑層之厚度(圖2中,為第1黏著劑層(X1)及第2黏著劑層(X2)的各別之厚度)之意。      又,本說明書中,構成層合體之各層的厚度,係指依實施例記載之方法所測定之值之意。
第一態樣的支撐層(II)中,於加熱膨脹處理前的膨脹性基材層(Y1),與黏著劑層(X)的厚度比[(Y1)/(X)],較佳為1000以下,更佳為200以下,特佳為60以下,最佳為30以下。      該厚度比為1000以下時,經由加熱膨脹處理後,可形成一種於支撐層(II)與硬化樹脂層(I’)的界面P,只要使用些許力量即可使其整體容易分離之層合體。      又,該厚度比,較佳為0.2以上,更佳為0.5以上,特佳為1.0以上,最佳為5.0以上。
又,第一態樣的支撐層(II)中,基材(Y),如圖1(a)所示般,可為僅由膨脹性基材層(Y1)所構成者,如圖1(b)所示般,亦可為能量線硬化性樹脂層(I)側具有膨脹性基材層(Y1)、黏著劑層(X)側具有非膨脹性基材層(Y2)者。
第一態樣的支撐層(II)中,於加熱膨脹處理前的膨脹性基材層(Y1)與非膨脹性基材層(Y2)的厚度比[(Y1)/(Y2)],較佳為0.02~200,更佳為0.03~150,特佳為0.05~100。
[第二態樣的支撐層(II)]      第二態樣的支撐層(II),如圖3所示般,為於基材(Y)的兩面側,分別具有作為含有熱膨脹性粒子的膨脹性黏著劑層的第1黏著劑層(X1),與作為非膨脹性黏著劑層的第2黏著劑層(X2)者。      又,第二態樣的支撐層(II)中,作為膨脹性黏著劑層的第1黏著劑層(X1),與作為能量線硬化性樹脂層(I)為形成直接接觸。      第二態樣的支撐層(II)中,基材(Y)以非膨脹性基材為佳。非膨脹性基材,以僅由非膨脹性基材層(Y2)所構成者為佳。
第二態樣的支撐層(II)中,加熱膨脹處理前的作為膨脹性黏著劑層的第1黏著劑層(X1),與作為非膨脹性黏著劑層的第2黏著劑層(X2)的厚度比[(X1)/(X2)],較佳為0.1~80,更佳為0.3~50,特佳為0.5~15。
又,第二態樣的支撐層(II)之加熱膨脹處理前的作為膨脹性黏著劑層的第1黏著劑層(X1),與基材(Y)的厚度比[(X1)/(Y)],較佳為0.05~20,更佳為0.1~10,特佳為0.2~3。
以下,將對構成支撐層(II)的任一層所含有的熱膨脹性粒子進行說明,並詳細敘述構成基材(Y)的膨脹性基材層(Y1)、非膨脹性基材層(Y2),及黏著劑層(X)。
[熱膨脹性粒子]      本發明之一態樣所使用的熱膨脹性粒子,只要可經由特定的加熱膨脹處理而產生膨脹之粒子即可。      本發明之一態樣所使用的熱膨脹性粒子於23℃下的膨脹前之平均粒徑,較佳為3~100μm,更佳為4~70μm,特佳為6~60μm,最佳為10~50μm。      又,熱膨脹性粒子的膨脹前之平均粒徑係指體積中間粒徑(D50 ),於使用雷射繞射式粒度分佈測定裝置(例如,Malvern公司製、製品名「MASTERSIZER 3000」)測定而得的膨脹前的熱膨脹性粒子之粒子分佈中,由膨脹前的熱膨脹性粒子的粒徑較小之側起進行計算的累積體積頻度達相當於50%之粒徑之意。
本發明之一態樣所使用的熱膨脹性粒子於23℃下的膨脹前之90%粒徑(D90 ),較佳為10~150μm,更佳為20~100μm,特佳為25~90μm,最佳為30~80μm。      又,熱膨脹性粒子的膨脹前之90%粒徑(D90 )係指,使用雷射繞射式粒度分佈測定裝置(例如,Malvern公司製、製品名「MASTERSIZER 3000」)測定的膨脹前的熱膨脹性粒子之粒子分佈中,由膨脹前的熱膨脹性粒子的粒徑較小之側起進行計算的累積體積頻度達相當於90%之粒徑之意。
本發明之一態樣所使用的熱膨脹性粒子,只要為使密封材硬化之際不會產生膨脹,且具有較密封材的硬化溫度為更高膨脹起始溫度(t)的粒子即可,具體而言,以將膨脹起始溫度(t)調整為60~270℃之熱膨脹性粒子為佳。又,膨脹起始溫度(t),可配合所使用的密封材之硬化溫度作適當之選擇。      又,本說明書中,熱膨脹性粒子之膨脹起始溫度(t)係指,依實施例記載之方法所測定之值之意。
熱膨脹性粒子,以具有由熱塑性樹脂所構成的外殻,與含於該外殻內,且加熱至特定溫度時即會氣化的內包成份所構成的微膠囊化發泡劑為佳。      構成微膠囊化發泡劑的外殻之熱塑性樹脂,例如,氯化亞乙烯-丙烯腈共聚物、聚乙烯醇、聚乙烯醇縮丁醛、聚甲基丙烯酸甲酯、聚丙烯腈、聚氯化亞乙烯、聚碸等。
含於該外殻內的內包成份,例如,丙烷、丁烷、戊烷、己烷、庚烷、辛烷、壬烷、癸烷、異丁烷、異戊烷、異己烷、異庚烷、異辛烷、異壬烷、異癸烷、環丙烷、環丁烷、環戊烷、環己烷、環庚烷、環辛烷、新戊烷、十二烷、異十二烷、環十三烷、己基環己烷、十三烷、十四烷、十五烷、十六烷、十七烷、十八烷、十九烷、異十三烷、4-甲基十二烷、異十四烷、異十五烷、異十六烷、2,2,4,4,6,8,8-七甲基壬烷、異十七烷、異十八烷、異十九烷、2,6,10,14-四甲基十五烷、環十三烷、庚基環己烷、n-辛基環己烷、環十五烷、壬基環己烷、癸基環己烷、十五烷基環己烷、十六烷基環己烷、十七烷基環己烷、十八烷基環己烷等。      該些內包成份,可單獨使用亦可、將2種以上合併使用亦可。      熱膨脹性粒子的膨脹起始溫度(t),可以適當選擇內包成份之種類予以調整。
本發明之一態樣所使用的熱膨脹性粒子,於加熱至膨脹起始溫度(t)以上的溫度時的體積最大膨脹率,較佳為1.5~100倍,更佳為2~80倍,特佳為2.5~60倍,最佳為3~40倍。
<膨脹性基材層(Y1)>      本發明之一態樣所使用的支撐層(II)所具有的膨脹性基材層(Y1),為含有熱膨脹性粒子,且經由特定的加熱膨脹處理時,可產生膨脹之層。
又,就提高與膨脹性基材層(Y1)與層合的其他之層的層間密著性之觀點,可對膨脹性基材層(Y1)的表面,以氧化法、凹凸化法等進行表面處理、易接著處理,或施以底漆處理。      氧化法,例如,電暈放電處理、電漿放電處理、鉻酸處理(濕式)、熱風處理、臭氧,及紫外線照射處理等,凹凸化法,例如,噴沙法、溶劑處理法等。
本發明之一態樣中,膨脹性基材層(Y1)以滿足下述要件(1)者為佳。      ・要件(1):熱膨脹性粒子的膨脹起始溫度(t)中,膨脹性基材層(Y1)的儲存彈性率E’(t),為1.0×107 Pa以下。      又,本說明書中,特定溫度中之膨脹性基材層(Y1)的儲存彈性率E’,係指由實施例記載之方法所測定之值之意。
上述要件(1),亦稱為指示熱膨脹性粒子於膨脹前的膨脹性基材層(Y1)之剛性的指標。      就於支撐層(II)與硬化樹脂層(I’)的界面P,僅使用些許力量即可容易分離之觀點,於加熱至膨脹起始溫度(t)以上的溫度之際,與作為支撐層(II)的能量線硬化性樹脂層(I)層合之側的表面,必須使其容易形成凹凸狀態。      即,滿足上述要件(1)的膨脹性基材層(Y1),於膨脹起始溫度(t)時,可使熱膨脹性粒子膨脹至更大,能量線而可於與硬化性樹脂層(I)層合之側的支撐層(II)的表面,更容易形成凹凸。      其結果,可製得一種於支撐層(II)與硬化樹脂層(I’)的界面P,僅使用些許力量即可容易分離的層合體。
要件(1)所規定之膨脹性基材層(Y1)的儲存彈性率E’(t),基於上述觀點,較佳為9.0×106 Pa以下,更佳為8.0×106 Pa以下,特佳為6.0×106 Pa以下,最佳為4.0×106 Pa以下。      又,就可抑制膨脹後的熱膨脹性粒子之流動、提高層合於能量線硬化性樹脂層(I)之側的支撐層(II)的表面上的凹凸形狀之維持性、於界面P上僅使用些許力量即可容易分離之觀點,要件(1)所規定之膨脹性基材層(Y1)的儲存彈性率E’(t),較佳為1.0×103 Pa以上,更佳為1.0×104 Pa以上,特佳為1.0×105 Pa以上。
膨脹性基材層(Y1),以由含有樹脂及熱膨脹性粒子的樹脂組成物(y)所形成者為佳。      又,樹脂組成物(y)中,於無損本發明效果之範圍,必要時,可含有基材用之添加劑。      基材用之添加劑,例如,光安定劑、抗氧化劑、抗靜電劑、滑動劑、抗黏著劑、著色劑等。      又,該些基材用之添加劑,可分別單獨使用亦可、將2種以上合併使用亦可。      含有該些基材用添加劑時,其各別的基材用添加劑之含量,相對於上述樹脂100質量份,較佳為0.0001~20質量份,更佳為0.001~10質量份。
熱膨脹性粒子之含量,相對於膨脹性基材層(Y1)的全量(100質量%)或樹脂組成物(y)的有效成份之全量(100質量%),較佳為1~40質量%,更佳為5~35質量%,特佳為10~30質量%,最佳為15~25質量%。
含有作為膨脹性基材層(Y1)的形成材料之樹脂組成物(y)的樹脂,可為非黏著性樹脂亦可、黏著性樹脂亦可。      即,樹脂組成物(y)中所含有的樹脂為黏著性樹脂時,於由樹脂組成物(y)形成膨脹性基材層(Y1)的過程中,因該黏著性樹脂會與聚合性化合物進行聚合反應,使所得樹脂成為非黏著性樹脂,故只要含有該樹脂的膨脹性基材層(Y1)為非黏著性者即可。
樹脂組成物(y)所含有的上述樹脂的質量平均分子量(Mw),較佳為1000~100萬,更佳為1000~70萬,特佳為1000~50萬。
又,該樹脂為具有2種以上的結構單位之共聚物時,該共聚物之形態,並未有特別之限定,而可為嵌段共聚物、無規共聚物,及接枝共聚物中之任一者。
上述樹脂之含量,相對於膨脹性基材層(Y1)的全量(100質量%)或樹脂組成物(y)的有效成份之全量(100質量%),較佳為50~99質量%,更佳為60~95質量%,特佳為65~90質量%,最佳為70~85質量%。
又,就形成可滿足上述要件(1)的膨脹性基材層(Y1)之觀點,樹脂組成物(y)所含有的上述樹脂,以含有由胺基甲酸丙烯酸酯系樹脂及烯烴系樹脂所選出之1種以上為佳。      又,上述胺基甲酸丙烯酸酯系樹脂,以下述樹脂(U1)為佳。      ・胺基甲酸酯預聚物(UP),與含有(甲基)丙烯酸酯的乙烯基化合物聚合而得之胺基甲酸丙烯酸酯系樹脂(U1)。
(胺基甲酸丙烯酸酯系樹脂(U1))      作為胺基甲酸丙烯酸酯系樹脂(U1)的主鏈之胺基甲酸酯預聚物(UP),例如,聚醇與多價異氰酸酯之反應物等。      又,胺基甲酸酯預聚物(UP),以再使用鏈延長劑施以鏈延長反應而得者為佳。
作為胺基甲酸酯預聚物(UP)的原料之聚醇,例如,伸烷基型聚醇、醚型聚醇、酯型聚醇、醯胺酯型聚醇、酯・醚型聚醇、碳酸酯型聚醇等。      該些聚醇,可單獨使用亦可、將2種以上合併使用亦可。      本發明之一態樣所使用的聚醇,以二醇為佳,以酯型二醇、伸烷基型二醇及碳酸酯型二醇為較佳,以酯型二醇、碳酸酯型二醇為更佳。
酯型二醇,例如,由1,3-丙烷二醇、1,4-丁烷二醇、1,5-戊烷二醇、新戊二醇、1,6-己烷二醇等的鏈烷二醇;乙二醇、丙二醇、二乙二醇、二丙二醇等的烷二醇;等的二醇類所選出的1種或2種以上,與由苯二甲酸、異苯二甲酸、對苯二甲酸、萘二羧酸、4,4-二苯基二羧酸、二苯基甲烷-4,4’-二羧酸、琥珀酸、己二酸、壬二酸、癸二酸、氯菌酸、馬來酸、富馬酸、依康酸、環己烷-1,3-二羧酸、環己烷-1,4-二羧酸、六氫苯二甲酸、六氫異苯二甲酸、六氫對苯二甲酸、甲基六氫苯二甲酸等的二羧酸及該些無水物所選出之1種或2種以上所形成的縮聚合物。      具體而言,例如,聚乙烯己二酸酯二醇、聚丁烯己二酸酯二醇、聚伸六甲基己二酸酯二醇、聚伸六甲基間苯二甲酸酯二醇、聚新戊基己二酸酯二醇、聚乙烯伸丙基己二酸酯二醇、聚乙烯伸丁基己二酸酯二醇、聚丁烯伸六甲基己二酸酯二醇、聚二伸乙基己二酸酯二醇、聚(聚伸四甲醚)己二酸酯二醇、聚(3-甲基戊烯己二酸酯)二醇、聚乙烯乙酸酯二醇、聚乙烯癸二酸酯二醇、聚丁烯壬二酸酯二醇、聚丁烯癸二酸酯二醇及聚新戊基對苯二甲酸酯二醇等。
伸烷基型二醇,例如,1,3-丙烷二醇、1,4-丁烷二醇、1,5-戊烷二醇、新戊二醇、1,6-己烷二醇等的鏈烷二醇;乙二醇、丙二醇、二乙二醇、二丙二醇等的烷二醇;聚乙二醇、聚丙二醇、聚丁烯二醇等的聚烷二醇;聚丁烯二醇等的聚氧烷二醇;等。
碳酸酯型二醇,例如,1,4-伸四甲基碳酸酯二醇、1,5-伸五甲基碳酸酯二醇、1,6-伸六甲基碳酸酯二醇、1,2-伸丙基碳酸酯二醇、1,3-伸丙基碳酸酯二醇、2,2-二甲基伸丙基碳酸酯二醇、1,7-庚基伸甲基碳酸酯二醇、1,8-辛基伸甲基碳酸酯二醇、1,4-環己烷碳酸酯二醇等。
作為胺基甲酸酯預聚物(UP)的原料之多價異氰酸酯,例如,芳香族聚異氰酸酯、脂肪族聚異氰酸酯、脂環式聚異氰酸酯等。      該些多價異氰酸酯,可單獨使用亦可、將2種以上合併使用亦可。      又,該些多價異氰酸酯,亦可為三羥甲基丙烷加成物型變性體、與水反應後的縮二脲型變性體、含有異三聚氰酸酯環的異三聚氰酸酯型變性體。
該些之中,本發明之一態樣所使用的多價異氰酸酯,又以二異氰酸酯為佳,以由4,4’-二苯基甲烷二異氰酸酯(MDI)、2,4-伸甲苯基二異氰酸酯(2,4-TDI)、2,6-伸甲苯基二異氰酸酯(2,6-TDI)、伸六甲基二異氰酸酯(HMDI),及脂環式二異氰酸酯所選出之1種以上者為較佳。
脂環式二異氰酸酯,例如,3-異氰酸酯甲基-3,5,5-三甲基環己基異氰酸酯(異佛爾酮二異氰酸酯、IPDI)、1,3-環戊烷二異氰酸酯、1,3-環己烷二異氰酸酯、1,4-環己烷二異氰酸酯、甲基-2,4-環己烷二異氰酸酯、甲基-2,6-環己烷二異氰酸酯等,又以異佛爾酮二異氰酸酯(IPDI)為佳。
本發明之一態樣中,作為胺基甲酸丙烯酸酯系樹脂(U1)的主鏈之胺基甲酸酯預聚物(UP),為二醇與二異氰酸酯之反應物,又以兩末端具有乙烯性不飽合基的直鏈胺基甲酸酯預聚物為佳。      於該直鏈胺基甲酸酯預聚物的兩末端導入乙烯性不飽合基之方法,例如,使由二醇與二異氰酸酯化合物進行反應而得的直鏈胺基甲酸酯預聚物的末端之NCO基,與(甲基)丙烯酸羥烷酯進行反應之方法等。
(甲基)丙烯酸羥烷酯,例如,2-羥基(甲基)丙烯酸乙酯、2-羥基(甲基)丙烯酸丙酯、3-羥基(甲基)丙烯酸丙酯、2-羥基(甲基)丙烯酸丁酯、3-羥基(甲基)丙烯酸丁酯、4-羥基(甲基)丙烯酸丁酯等。
作為胺基甲酸丙烯酸酯系樹脂(U1)的側鏈之乙烯基化合物,為至少包含(甲基)丙烯酸酯。      (甲基)丙烯酸酯,以由(甲基)丙烯酸烷酯及(甲基)丙烯酸羥烷酯所選出之1種以上為佳,以併用(甲基)丙烯酸烷酯及(甲基)丙烯酸羥烷酯者為較佳。
於併用(甲基)丙烯酸烷酯及(甲基)丙烯酸羥烷酯時,相對於(甲基)丙烯酸烷酯100質量份,(甲基)丙烯酸羥烷酯之添加比例,較佳為0.1~100質量份,更佳為0.5~30質量份,特佳為1.0~20質量份,最佳為1.5~10質量份。
該(甲基)丙烯酸烷酯所具有的烷基之碳數,較佳為1~24,更佳為1~12,特佳為1~8,最佳為1~3。
又,(甲基)丙烯酸羥烷酯,例如,與於上述直鏈胺基甲酸酯預聚物的兩末端導入乙烯性不飽合基時所使用的(甲基)丙烯酸羥烷酯為相同之內容。
(甲基)丙烯酸酯以外的乙烯基化合物,例如,苯乙烯、α-甲基苯乙烯、乙烯基甲苯等的芳香族烴系乙烯基化合物;甲基乙烯醚、乙基乙烯醚等的乙烯醚類;乙酸乙烯、丙酸乙烯、(甲基)丙烯腈、N-乙烯基吡咯啶酮、(甲基)丙烯酸、馬來酸、富馬酸、依康酸、甲基(丙烯酸基醯胺)等的含有極性基之單體;等。      該些可單獨使用亦可、將2種以上合併使用亦可。
乙烯基化合物中,(甲基)丙烯酸酯的含量,相對於該乙烯基化合物全量(100質量%),較佳為40~100質量%,更佳為65~100質量%,特佳為80~100質量%,最佳為90~100質量%。
乙烯基化合物中,(甲基)丙烯酸烷酯及(甲基)丙烯酸羥烷酯的合計含量,相對於該乙烯基化合物的全量(100質量%),較佳為40~100質量%,更佳為65~100質量%,特佳為80~100質量%,最佳為90~100質量%。
本發明之一態樣所使用的胺基甲酸丙烯酸酯系樹脂(U1)中,由胺基甲酸酯預聚物(UP)產生的結構單位(u11),與由乙烯基化合物產生的結構單位(u12)的含量比[(u11)/(u12)],依質量比計,較佳為10/90~80/20,更佳為20/80~70/30,特佳為30/70~60/40,最佳為35/65~55/45。
(烯烴系樹脂)      樹脂組成物(y)所含有的樹脂中,較佳的烯烴系樹脂,例如,至少具有由烯烴單體所產生的結構單位之聚合物。      上述烯烴單體,以碳數2~8之α-烯烴為佳,具體而言,例如,乙烯基、丙烯基、丁烯基、異丁烯基、1-己烯基等。      該些之中,又以乙烯基及丙烯基為佳。
具體而言,烯烴系樹脂,例如,超低密度聚乙烯(VLDPE、密度:880kg/m3 以上、未達910kg/m3 )、低密度聚乙烯(LDPE、密度:910kg/m3 以上、未達915kg/m3 )、中密度聚乙烯(MDPE、密度:915kg/m3 以上、未達942kg/m3 )、高密度聚乙烯(HDPE、密度:942kg/m3 以上)、直鏈狀低密度聚乙烯等的聚乙烯樹脂;聚丙烯樹脂(PP);聚丁烯樹脂(PB);乙烯-丙烯共聚物;烯烴系彈性體(TPO);聚(4-甲基ー1-戊烯)(PMP);乙烯-乙酸乙烯共聚物(EVA);乙烯-乙烯醇共聚物(EVOH);乙烯-丙烯-(5-亞乙基-2-降莰烯)等的烯烴系三元共聚物;等。
本發明之一態樣中,烯烴系樹脂亦可為再施以由酸變性、羥基變性,及丙烯酸基變性所選出之1種以上的變性而得之變性烯烴系樹脂。
例如,對烯烴系樹脂實施酸變性而得之酸變性烯烴系樹脂,例如,由上述無變性之烯烴系樹脂,與不飽合羧酸或其酐,進行接枝聚合而得的變性聚合物等。      上述的不飽合羧酸或其酐,例如,馬來酸、富馬酸、依康酸、檬康酸、戊烯二酸、四氫苯二甲酸、烏頭酸、(甲基)丙烯酸、馬來酸酐、依康酸酐、戊烯二酸酐、檬康酸酐、烏頭酸酐、降莰烯二羧酸酐、四氫苯二甲酸酐等。      又,不飽合羧酸或其酐,可單獨使用亦可、將2種以上合併使用亦可。
對烯烴系樹脂實施丙烯酸基變性而得之丙烯酸基變性烯烴系樹脂,例如,於作為主鏈的上述無變性的烯烴系樹脂上,以作為側鏈之方式,與(甲基)丙烯酸烷酯進行接枝聚合而得之變性聚合物等。      上述(甲基)丙烯酸烷酯所具有的烷基之碳數,較佳為1~20,更佳為1~16,特佳為1~12。      上述(甲基)丙烯酸烷酯,例如,與可選擇作為後述的單體(a1’)的化合物為相同之內容等。
對烯烴系樹脂實施羥基變性而得之羥基變性烯烴系樹脂,例如,使作為主鏈的上述無變性的烯烴系樹脂,與含有羥基之化合物進行接枝聚合而得之變性聚合物等。      上述含有羥基之化合物,例如,2-羥基(甲基)丙烯酸乙酯、2-羥基(甲基)丙烯酸丙酯、3-羥基(甲基)丙烯酸丙酯、2-羥基(甲基)丙烯酸丁酯、3-羥基(甲基)丙烯酸丁酯、4-羥基(甲基)丙烯酸丁酯等的(甲基)丙烯酸羥烷酯類;乙烯醇、烯丙醇等的不飽合醇類等。
(胺基甲酸丙烯酸酯系樹脂及烯烴系樹脂以外的樹脂)      本發明之一態樣中,樹脂組成物(y)中,於無損本發明效果之範圍,可含有胺基甲酸丙烯酸酯系樹脂及烯烴系樹脂以外的樹脂。      該些樹脂,例如,聚二氯乙烯、聚氯化亞乙烯、聚乙烯醇等的乙烯系樹脂;聚乙烯對苯二甲酸酯、聚丁烯對苯二甲酸酯、聚乙烯萘酯等的聚酯系樹脂;聚苯乙烯;丙烯腈-丁二烯-苯乙烯共聚物;三乙酸纖維素;聚碳酸酯;不相當胺基甲酸丙烯酸酯系樹脂的聚胺基甲酸酯;聚碸;聚醚-醚酮;聚醚碸;聚苯硫醚;聚醚醯亞胺、聚醯亞胺等的聚醯亞胺系樹脂;聚醯胺系樹脂;丙烯酸樹脂;氟系樹脂等。
其中,就形成可滿足上述要件(1)的膨脹性基材層(Y1)之觀點,樹脂組成物(y)中的胺基甲酸丙烯酸酯系樹脂及烯烴系樹脂以外的樹脂之含有比例,以較少者為佳。      胺基甲酸丙烯酸酯系樹脂及烯烴系樹脂以外的樹脂之含有比例,相對於樹脂組成物(y)中所含有的樹脂的全量100質量份,較佳為未達30質量份,更佳為未達20質量份,更佳為未達10質量份,特佳為未達5質量份,最佳為未達1質量份。
(無溶劑型樹脂組成物(y1))      本發明之一態樣所使用的樹脂組成物(y),例如,將質量平均分子量(Mw)為50000以下的具有乙烯性不飽合基的低聚物,與能量線聚合性單體,與上述熱膨脹性粒子摻合而得的未添加溶劑的無溶劑型樹脂組成物(y1)等。      無溶劑型樹脂組成物(y1)中,因未添加溶劑,故能量線聚合性單體為可提高上述低聚物之可塑性者。      對由無溶劑型樹脂組成物(y1)所形成的塗膜,照射能量線時,將容易形成滿足上述要件(1)的膨脹性基材層(Y1)。
又,添加於無溶劑型樹脂組成物(y1)的熱膨脹性粒子之種類、形狀及添加量(含量),係如上所述。
無溶劑型樹脂組成物(y1)所含有的上述低聚物之質量平均分子量(Mw)為50000以下,較佳為1000~50000,更佳為2000~40000,特佳為3000~35000,最佳為4000~30000。
又,上述低聚物,於上述樹脂組成物(y)所含有的樹脂中,只要為質量平均分子量為50000以下的具有乙烯性不飽合基者即可,又以上述的胺基甲酸酯預聚物(UP)為佳。      又,該低聚物亦可使用具有乙烯性不飽合基的變性烯烴系樹脂。
無溶劑型樹脂組成物(y1)中,上述低聚物及能量線聚合性單體的合計含量,相對於無溶劑型樹脂組成物(y1)的全量(100質量%),較佳為50~99質量%,更佳為60~95質量%,特佳為65~90質量%,最佳為70~85質量%。
能量線聚合性單體,例如,(甲基)丙烯酸異莰酯、(甲基)丙烯酸二環戊烯酯、(甲基)丙烯酸二環戊烷酯、(甲基)丙烯酸二環戊烯氧酯、(甲基)丙烯酸環己酯、(甲基)丙烯酸金剛烷酯、丙烯酸三環癸酯等的脂環式聚合性化合物;丙烯酸苯基羥丙酯、丙烯酸苄酯、酚環氧乙烷變性丙烯酸酯等的芳香族聚合性化合物;(甲基)丙烯酸四氫糠酯、丙烯酸嗎啉酯、N-乙烯基吡咯啶酮、N-乙烯基己內醯胺等的雜環式聚合性化合物等。      該些能量線聚合性單體,可單獨使用亦可、將2種以上合併使用亦可。
上述低聚物與能量線聚合性單體的添加比(上述低聚物/能量線聚合性單體),較佳為20/80~90/10,更佳為30/70~85/15,特佳為35/65~80/20。
本發明之一態樣中,無溶劑型樹脂組成物(y1),以再添加光聚合起始劑為佳。      含有光聚合起始劑時,即使照射較低能量的能量線時,也可充份地進行硬化反應。
光聚合起始劑,例如,1-羥基-環己基-苯基-酮、苯偶因、苯偶因甲醚、苯偶因***、苯偶因丙醚、苄基苯基硫醚、四甲基秋蘭姆單硫醚、偶氮雙異丁腈、二苄酯、二乙醯酯、8-氯蒽醌等。      該些光聚合起始劑,可單獨使用亦可、將2種以上合併使用亦可。
光聚合起始劑之添加量,相對於上述低聚物及能量線聚合性單體的全量(100質量份),較佳為0.01~5質量份,更佳為0.01~4質量份,特佳為0.02~3質量份。
<非膨脹性基材層(Y2)>      構成基材(Y)的非膨脹性基材層(Y2)之形成材料,例如,紙材、樹脂、金屬等,其可配合本發明之一態樣的層合體之用途作適當之選擇。
紙材,例如,薄葉紙、中質紙、上質紙、含浸紙、銅版紙、繪圖紙、硫酸紙、玻璃紙等。      樹脂,例如,聚乙烯、聚丙烯等的聚烯烴樹脂;聚二氯乙烯、聚氯化亞乙烯、聚乙烯醇、乙烯-乙酸乙烯共聚物、乙烯-乙烯醇共聚物等的乙烯系樹脂;聚乙烯對苯二甲酸酯、聚丁烯對苯二甲酸酯、聚乙烯萘酯等的聚酯系樹脂;聚苯乙烯;丙烯腈-丁二烯-苯乙烯共聚物;三乙酸纖維素;聚碳酸酯;聚胺基甲酸酯、丙烯酸基變性聚胺基甲酸酯等的胺基甲酸酯樹脂;聚甲基戊烯;聚碸;聚醚-醚酮;聚醚碸;聚苯硫醚;聚醚醯亞胺、聚醯亞胺等的聚醯亞胺系樹脂;聚醯胺系樹脂;丙烯酸樹脂;氟系樹脂等。      金屬,例如,鋁、錫、鉻、鈦等。
該些形成材料,可由1種所構成亦可、將2種以上合併使用亦可。      由2種以上的形成材料合併使用的非膨脹性基材層(Y2),例如,紙材經由聚乙烯等的熱塑性樹脂層合者、含有樹脂的樹脂薄膜或薄片表面形成金屬膜者等。      又,金屬層之形成方法,例如,將上述金屬使用真空蒸鍍、濺鍍、離子鍍敷等的PVD法進行蒸鍍之方法,或使用一般的黏著劑貼附由上述金屬所形成的金屬箔之方法等。
其中,本發明之一態樣中,就膨脹性基材層(Y1)所含的膨脹性粒子進行膨脹之際,可抑制膨脹性基材層(Y1)的非膨脹性基材層(Y2)側的表面形成凹凸、可於膨脹性基材層(Y1)的黏著劑層(X1)側的表面形成優良的凹凸等觀點,非膨脹性基材層(Y2),以具備不會受到因膨脹性粒子膨脹而發生變形之程度的剛性者為佳。具體而言,膨脹性粒子開始膨脹時的溫度(t)中,非膨脹性基材層(Y2)的儲存彈性率E’(t),以1.1×107 Pa以上為佳。
又,就提高與非膨脹性基材層(Y2)層合的其他層之間的層間密著性之觀點,非膨脹性基材層(Y2)含有樹脂時,可對非膨脹性基材層(Y2)的表面,依與上述膨脹性基材層(Y1)相同般,使用氧化法、凹凸化法等進行表面處理、易接著處理,或施以底漆處理。
又,非膨脹性基材層(Y2)含有樹脂時,可與該樹脂同時,含有樹脂組成物(y),亦可含有上述的基材用之添加劑。
非膨脹性基材層(Y2),為基於上述方法判斷的非膨脹性之層。      因此,由上述式所算出的非膨脹性基材層(Y2)之體積變化率(%)為未達5%,較佳為未達2%,更佳為未達1%,特佳為未達0.1%,最佳為未達0.01%。
又,非膨脹性基材層(Y2)中,該體積變化率於上述範圍內時,亦可含有熱膨脹性粒子。例如,可經由選擇非膨脹性基材層(Y2)所含有的樹脂之方式,於即使含有熱膨脹性粒子之情形時,也可將體積變化率調整至上述範圍。      其中,非膨脹性基材層(Y2)以不含有熱膨脹性粒子者為佳。非膨脹性基材層(Y2)含有熱膨脹性粒子時,其含量以越少越好,具體的熱膨脹性粒子的含量為,相對於非膨脹性基材層(Y2)的全量(100質量%),通常為未達3質量%,較佳為未達1質量%,更佳為未達0.1質量%,特佳為未達0.01質量%,最佳為未達0.001質量%。
<黏著劑層(X)>      本發明之一態樣所使用的支撐層(II)所具有的黏著劑層(X),可由含有黏著性樹脂的黏著劑組成物(x)所形成。      又,黏著劑組成物(x),必要時,可含有交聯劑、增黏劑、聚合性化合物、聚合起始劑等的黏著劑用的添加劑。      以下,將對黏著劑組成物(x)所含有的各成份進行說明。      又,支撐層(II),於具有第1黏著劑層(X1)及第2黏著劑層(X2)之情形,第1黏著劑層(X1)及第2黏著劑層(X2),亦可由含有以下所示各成份的黏著劑組成物(x)所形成。
(黏著性樹脂)      本發明之一態樣所使用的黏著性樹脂,以該樹脂單獨即具有黏著性,且質量平均分子量(Mw)為1萬以上的聚合物為佳。      本發明之一態樣所使用的黏著性樹脂的質量平均分子量(Mw),就可提升黏著力之觀點,較佳為1萬~200萬,更佳為2萬~150萬,特佳為3萬~100萬。
具體的黏著性樹脂,例如,丙烯酸系樹脂、胺基甲酸酯系樹脂、聚異丁烯系樹脂等的橡膠系樹脂、聚酯系樹脂、烯烴系樹脂、聚矽氧系樹脂、聚乙烯醚系樹脂等。      該些黏著性樹脂,可單獨使用亦可、將2種以上合併使用亦可。      又,該些黏著性樹脂,為具有2種以上的結構單位之共聚物時,該共聚物之形態,並未有特別之限定,而可為嵌段共聚物、無規共聚物,及接枝共聚物中之任一者。
本發明之一態樣中,就可產生優良的黏著力之觀點,該黏著性樹脂以含有丙烯酸系樹脂為佳。      又,使用具有第1黏著劑層(X1)及第2黏著劑層(X2)的支撐層(II)時,因與能量線硬化性樹脂層(I)接觸的第1黏著劑層(X1)中含有丙烯酸系樹脂,故可使第1黏著劑層(X1)的表面容易形成凹凸。
黏著性樹脂中的丙烯酸系樹脂之含有比例為,相對於黏著劑組成物(x)或黏著劑層(X)所含有的黏著性樹脂之全量(100質量%),較佳為30~100質量%,更佳為50~100質量%,特佳為70~100質量%,最佳為85~100質量%。
黏著性樹脂的含量,相對於黏著劑組成物(x)的有效成份之全量(100質量%)或黏著劑層(X)的全量(100質量%),較佳為35~100質量%,更佳為50~100質量%,特佳為60~98質量%,最佳為70~95質量%。
(交聯劑)      本發明之一態樣中,黏著劑組成物(x)為含有具有官能基的黏著性樹脂之情形,其以再含有交聯劑者為佳。      該交聯劑為,可與具有官能基的黏著性樹脂進行反應,並以該官能基為交聯起點,於黏著性樹脂相互間形成交聯者。
交聯劑,例如,異氰酸酯系交聯劑、環氧系交聯劑、吖環丙烷(aziridine)系交聯劑、金屬螯合物系交聯劑等。      該些交聯劑,可單獨使用亦可、將2種以上合併使用亦可。      該些交聯劑中,就可提高凝集力、提升黏著力之觀點,及容易取得等的觀點,以異氰酸酯系交聯劑為佳。
交聯劑之含量,可以黏著性樹脂所具有的官能基之數作適當之調整,一般相對於具有官能基的黏著性樹脂100質量份,較佳為0.01~10質量份,更佳為0.03~7質量份,特佳為0.05~5質量份。
(增黏劑)      本發明之一態樣中,黏著劑組成物(x),就可使黏著力更向上提升之觀點,可再含有增黏劑。      本說明書中,「增黏劑」係指,可輔助性地提高上述黏著性樹脂之黏著力的成份,且質量平均分子量(Mw)為未達1萬之低聚物之意,由此可與上述的黏著性樹脂予以區別。      增黏劑之質量平均分子量(Mw),較佳為400~9000,更佳為500~8000,特佳為800~5000。
增黏劑,例如,松脂系樹脂、萜烯系樹脂、苯乙烯系樹脂、石油腦經熱分解而生成的戊烯、異戊二烯、胡椒鹼、1,3-戊二烯等的C5餾份經共聚而得的C5系石油樹脂、石油腦經熱分解而生成的茚、乙烯基甲苯等的C9餾份經共聚而得的C9系石油樹脂,及該些氫化後之氫化樹脂等。
增黏劑之軟化點,較佳為60~170℃,更佳為65~160℃,特佳為70~150℃。      又,本說明書中,增黏劑之「軟化點」,係指依JIS K 2531為基準所測定之值之意。      增黏劑,可單獨使用亦可,亦可將軟化點、構造等相異的2種以上合併使用亦可。      又,使用2種以上的複數之增黏劑時,該些複數的增黏劑之軟化點的加權平均,以於上述範圍者為佳。
增黏劑之含量,相對於黏著劑組成物(x)的有效成份之全量(100質量%)或黏著劑層(X)的全量(100質量%),較佳為0.01~65質量%,更佳為0.1~50質量%,特佳為1~40質量%,最佳為2~30質量%。
(黏著劑用添加劑)      本發明之一態樣中,黏著劑組成物(x),於無損本發明效果之範圍,除上述的添加劑以外,亦可再含有一般黏著劑所使用的黏著劑用添加劑。      該些黏著劑用添加劑,例如,抗氧化劑、軟化劑(可塑劑)、防鏽劑、顏料、染料、遅延劑、反應促進劑(觸媒)、紫外線吸收劑、抗靜電劑等。      又,該些黏著劑用添加劑,可分別單獨使用亦可、將2種以上合併使用亦可。      含有該些黏著劑用添加劑時,其各個黏著劑用添加劑之含量,相對於黏著性樹脂100質量份,較佳為0.0001~20質量份,更佳為0.001~10質量份。
又,使用具有作為膨脹性黏著劑層的第1黏著劑層(X1)之上述第二態樣的支撐層(II)時,作為膨脹性黏著劑層之第1黏著劑層(X1)的形成材料,為由上述的黏著劑組成物(x),再含有熱膨脹性粒子的膨脹性黏著劑組成物(x11)而形成者。      該熱膨脹性粒子,係如上所述。      熱膨脹性粒子的含量,相對於膨脹性黏著劑組成物(x11)的有效成份之全量(100質量%)或膨脹性黏著劑層之全量(100質量%),較佳為1~70質量%,更佳為2~60質量%,特佳為3~50質量%,最佳為5~40質量%。
另一方面,黏著劑層(X)為非膨脹性黏著劑層時,作為非膨脹性黏著劑層之形成材料的黏著劑組成物(x),以不含有熱膨脹性粒子者為佳。      含有熱膨脹性粒子的情形,其含量以越少越好,一般相對於黏著劑組成物(x)的有效成份之全量(100質量%)或黏著劑層(X)的全量(100質量%),較佳為未達1質量%,更佳為未達0.1質量%,特佳為未達0.01質量%,最佳為未達0.001質量%。
又,如圖2所示之層合體2a、2b所示般,使用作為非膨脹性黏著劑層的具有第1黏著劑層(X1)及第2黏著劑層(X2)的支撐層(II)時,於23℃下、作為非膨脹性黏著劑層之第1黏著劑層(X1)的儲存剪切彈性率G’(23),較佳為1.0×108 Pa以下,更佳為5.0×107 Pa以下,特佳為1.0×107 Pa以下。      作為非膨脹性黏著劑層的第1黏著劑層(X1)的儲存剪切彈性率G’(23)為1.0×108 Pa以下時,例如,為圖2所示之層合體2a、2b等的構成時,其可經由加熱膨脹處理而使膨脹性基材層(Y1)中的熱膨脹性粒子進行膨脹,而使與硬化樹脂層(I’)接觸的第1黏著劑層(X1)的表面更容易形成凹凸。      其結果,可形成一種於支撐層(II)與硬化樹脂層(I’)的界面P,只要使用些許力量即可使其整體容易分離之層合體。      又,於23℃下,作為非膨脹性黏著劑層之第1黏著劑層(X1)的儲存剪切彈性率G’(23),較佳為1.0×104 Pa以上,更佳為5.0×104 Pa以上,特佳為1.0×105 Pa以上。
本發明之一態樣的層合體所具有的支撐層(II)之波長375nm的光穿透率,較佳為30%以上,更佳為50%以上,特佳為70%以上。光穿透率於上述範圍時,能量線(紫外線)介由支撐層(II)而照射能量線硬化性樹脂層(I)時,能量線可使硬化性樹脂層(I)的硬化度更向上提升。又,波長375nm的光穿透率之上限值並未有特別之限定,例如,可為95%以下。上述穿透率,可使用分光光度計的公知方法而測定。      就達成上述的光穿透率之觀點,支撐層(II)所具有的基材(Y)及黏著劑層(X)含有著色劑時,於不妨礙本發明效果之範圍,以調整其含量為佳為佳。      含有著色劑時,其含量以越少越好,一般相對於黏著劑組成物(x)的有效成份之全量(100質量%)或黏著劑層(X)的全量(100質量%),較佳為未達1質量%,更佳為未達0.1質量%,特佳為未達0.01質量%,最佳為未達0.001質量%,又,基材(Y)中的著色劑之含量,相對於樹脂組成物(y)的有效成份之全量(100質量%)或基材(Y)的全量(100質量%),較佳為未達1質量%,更佳為未達0.1質量%,特佳為未達0.01質量%,最佳為未達0.001質量%。
<能量線硬化性樹脂層(I)>      能量線硬化性樹脂層(I)只要為經照射能量線而可形成硬化之層時,並未有特別之限定,例如,由含有能量線硬化性成份(a)的能量線硬化性樹脂組成物所形成者。
[能量線硬化性成份(a)]      能量線硬化性成份(a)為,經由能量線之照射而硬化之成份。      能量線硬化性成份(a),例如,具有能量線硬化性雙鍵的質量平均分子量(Mw)為80000~2000000之聚合物(a1)(以下,亦簡稱「聚合物(a1)」)、具有能量線硬化性雙鍵的分子量為100~80000之化合物(a2)(以下,亦簡稱「化合物(a2)」)等。      能量線硬化性成份(a),可單獨使用亦可、將2種以上合併使用亦可。
(聚合物(a1))      聚合物(a1)為,具有能量線硬化性雙鍵的質量平均分子量(Mw)為80000~2000000之聚合物。      聚合物(a1),例如,由具有可與其他化合物所具有的基進行反應的官能基X之丙烯酸系聚合物(a11),與具有可與上述官能基X進行反應之基Y及具有能量線硬化性雙鍵的能量線硬化性化合物(a12),進行聚合而形成的丙烯酸系樹脂(a1-1)等。      聚合物(a1),可單獨使用亦可、將2種以上合併使用亦可。
・丙烯酸系聚合物(a11)      丙烯酸系聚合物(a11)所具有的官能基X,例如,羥基、羧基、胺基、取代胺基(胺基中之1個或2個的氫原子,可被氫原子以外的基取代而得之基)及環氧基所成之群所選出之1種以上者。
丙烯酸系聚合物(a11),例如,由具有上述官能基X之丙烯酸系單體,與不具有上述官能基X之丙烯酸系單體進行共聚而形成者,或該些單體以外,再與丙烯酸系單體以外的單體(非丙烯酸系單體)共聚而形成者。丙烯酸系聚合物(a11),可為無規共聚物亦可、嵌段共聚物亦可。      丙烯酸系聚合物(a11),可單獨使用亦可、將2種以上合併使用亦可。
具有上述官能基X之丙烯酸系單體,例如,含有羥基之單體、含有羧基之單體、胺基含有單體、含有取代胺基單體、含有環氧基之單體等。      含有羥基之單體,例如,(甲基)丙烯酸羥甲基、(甲基)丙烯酸2-羥乙基、(甲基)丙烯酸2-羥丙基、(甲基)丙烯酸3-羥丙基、(甲基)丙烯酸2-羥丁基、(甲基)丙烯酸3-羥丁基、(甲基)丙烯酸4-羥丁基等的(甲基)丙烯酸羥烷基;乙烯醇、烯丙醇等的非(甲基)丙烯酸系不飽合醇(不具有(甲基)丙烯醯基骨架之不飽合醇)等。      含有羧基之單體,例如,(甲基)丙烯酸、巴豆酸等的乙烯性不飽合單羧酸(具有乙烯性不飽合鍵結之單羧酸);富馬酸、依康酸、馬來酸、檬康酸等的乙烯性不飽合二羧酸(具有乙烯性不飽合鍵結之二羧酸);上述乙烯性不飽合二羧酸之酸酐;2-羧基乙甲基丙烯酸酯等的(甲基)丙烯酸羧基烷酯等。      該些之中,又以含有羥基之單體、含有羧基之單體為佳,又以含有羥基之單體為較佳。
不具有上述官能基X之丙烯酸系單體,例如,(甲基)丙烯酸甲基、(甲基)丙烯酸乙基、(甲基)丙烯酸n-丙基、(甲基)丙烯酸異丙基、(甲基)丙烯酸n-丁基、(甲基)丙烯酸異丁基、(甲基)丙烯酸sec-丁基、(甲基)丙烯酸tert-丁基、(甲基)丙烯酸戊基、(甲基)丙烯酸己基、(甲基)丙烯酸庚基、(甲基)丙烯酸2-乙基己基、(甲基)丙烯酸異辛基、(甲基)丙烯酸n-辛基、(甲基)丙烯酸n-壬基、(甲基)丙烯酸異壬基、(甲基)丙烯酸癸基、(甲基)丙烯酸十一烷基、(甲基)丙烯酸十二烷基((甲基)丙烯酸月桂基)、(甲基)丙烯酸十三烷基、(甲基)丙烯酸十四烷基((甲基)丙烯酸肉豆蔻基)、(甲基)丙烯酸十五烷基、(甲基)丙烯酸十六烷基((甲基)丙烯酸棕櫚基)、(甲基)丙烯酸十七烷基、(甲基)丙烯酸十八烷基((甲基)丙烯酸硬脂基)等的構成烷酯之烷基為,碳數為1~18的鏈狀構造之(甲基)丙烯酸烷酯等。      又,不具有上述官能基X之丙烯酸系單體,例如,(甲基)丙烯酸甲氧甲基、(甲基)丙烯酸甲氧基乙基、(甲基)丙烯酸乙氧甲基、(甲基)丙烯酸乙氧基乙基等的含有烷氧烷基之(甲基)丙烯酸酯;包含(甲基)丙烯酸苯基等的(甲基)丙烯酸芳酯等的具有芳香族基之(甲基)丙烯酸酯;非交聯性的(甲基)丙烯酸基醯胺及其衍生物;(甲基)丙烯酸N,N-二甲基胺基乙基、(甲基)丙烯酸N,N-二甲基胺基丙基等的非交聯性之具有三級胺基之(甲基)丙烯酸酯等。      上述非丙烯酸系單體,例如,伸乙基、降莰烯等的烯烴;乙酸乙烯;苯乙烯等。
丙烯酸系聚合物(a11)中,相對於構成該些的結構單位之全量,由具有上述官能基X之丙烯酸系單體產生的結構單位量之含量,較佳為0.1~50質量%,更佳為1~40質量%,特佳為3~30質量%。上述結構單位的含量於上述範圍時,於所得丙烯酸系樹脂(a1-1)中,能量線硬化性雙鍵的含量可容易地調節至較佳之範圍。
・能量線硬化性化合物(a12)      能量線硬化性化合物(a12)為,具有可與上述官能基X進行反應之基Y及能量線硬化性雙鍵的化合物。      上述基Y,例如,由異氰酸酯基、環氧基及羧基所成之群所選出之1種以上者等,該些之中,又以異氰酸酯基為佳。能量線硬化性化合物(a12)具有異氰酸酯基時,該異氰酸酯基,容易與作為上述官能基的具有羥基之丙烯酸系聚合物(a11)的羥基進行反應。      能量線硬化性化合物(a12)所具有的能量線硬化性雙鍵之數,於1分子中,較佳為1~5個,更佳為1~3個。      能量線硬化性化合物(a12),可單獨使用亦可、將2種以上合併使用亦可。
能量線硬化性化合物(a12),例如,2-甲基丙烯醯氧乙基異氰酸酯、甲基-異丙烯基-α,α-二甲基苄基異氰酸酯、甲基丙烯醯基異氰酸酯、烯丙基異氰酸酯、1,1-(雙丙烯醯氧甲基)乙基異氰酸酯;二異氰酸酯化合物或聚異氰酸酯化合物,與羥基(甲基)丙烯酸乙酯進行反應而得之丙烯醯基單異氰酸酯化合物;二異氰酸酯化合物或聚異氰酸酯化合物,與聚醇化合物,與(甲基)丙烯酸羥乙酯進行反應而得之丙烯醯基單異氰酸酯化合物等。該些之中,又以2-甲基丙烯醯氧乙基異氰酸酯為佳。
丙烯酸系樹脂(a1-1)中,相對於由丙烯酸系聚合物(a11)所產生之上述官能基X的含量,由能量線硬化性化合物(a12)所產生之能量線硬化性雙鍵的含量之比例,較佳為20~120莫耳%,更佳為5~100莫耳%,特佳為50~100莫耳%。上述比例於上述範圍時,可更憎大經由硬化而形成的硬化樹脂層(I’)的接著力。又,能量線硬化性化合物(a12)為單官能(1分子中具有1個上述之基)化合物時,上述含量的比例之上限值為100莫耳%,能量線硬化性化合物(a12)為多官能(1分子中具有2個以上的上述之基)化合物時,上述含量的比例之上限值為超過100莫耳%。
丙烯酸系樹脂(a1-1)之含量,相對於能量線硬化性樹脂組成物有效成份之全量(100質量%)或能量線硬化性樹脂層(I)的全量(100質量%),較佳為1~40質量%,更佳為2~30質量%,特佳為3~20質量%。
聚合物(a1)之質量平均分子量(Mw),較佳為100000~2000000,更佳為300000~1500000。
聚合物(a1)中之至少一部份,可經後述交聯劑(e)進行交聯者亦可、未交聯者亦可。
(化合物(a2))      化合物(a2)為具有能量線硬化性雙鍵,且分子量為100~80000之化合物。      化合物(a2)所具有的能量線硬化性雙鍵,以(甲基)丙烯醯基、乙烯基等為佳。      化合物(a2),例如,具有能量線硬化性雙鍵之低分子量化合物、具有能量線硬化性雙鍵之環氧樹脂、具有能量線硬化性雙鍵之酚樹脂等。      化合物(a2),可單獨使用亦可、將2種以上合併使用亦可。
上述具有能量線硬化性雙鍵之低分子量化合物,例如,多官能之單體、低聚物等,又以具有(甲基)丙烯醯基之丙烯酸酯系化合物為佳。      丙烯酸酯系化合物,例如,2-羥基-3-(甲基)丙烯醯氧丙基甲基丙烯酸酯、聚乙二醇二(甲基)丙烯酸酯、丙氧基化乙氧基化雙酚A二(甲基)丙烯酸酯、2,2-雙[4-((甲基)丙烯醯氧基聚乙氧基)苯基]丙烷、乙氧基化雙酚A二(甲基)丙烯酸酯、2,2-雙[4-((甲基)丙烯醯氧基二乙氧基)苯基]丙烷、9,9-雙[4-(2-(甲基)丙烯醯氧乙氧基)苯基]茀、2,2-雙[4-((甲基)丙烯醯氧基聚丙氧基)苯基]丙烷、三環癸烷二甲醇二(甲基)丙烯酸酯(三環癸烷二羥甲基二(甲基)丙烯酸酯)、1,10-癸烷二醇二(甲基)丙烯酸酯、1,6-己烷二醇二(甲基)丙烯酸酯、1,9-壬烷二醇二(甲基)丙烯酸酯、二丙二醇二(甲基)丙烯酸酯、三丙二醇二(甲基)丙烯酸酯、聚丙二醇二(甲基)丙烯酸酯、聚丁烯二醇二(甲基)丙烯酸酯、乙二醇二(甲基)丙烯酸酯、二乙二醇二(甲基)丙烯酸酯、三乙二醇二(甲基)丙烯酸酯、2,2-雙[4-((甲基)丙烯醯氧基乙氧基)苯基]丙烷、新戊二醇二(甲基)丙烯酸酯、乙氧基化聚丙二醇二(甲基)丙烯酸酯、2-羥基-1,3-二(甲基)丙烯醯氧基丙烷等的2官能(甲基)丙烯酸酯;叁(2-(甲基)丙烯醯氧基乙基)異三聚氰酸酯、ε-己內酯變性三-(2-(甲基)丙烯醯氧基乙基)異三聚氰酸酯、乙氧基化丙三醇三(甲基)丙烯酸酯、季戊四醇三(甲基)丙烯酸酯、三羥甲基丙烷三(甲基)丙烯酸酯、二-三羥甲基丙烷四(甲基)丙烯酸酯、乙氧基化季戊四醇四(甲基)丙烯酸酯、季戊四醇四(甲基)丙烯酸酯、二季戊四醇聚(甲基)丙烯酸酯、二季戊四醇六(甲基)丙烯酸酯等的多官能(甲基)丙烯酸酯;胺基甲酸酯(甲基)丙烯酸酯低聚物等的多官能(甲基)丙烯酸酯低聚物等。
上述具有能量線硬化性雙鍵之環氧樹脂、具有能量線硬化性雙鍵之酚樹脂,例如,可使用「特開2013-194102號公報」之段落0043等所記載之內容。該些樹脂,亦可相當於構成後述熱硬化性成份(f)之樹脂,於本發明中,則將其視為化合物(a2)處理。
化合物(a2)之質量平均分子量(Mw),較佳為100~30000,更佳為300~10000。
化合物(a2)之含量,相對於能量線硬化性樹脂組成物的有效成份之全量(100質量%)或能量線硬化性樹脂層(I)的全量(100質量%),較佳為1~40質量%,更佳為2~30質量%,特佳為3~20質量%。
[不具有能量線硬化性雙鍵之聚合物(b)]      能量線硬化性樹脂組成物,於含有化合物(a2)時,以再含有不具有能量線硬化性雙鍵之聚合物(b)(以下,亦簡稱「聚合物(b)」)者為佳。      聚合物(b),可單獨使用亦可、將2種以上合併使用亦可。
聚合物(b),例如,丙烯酸系聚合物、苯氧基樹脂、胺基甲酸酯樹脂、聚酯、橡膠系樹脂、胺基甲酸丙烯酸酯樹脂、聚乙烯醇(PVA)、丁醛樹脂、聚酯胺基甲酸酯樹脂等。該些之中,又以丙烯酸系聚合物(以下,「丙烯酸系聚合物(b-1)」)為佳。
丙烯酸系聚合物(b-1),可為公知之成份,例如,可為1種的丙烯酸系單體之均聚物,或2種以上的丙烯酸系單體的共聚物皆可,亦可為1種或2種以上的丙烯酸系單體,與1種或2種以上的丙烯酸系單體以外的單體(非丙烯酸系單體)所構成的共聚物。
構成丙烯酸系聚合物(b-1)之丙烯酸系單體,例如,(甲基)丙烯酸烷酯、具有環狀骨架之(甲基)丙烯酸酯、含有環氧基之(甲基)丙烯酸酯、含有羥基之(甲基)丙烯酸酯、含有取代胺基(甲基)丙烯酸酯等。其中,「取代胺基」係如先前所說明之內容。
(甲基)丙烯酸烷酯,例如,(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸n-丙酯、(甲基)丙烯酸異丙酯、(甲基)丙烯酸n-丁酯、(甲基)丙烯酸異丁酯、(甲基)丙烯酸sec-丁酯、(甲基)丙烯酸tert-丁酯、(甲基)丙烯酸戊酯、(甲基)丙烯酸己酯、(甲基)丙烯酸庚酯、(甲基)丙烯酸2-乙基己酯、(甲基)丙烯酸異辛酯、(甲基)丙烯酸n-辛酯、(甲基)丙烯酸n-壬酯、(甲基)丙烯酸異壬酯、(甲基)丙烯酸癸酯、(甲基)丙烯酸十一烷酯、(甲基)丙烯酸十二烷基((甲基)丙烯酸月桂基)、(甲基)丙烯酸十三烷酯、(甲基)丙烯酸十四烷基((甲基)丙烯酸肉豆蔻基)、(甲基)丙烯酸十五烷酯、(甲基)丙烯酸十六烷基((甲基)丙烯酸棕櫚基)、(甲基)丙烯酸十七烷酯、(甲基)丙烯酸十八烷基((甲基)丙烯酸硬脂基)等的構成烷酯之烷基為碳數1~18的鏈狀構造之(甲基)丙烯酸烷酯等。
具有環狀骨架之(甲基)丙烯酸酯,例如,(甲基)丙烯酸異莰酯、(甲基)丙烯酸二環戊烷基等的(甲基)丙烯酸環烷酯;(甲基)丙烯酸苄酯等的(甲基)丙烯酸芳烷酯;(甲基)丙烯酸二環戊烯酯等的(甲基)丙烯酸環烯酯;(甲基)丙烯酸二環戊烯氧基乙酯等的(甲基)丙烯酸環烯氧烷酯等。
含有環氧基之(甲基)丙烯酸酯,例如,(甲基)丙烯酸環氧等。      含有羥基之(甲基)丙烯酸酯,例如,(甲基)丙烯酸羥甲酯、(甲基)丙烯酸2-羥乙酯、(甲基)丙烯酸2-羥丙酯、(甲基)丙烯酸3-羥丙酯、(甲基)丙烯酸2-羥丁酯、(甲基)丙烯酸3-羥丁酯、(甲基)丙烯酸4-羥丁酯等。      含有取代胺基之(甲基)丙烯酸酯,例如,(甲基)丙烯酸N-甲基胺基乙酯等。
構成丙烯酸系聚合物(b-1)之非丙烯酸系單體,例如,乙烯基、降莰烯等的烯烴;乙酸乙烯;苯乙烯等。
聚合物(b),可為其至少一部份經交聯劑(e)交聯而得者亦可、未交聯者亦可。      至少一部份經交聯劑(e)交聯而得之聚合物(b),例如,聚合物(b)中的反應性官能基與交聯劑(e)進行反應而得者等。      上述反應性官能基,可配合交聯劑(e)的種類等作適當之選擇即可,並未有特別之限定。例如,交聯劑(e)為聚異氰酸酯化合物時,上述反應性官能基,例如,羥基、羧基、胺基等,該些之中,又以與異氰酸酯基具有高反應性之羥基為佳。又,交聯劑(e)為環氧系化合物時,上述反應性官能基,例如,羧基、胺基、醯胺基等,該些之中,又以與環氧基具有高反應性之羧基為佳。其中,就防止半導體晶圓及半導體晶片線路腐蝕之觀點,上述反應性官能基以羧基以外的基為佳。
上述具有反應性官能基之聚合物(b),例如,至少由上述具有反應性官能基之單體經聚合而得者。為丙烯酸系聚合物(b-1)的情形時,可將構成該丙烯酸系聚合物的單體所列舉的上述丙烯酸系單體及非丙烯酸系單體中任一者或二者,作為上述具有反應性官能基使用即可。例如,具有作為反應性官能基之羥基的聚合物(b),例如,含有羥基之(甲基)丙烯酸酯經聚合而得者等,其他例如,由先前所列舉的上述丙烯酸系單體或非丙烯酸系單體中,1個或2個以上的氫原子被上述反應性官能基所取代的單體經聚合而得者等。
聚合物(b)中,相對於構成該聚合物的結構單位之全量,由具有反應性官能基之單體產生的結構單位之含量,較佳為1~25質量%,更佳為2~20質量%。上述結構單位的含量於上述範圍時,於聚合物(b)中,為使交聯程度達較佳之範圍。
聚合物(b)之質量平均分子量(Mw),就使能量線硬化性樹脂組成物的成膜性更良好之觀點,較佳為10000~2000000,更佳為100000~1500000。
能量線硬化性樹脂組成物,例如,含有聚合物(a1)及化合物(a2)中任一者或二者之組成物,又,含有化合物(a2)時,以再含有聚合物(b)為佳。
能量線硬化性成份(a)及聚合物(b)的合計含量,相對於能量線硬化性樹脂組成物的有效成份之全量(100質量%)或能量線硬化性樹脂層(I)的全量(100質量%),較佳為5~90質量%,更佳為10~80質量%,特佳為15~70質量%。合計含量於上述範圍時,可使能量線硬化性更為良好。
能量線硬化性樹脂組成物或能量線硬化性樹脂層(I)中,含有能量線硬化性成份(a)及聚合物(b)時,聚合物(b)之含量,相對於能量線硬化性成份(a)100質量份,較佳為3~160質量份,更佳為6~130質量份。聚合物(b)的含量於上述範圍時,可使能量線硬化性更為良好。
能量線硬化性樹脂組成物中,除能量線硬化性成份(a)及聚合物(b)以外,可配合目的,含有由光聚合起始劑(c)、耦合劑(d)、交聯劑(e)、著色劑(g)、熱硬化性成份(f)、硬化促進劑(g)、填充材(h)及廣用添加劑(z)所成之群所選出之1種以上者。例如,使用含有能量線硬化性成份(a)及熱硬化性成份(f)的能量線硬化性樹脂組成物時,於所形成的能量線硬化性樹脂層(I),可經由加熱而提高對被附著體的接著力,亦可提高由該能量線硬化性樹脂層(I)所形成的硬化樹脂層(I’)的強度。
[光聚合起始劑(c)]      光聚合起始劑(c),例如,可使用苯偶因、苯偶因甲醚、苯偶因***、苯偶因異丙醚、苯偶因異丁醚、苯偶因安息香酸、苯偶因安息香酸甲酯、苯偶因二甲基縮酮等的苯偶因化合物;苯乙酮、2-羥基-2-甲基-1-苯基-丙烷-1-酮、2,2-二甲氧基-1,2-二苯基乙烷-1-酮等的苯乙酮化合物;氧化雙(2,4,6-三甲基苯甲醯基)苯基次膦(phosphine)、氧化2,4,6-三甲基苯甲醯基二苯基次膦等的氧化醯次膦化合物;苄基苯基硫醚、四甲基秋蘭姆單硫醚等的硫醚化合物;1-羥基環己基苯酮等的α-酮醇化合物;偶氮雙異丁腈等的偶氮化合物;二茂鈦等的二茂鈦化合物;9-氧硫𠮿
Figure 107134885-xxxx-3
等的9-氧硫𠮿
Figure 107134885-xxxx-3
化合物;二苯甲酮、2-(二甲基胺基)-1-(4-嗎啉基苯基)-2-苄基-1-丁酮、乙酮、1-[9-乙基-6-(2-甲基苯甲醯基)-9H-咔唑-3-基]-、1-(O-乙醯肟)等的二苯甲酮化合物;過氧化物化合物;二乙醯基等的二酮化合物;苄基;二苄基;2,4-二乙基氧硫𠮿
Figure 107134885-xxxx-3
;1,2-二苯基甲烷;2-羥基-2-甲基-1-[4-(1-甲基乙烯基)苯基]丙酮;2-氯蒽醌等。又,1-氯蒽醌等的醌化合物;胺等的光増感劑等。      光聚合起始劑(c),可單獨使用亦可、將2種以上合併使用亦可。      能量線硬化性樹脂組成物或能量線硬化性樹脂層(I)中,光聚合起始劑(c)之含量,相對於能量線硬化性化合物(a)100質量份,較佳為0.01~20質量份,更佳為0.03~10質量份,特佳為0.05~5質量份。
[耦合劑(d)]      耦合劑(d),於使用具有可與無機化合物或有機化合物反應之官能基者時,可提高能量線硬化性樹脂層(I)的密著性,又,可使由能量線硬化性樹脂層(I)硬化形成的硬化樹脂層(I’),無損其耐熱性、提高耐水性。      耦合劑(d),可單獨使用亦可、將2種以上合併使用亦可。
耦合劑(d),以具有可與能量線硬化性成份(a)、聚合物(b)等所具有的官能基進行反應之官能基的化合物為佳,又以矽烷耦合劑為較佳。      矽烷耦合劑,例如,3-縮水甘油氧丙基三甲氧基矽烷、3-縮水甘油氧丙甲基二乙氧基矽烷、3-縮水甘油氧丙基三乙氧基矽烷、3-縮水甘油氧甲基二乙氧基矽烷、2-(3,4-環氧環己基)乙基三甲氧基矽烷、3-甲基丙烯醯氧基丙基三甲氧基矽烷、3-胺基丙基三甲氧基矽烷、3-(2-胺基乙基胺基)丙基三甲氧基矽烷、3-(2-胺基乙基胺基)丙甲基二乙氧基矽烷、3-(苯基胺基)丙基三甲氧基矽烷、3-苯胺基丙基三甲氧基矽烷、3-醯脲基丙基三乙氧基矽烷、3-氫硫基丙基三甲氧基矽烷、3-氫硫基丙甲基二甲氧基矽烷、雙(3-三乙氧基矽烷基丙基)四硫化物、甲基三甲氧基矽烷、甲基三乙氧基矽烷、乙烯基三甲氧基矽烷、乙烯基三乙醯氧基矽烷、咪唑矽烷等。
能量線硬化性樹脂組成物或能量線硬化性樹脂層(I)中,耦合劑(d)之含量,相對於能量線硬化性成份(a)及聚合物(b)的合計100質量份,較佳為0.03~20質量份,更佳為0.05~10質量份,特佳為0.1~5質量份。耦合劑(d)的含量為上述下限值以上時,可使提高對填充材之樹脂的分散性,提高能量線硬化性樹脂層(I)的接著性等的效果更為顯著,於上述上限值以下時,可抑制逸出氣體的發生。
[交聯劑(e)]      使用交聯劑(e),使能量線硬化性成份(a)、聚合物(b)等進行交聯時,可調節能量線硬化性樹脂層(I)的初期接著力及凝集力。      交聯劑(e),可單獨使用亦可、將2種以上合併使用亦可。
交聯劑(e),例如,有機多價異氰酸酯化合物、有機多價亞胺化合物、金屬螯合物系交聯劑(具有金屬螯合物構造之交聯劑)、吖環丙烷(aziridine)系交聯劑(具有吖環丙烷基之交聯劑)等。
有機多價異氰酸酯化合物,例如,芳香族多價異氰酸酯化合物、脂肪族多價異氰酸酯化合物及脂環族多價異氰酸酯化合物(以下,該些化合物亦統稱為「芳香族多價異氰酸酯化合物等」);上述芳香族多價異氰酸酯化合物等的三聚物、異三聚氰酸酯體及加成物;上述芳香族多價異氰酸酯化合物等與聚醇化合物反應而得的末端異氰酸酯胺基甲酸酯預聚物等。      上述「加成物」係指,上述芳香族多價異氰酸酯化合物、脂肪族多價異氰酸酯化合物或脂環族多價異氰酸酯化合物,與乙二醇、丙二醇、新戊二醇、三羥甲基丙烷或蓖麻油等的低分子之含活性氫化合物之反應物之意,其例如,後述三羥甲基丙烷的二甲苯二異氰酸酯加成物等。又,「末端異氰酸酯胺基甲酸酯預聚物」係指,具有胺基甲酸酯鍵結同時,於分子末端部具有異氰酸酯基之預聚物之意。
有機多價異氰酸酯化合物,更具體而言,例如,於2,4-伸甲苯基二異氰酸酯;2,6-伸甲苯基二異氰酸酯;1,3-二甲苯二異氰酸酯;1,4-二甲苯二異氰酸酯;二苯基甲烷-4,4’-二異氰酸酯;二苯基甲烷-2,4’-二異氰酸酯;3-甲基二苯基甲烷二異氰酸酯;伸六甲基二異氰酸酯;異佛爾酮二異氰酸酯;二環己基甲烷-4,4’-二異氰酸酯;二環己基甲烷-2,4’-二異氰酸酯;三羥甲基丙烷等的聚醇中之全部或一部份的羥基上,附加伸甲苯基二異氰酸酯、伸六甲基二異氰酸酯及二甲苯二異氰酸酯中之任1種或2種以上而得之化合物;離胺酸二異氰酸酯等。
有機多價亞胺化合物,例如,N,N’-二苯基甲烷-4,4’-雙(1-吖環丙烷(aziridine)羧基醯胺)、三羥甲基丙烷-三-β-吖環丙烷基丙酸酯、四羥甲基甲烷-三-β-吖環丙烷基丙酸酯、N,N’-甲苯-2,4-雙(1-吖環丙烷羧基醯胺)三乙烯三聚氰胺等。
交聯劑(e)使用有機多價異氰酸酯化合物時,能量線硬化性成份(a)及/或聚合物(b),以使用含有羥基之聚合物為佳。交聯劑(e)具有異氰酸酯基,且能量線硬化性成份(a)及/或聚合物(b)具有羥基時,經交聯劑(e)與能量線硬化性成份(a)及/或聚合物(b)的反應,即可於能量線硬化性樹脂層(I)中,簡便地導入交聯構造。
能量線硬化性樹脂組成物或能量線硬化性樹脂層(I)中,交聯劑(e)之含量,相對於能量線硬化性成份(a)及聚合物(b)的合計100質量份,較佳為0.01~20質量份,更佳為0.1~10質量份,特佳為0.5~5質量份。
[熱硬化性成份(f)]      熱硬化性成份(f),例如,環氧系熱硬化性樹脂、熱硬化性聚醯亞胺、聚胺基甲酸酯、不飽合聚酯、聚矽氧樹脂等,該些之中,又以環氧系熱硬化性樹脂為佳。      熱硬化性成份(f),可單獨使用亦可、將2種以上合併使用亦可。
(環氧系熱硬化性樹脂)      環氧系熱硬化性樹脂,為含有環氧樹脂(f1)者,其可再含有熱硬化劑(f2)。
環氧樹脂(f1),例如公知之樹脂,例如,多官能系環氧樹脂、雙酚A二環氧醚及其氫化物、鄰甲酚-酚醛清漆環氧樹脂、二環戊二烯型環氧樹脂、聯苯型環氧樹脂、雙酚A型環氧樹脂、雙酚F型環氧樹脂、伸苯基骨架型環氧樹脂等的2官能以上之環氧化合物等。      環氧樹脂(f1),可單獨使用亦可、將2種以上合併使用亦可。
環氧樹脂(f1),可使用乙烯基(ethenyl)(乙烯基)、2-丙烯基(烯丙基)、(甲基)丙烯醯基、(甲基)丙烯酸基醯胺基等的具有不飽合烴基之環氧樹脂。具有不飽合烴基之環氧樹脂,相較於不具有不飽合烴基的環氧樹脂,其與丙烯酸系樹脂具有更高的相溶性。因此,使用具有不飽合烴基之環氧樹脂時,可提高所得封裝之信賴性。
環氧樹脂(f1)的數平均分子量,就能量線硬化性樹脂層(I)的硬化性,及硬化樹脂層(I’)的強度及耐熱性之觀點,較佳為300~30000,更佳為400~10000,特佳為500~3000。      環氧樹脂(f1)的環氧當量,較佳為100~1000g/eq,更佳為150~800g/eq。
熱硬化劑(f2),對環氧樹脂(f1)為具有作為硬化劑之機能。      熱硬化劑(f2),例如,1分子中具有2個以上可與環氧基進行反應之官能基的化合物等。上述官能基,例如,酚性羥基、醇性羥基、胺基、羧基、酸基經酐化之基等,又以酚性羥基、胺基、或酸基經酐化而得之基為佳,以酚性羥基或胺基為較佳。      熱硬化劑(f2),可單獨使用亦可、將2種以上合併使用亦可。
熱硬化劑(f2)中,具有酚性羥基之酚系硬化劑,例如,多官能酚樹脂、雙酚、酚醛清漆型酚樹脂、二環戊二烯系酚樹脂、芳烷基酚樹脂等。      熱硬化劑(f2)中,具有胺基之胺系硬化劑,例如,二氰二醯胺等。      熱硬化劑(f2)之含量,相對於環氧樹脂(f1)100質量份,較佳為0.01~20質量份。
熱硬化性成份(f)的含量(例如,環氧樹脂(f1)及熱硬化劑(f2)的總含量),相對於聚合物(b)100質量份,較佳為1~500質量份。
[硬化促進劑(g)]      硬化促進劑(g),為可調整能量線硬化性樹脂層(I)的硬化速度之成份。      較佳的硬化促進劑(g),例如,三乙烯二胺、苄基二甲基胺、三乙醇胺、二甲基胺基乙醇、叁(二甲基胺甲基)酚等的三級胺類;2-甲基咪唑、2-苯基咪唑、2-苯基-4-甲基咪唑、2-苯基-4,5-二羥甲基咪唑、2-苯基-4-甲基-5-羥甲基咪唑等的咪唑類;三丁基次膦、二苯基次膦、三苯基次膦等的有機次膦類;四苯基鏻四苯基硼酸鹽、三苯基次膦四苯基硼酸鹽等的四苯基硼鹽等。      使用硬化促進劑(g)時,硬化促進劑(g)之含量,相對於熱硬化性成份(f)100質量份,較佳為0.01~10質量份。
[廣用添加劑(z)]      廣用添加劑(z),可使用公知之添加劑,其可配合目的作任意之選擇,而未有特別之限定,如,填充材、著色劑、可塑劑、抗靜電劑、抗氧化劑、吸除劑等。      廣用添加劑(z)中,其各別可單獨使用亦可、將2種以上合併使用亦可。
填充材,可列舉如,無機填充材、有機填充材等,使用該些成份時,可調整硬化樹脂層(I’)的熱膨脹係數。      能量線硬化性樹脂層(I),可含有填充材亦可、不含有填充材亦可,含有填充材時,其含量就更能有效抑制變形發生之觀點,相對於能量線硬化性樹脂組成物的有效成份之全量(100質量%)或能量線硬化性樹脂層(I)的全量(100質量%),較佳為5~87質量%,更佳為7~78質量%。      填充材,例如,由熱傳導性材料所形成者。      無機填充材,例如,二氧化矽、氧化鋁、滑石、碳酸鈣、鈦白、氧化鐵紅、碳化矽、氮化硼等的粉末;該些無機填充材經球形化而得之顆粒;該些無機填充材的表面改質品;該些無機填充材的單結晶纖維;玻璃纖維等。      填充材之平均粒徑,較佳為0.01~20μm,更佳為0.1~15μm,特佳為0.3~10μm。填充材的平均粒徑於上述範圍時,可維持硬化樹脂層(I’)的接著性,且可抑制能量線硬化性樹脂層(I)穿透率之下降。
能量線硬化性樹脂組成物,可含有著色劑亦可、不含有著色計亦可,含有著色劑時,其含量以越少越好,具體而言,相對於能量線硬化性樹脂組成物的有效成份之全量(100質量%)或能量線硬化性樹脂層(I)的全量(100質量%),較佳為未達5質量%,更佳為未達0.1質量%,特佳為未達0.01質量%,最佳為未達0.001質量%。
<<能量線硬化性樹脂組成物之製造方法>>      能量線硬化性樹脂組成物,可經由摻合構成該組成物的各成份之方式製得。      摻合各成份時的添加順序並未有特別之限定,其可將2種以上的成份同時添加。      使用溶劑時,可先使溶劑與溶劑以外的任一添加成份混合,該添加成份可預先予以稀釋後存放使用,或先將溶劑以外的任一添加成份預先稀釋存放,使用時再將溶劑與該些添加成份混合使用亦可。      摻合時,各成份之混合方法並未有特別之限定,例如,可由使攪拌子或攪拌翼等迴轉混合之方法;使用混練機進行混合之方法;施加超音波使其混合之方法等公知方法中適當地選擇使用即可。      各成份之添加及混合時之溫度及時間,只要不會造成各添加成份之劣化時,並未有特別之限定,只要進行適當調整即可,又,溫度以15~30℃為佳。
上述溶劑,例如,甲苯、二甲苯等的烴;甲醇、乙醇、2-丙醇、異丁基醇(2-甲基丙烷-1-醇)、1-丁醇等的醇;乙酸乙酯等的酯;丙酮、甲基乙酮等的酮;四氫呋喃等的醚;二甲基甲醯胺、N-甲基吡咯啶酮等的醯胺(具有醯胺鍵結之化合物)等。該些之中,就可使能量線硬化性樹脂組成物中所含的成份得以更均勻地混合之觀點,以使用甲基乙酮、甲苯、乙酸乙酯為佳。溶劑,可單獨使用亦可、將2種以上合併使用亦可。
能量線硬化性樹脂層(I),可為單層構成亦可、由2層以上的複數層所構成者亦可。      由2層以上所構成的能量線硬化性樹脂層(I),例如具有:可賦予具有高儲存彈性率E’的硬化樹脂層(I’)的能量線硬化性樹脂層(I-i),與具有高黏著力的能量線硬化性樹脂層(I-ii)之樹脂層等。具有該些構成時,將能量線硬化性樹脂層(I-ii)配置於載置密封對象物之側之面上時,除可強固地固定密封對象物的同時,於硬化後,由能量線硬化性樹脂層(I-i)硬化而得的硬化樹脂層(I’),因具有可有效地抑制變形之機能,故得以更為提高兼具暫時固定層之性能,與抗變形層之性能。能量線硬化性樹脂層(I-i)及(I-ii)的較佳組成及物性,可於上述能量線硬化性樹脂層(I)的較佳組成內容及物性中,配合所期待之機能,作適當之選擇使用即可。
能量線硬化性樹脂層(I)的厚度,較佳為1~500μm,更佳為5~300μm,特佳為10~200μm,最佳為15~100μm,最佳為20~50μm。能量線硬化性樹脂層(I)的厚度為上述下限值以上時,可製得更能有效抑制變形之硬化密封體,於上述上限值以下時,除可抑制費用的増加同時,亦可得到優良的硬化性。      其中,「能量線硬化性樹脂層(I)的厚度」係指,能量線硬化性樹脂層(I)全體之厚度之意,例如,由2層以上所構成的能量線硬化性樹脂層(I)的厚度,係指構成能量線硬化性樹脂層(I)的全部層的合計厚度之意。
23℃中,由能量線硬化性樹脂層(I)硬化形成的硬化樹脂層(I’)的儲存彈性率E’,就作為製得具有可抑制變形且具有平坦表面的附有硬化樹脂層的硬化密封體之層合體之觀點,較佳為1.0×107 Pa以上,更佳為1.0×108 Pa以上,特佳為5.0×108 Pa以上,最佳為1.0×109 以上,又,較佳為1.0×1013 Pa以下,更佳為1.0×1012 Pa以下,特佳為5.0×1011 Pa以下,最佳為1.0×1011 Pa以下。
能量線硬化性樹脂層(I)的可見光(波長:380nm~750nm)穿透率,較佳為5%以上,更佳為10%以上,特佳為30%以上,最佳為50%以上。可見光穿透率於上述範圍時,可製得充份的能量線硬化性。可見光穿透率的上限值並未有限制,例如,可為95%以下。上述穿透率,為使用分光光度計依公知方法而可測定。
<層合體之製造方法>      本發明之一態樣之層合體,例如,可將可各別形成黏著劑層(X)、基材(Y)及能量線硬化性樹脂層(I)的各種期待之構成內容以貼合方式製得。各層之形成,例如,可於剝離材上,塗佈可形成各層所使用的樹脂組成物,並經乾燥處理而形成。      但,本發明之一態樣的層合體之製造方法,並不僅限定於上述之方法,例如,可於剝離材上所形成的黏著劑層(X)上,塗佈可形成基材(Y)的樹脂組成物(y),再於其上,再塗佈能量線硬化性樹脂組成物之方法所示般,於特定之層上,依序塗佈樹脂組成物進行層形成,而形成多層化之方法。該情形中,複數之層,例如可使用多層塗佈機(Coater)等同時進行塗佈。
[硬化密封體之製造方法]      本發明之一態樣的硬化密封體之製造方法,為使用本發明之一態樣的層合體製造硬化密封體之方法,其為具有下述步驟(i)~(iv)。      步驟(i):於前述層合體所具有的能量線硬化性樹脂層(I)的表面之一部份,載置密封對象物之步驟      步驟(ii):以能量線照射能量線硬化性樹脂層(I),形成由能量線硬化性樹脂層(I)硬化形成的硬化樹脂層(I’)之步驟      步驟(iii):於前述密封對象物,與該密封對象物的至少周邊部份的硬化樹脂層(I’)之表面,以熱硬化性密封材被覆,使該密封材熱硬化,而形成包含前述密封對象物的硬化密封體之步驟      步驟(iv):經使前述熱膨脹性粒子膨脹之處理,使硬化樹脂層(I’)與支撐層(II),於該界面形成分離,而製得附有硬化樹脂層的硬化密封體之步驟      又,本發明之一態樣中之硬化密封體,係指以密封材被覆密封對象物後,使該密封材硬化而得之物,其係由密封對象物與密封材之硬化物所構成。
圖4為說明使用圖1(a)所示之層合體1a製造硬化密封體的步驟之截面模式圖。以下,將適度地參考圖4,對上述各步驟進行說明。
<步驟(i)>      步驟(i)為,於本發明之一態樣的層合體所具有的能量線硬化性樹脂層(I)的表面之一部份,載置密封對象物之步驟。      圖4(a)為說明於本步驟中的層合體1a中,將支撐層(II)的黏著劑層(X)的黏著表面貼附於支撐體50,使能量線硬化性樹脂層(I)的表面之一部份,載置密封對象物60之狀態。      又,圖4(a)中,為說明使用圖1(a)所示之層合體1a之例示,於使用具有其他構成的本發明之一態樣的層合體時,同樣地為依支撐體、層合體,及密封對象物之順序進行層合或載置。
步驟(i)中之溫度條件,以於熱膨脹性粒子未膨脹之溫度下進行者為佳,例如,以於0~80℃之環境下(其中,膨脹起始溫度(t)為60~80℃之情形,為未達膨脹起始溫度(t)之環境)進行為佳。
支撐體,以貼附於層合體的黏著劑層(X)的黏著表面的全面者為佳。      因此,支撐體以板狀為佳。又,貼附於黏著劑層(X)的黏著表面之側的支撐體的表面面積,如圖4所示般,以黏著劑層(X)的黏著表面面積以上為佳。
構成支撐體之材質,可配合密封對象物之種類、步驟(ii)所使用的密封材之種類等,並考慮機械強度、耐熱性等所要求的特性後,予以適當地選擇。      具體而言,構成支撐體之材質,例如,SUS等的金屬材料;玻璃、矽晶圓等的非金屬無機材料;環氧樹脂、ABS樹脂、丙烯酸樹脂、工程塑膠、高階工程塑膠、聚醯亞胺樹脂、聚醯胺醯亞胺樹脂等的樹脂材料;玻璃環氧樹脂等的複合材料等,該些之中,又以SUS、玻璃,及矽晶圓等為佳。又,就能量線硬化性樹脂層(I),可介由支撐體照射能量線之觀點,該支撐體以玻璃等的透明材料為佳。      又,工程塑膠,可列舉如,尼龍、聚碳酸酯(PC),及聚乙烯對苯二甲酸酯(PET)等。      高階工程塑膠,可列舉如,聚苯硫醚(PPS)、聚醚碸(PES),及聚醚-醚酮(PEEK)等。
支撐體的厚度,可配合密封對象物之種類、步驟(ii)所使用的密封材之種類等,作適當之選擇,較佳為20μm以上50mm以下,更佳為60μm以上20mm以下。
另一方面,能量線載置於硬化性樹脂層(I)的表面中之一部份的密封對象物,例如,半導體晶片、半導體晶圓、化合物半導體、半導體封裝、電子零件、藍寶石基板、顯示器、平板用基板等。
密封對象物為半導體晶片時,於使用本發明之一態樣的層合體時,可製造附有硬化樹脂層的半導體晶片。      半導體晶片可使用以往公知者,其線路面上,形成有由電晶體、電阻、冷凝器等的線路元件所構成的集積線路。      隨後,半導體晶片,於與線路面為相反側的內面,以被能量線硬化性樹脂層(I)的表面被覆之方式載置者為佳。該情形中,於載置後,半導體晶片的線路面呈現外露之狀態。      半導體晶片之載置,可使用覆晶接合器、黏晶機(Die Bonder)等的公知裝置進行。      半導體晶片配置之佈局、配置數等,可配合目的之封裝形態、生產數量等作適當之決定即可。
其中,如本發明之一態樣之層合體般,以使用於將密封材被覆於較FOWLP、FOPLP等的半導體晶片的晶片尺寸為更大之區域,形成不僅半導體晶片的線路面,於密封材的表面區域中,也可形成導線重佈層(RDL)的封裝者為佳。      因此,半導體晶片為能量線載置於硬化性樹脂層(I)的表面中之一部份者,該複數的半導體晶片,以間隔特定的距離形成行列之狀態,載置於該表面者為佳,複數的半導體晶片,以間隔特定距離,以整列為複數行且為複數列之矩陣狀之狀態載置於該表面者為較佳。      半導體晶片相互間的間隔,可配合作為目的之封裝形態等作適當之決定。
<步驟(ii)>      步驟(ii)為,以能量線照射能量線硬化性樹脂層(I),形成由能量線硬化性樹脂層(I)硬化而形成的硬化樹脂層(I’)之步驟。      圖4(b)為說明本步驟中,使能量線硬化性樹脂層(I)硬化,而形成硬化樹脂層(I’)之狀態。      能量線之種類及照射條件,只要可使能量線硬化性樹脂層(I)硬化至可充份發揮其機能之程度的種類及條件時,並未有特別之限定,其可由公知方法之中,配合所期待的製程適當地選擇使用。      能量線硬化性樹脂層(I)於硬化時,能量線之照度,以4~280mW/cm2 為佳,於前述硬化時,能量線之光量,以5~1000mJ/cm2 為佳,100~500mJ/cm2 為較佳。      能量線之種類及照射裝置係如上所述。      能量線,只要可使能量線硬化性樹脂層(I)被能量線照射之方向時,無論任何方向進行之照射皆可,例如,支撐體(II)及支撐體50,於使用具有優良光穿透率者時,可介由支撐體(II)及支撐體50(即,圖4(b)中,為由與支撐體50的黏著劑層(X)為相反側之面射入,通過支撐體50、黏著劑層(X)及基材(Y)),將能量線照射至能量線硬化性樹脂層(I)。
<步驟(iii)>      步驟(iii)為,使用熱硬化性的密封材被覆(以下,亦稱為「被覆處理」)上述密封對象物,與該密封對象物的至少周邊部之硬化樹脂層(I’)的表面,使該密封材熱硬化,而形成包含上述密封對象物的硬化密封體之步驟。      被覆處理中,首先,為使用密封材被覆密封對象物,與硬化樹脂層(I’)的表面中之至少密封對象物的周邊部。      密封材為被覆密封對象物露出面的全體之同時,亦填充於複數的半導體晶片相互間之間隙。      例如,圖4(c)為說明使用密封材70被覆密封對象物60及硬化樹脂層(I’)的全部表面之狀態。
密封材為,具有由外部環境保護密封對象物及其附加要件之機能。      本發明之一態樣之製造方法所使用的密封材,為含有熱硬化性樹脂的熱硬化性之密封材。      又,密封材,於室溫下,可為顆粒狀、顆粒狀、薄膜狀等的固狀,亦可為組成物形態之液狀,就作業性之觀點,以薄膜狀的密封材之密封樹脂薄膜為佳。
被覆方法,可由以往密封步驟所使用的方法中,配合密封材之種類,作適當的選擇使用,例如,可使用滾軋層合法、真空加壓法、真空層合法、旋轉塗佈法、模具塗佈法、轉注成型法、壓縮成形模具法等。
隨後,於被覆處理後,使密封材熱硬化,而製得密封對象物被密封材所密封之硬化密封體。      又,步驟(iii)的熱硬化處理,為於熱膨脹性粒子不會膨脹的溫度下進行,例如,使用具有含熱膨脹性粒子的層之層合體時,以於未達該熱膨脹性粒子之膨脹起始溫度(t)之溫度條件下進行者為佳。
本發明之一態樣之製造方法中,如圖4(c)所示般,為於經密封材70密封的密封對象物60側之面設有硬化樹脂層(I’)之狀態下,進行熱硬化處理。      因設有硬化樹脂層(I’),故可縮小所得的2個硬化密封體的表面間之收縮應力差,而可有效地抑制因硬化密封體所生成的變形。
<步驟(iv)>      步驟(iv)為,上述熱膨脹性粒子經進行膨脹處理,使硬化樹脂層(I’)與支撐層(II),於該界面形成分離,而製得附有硬化樹脂層的硬化密封體之步驟。      圖4(d)為說明,熱膨脹性粒子經進行膨脹處理,而於硬化樹脂層(I’)與支撐層(II)的界面P形成分離之狀態。      如圖4(d)所示般,經於界面P形成分離結果,而可製得具有密封對象物60經被密封而形成的硬化密封體80與硬化樹脂層(I’)之附有硬化樹脂層的硬化密封體100。      又,硬化樹脂層(I’)的存在,除具有可有效地抑制因硬化密封體所生成的變形之機能的同時,亦可保護密封對象物,而提高密封對象物之信賴性。
步驟(iv)中之「進行膨脹處理」,係指將熱膨脹性粒子加熱至膨脹起始溫度(t)以上,使該熱膨脹性粒子進行膨脹處理,經由該處理而於硬化樹脂層(I’)側的支撐層(II)的表面產生凹凸。其結果可使界面P於使用些許力量時即可使其整體容易分離。      使熱膨脹性粒子膨脹之際的「膨脹起始溫度(t)以上之溫度」係指,「膨脹起始溫度(t)+10℃」以上、「膨脹起始溫度(t)+60℃」以下為佳,以「膨脹起始溫度(t)+15℃」以上、「膨脹起始溫度(t)+40℃」以下為較佳。      又,加熱方法並未有特別之限定,例如,可使用加熱板、烘箱、燒結爐、紅外線燈、熱風送風機等之加熱方法,就使支撐層(II)與硬化樹脂層(I’)的界面P容易分離之觀點,加熱時的熱源以可設置於支撐體50側之方法為佳。
依此方法所得的附有硬化樹脂層的硬化密封體,隨後可施以必要的加工處理。其一例例如以下之說明。又,以下之說明中,密封對象物60將以使用半導體晶片60之態樣進行說明。
<第一研削步驟>      圖5(a)中,為依上述製造方法所得之附有硬化樹脂層的硬化密封體100,圖5(b)中,為說明使用研削手段110對與硬化密封體80的硬化樹脂層(I’)為相反側之面100a進行研削,使半導體晶片60的線路面60a露出之第一研削步驟。      研削手段110,並未有特別之限定,例如可使用研磨機等的公知研削裝置。      實施第一研削步驟之際,就作業性之觀點,以將硬化密封體之硬化樹脂層(I’)側之面,固定於其他支撐體上為佳。      又,就作業性之觀點,於第一研削步驟前,可將其切割為包含1個或複數個晶片之特定大小。
<導線重佈層(RDL)及形成外部端子電極之步驟>      圖5(c)中,為說明經由第一研削步驟,而使露出於硬化密封體80表面的半導體晶片60之線路面60a形成電路連接的導線重佈層(RDL)200,及形成外部端子電極300之導線重佈層(RDL)及形成外部端子電極之步驟。      導線重佈層(RDL)200之材質,只要為導電性材料時,則未有特別之限制,例如,可為金、銀、銅、鋁等的金屬、含有該些金屬的合金等。導線重佈層(RDL)200,可使用扣除法(subtractive Process)、半加成法(Semi-additive Process)等的公知方法而形成,必要時,可設有1層以上的絕緣層。      外部端子電極300,與導線重佈層(RDL)200的外部電極墊形成電路連接。外部電子電極300,例如,可將焊球(Solder balls)等經焊接接合方式而形成。
<切割步驟>      圖5(d)中,為說明切割連接外部端子電極300的附有硬化樹脂層的硬化密封體100之步驟。      切割可依1個單位的半導體晶片之方式進行亦可、包含複數個半導體晶片之特定大小進行切割亦可。切割附有硬化樹脂層的硬化密封體100之方法,並未有特別之限定,其可使用切割機(dicing saw)等的切斷手段予以實施。
<第二研削步驟>      圖5(e)中,為說明使用研削手段110對配置於與硬化密封體80的導線重佈層(RDL)200為相反側的硬化樹脂層(I’)進行研削之第二研削步驟。此時,於硬化密封體80的導線重佈層(RDL)200側之面,以使用內面研磨床(BACK GRINDING TABLE)等予以固定為佳。研削手段110,例如與第一研削步驟為相同之手段。      第二研削步驟中,可對硬化樹脂層(I’)的一部份進行研削,或對全部硬化樹脂層(I’)進行研削皆可。      研削硬化樹脂層(I’)之方式,可使所得半導體封裝更小型化。因此,基於該觀點,以對硬化樹脂層(I’)進行全部研削者為佳。      另一方面,不進行第二研削步驟之情形,或僅對硬化樹脂層(I’)的一部份進行之情形,硬化樹脂層(I’)亦具有保護半導體晶片60內面之機能。        [實施例]
本實施形態,將使用以下實施例作具體的說明,但本發明並不受以下實施例所限定。      又,以下之說明中,硬化性樹脂層(I)係指,「能量線硬化性樹脂層(I)」及「熱硬化性樹脂層」等二者之意。      又,各例中之物性值,為依以下方法所測定之值。
<質量平均分子量(Mw)>      使用凝膠滲透色層分析裝置(東曹股份有限公司製、製品名「HLC-8020」),依下述條件進行測定,使用標準聚苯乙烯換算而得的測定值。        (測定條件)      ・管柱:依序連結「TSK guard column HXL-L」、「TSK gel G2500HXL」、「TSK gel G2000HXL」、「TSK gel G1000HXL」(任一者皆為東曹股份有限公司製)者      ・管柱溫度:40℃      ・展開溶劑:四氫呋喃      ・流速:1.0mL/min
<各層厚度之測定>      使用TECLOCK股份有限公司製之定壓厚度測定器(型號:「PG-02J」、標準規格:JIS K6783、Z 1702、Z 1709)進行測定。
<熱膨脹性粒子之膨脹起始溫度(t)及最大膨脹溫度之測定法>      各例所使用的熱膨脹性粒子之膨脹起始溫度(t),為依下述方法測定。      製作於直徑6.0mm(內徑5.65mm)、深度4.8mm之鋁杯中,加入作為測定對象的熱膨脹性粒子0.5mg,於其上蓋上鋁蓋(直徑5.6mm、厚度0.1mm)所得之樣品。      使用動態黏彈性測定裝置,由該樣品的鋁蓋上部,以加壓器施以0.01N力量之狀態下,測定樣品之高度。隨後,於加壓器施加0.01N的力量之狀態,由20℃起至300℃為止,以10℃/min之升溫速度進行加熱,測定加壓器的垂直方向中之變位量,將對於正方向的變位起始溫度設為膨脹起始溫度(t)。      又,最大膨脹溫度為,依上述方法測定而得之變位量達最大時之溫度。
<變形之評估>      將各例所製得之硬化性樹脂層(I)形成用薄片的硬化性樹脂層(I),貼附於矽晶圓(尺寸:12英吋、厚度:100μm)。      隨後,準備由環氧樹脂(STRUERS公司製、製品名「EPO-FIX樹脂」)與硬化劑(STRUERS公司製、製品名「EPO-FIX硬化劑」)混合而得之樹脂組成物作為熱硬化性樹脂組成物,將該該樹脂組成物以厚度30μm之方式塗佈於上述矽晶圓的與硬化性樹脂層(I)為相反側之面上。依此方式,則製得依硬化性樹脂層(I)/矽晶圓/熱硬化性樹脂組成物層之順序的硬化前之測定樣品。      隨後,於硬化性樹脂層(I)為能量線硬化性樹脂層(I)時,使用紫外線照射裝置RAD-2000(琳德股份有限公司製),將紫外線依照度215mW/cm2 、光量187mJ/cm2 之條件照射3次,使能量線硬化性樹脂層(I)硬化,形成硬化樹脂層(I’)。又,硬化性樹脂層(I)為熱硬化性樹脂層(I)時,可於180℃下進行60分鐘加熱,而形成硬化樹脂層(I’)。其後,將上述熱硬化性樹脂組成物加熱、硬化,形成熱硬化樹脂層,而製得具有硬化樹脂層(I’)/矽晶圓/熱硬化樹脂層之順序的硬化後之測定樣品。      將硬化後測定樣品載置於水平床台後,依目視觀察,並依以下之基準評估是否發生變形。又,硬化後測定樣品中之「矽晶圓/熱硬化樹脂層」部份,因為相當於半導體晶片經熱硬化性樹脂進行密封加工而形成的硬化密封體之構成,故可使用本評估結果作為硬化樹脂層(I’)的抗變形層性能之評估。      A:變形量為3mm以下。      B:變形量為大於3mm、未達15mm。      C:變形量為15mm以上。      又,未貼附硬化性樹脂層(I)之情況下,依與上述為相同順序所矽晶圓/熱硬化樹脂層時的變形量為15mm。
<分離性之評估>      於各例所得層合體所具有的硬化性樹脂層(I)的表面貼附矽晶圓之後,以能量線或熱能使硬化性樹脂層(I)硬化而形成硬化樹脂層(I’)。隨後,經由加熱膨脹處理使膨脹性基材層(Y1)膨脹,而使硬化樹脂層(I’)與支撐層(II)分離,隨後基於以下之基準,評估其分離性。又,各例所製得的硬化性樹脂層(I)的硬化條件,及支撐層(II)的加熱膨脹處理條件,為與後述實施例1~5及參考例1記載之條件為相同之條件。      A:可形成分離,且硬化樹脂層(I’)的外觀良好,無糊料殘留。      B:可形成分離,硬化樹脂層(I’)的外觀雖良好,但殘留部份糊料。      C:無法形成分離,或硬化樹脂層(I’)全面殘留糊料,或硬化樹脂層(I’)的外觀不良。
<膨脹性基材層(Y1)的儲存彈性率E’>      將製得的儲存彈性率E’測定用之厚度200μm的膨脹性基材層(Y1),切取為縱5mm×橫30mm×厚度200μm之大小後,去除剝離材者作為試驗樣品。      使用動態黏彈性測定裝置(TA Instruments公司製、製品名「DMAQ800」),依試驗起始溫度0℃、試驗結束溫度300℃、升溫速度3℃/分鐘、振動數1Hz、振幅20μm之條件,於特定之溫度間,測定該試驗樣品的儲存彈性率E’。
<第1黏著劑層(X1)及第2黏著劑層(X2)的儲存剪切彈性率G’>      將第1黏著劑層(X1)及第2黏著劑層(X2),切斷為直徑8mm之圓形者,去除剝離材,將其重疊後形成厚度3mm者,作為試驗樣品。      使用黏彈性測定裝置(Anton Paar公司製、裝置名「MCR300」),依試驗起始溫度0℃、試驗結束溫度300℃、升溫速度3℃/分鐘、振動數1Hz之條件下,使用螺旋剪切法,測定特定之溫度中,試驗樣品之儲存剪切彈性率G’。
<硬化樹脂層(I’)的儲存彈性率E’>      將硬化後的各例所得的硬化性樹脂層(I)作為試驗片,使用動態黏彈性測定裝置(TA Instruments公司製、製品名「DMAQ800」),依試驗起始溫度0℃、試驗結束溫度300℃、升溫速度3℃/分鐘、振動數11Hz、振幅20μm之條件下,於23℃下,測定所形成的硬化樹脂層(I’)的儲存彈性率E’。又,試驗片中,硬化性樹脂層(I)為能量線硬化性樹脂層(I)時,為使用紫外線照射裝置RAD-2000(琳德股份有限公司製),將紫外線依照度215mW/cm2 、光量187mJ/cm2 之條件照射3次使其硬化者,硬化性樹脂層(I)為熱硬化性樹脂層(I)時,為使用於180℃下進行60分鐘加熱硬化者。
合成例1    (膨脹性基材層(Y1)所使用的「胺基甲酸丙烯酸酯系樹脂」之合成)      於氮氣氛圍下的反應容器內,相對於質量平均分子量1,000的聚碳酸酯二醇(碳酸酯型二醇)100質量份,以聚碳酸酯二醇之羥基與異佛爾酮二異氰酸酯的異氰酸酯基之當量比為1/1之方式添加異佛爾酮二異氰酸酯,再加入甲苯160質量份,於氮氣氛圍下進行攪拌,再於80℃下進行6小時以上之反應,使異氰酸酯基濃度到達理論量為止。      其次,添加稀釋有2-羥基乙甲基丙烯酸酯(2-HEMA)1.44質量份的甲苯30質量份而得的溶液,再於80℃下進行6小時反應至兩末端的異氰酸酯基消失為止,而製得質量平均分子量2.9萬之胺基甲酸酯預聚物。      隨後,於氮氣氛圍下的反應容器內,加入上述所得之胺基甲酸酯預聚物100質量份、甲基丙烯酸甲酯(MMA)117質量份、2-羥基乙甲基丙烯酸酯(2-HEMA)5.1質量份、1-硫代甘油1.1質量份,及甲苯50質量份,於攪拌中,升溫至105℃。隨後,於反應容器內,於維持105℃下,以4小時時間將稀釋有自由基起始劑(日本FINECHEM股份有限公司製、製品名「ABN-E」)2.2質量份的甲苯210質量份而得的溶液滴入其中。      滴入結束後,於105℃下進行6小時之反應,而製得質量平均分子量10.5萬之胺基甲酸丙烯酸酯系樹脂的溶液。
[支撐層(II)形成用薄片之製作]    製造例1    (支撐層(II-A))      依下述順序(1-1)~(1-4)製作形成支撐層(II-A)的薄片。      形成各層所使用的材料之詳細內容,係如以下所示。
<黏著性樹脂>      ・丙烯酸系共聚物(i):具有由2-乙基己基丙烯酸酯(2EHA)/2-羥乙基丙烯酸酯(HEA)=80.0/20.0(質量比)所形成的原料單體所產生的結構單位之Mw為60萬的丙烯酸系共聚物。      ・丙烯酸系共聚物(ii):具有由n-丁基丙烯酸酯(BA)/甲基丙烯酸甲酯(MMA)/2-羥乙基丙烯酸酯(HEA)/丙烯酸=86.0/8.0/5.0/1.0(質量比)所形成的原料單體所產生的結構單位的Mw為60萬的丙烯酸系共聚物。        <添加劑>      ・異氰酸酯交聯劑(i):東曹股份有限公司製、製品名「CORONATE L」、固形成份濃度:75質量%。        <熱膨脹性粒子>      ・熱膨脹性粒子A:KUREHA股份有限公司製、製品名「S2640」、膨脹起始溫度(t)=208℃、平均粒徑(D50 )= 24μm、90%粒徑(D90 )=49μm。        <剝離材>      ・重剝離薄膜:琳德股份有限公司製、製品名「SP-PET382150」、聚乙烯對苯二甲酸酯(PET)薄膜的一側面,設有由聚矽氧系剝離劑所形成的剝離劑層者,厚度:38μm。      ・輕剝離薄膜:琳德股份有限公司製、製品名「SP-PET381031」、PET薄膜的一側面,設有由聚矽氧系剝離劑所形成的剝離劑層者,厚度:38μm。
(1-1)第1黏著劑層(X1)的形成      於作為黏著性樹脂之上述丙烯酸系共聚物(i)的固形成份100質量份中,添加上述異氰酸酯系交聯劑(i)5.0質量份,使用甲苯稀釋、均勻攪拌後,製得固形成份濃度(有效成份濃度)25質量%的黏著劑組成物。      隨後,將該黏著劑組成物塗佈於上述重剝離薄膜的剝離劑層之表面(以下,「剝離處理面」)形成塗膜,將該塗膜於100℃下進行60秒鐘之乾燥,形成厚度5μm的非熱膨脹性黏著劑層之第1黏著劑層(X1)。      又,於23℃中,第1黏著劑層(X1)的儲存剪切彈性率G’(23)為2.5×105 Pa。      又,依上述方法為基準測定之第1黏著劑層(X1),於23℃下之黏著力為0.3N/25mm。
(1-2)第2黏著劑層(X2)的形成      於作為黏著性樹脂之上述丙烯酸系共聚物(ii)的固形成份100質量份中,添加上述異氰酸酯系交聯劑(i)0.8質量份,使用甲苯稀釋、均勻攪拌後,製得固形成份濃度(有效成份濃度)25質量%的黏著劑組成物。      隨後,將該黏著劑組成物塗佈於上述輕剝離薄膜之剝離處理面而形成塗膜,將該塗膜於100℃下進行60秒鐘之乾燥,形成厚度10μm的第2黏著劑層(X2)。      又,於23℃中,第2黏著劑層(X2)的儲存剪切彈性率G’(23)為9.0×104 Pa。      又,依上述方法為基準測定之第2黏著劑層(X2),於23℃下之黏著力為1.0N/25mm。
(1-3)基材(Y)的製作      於合成例1所製得的胺基甲酸丙烯酸酯系樹脂的固形成份100質量份中,上述異氰酸酯系交聯劑(i)6.3質量份中,添加作為觸媒之二辛基錫雙(2-乙基己酸酯)1.4質量份,及上述熱膨脹性粒子A,使用甲苯稀釋、均勻攪拌後,製得固形成份濃度(有效成份濃度)30質量%的樹脂組成物。      又,相對於所得樹脂組成物中的有效成份之全量(100質量%),熱膨脹性粒子A的含量為20質量%。      隨後,將該樹脂組成物塗佈於作為非膨脹性基材之厚度50μm的聚乙烯對苯二甲酸酯(PET)薄膜(東洋紡股份有限公司製、製品名「COSMO-SHUNE A4100」、拉伸強度值:0mN/5mmφ)之表面上而形成塗膜,使該塗膜於100℃下進行120秒鐘之乾燥,形成厚度50μm的膨脹性基材層(Y1)。      其中,上述非膨脹性基材之PET薄膜,相當於非膨脹性基材層(Y2)。      依上述方法,製得由厚度50μm的膨脹性基材層(Y1)及厚度50μm的非膨脹性基材層(Y2)所形成的基材(Y)。
又,測定膨脹性基材層(Y1)的儲存彈性率E’及拉伸強度值之樣品,為於上述輕剝離薄膜的剝離處理面上,塗佈該樹脂組成物形成塗膜,並使該塗膜於大氣溫度100℃下進行120秒鐘之乾燥,同樣地形成厚度200μm之膨脹性基材層(Y1)。      隨後,依上述測定方法為基準,測定膨脹性基材層(Y1)的各溫度中之儲存彈性率及拉伸強度值。該測定結果,係如以下所示。      ・23℃中之儲存彈性率E’(23)=2.0×108 Pa      ・100℃中之儲存彈性率E’(100)=3.0×106 Pa      ・208℃中之儲存彈性率E’(208)=5.0×105 Pa      ・拉伸強度值=0mN/5mmφ
(1-4)各層之層合      於將依上述(1-3)所製得之基材(Y)的非膨脹性基材層(Y2),與上述(1-2)所形成之第2黏著劑層(X2)貼合的同時,將膨脹性基材層(Y1)與上述(1-1)所形成之第1黏著劑層(X1)貼合。      隨後,依輕剝離薄膜/第2黏著劑層(X2)/非膨脹性基材層(Y2)/膨脹性基材層(Y1)/第1黏著劑層(X1)/重剝離薄膜之順序層合而製得支撐層(II-A)形成用薄片。
製造例2    (支撐層(II-B))      於製造例1中,除將熱膨脹性粒子A變更為下述熱膨脹性粒子B、塗佈樹脂組成物形成塗膜後的乾燥條件變更為於大氣溫度100℃下進行1分鐘處理以外,其他皆依與製造例1為相同之方法,製得支撐層(II-B)形成用薄片。      ・熱膨脹性粒子B:日本FERRITE股份有限公司製、製品名「031-40DU」、膨脹起始溫度(t)=80℃。
製造例3    (支撐層(II-C))      於製造例1中,除將熱膨脹性粒子A變更為下述熱膨脹性粒子C、塗佈樹脂組成物形成塗膜後的乾燥條件變更為於大氣溫度100℃下進行1分鐘處理以外,其他皆依與製造例1為相同之方法,製得支撐層(II-C)形成用薄片。      ・熱膨脹性粒子C:日本FERRITE股份有限公司製、製品名「053-40DU」、膨脹起始溫度(t)=100℃。
又,於製造例2及3中,於形成支撐層(II)形成用薄片之際,雖塗佈樹脂組成物形成塗膜後之乾燥溫度,較熱膨脹性粒子之膨脹起始溫度(t)為高,但因上述乾燥溫度為大氣溫度,故於所形成的支撐層(II)上,並未發現發泡現象。
製造例4    (支撐層(II-D))      於製造例1中,除將熱膨脹性粒子A變更為下述熱膨脹性粒子D、塗佈樹脂組成物形成塗膜後的乾燥條件變更為於大氣溫度100℃下進行1分鐘處理以外,其他皆依與製造例1為相同之方法,製得支撐層(II-D)形成用薄片。      ・熱膨脹性粒子D:日本FERRITE股份有限公司製、製品名「920-40DU」、膨脹起始溫度(t)=120℃。
[硬化性樹脂層(I)形成用薄片之製作]    製造例5    (能量線硬化性樹脂層(I-A))      摻合下述所示種類及添加量(任一者皆為「有效成份比」)的各成份,再使用甲基乙酮稀釋,均勻地攪拌,製得固形成份濃度(有效成份濃度)61質量%的硬化性組成物之溶液。        [(a2)成份]      ・二季戊四醇六丙烯酸酯(日本化藥股份有限公司製、製品名「KAYARAD DPHA」):17.6質量份        [(b)成份]      ・丙烯酸系聚合物:丙烯酸丁酯(BA)(55質量份)、丙烯酸甲酯(MA)(10質量份)、甲基丙烯酸環氧酯(GMA)(20質量份)及丙烯酸-2-羥乙酯(HEA)(15質量份)共聚而形成的丙烯酸系樹脂(玻璃轉移溫度:-28℃、Mw:80萬):17質量份        [(c)成份]      ・苯基1-羥基環己酮(BASF公司製、製品名「IRGACURE-184」):0.5質量份        [(d)成份]      ・含有環氧基之低聚物型矽烷耦合劑(三菱化學股份有限公司製、製品名「MSEP2」):0.6質量份        [(e)成份]      ・TDI系交聯劑(東洋化學股份有限公司、製品名「BHS-8515」):0.5質量份        [(f)成份]      ・液狀雙酚A型環氧樹脂(日本觸媒股份有限公司製、製品名「BPA328」):16質量份      ・二環戊二烯型環氧樹脂(日本觸媒股份有限公司製、製品名「XD-1000L」):18質量份      ・二環戊二烯型環氧樹脂(DIC股份有限公司製、製品名「HP-7200HH」):27質量份      ・二氰二醯胺(股份有限公司ADEKA製、製品名「ADEKA夥伴3636AS」):1.5質量份        [(g)成份]      ・咪唑(四國化成工業股份有限公司製、製品名「2PH-Z」):1.5質量份
將依上述方法製得之硬化性組成物之溶液,塗佈於上述輕剝離薄膜的剝離處理面上,形成塗膜,使該塗膜於120℃下進行2分鐘乾燥,形成厚度25μm之能量線硬化性樹脂層(I-A),再製作由能量線硬化性樹脂層(I-A)及輕剝離薄膜所形成之能量線硬化性樹脂層(I-A)形成用薄片。
製造例6    (能量線硬化性樹脂層(I-B))      摻合下述所示種類及添加量(任一者皆為「有效成份比」)的各成份,再使用甲基乙酮稀釋,均勻地攪拌,而製得固形成份濃度(有效成份濃度)61質量%的硬化性組成物之溶液。        [(a2)成份]      ・ε-己內酯變性三-(2-丙烯醯氧基乙基)異三聚氰酸酯(新中村化學工業股份有限公司製、製品名「A-9300-1CL」、3官能紫外線硬化性化合物):10質量份        [(b)成份]      ・丙烯酸系樹脂:丙烯酸甲基(MA)(85質量份)/丙烯酸-2-羥乙酯(HEA)(15質量份)共聚而形成之丙烯酸系樹脂:28質量份        [(c)成份]      ・2-(二甲基胺基)-1-(4-嗎啉基(morpholino)苯基)-2-苄基-1-丁酮(BASF公司製、製品名「Irgacure(註冊商標)369」):0.6質量份        [(d)成份]      ・3-甲基丙烯醯氧基(methacryloxy)丙基三甲氧基矽烷(信越化學工業股份有限公司製、製品名「KBM-503」):0.4質量份        [(h)成份]      ・二氧化矽填料(溶融石英填料、平均粒徑8μm):57質量份        [(z)成份]      ・由酞青系青色色素(Pigment Blue 15:3)32質量份,與異吲哚二酮 (indolinone)系黄色色素(Pigment Yellow 139)18質量份,與蒽醌系紅色色素(Pigment Red 177)50質量份混合,使上述3種色素之合計量/苯乙烯丙烯酸樹脂量=1/3(質量比)之方式進行顏料化而得的顏料:4質量份
將依上述方法製得之硬化性組成物之溶液,塗佈於上述輕剝離薄膜的剝離處理面上,形成塗膜,並使該該塗膜於120℃下進行2分鐘之乾燥,形成厚度25μm之能量線硬化性樹脂層(I-B),再製作由能量線硬化性樹脂層(I-B)及輕剝離薄膜所形成之能量線硬化性樹脂層(I-B)形成用薄片。
製造例7    (熱硬化性樹脂層(I-C))      摻合下述所示種類及添加量(任一者皆為「有效成份比」)的各成份,再使用甲基乙酮稀釋、均勻攪拌後,而製得固形成份濃度(有效成份濃度)61質量%的硬化性組成物之溶液。      ・丙烯酸系聚合物:由丙烯酸丁基(BA)(1質量份)、丙烯酸甲基(MA)(74質量份)、甲基丙烯酸環氧(GMA)(15質量份)及丙烯酸-2-羥乙基(HEA)(10質量份)共聚而形成之丙烯酸系樹脂(玻璃轉移溫度:8℃、Mw:44萬):18質量份      ・液狀雙酚A型環氧樹脂(日本觸媒股份有限公司製、製品名「BPA328」):3質量份      ・固形雙酚A型環氧樹脂(三菱化學股份有限公司製、製品名「EPIKOTE 1055」):20質量份      ・二環戊二烯型環氧樹脂(日本化藥股份有限公司製、製品名「XD-1000L」):1.5質量份      ・二氰二醯胺(ADEKA公司製、製品名「ADEKA夥伴3636AS」):0.5質量份      ・咪唑(四國化成工業股份有限公司製、製品名「2PH-Z」):0.5質量份      ・含有環氧基之低聚物型矽烷耦合劑(三菱化學股份有限公司製、製品名「MSEP2」):0.5質量份      ・球狀二氧化矽填料(ADMATECHS股份有限公司製、製品名「SC2050MA」):6質量份      ・球狀二氧化矽填料(龍森股份有限公司、製品名「SV-10」):50質量份
將依上述方法製得之硬化性組成物之溶液,塗佈於上述輕剝離薄膜的剝離處理面上,形成塗膜,並使該塗膜於120℃下進行2分鐘之乾燥,形成厚度25μm之熱硬化性樹脂層(I-C),再製作由熱硬化性樹脂層(I-C)及輕剝離薄膜所形成之熱硬化性樹脂層(I-C)形成用薄片。
[層合體之製作]    實施例1~5、參考例1      去除表1所示之支撐層(II)形成用薄片之重剝離薄膜,使露出之第1黏著劑層(X1),與表1所示之硬化性樹脂層(I)形成用薄片的硬化性樹脂層(I)的表面貼合,製得層合體。又,實施例5中,為使用日東電工股份有限公司製之製品名「REVALPHA 3195」(膨脹起始溫度(t)=170℃)作為支撐層(II-E)形成用薄片。      各例所得之層合體的分離性,及變形之評估結果係如表1所示。
[硬化密封體之製作]      隨後,使用各例所得之層合體,依以下之順序製作硬化密封體。
(1)半導體晶片之載置      將層合體所具有的支撐層(II)側的輕剝離薄膜去除,使露出之支撐層(II)的第2黏著劑層(X2)的黏著表面貼附於支撐體(玻璃)。      隨後,亦去除硬化性樹脂層(I)側的輕剝離薄膜,於露出的硬化性樹脂層(I)的表面上,以與各半導體晶片的線路面為相反側的內面接觸硬化性樹脂層(I)的表面之方式,相隔必要的間隔載置9個半導體晶片(各個的晶片尺寸為6.4mm×6.4mm、晶片厚度為200μm(♯2000))。
(2)硬化樹脂層(I’)的形成      於實施例1~5中,上述(1)之後、下述(3)之前,使用紫外線(UV)照射作為硬化性樹脂層(I)之能量線硬化性樹脂層(I),而形成載置有半導體晶片的硬化樹脂層(I’)。又,紫外線,為使用紫外線照射裝置RAD-2000(琳德股份有限公司製),由支撐體(玻璃)側,以照度215mW/cm2 、光量187mJ/cm2 之條件照射3次。      又,參考例1為,不實施(2)之步驟,而於後述(3)步驟中,於使密封材硬化之過程中,同時使作為硬化性樹脂層(I)之熱硬化性樹脂層硬化。
(3)硬化密封體之形成      使用密封材之熱硬化性的密封樹脂薄膜被覆於9個的上述半導體晶片,與該半導體晶片的至少周邊部之硬化樹脂層(I’)(參考例1中,為熱硬化性樹脂層)的表面上,再使用真空加熱加壓層合器(ROHM and HAAS公司製、製品名「7024HP5」),使密封樹脂薄膜進行熱硬化,而製得硬化密封體。又,密封條件係如下所述。      ・預熱溫度:床台及膜片(diaphragm)皆為100℃      ・真空拉伸:60秒鐘      ・動態加壓模式:30秒鐘      ・靜態加壓模式:10秒鐘      ・密封溫度:180℃×60分鐘
(4)界面P之分離      於上述(3)之後,將各層合體的支撐層(II)所含有的熱膨脹性粒子,於膨脹起始溫度(t)+30℃之溫度進行3分鐘之加熱膨脹處理,使支撐層(II)的第1黏著劑層(X1)與硬化樹脂層(I’)的界面P形成分離。依此方式,即製得附有硬化樹脂層的硬化密封體。
Figure 02_image001
由表1結果得知,使用本發明之一態樣的層合體的實施例1~5中,所形成的硬化密封體並未發生變形,且,支撐層(II)具有優良的分離性。      另一方面,硬化性樹脂層使用熱硬化性樹脂層之參考例1中,硬化樹脂層(I’)並無法與支撐層(II)形成分離。
1a、1b、2a、2b、3:層合體(I):能量線硬化性樹脂層(I’):硬化樹脂層(II):支撐層(X):黏著劑層(X1):第1黏著劑層(X2):第2黏著劑層(Y):基材(Y1):膨脹性基材層(Y2):非膨脹性基材層50:支撐體60:密封對象物(半導體晶片)70:密封材80:硬化密封體100:附有硬化樹脂層的硬化密封體100a:硬化密封體之面110:研削手段200:導線重佈層(RDL)300:外部端子電極
[圖1] 說明本發明之第一態樣的層合體之構成的該層合體之截面模式圖。      [圖2] 說明本發明之第二態樣的層合體之構成的該層合體之截面模式圖。      [圖3] 說明本發明之第三態樣的層合體之構成的該層合體之截面模式圖。      [圖4] 說明使用圖1(a)所示之層合體1a製造附有硬化樹脂層的硬化密封體的步驟之截面模式圖。      [圖5] 說明硬化密封體的加工方法之截面模式圖。
1a、1b:層合體
P:界面
(X):黏著劑層
(Y):基材
(Y1):膨脹性基材層
(Y2):非膨脹性基材層
(I):能量線硬化性樹脂層
(II):支撐層

Claims (11)

  1. 一種層合體,其特徵為具有能量線硬化性樹脂層(I),與支撐該能量線硬化性樹脂層(I)的支撐層(II);能量線硬化性樹脂層(I),為具有具黏著性的表面,支撐層(II)為具有基材(Y)及黏著劑層(X),該基材(Y)及黏著劑層(X)之至少一者為含有熱膨脹性粒子,於由能量線硬化性樹脂層(I)硬化形成的硬化樹脂層(I’)與支撐層(II)間,經使前述熱膨脹性粒子膨脹之處理,而於前述硬化樹脂層(I’)與前述支撐層(II)之界面形成分離。
  2. 如請求項1之層合體,其中,由能量線硬化性樹脂層(I)硬化形成的硬化樹脂層(I’)之23℃的儲存彈性率E’,為1.0×107~1.0×1013Pa。
  3. 如請求項1或2之層合體,其中,能量線硬化性樹脂層(I)之厚度為1~500μm。
  4. 如請求項1或2之層合體,其中,能量線硬化性樹脂層(I)之可見光穿透率為5%以上。
  5. 如請求項1或2之層合體,其中,基材(Y)為具有含有 前述熱膨脹性粒子的膨脹性基材層(YI)。
  6. 如請求項5之層合體,其中,黏著劑層(X)為非膨脹性黏著劑層。
  7. 如請求項5之層合體,其中,黏著劑層(X)與能量線硬化性樹脂層(I)為直接層合者。
  8. 如請求項5之層合體,其中,基材(Y)為具有非膨脹性基材層(Y2)及膨脹性基材層(Y1),支撐層(II)為依序具有非膨脹性基材層(Y2)、膨脹性基材層(Y1),及黏著劑層(X),黏著劑層(X)與能量線硬化性樹脂層(I)為直接層合者。
  9. 如請求項1或2之層合體,其為用於形成包含密封對象物的硬化密封體者,其係於能量線硬化性樹脂層(I)的表面之一部份載置密封對象物,以能量線照射能量線硬化性樹脂層(I),而形成由能量線硬化性樹脂層(I)硬化形成的硬化樹脂層(I’),於前述密封對象物,與該密封對象物的至少周邊部份的硬化樹脂層(I’)之表面,以熱硬化性密封材被覆, 該密封材熱硬化後,經使前述熱膨脹性粒子膨脹之處理,使硬化樹脂層(I’)與支撐層(II)於前述硬化樹脂層(I’)與前述支撐層(II)之界面形成分離。
  10. 如請求項9之層合體,其係用於防止前述硬化密封體之翹曲。
  11. 一種硬化密封體之製造方法,其為使用請求項1~10中任一項之層合體製造硬化密封體之方法,其特徵為,具有下述步驟(i)~(iv):步驟(i):於前述層合體所具有的能量線硬化性樹脂層(I)的表面之一部份,載置密封對象物之步驟步驟(ii):以能量線照射能量線硬化性樹脂層(I),形成由能量線硬化性樹脂層(I)硬化形成的硬化樹脂層(I’)之步驟步驟(iii):於前述密封對象物,與該密封對象物的至少周邊部份的硬化樹脂層(I’)之表面,以熱硬化性密封材被覆,使該密封材熱硬化,而形成包含前述密封對象物的硬化密封體之步驟步驟(iv):經使前述熱膨脹性粒子膨脹之處理,使硬化樹脂層(I’)與支撐層(II),於前述硬化樹脂層(I’)與前述支撐層(II)之界面形成分離,而製得附有硬化樹脂層的硬化密封體之步驟。
TW107134885A 2018-10-03 2018-10-03 層合體及硬化密封體之製造方法 TWI793186B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW107134885A TWI793186B (zh) 2018-10-03 2018-10-03 層合體及硬化密封體之製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW107134885A TWI793186B (zh) 2018-10-03 2018-10-03 層合體及硬化密封體之製造方法

Publications (2)

Publication Number Publication Date
TW202014302A TW202014302A (zh) 2020-04-16
TWI793186B true TWI793186B (zh) 2023-02-21

Family

ID=71130438

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107134885A TWI793186B (zh) 2018-10-03 2018-10-03 層合體及硬化密封體之製造方法

Country Status (1)

Country Link
TW (1) TWI793186B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035635A (ja) * 2007-08-01 2009-02-19 Nitto Denko Corp 非汚染性熱剥離型粘着シート
TW201348393A (zh) * 2012-03-27 2013-12-01 Nitto Denko Corp 電子零件切斷用加熱剝離型黏著片材及電子零件加工方法
CN107017173A (zh) * 2015-11-13 2017-08-04 日东电工株式会社 半导体封装体的制造方法
CN107075323A (zh) * 2014-11-13 2017-08-18 Dic株式会社 双面粘胶带、物品及分离方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009035635A (ja) * 2007-08-01 2009-02-19 Nitto Denko Corp 非汚染性熱剥離型粘着シート
TW201348393A (zh) * 2012-03-27 2013-12-01 Nitto Denko Corp 電子零件切斷用加熱剝離型黏著片材及電子零件加工方法
CN107075323A (zh) * 2014-11-13 2017-08-18 Dic株式会社 双面粘胶带、物品及分离方法
CN107017173A (zh) * 2015-11-13 2017-08-04 日东电工株式会社 半导体封装体的制造方法

Also Published As

Publication number Publication date
TW202014302A (zh) 2020-04-16

Similar Documents

Publication Publication Date Title
JP7185638B2 (ja) 半導体装置の製造方法
JP6761115B2 (ja) 半導体装置の製造方法及び両面粘着シート
TWI788425B (zh) 硬化密封體之抗翹曲用層合體,及硬化密封體之製造方法
TWI791719B (zh) 黏著性積層體、附樹脂膜之加工對象物之製造方法及附硬化樹脂膜之硬化封裝體之製造方法
JP7240378B2 (ja) 硬化封止体の反り防止用積層体、及び、硬化封止体の製造方法
JP6761116B2 (ja) 半導体装置の製造方法及び粘着シート
JP7129110B2 (ja) 積層体及び硬化封止体の製造方法
JPWO2019112033A1 (ja) 粘着性積層体、粘着性積層体の使用方法、及び半導体装置の製造方法
TWI793186B (zh) 層合體及硬化密封體之製造方法
KR102689603B1 (ko) 점착성 적층체, 수지막이 형성된 가공 대상물의 제조 방법, 및 경화 수지막이 형성된 경화 봉지체의 제조 방법
JPWO2019098101A1 (ja) 半導体装置の製造方法