TWI791321B - 用於組態採樣架構產生模型之方法及電腦程式 - Google Patents

用於組態採樣架構產生模型之方法及電腦程式 Download PDF

Info

Publication number
TWI791321B
TWI791321B TW110141759A TW110141759A TWI791321B TW I791321 B TWI791321 B TW I791321B TW 110141759 A TW110141759 A TW 110141759A TW 110141759 A TW110141759 A TW 110141759A TW I791321 B TWI791321 B TW I791321B
Authority
TW
Taiwan
Prior art keywords
model
sampling
substrate
trained
measurements
Prior art date
Application number
TW110141759A
Other languages
English (en)
Other versions
TW202236023A (zh
Inventor
羅伊 渥克曼
裘簡 賽巴斯汀 威爾登伯格
瑞莎 沙雷伊恩
Original Assignee
荷蘭商Asml荷蘭公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荷蘭商Asml荷蘭公司 filed Critical 荷蘭商Asml荷蘭公司
Publication of TW202236023A publication Critical patent/TW202236023A/zh
Application granted granted Critical
Publication of TWI791321B publication Critical patent/TWI791321B/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/705Modelling or simulating from physical phenomena up to complete wafer processes or whole workflow in wafer productions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70525Controlling normal operating mode, e.g. matching different apparatus, remote control or prediction of failure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/0475Generative networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/094Adversarial learning

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Molecular Biology (AREA)
  • Computing Systems (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Debugging And Monitoring (AREA)
  • Test And Diagnosis Of Digital Computers (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Complex Calculations (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本發明提供一種用以推斷用於一或多個當前基板之一當前採樣架構的方法,該方法包含:獲得經訓練以基於與一或多個先前基板相關聯之輸入內容脈絡及/或曝光前資料而推斷一最佳採樣架構的一第一模型,其中該第一模型係取決於一第二模型之一結果而訓練,該第二模型經組態以在推斷出的最佳採樣架構與一預定最佳採樣架構之間進行鑑別;及使用所獲得的第一模型基於與該一或多個當前基板相關聯之輸入內容脈絡及/或曝光前資料而推斷該當前採樣架構。

Description

用於組態採樣架構產生模型之方法及電腦程式
本發明係關於經配置以組態用於採樣架構產生之模型的方法及電腦程式。具體而言,採樣架構係關於採樣位置在經受微影程序之基板上的分佈及對用於量測之一批次內的基板之選擇。
微影設備為經建構以將所要圖案施加至基板上之機器。微影設備可用於例如積體電路(IC)製造中。微影設備可例如將圖案化裝置(例如,光罩)處之圖案(常常亦被稱作「設計佈局」或「設計」)投影至設置於基板(例如,晶圓)上之輻射敏感材料(抗蝕劑)層上。
為了將圖案投影於基板上,微影設備可使用電磁輻射。此輻射之波長判定可形成於基板上之特徵的最小大小。當前在使用中之典型波長為365 nm (i線)、248 nm、193 nm及13.5 nm。相比於使用例如具有193 nm之波長之輻射的微影設備,使用具有在4至20 nm之範圍內的波長(例如,6.7 nm或13.5 nm)之極紫外線(EUV)輻射的微影設備可用以在基板上形成較小特徵。
低k1微影可用以處理尺寸小於微影設備之經典解析度極限的特徵。在此程序中,可將解析度公式表示為CD = k1×λ/NA,其中λ為所使用輻射之波長,NA為微影設備中之投影光學件之數值孔徑,CD為「關鍵尺寸」(通常為所印刷之最小特徵大小,但在此狀況下為半節距)且k1為經驗解析度因數。一般而言,k1愈小,則在基板上再現類似於由電路設計者規劃之形狀及尺寸以便達成特定電功能性及效能的圖案變得愈困難。為了克服此等困難,可將複雜的微調步驟應用於微影投影設備及/或設計佈局。此等步驟包括例如但不限於NA之最佳化、自訂照明架構、相移圖案化裝置之使用、設計佈局之各種最佳化,諸如設計佈局中之光學近接校正(OPC,有時亦被稱作「光學及程序校正」),或通常被定義為「解析度增強技術」(RET)之其他方法。替代地,用於控制微影設備之穩定性的嚴格控制迴路可用以改善在低k1下之圖案的再現。
微影程序常常需要足夠資料以便使得能夠監視及/或控制正用於微影程序中之設備,諸如微影工具、刻蝕器工具或沈積工具。該資料可為包含對藉由微影設備圖案化之基板執行之量測的度量衡資料。該等量測通常係對基板上之預定位置(所謂的「採樣位置」)執行。通常,使用採樣架構產生演算法來判定此等(最佳)採樣位置,例如基於用以描述量測資料之模型的知識及/或基於量測資料(值)在一或多個基板上之通常觀察到的分佈。
對每一採樣位置進行量測會花費寶貴的度量衡時間,該度量衡時間本可用於基板之微影處理,直接有助於產生由該微影程序製造的半導體裝置。此外,當需要量測許多採樣位置時,常常需要多個度量衡工具,此會消耗寶貴的佔用面積。因此,最重要的為,所利用的採樣架構產生器亦具成本效益;防止將界定比達成可接受程序監視/控制目的所必要更多的採樣位置。過去已提議(靜態)採樣架構產生器之潛在改善。舉例而言,如描述於國際專利申請案WO2017194289中之採樣架構產生器經組態以藉由辨識跨越採樣位置之第一集合的圖案更動態地選擇採樣位置且基於辨識到的圖案而選擇採樣位置之第二集合(動態地)。然而,上文所描述之動態採樣架構產生器在針對跨越一或多個基板之量測資料之廣泛多種潛在不同圖案而真正自訂(動態)採樣架構(例如,採樣位置集合)上仍相對有限;第一採樣位置及第二採樣位置之集合通常為預定的。預定、但可動態選擇之離散採樣架構集合的限制可能會妨礙基板之最佳採樣,此係因為仍有比所需要更多的採樣位置可能會經受量測,而鑒於令人滿意的程序監視及/或控制,並不嚴格需要進行量測。
本發明之目標為提供一種經組態以避免界定對程序監視及/或程序控制之品質無任何影響或影響甚微之採樣位置的動態採樣架構產生方法。
本發明之目標為提供用於組態採樣架構產生器之方法及設備。
根據本發明之第一態樣,提供一種方法,其包含:獲得經組態以基於包含基板上之採樣位置及對應量測值的量測資料而推斷用於基板之較佳採樣架構的經訓練模型;及使用與當前基板相關聯之當前量測資料作為經訓練模型之輸入以判定是否需要歲當前基板上進行進一步量測
根據本發明之第二態樣,提供一種用以推斷用於一或多個當前基板之當前採樣架構的方法,該方法包含:獲得經訓練以基於與一或多個先前基板相關聯之輸入內容脈絡及/或曝光前資料而推斷最佳採樣架構的第一模型,其中該第一模型係取決於第二模型之結果而訓練,該第二模型經組態以在推斷出的最佳採樣架構與預定最佳採樣架構之間進行鑑別;及使用所獲得的第一模型基於與一或多個當前基板相關聯之輸入內容脈絡及/或曝光前資料而推斷當前採樣架構。
根據本發明之第三態樣,提供一種用於提供關於停止或繼續對一或多個基板之採樣位置執行量測之決策的方法,該方法包含:獲得對應於初始採樣架構之量測值之初始集合;獲得模型,該模型包含:i)經訓練以自量測值之集合推斷是否滿足由程序監視及/或程序控制策略賦予之一或多個要求的第一模型;及ii)經訓練以自量測值之集合推斷在滿足由程序監視及/或程序控制策略賦予之該等要求之前需要獲取一或多個其他量測值的第二模型;將量測值之初始集合輸入至模型以獲得決策,其中該決策係基於平衡第一模型及第二模型之輸出。
根據本發明之第四態樣,提供一種電腦程式產品,該電腦程式產品包含經組態以實施本發明之任何先前態樣之方法的電腦可讀指令。
在本發明文件中,術語「輻射」及「光束」用以涵蓋所有類型之電磁輻射,包括紫外線輻射(例如,具有365 nm、248 nm、193 nm、157 nm或126 nm之波長)及極紫外線輻射(EUV,例如具有在約5至100 nm之範圍內的波長)。
如本文中所使用之術語「倍縮光罩」、「光罩」或「圖案化裝置」可被廣泛地解譯為係指可用以向入射輻射光束賦予經圖案化橫截面之通用圖案化裝置,該經圖案化橫截面對應於待在基板之目標部分中產生的圖案。在此上下文中,亦可使用術語「光閥」。除經典光罩(透射或反射、二元、相移、混合式等)以外,其他此類圖案化裝置之實例包括可程式化鏡面陣列及可程式化LCD陣列。
圖1示意性地描繪微影設備LA。微影設備LA包括:照明系統(亦被稱作照明器) IL,其經組態以調節輻射光束B (例如,UV輻射、DUV輻射或EUV輻射);光罩支撐件(例如,光罩台) MT,其經建構以支撐圖案化裝置(例如,光罩) MA且連接至經組態以根據某些參數準確地定位圖案化裝置MA之第一***PM;基板支撐件(例如,晶圓台) WT,其經建構以固持基板(例如,抗蝕劑塗佈晶圓) W且連接至經組態以根據某些參數準確地定位基板支撐件之第二***PW;及投影系統(例如,折射投影透鏡系統) PS,其經組態以將由圖案化裝置MA賦予至輻射光束B之圖案投影至基板W之目標部分C (例如,包含一或多個晶粒)上。
在操作中,照射系統IL例如經由光束遞送系統BD自輻射源SO接收輻射光束。照明系統IL可包括用於導向、塑形及/或控制輻射的各種類型之光學組件,諸如折射、反射、磁性、電磁、靜電及/或其他類型之光學組件,或其任何組合。照明器IL可用以調節輻射光束B,以在圖案化裝置MA之平面處在其橫截面中具有所要空間及角強度分佈。
本文中所使用之術語「投影系統」 PS應被廣泛地解譯為涵蓋如適於正使用之曝光輻射及/或適於諸如浸潤液體之使用或真空之使用之其他因素的各種類型之投影系統,包括折射、反射、反射折射、合成、磁性、電磁及/或靜電光學系統,或其任何組合。可認為本文中對術語「投影透鏡」之任何使用均與更一般術語「投影系統」 PS同義。
微影設備LA可屬於如下類型:其中基板之至少一部分可由具有相對較高折射率之液體(例如,水)覆蓋,以便填充投影系統PS與基板W之間的空間,此亦被稱作浸潤微影。在以引用之方式併入本文中的US6952253中給出關於浸潤技術之更多資訊。
微影設備LA亦可屬於具有兩個或多於兩個基板支撐件WT (亦被稱為「雙載物台」)之類型。在此「多載物台」機器中,可並行地使用基板支撐件WT,及/或可對位於基板支撐件WT中之一者上的基板W進行準備基板W之後續曝光的步驟,同時將另一基板支撐件WT上之另一基板W用於在另一基板W上曝光圖案。
除基板支撐件WT以外,微影設備LA亦可包含量測載物台。量測載物台經配置以固持感測器及/或清潔裝置。感測器可經配置以量測投影系統PS之性質或輻射光束B之性質。量測載物台可固持多個感測器。清潔裝置可經配置以清潔微影設備之一部分,例如投影系統PS之一部分或提供浸潤液體之系統之一部分。量測載物台可在基板支撐件WT遠離投影系統PS時在投影系統PS之下移動。
在操作中,輻射光束B入射於固持在光罩支撐件MT上的圖案化裝置(例如,光罩) MA上,且藉由存在於圖案化裝置MA上的圖案(設計佈局)圖案化。在已橫穿光罩MA的情況下,輻射光束B穿過投影系統PS,該投影系統將該光束聚焦至基板W之目標部分C上。藉助於第二***PW及位置量測系統IF,可準確地移動基板支撐件WT,例如以便將不同的目標部分C定位在輻射光束B之路徑中的聚焦及對準位置處。類似地,第一***PM及可能的另一位置感測器(其未在圖1中明確地描繪)可用以相對於輻射光束B之路徑來準確地定位圖案化裝置MA。可使用光罩對準標記M1、M2及基板對準標記P1、P2來對準圖案化裝置MA與基板W。儘管如所說明之基板對準標記P1、P2佔據專用目標部分,但其可位於目標部分之間的空間中當基板對準標記P1、P2位於目標部分C之間時,此等基板對準標記被稱為切割道對準標記。
如圖2中所展示,微影設備LA可形成微影製造單元LC (有時亦被稱作微影製造單元(lithocell)或(微影製造單元(litho)叢集)之部分,該微影製造單元常常亦包括用以對基板W執行曝光前程序及曝光後程序之設備。習知地,此等設備包括用以沈積抗蝕劑層之旋塗器SC、用以顯影經曝光抗蝕劑之顯影器DE、例如用於調節基板W之溫度(例如,用於調節抗蝕劑層中之溶劑)的冷卻板CH及烘烤板BK。基板處置器或機器人RO自輸入/輸出埠I/O1、I/O2拾取基板W、在不同程序設備之間移動基板W且將基板W遞送至微影設備LA之裝載匣LB。微影製造單元中常常亦被統稱為track之裝置通常係在track控制單元TCU之控制下,track控制單元自身可受到監督控制系統SCS之控制,該監督控制系統亦可例如經由微影控制單元LACU控制微影設備LA。
為了正確且一致地曝光由微影設備LA曝光之基板W,需要檢測基板以量測經圖案化結構之性質,諸如後續層之間的疊對誤差、線厚度、關鍵尺寸(CD)等。為了此目的,可在微影製造單元LC中包括檢測工具(未圖示)。若偵測到誤差,則可對後續基板之曝光或對待對基板W執行之其他處理步驟進行例如調整,尤其在同一批量或批次之其他基板W仍待曝光或處理之前進行檢測的情況下。
亦可被稱作度量衡設備之檢測設備用以判定基板W之性質,且特定而言,判定不同基板W之性質如何變化或與同一基板W之不同層相關聯之性質在層與層間如何變化。檢測設備可替代地經建構以識別基板W上之缺陷,且可例如係微影製造單元LC之部分,或可整合至微影設備LA中,或可甚至係獨立裝置。檢測設備可量測潛影(在曝光之後在抗蝕劑層中之影像)上之性質,或半潛影(在曝光後烘烤步驟PEB之後在抗蝕劑層中之影像)上之性質,或經顯影抗蝕劑影像(其中抗蝕劑之曝光部分或未曝光部分已被移除)上之性質,或甚至經蝕刻影像(在諸如蝕刻之圖案轉印步驟之後)上之性質。
通常,微影設備LA中之圖案化程序係處理中之最關鍵步驟中之一者,其需要基板W上之結構之尺寸標定及置放的高準確度。為了確保此高準確度,可將三個系統組合於所謂的「整體」控制環境中,如圖3中示意性地描繪。此等系統中之一者係微影設備LA,其(實際上)連接至度量衡工具MT (第二系統)且連接至電腦系統CL (第三系統)。此「整體」環境之關鍵在於最佳化此等三個系統之間的協作以增強整個程序窗口且提供嚴格控制迴路,從而確保由微影設備LA執行之圖案化保持在程序窗口內。程序窗口界定程序參數(例如,劑量、焦距、疊對)之範圍,在該程序參數範圍內,特定製造程序產生所定義結果(例如,功能性半導體裝置),通常在該程序參數範圍內,允許微影程序或圖案化程序中之程序參數變化。
電腦系統CL可使用待圖案化之設計佈局(之部分),以預測使用哪種解析度增強技術且執行運算微影模擬及計算,從而判定哪種光罩佈局及微影設備設定達成圖案化程序之最大總體程序窗口(在圖3中由第一標度SC1中之雙箭頭描繪)。通常,解析度增強技術經配置以匹配微影設備LA之圖案化可能性。電腦系統CL亦可用以偵測微影設備LA當前正在程序窗口內何處操作(例如,使用來自度量衡工具MT之輸入),以預測是否由於例如次佳處理而可能存在缺陷(在圖3中由第二標度SC2中之指向「0」的箭頭描繪)。
度量衡工具MT可將輸入提供至電腦系統CL以實現準確模擬及預測,且可將回饋提供至微影設備LA以識別例如微影設備LA之校準狀態中的可能漂移(在圖3中由第三標度SC3中之多個箭頭描繪)。
度量衡工具MT可在微影圖案化程序之不同階段期間量測基板。可為了不同目的使用基板之度量衡。基板之量測可例如用於監視及/或更新微影程序設定、誤差偵測、隨時間推移對設備之分析、品質控制等。一些量測相比於其他量測更容易獲得。舉例而言,一些量測可能需要存在於基板上之特定目標結構。一些量測相較於其他量測可能要花費相對較長時間來執行。在昂貴的度量衡工具MT中,長時間量測可能會佔用大量時間。此可使得就裝備使用及時間而言,彼等量測係昂貴的。因此,可能不太頻繁地執行此等量測。此可意謂僅稀疏量測資料可用於一些參數,及/或可能不對每一基板執行量測。
度量衡時間之成本在很大程度上由以下各者判定:a)每基板進行之量測之數目,例如包含於所利用採樣架構內之採樣位置之數目;及b)每批次或每線所量測之基板之數目。鑒於採樣位置之資訊性,選擇採樣位置至關重要。舉例而言,可假定可使用將基板座標映射至量測參數之模型化值的(多項式)模型來準確地描述量測資料。模型知識(基礎功能、行為)可用以判定基板或基板上之區(一場或晶粒或一組場及/或晶粒)上的較佳採樣位置。替代地,歷史量測資料可用以判定採樣架構;例如基於以下各者中之一或多者:a)量測參數之通常觀察到的指紋(fingerprint),其中例如採樣位置之密度隨跨越基板(區)之量測參數之空間改變速率而按比例調整;及b)先前判定的量測品質KPI分佈,例如遺漏基板上傾向於產生處理誘發之量測誤差的位置。
至此,尚未提議在量測仍處於進行中時主動地且動態地分析所獲得之量測資料且動態地評估量測資料之可用性及其對程序監視及/或程序控制目的之充分性的機制。若此機制就緒,則其可即時提供採樣位置;例如持續提議用於量測之採樣位置直至滿足特定控制/監視相關要求。此所提議工作方式中的採樣位置並非靜態(預定)的,而是回應於預期(推斷出)的最佳採樣架構而產生。
此方法可藉由使用經組態以基於各種輸入而預測較佳採樣架構之模型來實施。通常,此模型需要被訓練且例如基於神經網路。在將該模型用於動態採樣架構判定時的各種輸入至少包含在特定時間「t」之前針對基板獲得的量測資料,且較佳包含內容脈絡及/或曝光前資料,諸如與該基板相關聯之對準及調平資料。替代地或另外,曝光前資料可包含一或多個先前基板或先前批次之量測資料,例如可能具有類似於基板之跨基板疊對指紋的先前批次之所量測疊對資料。內容脈絡資料可例如包含基板之處理歷史(例如,識別用於處理基板之工具,例如用於圖案化基板之特定蝕刻腔室、沈積工具或微影設備)。該模型通常需要用與諸如分佈式採樣架構之一或多個先前採樣架構相關聯之歷史量測資料來進行訓練,其中根據不同的子採樣架構量測一批次內的基板。在另一實例中,量測資料包含稀疏量測資料及/或(不太頻繁量測之)密集量測資料的混合。除量測資料以外,內容脈絡資料、曝光前資料及採樣架構資料亦可用作模型之訓練階段的輸入。訓練資料可例如為用於已處理基板之歷史上判定的最佳採樣架構,包括其相關聯的內容脈絡及/或曝光前資料。訓練階段基於可用量測資料及(若可用)內容脈絡及/或曝光前資料而建立用於推斷最佳化採樣架構之模型之第一版本。可用量測資料可超出經受檢測之某一基板之量測資料的範圍,其亦可包括例如最近量測基板(例如,與經受檢測之基板屬於同一批次的基板)的量測資料。一旦經訓練,該模型便可用於動態採樣架構定義;意謂在基板檢測期間,將資料持續饋入至模型且推斷出的較佳採樣架構持續地以至此已經受量測(檢測)之採樣位置之集合為基準。若已經可用的採樣位置與動態地推斷的最佳採樣架構一致(足夠接近),則該模型可傳達可停止對所關注基板之進一步採樣。替代地,若被檢測/量測的採樣位置仍過少,則該模型可提議包括一或多個採樣位置以供檢測/量測。該模型另外可進一步指定待量測基板之一或多個批次中的哪些基板且進一步指定選擇該等基板之哪些採樣位置。此策略描繪於圖4中。內容脈絡及/或曝光前資料405及當前量測資料410用作模型400之輸入,該模型經組態以推斷最佳採樣架構及進一步量測動作之建議(例如,選擇量測哪些基板且對於每一選定基板,選擇對應採樣位置),包括提議一或多個其他採樣位置及/或建議繼續量測下一採樣位置或停止量測當前基板(例如,當前正經受量測/檢測之基板)。
另外,當前量測資料用以更新模型;藉由將對應於所判定之最佳採樣架構的量測資料持續地提供至模型,該模型會得到持續訓練且因此該模型逐漸變得經更好地訓練及動態地訓練。
在本發明之一實施例中,提供一種方法,該方法包含:獲得經組態以基於與基板相關聯之量測資料推斷用於基板之較佳採樣架構的經訓練模型;及使用與當前基板相關聯之當前量測資料作為經訓練模型之輸入以判定是否需要對當前基板進行進一步量測。
在一實施例中,該模型係基於神經網路。
在一實施例中,該量測資料包含與包含於該量測資料內之量測值相關聯的採樣位置之資訊。
在一實施例中,該方法進一步包含將與當前基板相關聯之曝光前資料及/或內容脈絡資料輸入至經訓練模型。
在一實施例中,該方法進一步包含基於當前量測資料組態經訓練模型。
如上文所描述之經訓練模型亦可組態為生成對抗網路(GAN)。在此狀況下,該模型包含經訓練以產生採樣架構(基於足夠的輸入資料)的生成模型及經訓練以在推斷出的(最佳)採樣架構(使用生成模型)與實際的最佳採樣架構之間進行區分的鑑別模型。
圖5描繪基於GAN之採樣架構產生器510。採樣產生器510為GAN 500之部分,該GAN亦包含經訓練以在所產生的最佳採樣架構501與真實的最佳化採樣架構502之間進行鑑別的鑑別模型520。在訓練階段期間藉由輸入一或多個「最壞狀況」採樣架構503來訓練產生器510,該一或多個「最壞狀況」採樣架構通常為經組態以針對任何條件為程序監視及/或控制提供足夠資訊(例如,內容脈絡/曝光前資料內容)的(極)密集採樣架構。將相關內容脈絡及/或曝光前資料作為輸入提供至產生器510 (通常亦提供至鑑別器520)以用於產生最佳化採樣架構501,該最佳化採樣架構通常比最壞狀況採樣架構503更稀疏。產生器510及鑑別器520一起經訓練(取決於彼此),使得產生器510經訓練以提供採樣架構501,該採樣架構比最壞狀況採樣架構503更佳(稀疏),同時對於給定內容脈絡及/或曝光前資料條件為足夠的。足夠在此處意謂所產生的採樣架構501與真正最佳化的採樣架構502 (第一訓練目標)無法區分。同時,鑑別器經訓練成愈來愈好地拒絕所產生的最佳採樣架構501作為真正最佳化的採樣架構502 (第二訓練目標)。產生器及鑑別器兩者通常為神經網路。
一旦針對不同條件(例如,對應內容脈絡及/或曝光前資料之不同集合)訓練了產生器510,其便可用以基於對應於一基板或一批次基板之內容脈絡及/或曝光前資料而導出用於該基板(或該批次基板)之完整最佳採樣架構。
在一實施例中,一種用以推斷用於一或多個當前基板之當前採樣架構的方法,該方法包含:獲得經訓練以基於與一或多個先前基板相關聯之輸入內容脈絡及/或曝光前資料而推斷最佳採樣架構的第一模型,其中該第一模型係取決於第二模型之結果而訓練,該第二模型經組態以在推斷出的最佳採樣架構與預定最佳採樣架構之間進行鑑別;及使用所獲得的第一模型基於與一或多個當前基板相關聯之輸入內容脈絡及/或曝光前資料而推斷當前採樣架構。
在一實施例中,第一模型為生成模型且第二模型為鑑別模型,且第一模型及第二模型構成生成對抗網路(GAN)。
在一實施例中,使用包含該內容脈絡及/或曝光前資料之輸入資料及比該推斷出的當前採樣架構更密集的密集採樣架構來訓練第一模型。
在一實施例中,密集採樣架構經組態為預期滿足基板之任何條件的採樣架構,其中該條件之特徵在於與基板相關聯之內容脈絡及/或曝光前資料。
如上文所描述的基於GAN之採樣架構產生係基於對完整採樣架構之預測及對運用何採樣架構一次性量測何些基板之導引。替代地,亦可基於如GAN之採樣架構產生方法設計更特用的採樣決策方法。在此狀況下,將所獲取的量測資料(例如在包含於初始採樣架構內之位置之逐點採樣期間獲得)持續地饋入至生成模型,該產生模型經訓練以使用至此獲取的量測資料(且若適用,則亦使用可用內容脈絡及/或曝光前資料)來確定滿足關於程序監視/控制的要求且不請求進一步量測(例如,跳過量測位置,跳過用於量測之下一基板(接下來多個基板))。相反的目標係藉由鑑別模型來實行,該鑑別模型已經訓練以使用至此獲取的資料(及任何潛在可用的內容脈絡及/或曝光前資料)來推斷程序監視/控制之改善潛力仍相當大且當前可用的量測資料並不足夠,例如鑑別器經訓練以找到有利於持續量測的證據。生成模型及鑑別模型之目標因此相反,組合的生成及鑑別模型經組態以提供平衡的採樣決策。組合模型可用以控制對採樣位置的量測,使得將獲取足夠量測資料,同時防止花費比滿足特定程序監視及/或程序控制要求所嚴格必需的更多的量測時間。
在一實施例中,一種用於提供關於停止或繼續對一或多個基板之採樣位置執行量測之決策的方法,該方法包含:獲得對應於初始採樣架構之量測值的初始集合;獲得模型,該模型包含:i)經訓練以自量測值之集合推斷是否滿足由程序監視及/或程序控制策略賦予之一或多個要求的第一模型;及ii)經訓練以自量測值之集合推斷在滿足由程序監視及/或程序控制策略賦予之該等要求之前需要獲取一或多個其他量測值的第二模型;將量測值之初始集合輸入至模型以獲得決策,其中該決策係基於平衡第一模型及第二模型之輸出。
在一實施例中,該第一模型為生成模型且該第二模型為鑑別模型,且該模型為生成對抗網路(GAN)。
本文中所描述之方法可使用一或多個處理器執行,該一或多個處理器執行保存於可由處理器存取之記憶體中之指令。處理器可形成電腦系統CL之部分,該電腦系統形成整體微影系統之部分。替代地或另外,可在與微影系統分離之電腦系統上執行該等方法。
儘管可在本文中特定地參考在IC製造中的微影設備之使用,但應理解,本文中所描述之微影設備可具有其他應用。可能的其他應用包括整合式光學系統之製造、用於磁域記憶體之導引及偵測圖案、平板顯示器、液晶顯示器(LCD)、薄膜磁頭等。
儘管可在本文中特定地參考在微影設備之內容背景中的本發明之實施例,但本發明之實施例可用於其他設備中。本發明之實施例可形成光罩檢測設備、度量衡設備或量測或處理諸如晶圓(或其他基板)或光罩(或其他圖案化裝置)之物件的任何設備之部分。此等設備可一般被稱作微影工具。此微影工具可使用真空條件或周圍環境(非真空)條件。
儘管上文可能已特定地參考在光學微影之內容背景中對本發明之實施例的使用,但應瞭解,在內容背景允許之情況下,本發明不限於光學微影,且可用於例如壓印微影之其他應用中。
雖然上文已描述本發明之特定實施例,但應瞭解,可以與所描述方式不同的其他方式來實踐本發明。以上描述意欲為說明性而非限制性的。因此,對於熟習此項技術者將顯而易見,可在不脫離下文所闡述之申請專利範圍之範圍的情況下對如所描述之本發明進行修改。
400:模型 405:內容脈絡及/或曝光前資料 410:當前量測資料 500:GAN 501:所產生的最佳採樣架構 502:真實的最佳化採樣架構 503:最壞狀況採樣架構 510:採樣產生器 520:鑑別模組/鑑別器 B:輻射光束 BD:光束遞送系統 BK:烘烤板 C:目標部分 CH:冷卻板 CL:電腦系統 DE:顯影器 I/O1:輸入/輸出埠 I/O2:輸入/輸出埠 IF:位置量測系統 IL:照明系統/照明器 LA:微影設備 LACU:微影控制單元 LB:裝載匣 LC:微影製造單元 M1:光罩對準標記 M2:光罩對準標記 MA:圖案化裝置/光罩 MT:光罩支撐件/光罩台/度量衡工具 P1:基板對準標記 P2:基板對準標記 PM:第一*** PS:投影系統 PW:第二*** RO:基板處置器或機器人 SC:旋塗器 SC1:第一標度 SC2:第二標度 SC3:第三標度 SCS:監督控制系統 SO:輻射源 TCU:塗佈顯影系統控制單元 W:基板 WT:基板支撐件
現參看隨附示意性圖式僅作為實例來描述本發明之實施例,在隨附示意性圖式中: -  圖1描繪微影設備之示意性綜述; -  圖2描繪微影製造單元之示意性綜述; -  圖3描繪整體微影之示意性表示,其表示最佳化半導體製造之三種關鍵技術之間的協作; -  圖4描繪表示根據本發明之實施例之方法的圖; -  圖5描繪表示根據本發明之實施例之方法的圖。
500:GAN
501:所產生的最佳採樣架構
502:真實的最佳化採樣架構
503:最壞狀況採樣架構
510:採樣產生器
520:鑑別模組/鑑別器

Claims (14)

  1. 一種用於產生一採樣架構之方法,該方法包含:獲得經組態以基於量測資料而推斷(infer)用於一基板之一較佳採樣架構的一經訓練模型,該量測資料包含該基板上之採樣位置及對應量測值;使用與一當前基板相關聯之當前量測資料作為該經訓練模型之輸入,以判定是否需要對該當前基板進行進一步量測;及基於該當前量測資料而組態該經訓練模型。
  2. 如請求項1之方法,其中該模型係基於一神經網路。
  3. 如請求項1或2之方法,其進一步包含將與該當前基板相關聯之曝光前資料及/或內容脈絡資料(context data)輸入至該經訓練模型。
  4. 如請求項3之方法,其中該曝光前資料包含與一或多個先前基板之採樣位置及對應量測值相關聯的先前量測資料。
  5. 一種用於推斷用於一或多個當前基板之一當前採樣架構的方法,該方法包含:獲得經訓練以基於與一或多個先前基板相關聯之輸入內容脈絡及/或曝光前資料而推斷一最佳採樣架構的一第一模型,其中該第一模型係取決於一第二模型之一結果而訓練,該第二模型經組態以在經推斷出的該最佳採樣架構與一預定最佳採樣架構之間進行鑑別(discriminate); 使用所獲得的該第一模型基於與該一或多個當前基板相關聯之輸入內容脈絡及/或曝光前資料而推斷該當前採樣架構;及將對應於經推斷出的該當前採樣架構的量測資料提供至該第一模型,使得該第一模型被持續訓練。
  6. 如請求項5之方法,其中該第一模型為一生成模型且該第二模型為一鑑別模型,且該第一模型及該第二模型構成一生成對抗網路(GAN)。
  7. 如請求項5或6之方法,其中該第一模型係使用輸入資料來訓練,該輸入資料包含該內容脈絡及/或曝光前資料及與比經推斷出的該當前採樣架構更密集之一密集採樣架構相關聯的量測資料。
  8. 如請求項7之方法,其中該密集採樣架構經組態為預期滿足基板之任何條件的一採樣架構,其中該條件之特徵在於與該基板相關聯之內容脈絡及/或曝光前資料。
  9. 一種用於提供關於停止或繼續執行對一或多個基板上之採樣位置之量測的一決策的方法,該方法包含:獲得對應於一初始採樣架構之量測值之一初始集合;獲得一模型,該模型包含:i)一第一模型,其經訓練以自量測值之一集合推斷是否滿足由一程序監視及/或程序控制策略賦予之一或多個要求;及ii)一第二模型,其經訓練以自量測值之一集合推斷在滿足由該程序 監視及/或程序控制策略賦予之該等要求之前需要獲取一或多個其他量測值;及將量測值之該初始集合輸入至該模型以獲得該決策,其中該決策係基於平衡該第一模型及該第二模型之輸出。
  10. 如請求項9之方法,其中該第一模型為一生成模型且該第二模型為一鑑別模型,且該模型為一生成對抗網路(GAN)。
  11. 一種電腦程式產品,其包含經組態以執行以下操作之電腦可讀指令:獲得經組態以基於量測資料而推斷用於一基板之一較佳採樣架構的一經訓練模型,該量測資料包含該基板上之採樣位置及對應量測值;使用與一當前基板相關聯之當前量測資料作為該經訓練模型之輸入,以判定是否需要對該當前基板進行進一步量測;及基於該當前量測資料而組態該經訓練模型。
  12. 一種電腦程式產品,其包含經組態以執行以下操作之電腦可讀指令:獲得經訓練以基於與一或多個先前基板相關聯之輸入內容脈絡及/或曝光前資料而推斷一最佳採樣架構的一第一模型,其中該第一模型係取決於一第二模型之一結果而訓練,該第二模型經組態以在經推斷出的該最佳採樣架構與一預定最佳採樣架構之間進行鑑別;使用所獲得的該第一模型基於與一或多個當前基板相關聯之輸入內 容脈絡及/或曝光前資料而推斷一當前採樣架構;及將對應於經推斷出的該當前採樣架構的量測資料提供至該第一模型,使得該第一模型被持續訓練。
  13. 如請求項12之電腦程式產品,其中該第一模型為一生成模型且該第二模型為一鑑別模型,且該第一模型及該第二模型構成一生成對抗網路(GAN)。
  14. 一種電腦程式產品,其包含經組態以執行以下操作之電腦可讀指令:獲得對應於一初始採樣架構之量測值之一初始集合;獲得一模型,該模型包含:i)一第一模型,其經訓練以自量測值之一集合推斷是否滿足由一程序監視及/或程序控制策略賦予之一或多個要求;及ii)一第二模型,其經訓練以自量測值之一集合推斷在滿足由該程序監視及/或程序控制策略賦予之該等要求之前需要獲取一或多個其他量測值;及將量測值之該初始集合輸入至該模型以獲得決策,其中該決策係基於平衡該第一模型及該第二模型之輸出。
TW110141759A 2020-11-11 2021-11-10 用於組態採樣架構產生模型之方法及電腦程式 TWI791321B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20206977 2020-11-11
EP20206977.9 2020-11-11

Publications (2)

Publication Number Publication Date
TW202236023A TW202236023A (zh) 2022-09-16
TWI791321B true TWI791321B (zh) 2023-02-01

Family

ID=73343945

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110141759A TWI791321B (zh) 2020-11-11 2021-11-10 用於組態採樣架構產生模型之方法及電腦程式

Country Status (7)

Country Link
US (1) US20230400778A1 (zh)
EP (1) EP4244675A1 (zh)
KR (1) KR20230098587A (zh)
CN (1) CN116457728A (zh)
DE (1) DE112021005916T5 (zh)
TW (1) TWI791321B (zh)
WO (1) WO2022100998A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017194289A1 (en) * 2016-05-12 2017-11-16 Asml Netherlands B.V. Method of obtaining measurements, apparatus for performing a process step and metrology apparatus
EP3637186A1 (en) * 2018-10-09 2020-04-15 ASML Netherlands B.V. Method of calibrating a plurality of metrology apparatuses, method of determining a parameter of interest, and metrology apparatus
TW202034093A (zh) * 2018-11-08 2020-09-16 荷蘭商Asml荷蘭公司 基於程序變異性之空間特性的偏離規格之預測

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG2010050110A (en) 2002-11-12 2014-06-27 Asml Netherlands Bv Lithographic apparatus and device manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017194289A1 (en) * 2016-05-12 2017-11-16 Asml Netherlands B.V. Method of obtaining measurements, apparatus for performing a process step and metrology apparatus
EP3637186A1 (en) * 2018-10-09 2020-04-15 ASML Netherlands B.V. Method of calibrating a plurality of metrology apparatuses, method of determining a parameter of interest, and metrology apparatus
TW202034093A (zh) * 2018-11-08 2020-09-16 荷蘭商Asml荷蘭公司 基於程序變異性之空間特性的偏離規格之預測

Also Published As

Publication number Publication date
WO2022100998A1 (en) 2022-05-19
EP4244675A1 (en) 2023-09-20
KR20230098587A (ko) 2023-07-04
DE112021005916T5 (de) 2023-08-24
CN116457728A (zh) 2023-07-18
TW202236023A (zh) 2022-09-16
US20230400778A1 (en) 2023-12-14

Similar Documents

Publication Publication Date Title
KR102411813B1 (ko) 디바이스 제조 프로세스의 수율의 예측 방법
TWI703659B (zh) 判定程序之校正
CN111656282B (zh) 确定衬底栅格的测量设备和方法
CN113168111A (zh) 用于预测半导体制造过程的产率的方法
US20220236647A1 (en) Method for controlling a semiconductor manufacturing process
TW201942689A (zh) 在一微影製程之對準標記定位
US11809088B2 (en) Method for controlling a lithographic apparatus
TWI791321B (zh) 用於組態採樣架構產生模型之方法及電腦程式
TWI803186B (zh) 預測半導體製程之度量衡偏移之方法及電腦程式
TWI810749B (zh) 監控微影製程之方法及相關裝置
TWI777678B (zh) 概念漂移減輕之方法及設備
TWI796127B (zh) 一種判定一量測配方之方法及相關度量衡方法與設備
EP3848757A1 (en) Method for controlling a lithographic apparatus
NL2024657A (en) Method for controlling a lithographic apparatus
TW202347035A (zh) 用於判定半導體製造程序中之至少一控制參數之校正之方法