TWI788013B - Zsm-5 molecular sieve for sound-absorbing material, method for preparing the same, and product obtained therefrom - Google Patents

Zsm-5 molecular sieve for sound-absorbing material, method for preparing the same, and product obtained therefrom Download PDF

Info

Publication number
TWI788013B
TWI788013B TW110134435A TW110134435A TWI788013B TW I788013 B TWI788013 B TW I788013B TW 110134435 A TW110134435 A TW 110134435A TW 110134435 A TW110134435 A TW 110134435A TW I788013 B TWI788013 B TW I788013B
Authority
TW
Taiwan
Prior art keywords
molecular sieve
zsm
sound
aluminum
source
Prior art date
Application number
TW110134435A
Other languages
Chinese (zh)
Other versions
TW202302458A (en
Inventor
宋錫濱
張曦
張兵
Original Assignee
大陸商山東國瓷功能材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商山東國瓷功能材料股份有限公司 filed Critical 大陸商山東國瓷功能材料股份有限公司
Application granted granted Critical
Publication of TWI788013B publication Critical patent/TWI788013B/en
Publication of TW202302458A publication Critical patent/TW202302458A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/36Pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
    • C01B39/38Type ZSM-5
    • C01B39/40Type ZSM-5 using at least one organic template directing agent
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/162Selection of materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

The present invention provides a ZSM-5 molecular sieve which has a silicon-to-aluminum mass ratio of 800-4000, a micropore specific surface area <72 m 2/g, a micropore pore size range of 0.5-1.5 nm, a mesopore pore size range of 2-10 nm, and the ratio of the cumulative pore volume of the micropores to the cumulative pore volume of the mesopores is 0.24-0.35. By controlling the range of the silicon-to-aluminum ratio for the formation of a molecular sieve, the present invention can successfully control parameters of the sound-absorbing material such as hydrophobic properties of the sound-absorbing material, the ratio of the micropore volume to the mesopore volume, and the specific surface area to be within a preferred range. Therefore, the reduced frequency of the sound-absorbing material used in the loudspeaker device comes to be the best and has the best performance on anti-aging. Thus, it is able to meet the application requirements of the loudspeaker firmly and has a broader prospect in applications.

Description

用於吸音材料的ZSM-5分子篩、其製備方法及所得產品ZSM-5 molecular sieve used for sound-absorbing material, its preparation method and obtained product

本發明屬分子篩技術領域,尤其關於一種用於吸音材料的ZSM-5分子篩、其製備方法及所得產品。The invention belongs to the technical field of molecular sieves, and in particular relates to a ZSM-5 molecular sieve used for sound-absorbing materials, its preparation method and the obtained product.

隨著網際網路、智慧型聲學產業的發展,人們嚮往多姿多彩的生活,對完美音質的追求也越來越高。揚聲器作為音箱中最為重要的部分,與音箱的音質息息相關。據相關研究表明,揚聲器的腔體大小對其音質起了至關重要的作用,其腔體越大,越容易做好音質。但移動電子產品逐漸向便攜化、小型化發展,揚聲器也朝著微型化進化,腔體空間變小,發聲器件的諧振頻率變高,導致揚聲器的低頻性能惡化,從而影響了聲音的音質。With the development of the Internet and the intelligent acoustic industry, people yearn for a colorful life, and their pursuit of perfect sound quality is getting higher and higher. As the most important part of the speaker, the speaker is closely related to the sound quality of the speaker. According to relevant research, the size of the cavity of the speaker plays a vital role in its sound quality. The larger the cavity, the easier it is to improve the sound quality. However, mobile electronic products are gradually developing towards portability and miniaturization, and speakers are also evolving towards miniaturization. The cavity space becomes smaller, and the resonant frequency of the sound-generating device becomes higher, which leads to the deterioration of the low-frequency performance of the speaker, thereby affecting the sound quality of the sound.

為改善微型揚聲器的低頻效果,常用的解決方法是在揚聲器中加裝多孔材料,降低發聲器的F0(共振頻率),以實現優化聲效的目的。多孔材料包括活性碳、沸石分子篩、氧化矽、氧化鋁、碳奈米管等。多孔材料可以增加後腔的虛擬體積,有助於改善中低頻聲學性能。沸石分子篩由於具有規則的多維孔道等獨特結構,近年來得到越來越多的應用,如中國發明專利申請CN108566593A、CN111586550A等中均是如此做法。In order to improve the low-frequency effect of the micro-speaker, a common solution is to add porous materials to the speaker to reduce the F0 (resonant frequency) of the sound generator, so as to achieve the purpose of optimizing the sound effect. Porous materials include activated carbon, zeolite molecular sieves, silicon oxide, aluminum oxide, carbon nanotubes, etc. The porous material can increase the virtual volume of the rear cavity, which helps to improve the acoustic performance of the mid-low frequency. Zeolite molecular sieves have been used more and more in recent years due to their unique structures such as regular multi-dimensional channels, such as in Chinese invention patent applications CN108566593A and CN111586550A.

沸石分子篩具有發達的孔道結構,如微孔和介孔,這些孔道結構決定著吸附材料的吸附性能,其中微孔用於儲存氣體,介孔是氣體傳輸的通道。據文獻報道,分子篩矽鋁比不同,微孔和介孔的尺寸和數量不同,疏水性能不同,對VOCs(Volatile Organic Compounds)吸附性能也不同。因此,如何提供一種新的ZSM-5(Zeolite Socony Mobil-5)分子篩材料,避免分子篩的失效、提高發聲器件的吸音效果將是本領域亟待研究的課題。Zeolite molecular sieves have well-developed pore structures, such as micropores and mesopores, which determine the adsorption performance of the adsorption material. Micropores are used to store gas, and mesopores are channels for gas transmission. According to literature reports, molecular sieves have different silicon-aluminum ratios, different sizes and numbers of micropores and mesopores, different hydrophobic properties, and different adsorption properties for VOCs (Volatile Organic Compounds). Therefore, how to provide a new ZSM-5 (Zeolite Socony Mobil-5) molecular sieve material to avoid the failure of molecular sieves and improve the sound absorption effect of sound-generating devices will be an urgent research topic in this field.

本發明針對上述問題,提供了一種用於吸音材料的ZSM-5分子篩、其製備方法及所得產品,具體方案如下。Aiming at the above problems, the present invention provides a ZSM-5 molecular sieve for sound-absorbing materials, its preparation method and the resulting product, the specific scheme is as follows.

一種用於吸音材料的ZSM-5分子篩,所述ZSM-5分子篩的矽鋁質量比為800-4000,微孔比表面積<72 m 2/g,其微孔孔徑範圍在0.5-1.5 nm之間,介孔孔徑範圍在2-10 nm之間,且微孔的累積孔容積與介孔的累積孔容積之比為0.24-0.35。 A ZSM-5 molecular sieve used for sound-absorbing materials, the ZSM-5 molecular sieve has a silicon-aluminum mass ratio of 800-4000, a micropore specific surface area of <72 m 2 /g, and a micropore diameter range of 0.5-1.5 nm , the mesopore diameter ranges between 2-10 nm, and the ratio of the cumulative pore volume of micropores to the cumulative pore volume of mesopores is 0.24-0.35.

在一些實施例中,所述ZSM-5分子篩的微孔孔容積為0.043-0.050 ml/g,介孔孔容積為0.16-0.21 ml/g。In some embodiments, the micropore volume of the ZSM-5 molecular sieve is 0.043-0.050 ml/g, and the mesopore volume is 0.16-0.21 ml/g.

在一些實施例中,所述ZSM-5分子篩對水的吸附量≤1.25%,將其填充在揚聲器後腔且吸附水後,其諧振頻率變化ΔF0仍大於60 Hz。In some embodiments, the ZSM-5 molecular sieve has an adsorption capacity of water ≤ 1.25%, and after it is filled in the rear cavity of the speaker and absorbs water, the change in resonance frequency ΔF0 is still greater than 60 Hz.

本發明還提供了一種根據上述任一項技術方案所述的用於吸音材料的ZSM-5分子篩的製備方法,包括以下步驟:The present invention also provides a method for preparing a ZSM-5 molecular sieve for sound-absorbing materials according to any one of the above technical solutions, comprising the following steps:

將鹼源、鋁源、模板劑、矽源、ZSM-5分子篩晶種與水混合,形成凝膠;Mix alkali source, aluminum source, template agent, silicon source, ZSM-5 molecular sieve seed with water to form a gel;

將所得凝膠置於反應釜中,在自生壓力下進行水熱晶化反應,反應結束後,依次進行固液分離、洗滌、乾燥、焙燒,得到分子篩原粉;The obtained gel is placed in a reaction kettle, and a hydrothermal crystallization reaction is carried out under autogenous pressure. After the reaction is completed, solid-liquid separation, washing, drying, and roasting are carried out in sequence to obtain the molecular sieve powder;

將所得分子篩原粉與銨鹽溶液進行離子交換,過濾分離得到固體產物,將所得固體產物用去離子水反復洗滌至中性,將濾餅採取分段微波乾燥、焙燒,得到ZSM-5分子篩。The obtained molecular sieve raw powder is ion-exchanged with ammonium salt solution, filtered and separated to obtain a solid product, and the obtained solid product is repeatedly washed with deionized water until neutral, and the filter cake is dried and roasted by segmental microwaves to obtain ZSM-5 molecular sieve.

在一些實施例中,所加入的水、鹼源、鋁源、模板劑、矽源的莫耳比為(2-10):(0.03-0.20):(0.00025-0.0033):(0.03-0.50):1,其中矽源以矽源氧化物計。In some embodiments, the molar ratio of water, alkali source, aluminum source, templating agent, and silicon source added is (2-10): (0.03-0.20): (0.00025-0.0033): (0.03-0.50) : 1, where silicon source is calculated as silicon source oxide.

在一些實施例中,以矽源氧化物質量計,所加入的ZSM-5晶種的質量為3-8 wt%。In some embodiments, based on the mass of the silicon source oxide, the added ZSM-5 seed crystals are added in an amount of 3-8 wt%.

在一些實施例中,所述銨鹽溶液選自氯化銨、硝酸銨、硫酸銨中的至少一種,濃度為0.1-2 mol/L,固液比為1:(1~10)。In some embodiments, the ammonium salt solution is selected from at least one of ammonium chloride, ammonium nitrate, and ammonium sulfate, with a concentration of 0.1-2 mol/L and a solid-liquid ratio of 1: (1-10).

在一些實施例中,所述矽源選自固體矽膠、矽溶膠、九水合矽酸鈉、矽粉、白碳黑、矽藻土、矽酸鹽和正矽酸乙酯中的至少一種;In some embodiments, the silicon source is selected from at least one of solid silica gel, silica sol, sodium silicate nonahydrate, silica powder, white carbon black, diatomaceous earth, silicate, and ethyl orthosilicate;

所述鹼源為鹼金屬氫氧化物;The alkali source is an alkali metal hydroxide;

模板劑選自二乙胺、四乙基溴化銨、四乙基氯化銨、四乙基氫氧化銨、四丙基氯化銨、四丙基溴化銨、四丙基氫氧化銨、1,6-己二胺中的至少一種;The templating agent is selected from diethylamine, tetraethylammonium bromide, tetraethylammonium chloride, tetraethylammonium hydroxide, tetrapropylammonium chloride, tetrapropylammonium bromide, tetrapropylammonium hydroxide, At least one of 1,6-hexanediamine;

所述鋁源選自氫氧化鋁、擬薄水鋁石、硫酸鋁、偏鋁酸鈉、異丙醇鋁、硝酸鋁、氧化鋁、氯化鋁中的至少一種。The aluminum source is selected from at least one of aluminum hydroxide, pseudoboehmite, aluminum sulfate, sodium metaaluminate, aluminum isopropoxide, aluminum nitrate, aluminum oxide, and aluminum chloride.

在一些實施例中,所述矽源選自固體矽膠、矽溶膠、矽粉和正矽酸乙酯中的至少一種;In some embodiments, the silicon source is selected from at least one of solid silica gel, silica sol, silica powder and ethyl orthosilicate;

所述模板劑選自四乙基溴/氯化銨、四乙基氫氧化銨、四丙基溴/氯化銨、四丙基氫氧化銨中的至少一種;The templating agent is selected from at least one of tetraethyl bromide/ammonium chloride, tetraethyl ammonium hydroxide, tetrapropyl bromide/ammonium chloride, tetrapropyl ammonium hydroxide;

所述鋁源選自硫酸鋁、偏鋁酸鈉、氫氧化鋁中的至少一種;The aluminum source is selected from at least one of aluminum sulfate, sodium metaaluminate, and aluminum hydroxide;

所述鹼源選自氫氧化鈉和氫氧化鉀中的至少一種。The alkali source is at least one selected from sodium hydroxide and potassium hydroxide.

在一些實施例中,為了優化烘乾過程對產品孔道的破壞程度,在得到ZSM-5分子篩的步驟中,分段微波乾燥具體為分兩段進行,其中,第一段微波乾燥溫度為10-20℃,時間為0.5-3 h;第二段微波乾燥溫度為20-30℃,時間為0.5-3 h;焙燒溫度為550-600℃。In some embodiments, in order to optimize the degree of damage to product channels during the drying process, in the step of obtaining ZSM-5 molecular sieves, the segmental microwave drying is specifically carried out in two stages, wherein the microwave drying temperature of the first stage is 10- 20°C, the time is 0.5-3 h; the second stage microwave drying temperature is 20-30°C, the time is 0.5-3 h; the roasting temperature is 550-600°C.

在一些實施例中,在得到分子篩原粉的步驟中,水熱晶化溫度為150-200℃,晶化時間為20-48 h;乾燥溫度為10-30℃,焙燒溫度為550-600℃。In some embodiments, in the step of obtaining the raw molecular sieve powder, the hydrothermal crystallization temperature is 150-200°C, the crystallization time is 20-48 h; the drying temperature is 10-30°C, and the calcination temperature is 550-600°C .

本發明還提供了一種吸音材料,採用上述任一項技術方案所述的ZSM-5分子篩製備得到。The present invention also provides a sound-absorbing material prepared by using the ZSM-5 molecular sieve described in any one of the above technical solutions.

在一些實施例中,所述ZSM-5分子篩以粉末、顆粒物、塊狀物、分子篩膜或以粉末/顆粒物/塊狀物作為內容物的裝式包裝形式中的至少一種形式呈現。In some embodiments, the ZSM-5 molecular sieve is presented in at least one form of powder, granule, block, molecular sieve membrane, or packaging with powder/granule/block as content.

本發明提供了一種聲學元件,採用上述任一項技術方案所述的吸音材料製備得到。The present invention provides an acoustic component, which is prepared by using the sound-absorbing material described in any one of the above technical solutions.

本發明提供了一種揚聲器裝置,採用上述任一項技術方案所述的吸音材料製備得到。The present invention provides a loudspeaker device, which is prepared by using the sound-absorbing material described in any one of the above technical solutions.

與現有技術相比,本發明的優點和積極效果在於:Compared with prior art, advantage and positive effect of the present invention are:

本發明提供了一種用於吸音材料的ZSM-5分子篩,其通過控制分子篩合成的矽鋁比範圍,將吸音材料的疏水性能、微孔孔容積與介孔孔容積的比值、比表面積等參數控制在較佳的範圍內,從而使吸音材料用於揚聲器裝置中的降諧頻率最佳,並具有最好的抗老化性能。The invention provides a ZSM-5 molecular sieve for sound-absorbing materials, which controls the hydrophobicity of the sound-absorbing material, the ratio of micropore volume to mesopore volume, specific surface area and other parameters by controlling the silicon-aluminum ratio range synthesized by the molecular sieve. Within the preferred range, the sound-absorbing material has the best detuning frequency when used in the speaker device, and has the best anti-aging performance.

本發明提供的基於分子篩樣品製備的吸音材料具有較好的疏水性,有較為合適的孔道結構和比表面積,有利於空氣分子的吸附、脫附,能更好地滿足揚聲器應用要求,具有更廣闊的應用前景。The sound-absorbing material prepared based on molecular sieve samples provided by the present invention has good hydrophobicity, relatively suitable pore structure and specific surface area, is conducive to the adsorption and desorption of air molecules, and can better meet the application requirements of loudspeakers. application prospects.

下面將對本發明實施例中的技術方案進行清楚、完整地描述,顯然,所描述的實施例僅僅是本發明一部分實施例,而不是全部的實施例。基於本發明中的實施例,本領域普通技術人員在沒有做出創造性勞動前提下所獲得的所有其他實施例,都屬本發明保護的範圍。The technical solutions in the embodiments of the present invention will be clearly and completely described below. Obviously, the described embodiments are only some of the embodiments of the present invention, but not all of them. Based on the embodiments of the present invention, all other embodiments obtained by persons of ordinary skill in the art without making creative efforts fall within the protection scope of the present invention.

值得理解的是,儘管實施方式中可能示出了方法步驟的特定順序,但是,這並非要求或者暗示必須按照該特定順序來執行這些操作,除非特別說明或步驟之間的關聯性決定了執行順序。這樣的變型將取決於選擇。附加地或備選地,可以省略某些步驟,將多個步驟合併為一個步驟執行,和/或將一個步驟分解為多個步驟執行。所有這樣的變型都在本公開的範圍內。It should be understood that although the specific order of method steps may be shown in the embodiment, this does not require or imply that these operations must be performed in this specific order, unless otherwise specified or the relationship between the steps determines the execution order . Such variants will depend on choice. Additionally or alternatively, certain steps may be omitted, multiple steps may be combined into one step for execution, and/or one step may be decomposed into multiple steps for execution. All such variations are within the scope of this disclosure.

在本發明的描述中,需要說明的是,除非另有明確的規定和限定,術語“矽鋁比”是指“矽鋁莫耳比”,具體是指SiO 2和Al 2O 3的莫耳比,採用SAR表示。 In the description of the present invention, it should be noted that unless otherwise specified and limited, the term "silicon-aluminum ratio" refers to "silicon-aluminum molar ratio", specifically refers to the molar ratio of SiO 2 and Al 2 O 3 Ratio, expressed in SAR.

實施例1Example 1

將矽源(30%的矽溶膠),鹼源(NaOH),鋁源(偏鋁酸鈉),模板劑(四丙基溴化銨),按照 200 SiO 2: 0.25 Al 2O 3: 25NaOH : 10TPABr : 3000H 2O 的比例混合製備成凝膠,添加市售ZSM-5晶種3wt%(以SiO 2質量計)。置於晶化釜中,在160℃下晶化48 h,晶化完成後水冷,洗滌。分別在10℃、25℃下微波乾燥1.5 h和0.5 h後,焙燒經交換得到ZSM-5分子篩。本實施例的具體參數見表1所示。 Silicon source (30% silica sol), alkali source (NaOH), aluminum source (sodium metaaluminate), template (tetrapropylammonium bromide), according to 200 SiO 2 : 0.25 Al 2 O 3 : 25NaOH : The ratio of 10TPABr : 3000H 2 O was mixed to prepare a gel, and 3wt% of commercially available ZSM-5 seeds (calculated by SiO 2 mass) were added. Place it in a crystallization kettle, crystallize at 160°C for 48 h, cool with water after crystallization, and wash. After microwave drying at 10°C and 25°C for 1.5 h and 0.5 h, ZSM-5 molecular sieves were obtained by calcination and exchange. The specific parameters of this embodiment are shown in Table 1.

實施例2Example 2

將矽源(30%的矽溶膠),鹼源(NaOH),鋁源(偏鋁酸鈉),模板劑(四丙基溴化銨),按照 200 SiO 2: 0.20 Al 2O 3: 25NaOH : 10TPABr : 3000 H 2O的比例混合製備成凝膠,添加市售ZSM-5晶種5wt%(以SiO 2質量計)。置於晶化釜中,在150℃下晶化48 h,晶化完成後水冷,洗滌。分別在10℃、25℃下微波乾燥1.5 h和0.5 h後,焙燒後經交換得到ZSM-5分子篩。本實施例的具體參數見表1所示。 Silicon source (30% silica sol), alkali source (NaOH), aluminum source (sodium metaaluminate), template (tetrapropylammonium bromide), according to 200 SiO 2 : 0.20 Al 2 O 3 : 25NaOH : The ratio of 10TPABr : 3000 H 2 O was mixed to form a gel, and 5 wt% of commercially available ZSM-5 seeds (calculated by SiO 2 mass) were added. Place it in a crystallization kettle, crystallize at 150°C for 48 h, and then water-cool and wash after the crystallization is complete. After microwave drying at 10℃ and 25℃ for 1.5 h and 0.5 h, ZSM-5 molecular sieves were obtained by exchange after calcination. The specific parameters of this embodiment are shown in Table 1.

實施例3Example 3

將矽源(30%矽溶膠),鹼源(NaOH),鋁源(偏鋁酸鈉),模板劑(四丙基溴化銨),按照 200 SiO 2: 0.13 Al 2O 3: 25NaOH : 10TPABr: 3000 H 2O的比例混合製備成凝膠,添加市售ZSM-5晶種8wt%(以SiO 2質量計)。置於晶化釜中,在160℃下晶化36 h,晶化完成後水冷,洗滌。分別在10℃、25℃下微波乾燥1.5 h和0.5 h後,焙燒後經交換得到ZSM-5分子篩。本實施例的具體參數見表1所示。 Silicon source (30% silica sol), alkali source (NaOH), aluminum source (sodium metaaluminate), template (tetrapropylammonium bromide), according to 200 SiO 2 : 0.13 Al 2 O 3 : 25NaOH : 10TPABr : The ratio of 3000 H 2 O was mixed to prepare a gel, and 8wt% of commercially available ZSM-5 seeds (calculated by SiO 2 mass) were added. Place it in a crystallization kettle, crystallize at 160°C for 36 h, cool with water after crystallization, and wash. After microwave drying at 10℃ and 25℃ for 1.5 h and 0.5 h, ZSM-5 molecular sieves were obtained by exchange after calcination. The specific parameters of this embodiment are shown in Table 1.

實施例4Example 4

將矽源(30%矽溶膠),鹼源(NaOH),鋁源(偏鋁酸鈉),模板劑(四丙基溴化銨),按照 200 SiO 2: 0.10 Al 2O 3: 25NaOH : 10TPABr: 3000 H 2O的比例混合製備成凝膠,添加市售ZSM-5晶種3wt%(以SiO 2質量計)。置於晶化釜中,在160℃下晶化40 h,晶化完成後水冷,洗滌。分別在10℃、25℃下微波乾燥1.5 h和0.5 h後,焙燒後經交換得到ZSM-5分子篩。本實施例的具體參數見表1所示。 Silicon source (30% silica sol), alkali source (NaOH), aluminum source (sodium metaaluminate), template (tetrapropylammonium bromide), according to 200 SiO 2 : 0.10 Al 2 O 3 : 25NaOH : 10TPABr : The ratio of 3000 H 2 O is mixed to prepare a gel, and 3wt% of commercially available ZSM-5 seeds (calculated by SiO 2 mass) are added. Place it in a crystallization kettle, crystallize at 160°C for 40 h, cool with water after crystallization, and wash. After microwave drying at 10℃ and 25℃ for 1.5 h and 0.5 h, ZSM-5 molecular sieves were obtained by exchange after calcination. The specific parameters of this embodiment are shown in Table 1.

實施例5Example 5

將矽源(30%矽溶膠),鹼源(NaOH),鋁源(偏鋁酸鈉),模板劑(四丙基溴化銨),按照 200 SiO 2: 0.08 Al 2O 3: 25NaOH : 10TPABr: 3000 H 2O的比例混合製備成凝膠,添加市售ZSM-5晶種3wt%(以SiO 2質量計)。置於晶化釜中,在170℃下晶化20 h,晶化完成後水冷,洗滌。分別在10℃、25℃下微波乾燥1.5 h和0.5 h後,焙燒後經交換得到ZSM-5分子篩。本實施例的具體參數見表1所示。 Silicon source (30% silica sol), alkali source (NaOH), aluminum source (sodium metaaluminate), template (tetrapropylammonium bromide), according to 200 SiO 2 : 0.08 Al 2 O 3 : 25NaOH : 10TPABr : The ratio of 3000 H 2 O is mixed to prepare a gel, and 3wt% of commercially available ZSM-5 seeds (calculated by SiO 2 mass) are added. Place it in a crystallization kettle, crystallize at 170°C for 20 h, cool with water after crystallization, and wash. After microwave drying at 10℃ and 25℃ for 1.5 h and 0.5 h, ZSM-5 molecular sieves were obtained by exchange after calcination. The specific parameters of this embodiment are shown in Table 1.

實施例6Example 6

將矽源(30%矽溶膠),鹼源(NaOH),鋁源(偏鋁酸鈉),模板劑(四丙基溴化銨),按照 200 SiO 2: 0.067 Al 2O 3: 25NaOH : 10TPABr: 3000 H 2O的比例混合製備成凝膠,添加市售ZSM-5晶種3wt%(以SiO 2質量計)。置於晶化釜中,在180℃下晶化24 h,晶化完成後水冷,洗滌。分別在10℃、25℃下微波乾燥1.5 h和0.5 h後,焙燒後經交換得到ZSM-5分子篩。本實施例的具體參數見表1所示。 Silicon source (30% silica sol), alkali source (NaOH), aluminum source (sodium metaaluminate), template (tetrapropylammonium bromide), according to 200 SiO 2 : 0.067 Al 2 O 3 : 25NaOH : 10TPABr : The ratio of 3000 H 2 O is mixed to prepare a gel, and 3wt% of commercially available ZSM-5 seeds (calculated by SiO 2 mass) are added. Place it in a crystallization kettle, crystallize at 180°C for 24 h, cool with water after crystallization, and wash. After microwave drying at 10℃ and 25℃ for 1.5 h and 0.5 h, ZSM-5 molecular sieves were obtained by exchange after calcination. The specific parameters of this embodiment are shown in Table 1.

實施例7Example 7

將矽源(30%矽溶膠),鹼源(NaOH),鋁源(偏鋁酸鈉),模板劑(四丙基溴化銨),按照 200 SiO 2: 0.057 Al 2O 3: 25NaOH : 10TPABr: 3000 H 2O的比例混合製備成凝膠,添加市售ZSM-5晶種3wt%(以SiO 2質量計)。置於晶化釜中,在150℃下晶化48 h,晶化完成後水冷,洗滌。分別在10℃、25℃下微波乾燥1.5 h和0.5 h後,焙燒後經交換得到ZSM-5分子篩。本實施例的具體參數見表1所示。 Silicon source (30% silica sol), alkali source (NaOH), aluminum source (sodium metaaluminate), template (tetrapropylammonium bromide), according to 200 SiO 2 : 0.057 Al 2 O 3 : 25NaOH : 10TPABr : The ratio of 3000 H 2 O is mixed to prepare a gel, and 3wt% of commercially available ZSM-5 seeds (calculated by SiO 2 mass) are added. Place it in a crystallization kettle, crystallize at 150°C for 48 h, and then water-cool and wash after the crystallization is complete. After microwave drying at 10℃ and 25℃ for 1.5 h and 0.5 h, ZSM-5 molecular sieves were obtained by exchange after calcination. The specific parameters of this embodiment are shown in Table 1.

實施例8Example 8

將矽源(30%矽溶膠),鹼源(NaOH),鋁源(偏鋁酸鈉),模板劑(四丙基溴化銨),按照 200 SiO 2: 0.05 Al 2O 3: 25NaOH : 10TPABr: 3000 H 2O的比例混合製備成凝膠,添加市售ZSM-5晶種3wt%(以SiO 2質量計)。置於晶化釜中,在170℃下晶化30 h,晶化完成後水冷,洗滌。分別在10℃、25℃下微波乾燥1.5 h和0.5 h後,焙燒後經交換得到ZSM-5分子篩。本實施例的具體參數見表1所示。 Silicon source (30% silica sol), alkali source (NaOH), aluminum source (sodium metaaluminate), template (tetrapropylammonium bromide), according to 200 SiO 2 : 0.05 Al 2 O 3 : 25NaOH : 10TPABr : The ratio of 3000 H 2 O is mixed to prepare a gel, and 3wt% of commercially available ZSM-5 seeds (calculated by SiO 2 mass) are added. Place it in a crystallization kettle, crystallize at 170°C for 30 h, and then water-cool and wash after the crystallization is complete. After microwave drying at 10℃ and 25℃ for 1.5 h and 0.5 h, ZSM-5 molecular sieves were obtained by exchange after calcination. The specific parameters of this embodiment are shown in Table 1.

比較例1Comparative example 1

將矽源(30%的矽溶膠),鹼源(NaOH),鋁源(偏鋁酸鈉),模板劑(四乙基溴化銨),按照 200 SiO 2: 0.66 Al 2O 3: 25NaOH : 12TPABr : 3000 H 2O的比例混合製備成凝膠,添加市售ZSM-5晶種5wt%(以SiO 2質量計)。置於晶化釜中,在160℃下晶化48 h,晶化完成後水冷,洗滌、乾燥、焙燒後經交換得到ZSM-5分子篩。本比較例的具體參數見表1所示。 Silicon source (30% silica sol), alkali source (NaOH), aluminum source (sodium metaaluminate), template (tetraethylammonium bromide), according to 200 SiO 2 : 0.66 Al 2 O 3 : 25NaOH : The ratio of 12TPABr: 3000 H 2 O was mixed to form a gel, and 5 wt% of commercially available ZSM-5 seed crystals (calculated as SiO 2 mass) were added. Put it in a crystallization kettle, crystallize at 160°C for 48 h, cool with water after crystallization, wash, dry, roast and exchange to obtain ZSM-5 molecular sieve. The specific parameters of this comparative example are shown in Table 1.

比較例2Comparative example 2

將矽源(30%的矽溶膠),鹼源(NaOH),鋁源(偏鋁酸鈉),模板劑(四丙基溴化銨),按照 200 SiO 2: 0.33 Al 2O 3: 25NaOH : 12TPABr : 3000 H 2O的比例混合製備成凝膠,添加市售ZSM-5晶種 3wt%(以SiO 2質量計)。置於晶化釜中,在160℃下晶化48 h,晶化完成後水冷,洗滌、乾燥、焙燒後經交換得到ZSM-5分子篩。本比較例的具體參數見表1所示。 Silicon source (30% silica sol), alkali source (NaOH), aluminum source (sodium metaaluminate), template (tetrapropylammonium bromide), according to 200 SiO 2 : 0.33 Al 2 O 3 : 25NaOH : 12TPABr : 3000 H 2 O was mixed to form a gel, and 3wt% of commercially available ZSM-5 seeds (calculated by SiO 2 mass) were added. Put it in a crystallization kettle, crystallize at 160°C for 48 h, cool with water after crystallization, wash, dry, roast and exchange to obtain ZSM-5 molecular sieve. The specific parameters of this comparative example are shown in Table 1.

比較例3Comparative example 3

將矽源(30%的矽溶膠),鹼源(NaOH),鋁源(偏鋁酸鈉),模板劑(四丙基溴化銨),按照 200 SiO 2: 0.033 Al 2O 3: 25NaOH : 12TPABr : 3000 H 2O的比例混合製備成凝膠,添加市售ZSM-5晶種 8wt%(以SiO 2質量計)。置於晶化釜中,在160℃下晶化48 h,晶化完成後水冷,洗滌、乾燥、焙燒後經交換得到ZSM-5分子篩。本比較例的具體參數見表1所示。 Silicon source (30% silica sol), alkali source (NaOH), aluminum source (sodium metaaluminate), template agent (tetrapropylammonium bromide), according to 200 SiO 2 : 0.033 Al 2 O 3 : 25NaOH : The ratio of 12TPABr: 3000 H 2 O was mixed to form a gel, and 8wt% of commercially available ZSM-5 seed crystals (based on SiO 2 mass) were added. Put it in a crystallization kettle, crystallize at 160°C for 48 h, cool with water after crystallization, wash, dry, roast and exchange to obtain ZSM-5 molecular sieve. The specific parameters of this comparative example are shown in Table 1.

比較例4Comparative example 4

將矽源(30%矽溶膠),鹼源(NaOH),鋁源(偏鋁酸鈉),模板劑(四丙基溴化銨),按照 200 SiO 2: 0.025 Al 2O 3: 25NaOH : 10TPABr : 3000 H 2O的比例混合製備成凝膠,添加市售ZSM-5晶種 3wt%(以SiO 2質量計)。置於晶化釜中,在160℃下晶化48 h,晶化完成後水冷,洗滌、乾燥、焙燒後經交換得到ZSM-5分子篩。本比較例的具體參數見表1所示。 Silicon source (30% silica sol), alkali source (NaOH), aluminum source (sodium metaaluminate), template (tetrapropylammonium bromide), according to 200 SiO 2 : 0.025 Al 2 O 3 : 25NaOH : 10TPABr : The ratio of 3000 H 2 O is mixed to prepare a gel, and 3wt% of commercially available ZSM-5 seeds (calculated by SiO 2 mass) are added. Put it in a crystallization kettle, crystallize at 160°C for 48 h, cool with water after crystallization, wash, dry, roast and exchange to obtain ZSM-5 molecular sieve. The specific parameters of this comparative example are shown in Table 1.

比較例5Comparative Example 5

將矽源(30%的矽溶膠),鹼源(NaOH),鋁源(偏鋁酸鈉),模板劑(四乙基溴化銨),按照 200 SiO 2: 0.20 Al 2O 3: 25NaOH : 10TPABr : 3000 H 2O的比例混合製備成凝膠,添加市售ZSM-5晶種 3wt%(以SiO 2質量計)。置於晶化釜中,在160℃下晶化48 h,晶化完成後水冷,洗滌、乾燥、焙燒後經交換得到ZSM-5分子篩。本比較例的具體參數見表1所示。 Silicon source (30% silica sol), alkali source (NaOH), aluminum source (sodium metaaluminate), template agent (tetraethylammonium bromide), according to 200 SiO 2 : 0.20 Al 2 O 3 : 25NaOH : The ratio of 10TPABr : 3000 H 2 O was mixed to form a gel, and 3wt% of commercially available ZSM-5 seeds (calculated by SiO 2 mass) were added. Put it in a crystallization kettle, crystallize at 160°C for 48 h, cool with water after crystallization, wash, dry, roast and exchange to obtain ZSM-5 molecular sieve. The specific parameters of this comparative example are shown in Table 1.

比較例6Comparative example 6

將矽源(30%的矽溶膠),鹼源(NaOH),鋁源(偏鋁酸鈉),模板劑(四乙基溴化銨),按照 200 SiO 2: 0.10 Al 2O 3: 25NaOH : 10TPABr : 3000 H 2O的比例混合製備成凝膠,添加市售ZSM-5晶種 5%(以SiO 2質量計)。置於晶化釜中,在160℃下晶化48 h,晶化完成後水冷,洗滌、乾燥、焙燒後經交換得到ZSM-5分子篩。本比較例的具體參數見表1所示。 Silicon source (30% silica sol), alkali source (NaOH), aluminum source (sodium metaaluminate), template (tetraethylammonium bromide), according to 200 SiO 2 : 0.10 Al 2 O 3 : 25NaOH : The ratio of 10TPABr : 3000 H 2 O was mixed to form a gel, and 5% of commercially available ZSM-5 seed crystals (based on SiO 2 mass) were added. Put it in a crystallization kettle, crystallize at 160°C for 48 h, cool with water after crystallization, wash, dry, roast and exchange to obtain ZSM-5 molecular sieve. The specific parameters of this comparative example are shown in Table 1.

比較例7Comparative Example 7

將矽源(30%的矽溶膠),鹼源(NaOH),鋁源(偏鋁酸鈉),模板劑(正丁胺),按照 200 SiO 2: 0.20 Al 2O 3: 25NaOH : 40BA : 3000 H 2O的比例混合製備成凝膠,添加市售ZSM-5晶種 3wt%(以SiO 2質量計)。置於晶化釜中,在160℃下晶化48 h,晶化完成後水冷,洗滌、乾燥、焙燒後經交換得到ZSM-5分子篩。本比較例的具體參數見表1所示。 Silicon source (30% silica sol), alkali source (NaOH), aluminum source (sodium metaaluminate), template (n-butylamine), according to 200 SiO 2 : 0.20 Al 2 O 3 : 25NaOH : 40BA : 3000 The ratio of H 2 O was mixed to form a gel, and 3wt% of commercially available ZSM-5 seeds (calculated by SiO 2 mass) were added. Put it in a crystallization kettle, crystallize at 160°C for 48 h, cool with water after crystallization, wash, dry, roast and exchange to obtain ZSM-5 molecular sieve. The specific parameters of this comparative example are shown in Table 1.

比較例8Comparative Example 8

將矽源(30%的矽溶膠),鹼源(NaOH),鋁源(偏鋁酸鈉),模板劑(正丁胺),按照 200 SiO 2: 0.10 Al 2O 3: 25NaOH : 40BA : 3000 H 2O的比例混合製備成凝膠,添加市售ZSM-5晶種 5wt%(以SiO 2質量計)。置於晶化釜中,在160℃下晶化48 h,晶化完成後水冷,洗滌、乾燥、焙燒後經交換得到ZSM-5分子篩。本比較例的具體參數見表1所示。 Silicon source (30% silica sol), alkali source (NaOH), aluminum source (sodium metaaluminate), template (n-butylamine), according to 200 SiO 2 : 0.10 Al 2 O 3 : 25NaOH : 40BA : 3000 The ratio of H 2 O is mixed to prepare a gel, and 5 wt% of commercially available ZSM-5 seeds (calculated by SiO 2 mass) are added. Put it in a crystallization kettle, crystallize at 160°C for 48 h, cool with water after crystallization, wash, dry, roast and exchange to obtain ZSM-5 molecular sieve. The specific parameters of this comparative example are shown in Table 1.

比較例9Comparative Example 9

將矽源(30%的矽溶膠),鹼源(NaOH),鋁源(偏鋁酸鈉),模板劑(正丁胺),按照 200 SiO 2: 0.10 Al 2O 3: 25NaOH : 40BA : 2000 H 2O的比例混合製備成凝膠,添加市售ZSM-5晶種 5wt%(以SiO 2質量計)。置於晶化釜中,在160℃下晶化48 h,晶化完成後水冷,洗滌、乾燥、焙燒後經交換得到ZSM-5分子篩。本比較例的具體參數見表1所示。 Silicon source (30% silica sol), alkali source (NaOH), aluminum source (sodium metaaluminate), template (n-butylamine), according to 200 SiO 2 : 0.10 Al 2 O 3 : 25NaOH : 40BA : 2000 The ratio of H 2 O is mixed to prepare a gel, and 5 wt% of commercially available ZSM-5 seeds (calculated by SiO 2 mass) are added. Put it in a crystallization kettle, crystallize at 160°C for 48 h, cool with water after crystallization, wash, dry, roast and exchange to obtain ZSM-5 molecular sieve. The specific parameters of this comparative example are shown in Table 1.

比較例10Comparative Example 10

將矽源(30%的矽溶膠),鹼源(NaOH),鋁源(偏鋁酸鈉),模板劑(正丁胺),按照 200 SiO 2: 0.10Al 2O 3: 25NaOH : 50BA : 3000 H 2O的比例混合製備成凝膠,添加市售ZSM-5晶種5wt%(以SiO 2質量計)。置於晶化釜中,在160℃下晶化48 h,晶化完成後水冷,洗滌、乾燥、焙燒後經交換得到ZSM-5分子篩。本比較例的具體參數見表1所示。 Silicon source (30% silica sol), alkali source (NaOH), aluminum source (sodium metaaluminate), template (n-butylamine), according to 200 SiO 2 : 0.10Al 2 O 3 : 25NaOH : 50BA : 3000 The ratio of H 2 O is mixed to prepare a gel, and 5 wt% of commercially available ZSM-5 seeds (calculated by SiO 2 mass) are added. Put it in a crystallization kettle, crystallize at 160°C for 48 h, cool with water after crystallization, wash, dry, roast and exchange to obtain ZSM-5 molecular sieve. The specific parameters of this comparative example are shown in Table 1.

性能測試Performance Testing

相關參數測試方法如下:The relevant parameter test methods are as follows:

分子篩的孔結構數據採用Micrometics ASAP 2420型靜態氮吸附儀測定。The pore structure data of molecular sieves were determined by Micrometics ASAP 2420 static nitrogen adsorption instrument.

測定條件:將樣品放置於樣品處理系統中,在350℃下抽真空至1.33×10-2 Pa,保溫保壓15 h,淨化樣品;Measurement conditions: place the sample in the sample processing system, vacuumize to 1.33×10-2 Pa at 350°C, hold the temperature and pressure for 15 hours, and purify the sample;

在液氮-196℃下,測量淨化樣品在不同比壓p/p0條件下對氮氣的吸附量和脫附量,得到氮氣吸附-脫附等溫線;At liquid nitrogen -196°C, measure the nitrogen adsorption and desorption of the purified sample under different specific pressure p/p0 conditions, and obtain the nitrogen adsorption-desorption isotherm;

利用BET公式計算BET總比表面(SBET)(具體數值未示出,應用於微孔比表面積的計算過程中),採用t-plot方法計算樣品的微孔比表面積(Smicro)和微孔體積(Vmicro),採用BJH法計算樣品的介孔體積(Vmeso)。The BET total specific surface area (SBET) was calculated using the BET formula (the specific value is not shown, and it is used in the calculation process of the micropore specific surface area), and the micropore specific surface area (Smicro) and micropore volume of the sample were calculated by the t-plot method ( Vmicro), the mesopore volume (Vmeso) of the samples was calculated by the BJH method.

測試一 分子篩矽鋁比影響Test 1 Effect of Molecular Sieve Si-Al Ratio

1、對水和VOCs組分吸附性能的影響1. Influence on the adsorption performance of water and VOCs components

分子篩矽鋁比的變化,影響其對水和VOCs組分的吸附性能,故參照國家標準GB6287-1986《分子篩靜態水吸附測定方法》分別測試實施例1-8和比較例1-10中分子篩樣品的疏水性能,同時選取幾種常見的有機物作為VOCs氣體進行測試。實驗結果見表1。 表1 沸石分子篩的孔結構參數及靜態水和VOCs吸附量 實施例 矽鋁比 微孔孔容積與介孔孔容積比值 微孔比表面積S micro(m 2/g) 微孔(nm) 介孔(nm) 水(%) 甲苯(%) 乙酸乙酯(%) 環己烯(%) 實施例1 800 0.24 69.03 0.6-1.5 2-10 1.21 11.67 11.85 7.55 實施例2 1000 0.28 67.07 0.5-1.4 2-10 1.19 11.70 11.90 7.59 實施例3 1500 0.29 70.56 0.5-1.5 2-10 1.20 11.64 11.88 7.52 實施例4 2000 0.35 71.92 0.5-1.3 2-10 1.18 11.74 11.92 7.61 實施例5 2500 0.27 70.03 0.6-1.5 2-10 1.21 11.67 11.87 7.63 實施例6 3000 0.28 69.15 0.5-1.5 2-10 1.17 11.64 11.92 7.55 實施例7 3500 0.32 68.99 0.5-1.4 2-10 1.20 11.70 11.89 7.57 實施例8 4000 0.30 71.87 0.6-1.4 2-10 1.22 11.76 11.94 7.64 比較例1 300 0.47 126.03 1.2-2.0 2-10 3.25 10.47 11.08 7.18 比較例2 600 0.46 127.11 0.8-1.8 2-10 3.31 10.60 11.11 7.23 比較例3 6000 0.22 95.87 0.5-1.5 2-20 1.06 12.27 12.68 7.99 比較例4 8000 0.20 92.85 0.5-1.5 2-20 1.13 12.17 12.59 8.00 比較例5 1000 0.22 70.92 0.5-1.5 2-10 1.19 11.72 11.84 7.55 比較例6 2000 0.40 69.03 0.5-1.5 2-10 1.21 11.69 11.90 7.60 比較例7 1000 0.26 121.09 0.5-1.5 2-10 1.11 11.65 11.82 7.52 比較例8 2000 0.30 120.03 0.5-1.4 2.0-1.0 1.16 11.70 11.96 7.61 比較例9 2000 0.25 69.13 0.5-2.0 2.0-10.0 1.17 11.67 11.80 7.63 比較例10 2000 0.29 68.09 0.5-1.5 2.0-25.0 1.20 11.69 11.92 7.58 The change of the silicon-aluminum ratio of the molecular sieve affects its adsorption performance on water and VOCs components, so the molecular sieve samples in Examples 1-8 and Comparative Examples 1-10 were tested respectively with reference to the national standard GB6287-1986 "Molecular Sieve Static Water Adsorption Measurement Method" At the same time, several common organic compounds were selected as VOCs gas for testing. The experimental results are shown in Table 1. Table 1 Pore structure parameters and static water and VOCs adsorption capacity of zeolite molecular sieves Example Si-aluminum ratio The ratio of micropore volume to mesopore volume Micropore specific surface area S micro (m 2 /g) Micropore (nm) Mesopores (nm) water(%) Toluene (%) Ethyl acetate (%) Cyclohexene(%) Example 1 800 0.24 69.03 0.6-1.5 2-10 1.21 11.67 11.85 7.55 Example 2 1000 0.28 67.07 0.5-1.4 2-10 1.19 11.70 11.90 7.59 Example 3 1500 0.29 70.56 0.5-1.5 2-10 1.20 11.64 11.88 7.52 Example 4 2000 0.35 71.92 0.5-1.3 2-10 1.18 11.74 11.92 7.61 Example 5 2500 0.27 70.03 0.6-1.5 2-10 1.21 11.67 11.87 7.63 Example 6 3000 0.28 69.15 0.5-1.5 2-10 1.17 11.64 11.92 7.55 Example 7 3500 0.32 68.99 0.5-1.4 2-10 1.20 11.70 11.89 7.57 Example 8 4000 0.30 71.87 0.6-1.4 2-10 1.22 11.76 11.94 7.64 Comparative example 1 300 0.47 126.03 1.2-2.0 2-10 3.25 10.47 11.08 7.18 Comparative example 2 600 0.46 127.11 0.8-1.8 2-10 3.31 10.60 11.11 7.23 Comparative example 3 6000 0.22 95.87 0.5-1.5 2-20 1.06 12.27 12.68 7.99 Comparative example 4 8000 0.20 92.85 0.5-1.5 2-20 1.13 12.17 12.59 8.00 Comparative Example 5 1000 0.22 70.92 0.5-1.5 2-10 1.19 11.72 11.84 7.55 Comparative Example 6 2000 0.40 69.03 0.5-1.5 2-10 1.21 11.69 11.90 7.60 Comparative Example 7 1000 0.26 121.09 0.5-1.5 2-10 1.11 11.65 11.82 7.52 Comparative Example 8 2000 0.30 120.03 0.5-1.4 2.0-1.0 1.16 11.70 11.96 7.61 Comparative Example 9 2000 0.25 69.13 0.5-2.0 2.0-10.0 1.17 11.67 11.80 7.63 Comparative Example 10 2000 0.29 68.09 0.5-1.5 2.0-25.0 1.20 11.69 11.92 7.58

(1)當分子篩的矽鋁比小於800(比較例1和比較例2)時,水的吸附容量高於3.0%;微孔孔容積與介孔孔容積的比值高於0.40,微孔比表面積高於120 m 2/g,微孔孔徑範圍為0.8-2.0 nm; (1) When the silicon-aluminum ratio of the molecular sieve is less than 800 (comparative example 1 and comparative example 2), the adsorption capacity of water is higher than 3.0%; the ratio of micropore volume to mesopore volume is higher than 0.40, and the micropore specific surface area Higher than 120 m 2 /g, the pore diameter range is 0.8-2.0 nm;

(2)當分子篩的矽鋁比大於4000(比較例3和比較例4)時,VOCs組分(甲苯)的吸附容量高於12%,微孔孔容積與介孔孔容積的比值低於0.24,微孔比表面積高於90 m 2/g,介孔孔徑範圍為2.0-20 nm; (2) When the silicon-aluminum ratio of the molecular sieve is greater than 4000 (comparative example 3 and comparative example 4), the adsorption capacity of the VOCs component (toluene) is higher than 12%, and the ratio of the micropore volume to the mesopore volume is lower than 0.24 , the micropore specific surface area is higher than 90 m 2 /g, and the mesopore diameter ranges from 2.0-20 nm;

(3)當分子篩的矽鋁比在800-4000之間,矽鋁比的變化,水和VOCs組分的吸附容量變化較小,水的吸附容量低於1.25%,VOCs組分(甲苯)的吸附容量低於12%,更適宜於製作吸音材料。(3) When the silicon-aluminum ratio of the molecular sieve is between 800-4000, the adsorption capacity of water and VOCs components changes little with the change of silicon-aluminum ratio, the adsorption capacity of water is less than 1.25%, and the adsorption capacity of VOCs components (toluene) The adsorption capacity is less than 12%, which is more suitable for making sound-absorbing materials.

2、對耐老化性能的影響2. Influence on aging resistance

將實施例1-8、比較例1和比較例2、比較例3和比較例4的樣品填充在揚聲器系統的後腔中,考察樣品的耐老化性能,結果見表2。The samples of Examples 1-8, Comparative Examples 1 and 2, and Comparative Examples 3 and 4 were filled in the rear cavity of the speaker system, and the aging resistance of the samples was investigated. The results are shown in Table 2.

耐老化性能測定方法:將分子篩樣品、水或VOCs組分一起置於試劑瓶內,蓋好蓋子。將試劑瓶放入85℃烘箱中烘2-4h,完成後取出冷卻至室溫,測定放入前後諧振頻率ΔF0變化。其中,ΔF0越小代表越容易衰減,耐老化性能越差。通常,ΔF0在0-30之間,樣品的耐老化性能最弱,30-60之間,耐老化性能較弱,60-∞,耐老化性能好。 表2 在揚聲器後腔中添加樣品後ΔF0的變化 產品 吸附水分及VOCs組分後的產品 樣品 空腔F0(Hz) 填充樣品後F0(Hz) F0降低值ΔF0(Hz) 填充吸附4h樣品後F0(Hz) 填充吸附4h樣品F0降低值ΔF0(Hz) 實施例1 1002 851 151 872 130 實施例2 1004 848 156 870 134 實施例3 1001 850 151 877 123 實施例4 1003 852 151 863 140 實施例5 1005 844 161 874 131 實施例6 1007 851 156 861 146 實施例7 1006 857 149 871 135 實施例8 1002 854 148 878 124 比較例1 1003 860 143 985 18 比較例2 1006 867 139 980 26 比較例3 1004 869 135 954 50 比較例4 1006 871 135 948 54 Determination method of aging resistance performance: put the molecular sieve sample, water or VOCs components together in the reagent bottle, and close the lid. Put the reagent bottle in an oven at 85°C for 2-4 hours, take it out and cool it to room temperature, and measure the change of resonance frequency ΔF0 before and after putting it in. Among them, the smaller ΔF0 represents the easier attenuation and the worse the aging resistance. Generally, when ΔF0 is between 0-30, the aging resistance of the sample is the weakest, between 30-60, the aging resistance is weak, and between 60-∞, the aging resistance is good. Table 2 Changes in ΔF0 after adding samples in the speaker cavity product Products after absorbing moisture and VOCs components sample Cavity F0 (Hz) F0 (Hz) after filling the sample F0 reduction value ΔF0 (Hz) F0 (Hz) after filling and absorbing the sample for 4 hours Filling adsorption 4h sample F0 decrease value ΔF0 (Hz) Example 1 1002 851 151 872 130 Example 2 1004 848 156 870 134 Example 3 1001 850 151 877 123 Example 4 1003 852 151 863 140 Example 5 1005 844 161 874 131 Example 6 1007 851 156 861 146 Example 7 1006 857 149 871 135 Example 8 1002 854 148 878 124 Comparative example 1 1003 860 143 985 18 Comparative example 2 1006 867 139 980 26 Comparative example 3 1004 869 135 954 50 Comparative example 4 1006 871 135 948 54

從表2數據可以看出,實施例1-8、比較例1-4的樣品填充在揚聲器後腔中,均能降低F0,且相差並不明顯。但當樣品吸附水或者VOCs組分後,再測試F0,就會發現本發明實施例1-8的分子篩樣品(800<SAR<4000)仍能夠有效地降低F0,而比較例1-4的其他分子篩(SAR>4000,SAR<800)對F0的降低不明顯。It can be seen from the data in Table 2 that the samples of Examples 1-8 and Comparative Examples 1-4 are filled in the rear cavity of the loudspeaker, and both can reduce F0, and the difference is not obvious. However, when the sample absorbs water or VOCs components, and then test F0, it will be found that the molecular sieve samples (800<SAR<4000) of Examples 1-8 of the present invention can still effectively reduce F0, while other samples of Comparative Examples 1-4 Molecular sieves (SAR>4000, SAR<800) did not significantly reduce F0.

其中,SAR<800的樣品對F0的降低值最小,低於30,樣品的抗老化性能最弱;SAR>4000的樣品對F0的降低值較小,在30-60之間,樣品的抗老化性能相對較弱;而本發明的樣品對F0的降低值均大於60,說明樣品具有較優的抗老化性能。Among them, the samples with SAR<800 have the smallest decrease in F0, below 30, the anti-aging performance of the sample is the weakest; the samples with SAR>4000 have a small decrease in F0, between 30-60, the anti-aging performance of the sample is the weakest. The performance is relatively weak; while the samples of the present invention have a reduction value of F0 greater than 60, indicating that the samples have better anti-aging performance.

3、對晶體結構的影響3. Effect on crystal structure

圖1為根據本發明實施例1-4和比較例1、比較例4的XRD圖譜;其中:橫坐標表示XRD衍射儀掃描的2θ角度範圍,縱坐標表示衍射峰強度。Fig. 1 is the XRD pattern according to the embodiment 1-4 of the present invention and comparative example 1, comparative example 4; Wherein: abscissa represents the 2θ angle range that XRD diffractometer scans, and ordinate represents diffraction peak intensity.

圖中,A-D代表本發明實施例1-4所提供的分子篩樣品(矽鋁比800-2000),E代表比較例1(矽鋁比300)的樣品,F代表比較例4(矽鋁比8000)的樣品。從圖中可以看出,分子篩矽鋁比的變化不會對樣品的晶體結構產生影響。In the figure, A-D represents the molecular sieve samples provided by Examples 1-4 of the present invention (silicon-aluminum ratio 800-2000), E represents the sample of Comparative Example 1 (silicon-aluminum ratio 300), F represents comparative example 4 (silicon-aluminum ratio 8000 )sample. It can be seen from the figure that the change of the silicon-aluminum ratio of the molecular sieve will not affect the crystal structure of the sample.

測試二 微孔的累積孔容積與介孔的累積孔容積比影響Test 2 Effect of Cumulative Pore Volume of Micropores and Cumulative Pore Volume of Mesopores

分子篩具有微孔和介孔孔道結構,微孔主要用於吸收、容納空氣分子,而介孔除了能容納空氣分子,還能讓空氣分子快速進出微孔,從而使分子篩材料具有良好的吸音效果。由於介孔和微孔之間是相互貫通的,二者可保證氣體快速的傳輸、儲存和對流。因而,分子篩微孔和介孔的孔容積的比值也可以在一定程度上反映分子篩材料的吸附、脫附效果。Molecular sieves have a micropore and mesoporous channel structure. The micropores are mainly used to absorb and accommodate air molecules, while the mesopores can not only accommodate air molecules, but also allow air molecules to quickly enter and exit the micropores, so that the molecular sieve material has a good sound absorption effect. Since the mesopores and micropores are interconnected, the two can ensure rapid gas transmission, storage and convection. Therefore, the ratio of the pore volume of molecular sieve micropores and mesopores can also reflect the adsorption and desorption effects of molecular sieve materials to a certain extent.

比較例5和6矽鋁比在800-4000之間,微孔孔容積與介孔孔容積比值分別為0.22和0.40,將其與實施例2和實施例4進行抗老化性能實驗研究,結果見表3。Comparative examples 5 and 6 have silicon-aluminum ratios between 800-4000, and the ratios of micropore volume to mesopore volume are 0.22 and 0.40 respectively, and they are compared with examples 2 and 4 for anti-aging performance experiments. The results are shown in table 3.

表3 在揚聲器後腔中添加樣品後ΔF0的變化 產品 吸附水分及VOCs組分後的產品 樣品 矽鋁比 微孔孔容積和介孔孔容積的比值 空腔F0(Hz) 填充樣品後F0(Hz) ΔF0(Hz) 填充吸附4h樣品後F0(Hz) ΔF0(Hz) 實施例2 1000 0.28 1004 848 156 870 134 實施例4 2000 0.35 1003 852 151 863 140 比較例5 1000 0.22 1003 860 143 952 51 比較例6 2000 0.40 1006 877 129 960 40 Table 3 Changes in ΔF0 after adding samples in the speaker cavity product Products after absorbing moisture and VOCs components sample Si-aluminum ratio The ratio of micropore volume to mesopore volume Cavity F0 (Hz) After filling the sample F0 (Hz) ΔF0 (Hz) F0 (Hz) after filling and absorbing the sample for 4 hours ΔF0 (Hz) Example 2 1000 0.28 1004 848 156 870 134 Example 4 2000 0.35 1003 852 151 863 140 Comparative Example 5 1000 0.22 1003 860 143 952 51 Comparative Example 6 2000 0.40 1006 877 129 960 40

從表3數據可以看出,實施例2、實施例4、比較例5、比較例6的樣品填充在揚聲器後腔中,均能降低F0,且相差並不明顯。但當樣品吸附水或者VOCs組分後,再測試F0,就會發現本發明實施例的分子篩樣品(800<SAR<4000)仍能夠有效地降低F0(均>60);比較例5和6降低效果較差,對F0的降低值在30-60之間,說明樣品的抗老化性能較弱,即本發明實施例的樣品具較優的抗老化性能。It can be seen from the data in Table 3 that the samples of Example 2, Example 4, Comparative Example 5, and Comparative Example 6 are filled in the rear cavity of the loudspeaker, all of which can reduce F0, and the difference is not obvious. However, when the sample absorbs water or VOCs components, and then test F0, it will be found that the molecular sieve samples (800<SAR<4000) of the embodiment of the present invention can still effectively reduce F0 (both>60); Comparative Examples 5 and 6 reduce The effect is poor, and the reduction value of F0 is between 30-60, indicating that the anti-aging performance of the sample is weak, that is, the sample of the embodiment of the present invention has better anti-aging performance.

通常情況下,微孔孔容積與介孔孔容積的比值越高,空氣分子的吸附、脫附性能越強,對發聲裝置箱體的等效擴容倍率越大,降低諧振頻率的效果越好。Generally, the higher the ratio of micropore volume to mesopore volume, the stronger the adsorption and desorption performance of air molecules, the greater the equivalent expansion ratio of the sound generating device box, and the better the effect of reducing the resonance frequency.

尤其是在微孔孔容積與介孔孔容積比值大於0.35時(比較例6為0.40),分子篩的微孔含量較高,大部分孔道結構的尺寸較小,阻礙了空氣的對流和空氣分子在分子篩之間的進出,從而影響了聲波的傳播,對F0的降低效果明顯下降。Especially when the ratio of micropore volume to mesopore volume is greater than 0.35 (comparative example 6 is 0.40), the micropore content of the molecular sieve is high, and the size of most of the pore structure is small, which hinders the convection of air and the air molecules in The entry and exit between molecular sieves affects the propagation of sound waves, and the effect of reducing F0 is significantly reduced.

測試三 微孔比表面積影響Test 3 Effect of Micropore Specific Surface Area

分子篩的比表面積是評價吸音材料吸附、脫附性能的又一重要參數。在一定範圍內,樣品的比表面積越大,對空氣分子的吸附能力越強,降低諧振頻率的效果越好。比表面積包括外比表面積和微孔比表面積,其中微孔比表面積是影響分子篩吸音材料的主要參數。The specific surface area of molecular sieve is another important parameter to evaluate the adsorption and desorption performance of sound-absorbing materials. Within a certain range, the larger the specific surface area of the sample, the stronger the adsorption capacity for air molecules and the better the effect of reducing the resonance frequency. Specific surface area includes external specific surface area and micropore specific surface area, among which micropore specific surface area is the main parameter affecting molecular sieve sound-absorbing materials.

比較例7和8矽鋁比在800-4000之間,微孔孔容積與介孔孔容積的比值在0.25左右,將其與實施例2和實施例4進行抗老化性能實驗研究,結果見表4。In comparative examples 7 and 8, the ratio of silicon to aluminum is between 800-4000, and the ratio of micropore volume to mesopore volume is about 0.25. The anti-aging performance experimental research is carried out with examples 2 and 4, and the results are shown in the table 4.

表4 在揚聲器後腔中添加樣品後ΔF0的變化 產品 吸附水分及VOCs組分後的產品 樣品 矽鋁比 微孔比表面積(m 2/g) 空腔F0(Hz) 填充樣品後F0(Hz) ΔF0(Hz) 填充吸附4h樣品後F0(Hz) ΔF0(Hz) 實施例2 1000 67.07 1004 848 156 870 134 實施例4 2000 71.92 1003 852 151 863 140 比較例7 1000 121.09 1003 862 141 950  53 比較例8 2000 120.03 1006 871 135 964 42 Table 4 Changes in ΔF0 after adding samples in the speaker cavity product Products after absorbing moisture and VOCs components sample Si-aluminum ratio Micropore specific surface area (m 2 /g) Cavity F0 (Hz) After filling the sample F0 (Hz) ΔF0 (Hz) F0 (Hz) after filling and absorbing the sample for 4 hours ΔF0 (Hz) Example 2 1000 67.07 1004 848 156 870 134 Example 4 2000 71.92 1003 852 151 863 140 Comparative Example 7 1000 121.09 1003 862 141 950 53 Comparative Example 8 2000 120.03 1006 871 135 964 42

從表4數據可以看出,實施例2、實施例4、比較例7、比較例8的樣品填充在揚聲器後腔中,均能降低F0,且相差並不明顯。但當樣品吸附水或者VOCs組分後,再測試F0,就會發現本發明實施例的分子篩樣品(800<SAR<4000)仍能夠有效地降低F0;比較例7和比較例8對F0的降低均較差,在30-60之間,說明樣品的抗老化性能相對較弱,即本發明實施例的樣品具較優的抗老化性能。通常情況下,微孔比表面積越大,空氣分子的吸附、脫附性能越強,對發聲裝置箱體的等效擴容倍率越大,降低諧振頻率的效果越好。但當微孔比表面積大於70m 2/g時,分子篩的微孔含量較高,大部分孔道結構的尺寸較小,阻礙了空氣的對流和空氣分子在分子篩之間的進出,從而影響了聲波的傳播,對F0的降低效果明顯下降。 It can be seen from the data in Table 4 that the samples of Example 2, Example 4, Comparative Example 7, and Comparative Example 8 are filled in the rear cavity of the loudspeaker, all of which can reduce F0, and the difference is not obvious. However, when the sample absorbs water or VOCs components, and then test F0, it will be found that the molecular sieve sample (800<SAR<4000) of the embodiment of the present invention can still effectively reduce F0; the reduction of F0 in Comparative Example 7 and Comparative Example 8 All are poor, between 30-60, indicating that the anti-aging performance of the sample is relatively weak, that is, the samples of the examples of the present invention have better anti-aging performance. Generally, the larger the specific surface area of micropores, the stronger the adsorption and desorption performance of air molecules, the larger the equivalent expansion ratio of the sound generating device box, and the better the effect of reducing the resonance frequency. However, when the micropore specific surface area is greater than 70m 2 /g, the molecular sieve has a high micropore content, and most of the pore structures are small in size, which hinders the convection of air and the entry and exit of air molecules between the molecular sieves, thus affecting the acoustic wave. spread, the reduction effect on F0 drops significantly.

測試四 微孔和介孔孔徑影響Test 4 Effect of Micropore and Mesopore Size

比較例9和10矽鋁比在800-4000之間,微孔孔容積與介孔孔容積的比值在0.25左右,微孔比表面積<72m 2/g,對微孔和介孔的孔徑範圍進行了調整,並與實施例2和實施例4進行抗老化性能實驗研究,結果見表5。 In Comparative Examples 9 and 10, the ratio of silicon to aluminum is between 800-4000, the ratio of micropore volume to mesopore volume is about 0.25, and the specific surface area of micropores is less than 72m 2 /g. adjusted, and carried out anti-aging performance experimental research with Example 2 and Example 4, the results are shown in Table 5.

表5 在揚聲器後腔中添加樣品後ΔF0的變化 產品 吸附水分及VOCs組分後的產品 樣品 矽鋁比 微孔 (nm) 介孔 (nm) 累積孔容積(cm 3/g) 空腔F0(Hz) 填充樣品後F0(Hz) ΔF0(Hz) 填充吸附4h樣品後F0(Hz) ΔF0(Hz) 實施例2 1000 0.5-1.4 2-10 0.1697 1004 848 156 870 134 實施例4 2000 0.5-1.3 2-10 0.1681 1003 852 151 863 140 比較例9 2000 0.5-2.0 2.0-10 0.1337 1005 866 139 955 50 比較例10 2000 0.5-1.5 2.0-25 0.1337 1007 870 137 967 40 Table 5 Changes in ΔF0 after adding samples in the speaker cavity product Products after absorbing moisture and VOCs components sample Si-aluminum ratio Micropore (nm) Mesopore (nm) Cumulative pore volume (cm 3 /g) Cavity F0 (Hz) After filling the sample F0 (Hz) ΔF0 (Hz) F0 (Hz) after filling and absorbing the sample for 4 hours ΔF0 (Hz) Example 2 1000 0.5-1.4 2-10 0.1697 1004 848 156 870 134 Example 4 2000 0.5-1.3 2-10 0.1681 1003 852 151 863 140 Comparative Example 9 2000 0.5-2.0 2.0-10 0.1337 1005 866 139 955 50 Comparative Example 10 2000 0.5-1.5 2.0-25 0.1337 1007 870 137 967 40

從表5數據可以看出,實施例2、實施例4、比較例9、比較例10的樣品填充在揚聲器後腔中,均能降低F0,且相差並不明顯。但當樣品吸附水或者VOCs組分後,再測試F0,就會發現本發明實施例的分子篩樣品(800<SAR<4000)仍能夠有效地降低F0(均>60);比較例9和10降低效果較差,在30-60之間,說明樣品的抗老化性能相對較弱,即本發明實施例的樣品具較優的抗老化性能。It can be seen from the data in Table 5 that the samples of Example 2, Example 4, Comparative Example 9, and Comparative Example 10 are filled in the rear cavity of the loudspeaker, all of which can reduce F0, and the difference is not obvious. However, when the sample absorbs water or VOCs components, and then test F0, it will be found that the molecular sieve samples (800<SAR<4000) of the embodiment of the present invention can still effectively reduce F0 (both>60); Comparative Examples 9 and 10 reduce The effect is poor, between 30-60, indicating that the anti-aging performance of the sample is relatively weak, that is, the sample of the embodiment of the present invention has better anti-aging performance.

通常情況下,分子篩樣品中微孔的孔徑範圍越窄,微孔的數量越多,這樣會增加樣品的累積孔容積,同時提高對空氣分子的吸附能力,而介孔孔徑範圍越窄,說明介孔孔道的完善程度越高,對空氣的吸附-脫附效果越好。如果介孔的孔徑範圍太寬,造成介孔與微孔之間的孔徑相差較大,導致空氣分子進出微孔並在介孔中的流動受阻,從而影響了聲波的傳播,對F0的降低效果明顯下降。Generally, the narrower the pore size range of the micropores in the molecular sieve sample, the more the number of micropores, which will increase the cumulative pore volume of the sample and improve the adsorption capacity for air molecules, while the narrower the pore size range of the mesopores, it means The higher the degree of perfection of the pores, the better the adsorption-desorption effect of air. If the pore diameter range of mesopores is too wide, the difference between the pore diameters of mesopores and micropores will be large, resulting in air molecules entering and leaving the micropores and the flow in the mesopores being blocked, thus affecting the propagation of sound waves and reducing the effect on F0 Significantly decreased.

無。none.

圖1為根據本發明實施例1-4和比較例1、比較例4的XRD圖譜。FIG. 1 is the XRD patterns of Examples 1-4 and Comparative Example 1 and Comparative Example 4 according to the present invention.

Claims (14)

一種用於吸音材料的ZSM-5分子篩,其特徵在於:所述ZSM-5分子篩的矽鋁質量比為800-4000,微孔比表面積<72m2/g,其微孔孔徑範圍在0.5-1.5nm之間,介孔孔徑範圍在2-10nm之間,且微孔的累積孔容積與介孔的累積孔容積之比為0.24-0.35。 A ZSM-5 molecular sieve for sound-absorbing materials, characterized in that: the ZSM-5 molecular sieve has a silicon-aluminum mass ratio of 800-4000, a micropore specific surface area of <72m 2 /g, and a micropore diameter range of 0.5-1.5 nm, the mesopore diameter ranges between 2-10nm, and the ratio of the cumulative pore volume of the micropores to the cumulative pore volume of the mesopores is 0.24-0.35. 如請求項1所述的用於吸音材料的ZSM-5分子篩,其中所述ZSM-5分子篩的微孔孔容積為0.043-0.050ml/g,介孔孔容積為0.16-0.21ml/g。 The ZSM-5 molecular sieve for sound-absorbing materials according to Claim 1, wherein the micropore volume of the ZSM-5 molecular sieve is 0.043-0.050ml/g, and the mesopore volume is 0.16-0.21ml/g. 如請求項1所述的用於吸音材料的ZSM-5分子篩,其中所述ZSM-5分子篩對水的吸附量
Figure 110134435-A0305-02-0022-1
1.25%,將其填充在揚聲器後腔且吸附水後,其諧振頻率變化△F0仍大於60Hz。
The ZSM-5 molecular sieve used for sound-absorbing materials as described in claim 1, wherein the adsorption capacity of the ZSM-5 molecular sieve to water
Figure 110134435-A0305-02-0022-1
1.25%, after filling it in the back cavity of the speaker and absorbing water, the change of its resonant frequency △F0 is still greater than 60Hz.
一種如請求項1至3中任一項所述的用於吸音材料的ZSM-5分子篩的製備方法,其中包括以下步驟:將鹼源、鋁源、模板劑、矽源、ZSM-5分子篩晶種與水混合,形成凝膠;將所得凝膠置於反應釜中,在自生壓力下進行水熱晶化反應,反應結束後,依次進行固液分離、洗滌、乾燥、焙燒,得到分子篩原粉;將所得分子篩原粉與銨鹽溶液進行離子交換,過濾分離得到固體產物,將所得固體產物用去離子水反復洗滌至中性,將濾餅採取分段微波乾燥、焙燒,得到ZSM-5分子篩。 A method for preparing a ZSM-5 molecular sieve for sound-absorbing materials as described in any one of claim items 1 to 3, which includes the following steps: Alkali source, aluminum source, template agent, silicon source, ZSM-5 molecular sieve crystal The mixture is mixed with water to form a gel; the obtained gel is placed in a reaction kettle, and the hydrothermal crystallization reaction is carried out under autogenous pressure. After the reaction, the solid-liquid separation, washing, drying, and roasting are carried out in sequence to obtain the molecular sieve powder. Ion-exchange the obtained molecular sieve raw powder with ammonium salt solution, filter and separate to obtain a solid product, repeatedly wash the obtained solid product with deionized water to neutrality, and take the filter cake to be segmented microwave drying and roasting to obtain ZSM-5 molecular sieve . 如請求項4所述的製備方法,其中所加入的水、鹼源、鋁源、模板劑、矽源的莫耳比為(2-10):(0.03-0.20):(0.00025-0.0033):(0.03-0.50):1,其中矽源以矽源氧化物計。 The preparation method as described in Claim 4, wherein the molar ratio of water, alkali source, aluminum source, templating agent, and silicon source added is (2-10): (0.03-0.20): (0.00025-0.0033): (0.03-0.50): 1, wherein silicon source is calculated as silicon source oxide. 如請求項5所述的製備方法,其中以矽源氧化物質量計,所加入的ZSM-5晶種的質量為3-8wt%。 The preparation method as described in Claim 5, wherein the mass of the added ZSM-5 seed crystal is 3-8wt% based on the mass of the silicon source oxide. 如請求項4所述的製備方法,其中所述銨鹽溶液選自氯化銨、硝酸銨、硫酸銨中的至少一種,濃度為0.1-2mol/L。 The preparation method according to claim 4, wherein the ammonium salt solution is selected from at least one of ammonium chloride, ammonium nitrate, and ammonium sulfate, and the concentration is 0.1-2mol/L. 如請求項4所述的製備方法,其中所述矽源選自固體矽膠、矽溶膠、矽粉、白碳黑、矽藻土、矽酸鹽和正矽酸乙酯中的至少一種;所述鹼源為鹼金屬氫氧化物,選自氫氧化鈉或/和氫氧化鉀;模板劑選自二乙胺、四乙基溴化銨、四乙基氯化銨、四乙基氫氧化銨、四丙基氯化銨、四丙基溴化銨、四丙基氫氧化銨、1,6-己二胺中的至少一種;所述鋁源選自氫氧化鋁、擬薄水鋁石、硫酸鋁、偏鋁酸鈉、異丙醇鋁、硝酸鋁、氧化鋁、氯化鋁中的至少一種。 The preparation method as described in claim 4, wherein the silicon source is selected from at least one of solid silica gel, silica sol, silica powder, white carbon black, diatomaceous earth, silicate and ethyl orthosilicate; the alkali Source is alkali metal hydroxide, is selected from sodium hydroxide or/and potassium hydroxide; Template agent is selected from diethylamine, tetraethylammonium bromide, tetraethylammonium chloride, tetraethylammonium hydroxide, tetraethylammonium At least one of propylammonium chloride, tetrapropylammonium bromide, tetrapropylammonium hydroxide, and 1,6-hexanediamine; the aluminum source is selected from aluminum hydroxide, pseudoboehmite, aluminum sulfate , sodium metaaluminate, aluminum isopropoxide, aluminum nitrate, aluminum oxide, aluminum chloride at least one. 如請求項4所述的製備方法,其中在得到ZSM-5分子篩的步驟中,分段微波乾燥具體為分兩段進行,其中,第一段微波乾燥溫度為10-20℃,時間為0.5-3h;第二段微波乾燥溫度為20-30℃,時間為0.5-3h;焙燒溫度為550-600℃。 The preparation method as described in claim item 4, wherein in the step of obtaining the ZSM-5 molecular sieve, the segmented microwave drying is specifically carried out in two stages, wherein the first stage microwave drying temperature is 10-20°C, and the time is 0.5- 3h; the second microwave drying temperature is 20-30°C, and the time is 0.5-3h; the roasting temperature is 550-600°C. 如請求項4所述的製備方法,其中在得到分子篩原粉的步驟中,水熱晶化溫度為150-200℃,晶化時間為20-48h;乾燥溫度為10-30℃,焙燒溫度為550-600℃。 The preparation method as described in claim item 4, wherein in the step of obtaining the molecular sieve powder, the hydrothermal crystallization temperature is 150-200°C, and the crystallization time is 20-48h; the drying temperature is 10-30°C, and the calcination temperature is 550-600°C. 一種吸音材料,其特徵在於:採用如請求項1至3中任一項所述的ZSM-5分子篩製備得到。 A sound-absorbing material, characterized in that it is prepared by using the ZSM-5 molecular sieve described in any one of claims 1 to 3. 如請求項11所述的吸音材料,其中所述ZSM-5分子篩以粉末、顆粒物、塊狀物、分子篩膜或以粉末/顆粒物/塊狀物作為內容物的裝式包裝形式中的至少一種形式呈現。 The sound-absorbing material as claimed in claim 11, wherein the ZSM-5 molecular sieve is in at least one form of powder, granule, block, molecular sieve film or powder/granule/block as the content of the packaging form presented. 一種聲學元件,其特徵在於:採用如請求項11或12所述的吸音材料製備得到。 An acoustic component, characterized in that it is prepared by using the sound-absorbing material as described in claim 11 or 12. 一種揚聲器裝置,其特徵在於:採用如請求項11或12所述的吸音材料製備得到。A loudspeaker device, characterized in that it is prepared by using the sound-absorbing material as described in claim 11 or 12.
TW110134435A 2021-07-05 2021-09-15 Zsm-5 molecular sieve for sound-absorbing material, method for preparing the same, and product obtained therefrom TWI788013B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110754518.4 2021-07-05
CN202110754518.4A CN113184876B (en) 2021-07-05 2021-07-05 ZSM-5 molecular sieve for sound-absorbing material, preparation method thereof and obtained product

Publications (2)

Publication Number Publication Date
TWI788013B true TWI788013B (en) 2022-12-21
TW202302458A TW202302458A (en) 2023-01-16

Family

ID=76976975

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110134435A TWI788013B (en) 2021-07-05 2021-09-15 Zsm-5 molecular sieve for sound-absorbing material, method for preparing the same, and product obtained therefrom

Country Status (3)

Country Link
CN (1) CN113184876B (en)
TW (1) TWI788013B (en)
WO (1) WO2023279513A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113184876B (en) * 2021-07-05 2021-09-17 山东国瓷功能材料股份有限公司 ZSM-5 molecular sieve for sound-absorbing material, preparation method thereof and obtained product
CN113816395A (en) * 2021-09-25 2021-12-21 深圳职业技术学院 Hierarchical pore zeolite molecular sieve and preparation method and application thereof
CN114684832A (en) * 2022-04-18 2022-07-01 瑞声光电科技(常州)有限公司 Core-shell molecular sieve, preparation method thereof, sound absorption material and loudspeaker

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113044852A (en) * 2019-12-26 2021-06-29 镇江贝斯特新材料有限公司 Hierarchical pore ZSM-5 molecular sieve and preparation method and application thereof
CN113044853A (en) * 2021-04-19 2021-06-29 福州大学 Method for synthesizing nano ZSM-5 molecular sieve with high silica-alumina ratio

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6180550B1 (en) * 1998-12-22 2001-01-30 Mobile Oil Corporation Small crystal ZSM-5, its synthesis and use
EP2424270B1 (en) * 2010-08-23 2014-05-21 Knowles Electronics Asia PTE. Ltd. Loudspeaker system with improved sound
CN108046288B (en) * 2017-12-15 2020-04-17 神华集团有限责任公司 Method for preparing hierarchical pore ZSM-5 molecular sieve for preparing propylene from methanol
CN108996515A (en) * 2018-07-28 2018-12-14 瑞声科技(南京)有限公司 A kind of sound-absorbing material and the loudspeaker enclosure using the sound-absorbing material
CN108862311A (en) * 2018-08-31 2018-11-23 江苏国瓷天诺新材料科技股份有限公司 A kind of preparation method of the high silica ZSM-5 molecular sieve for VOCs degradation
CN111689505A (en) * 2019-03-12 2020-09-22 中国石油天然气股份有限公司 Preparation method of ZSM-5 molecular sieve with mesoporous-microporous hierarchical structure
CN110496595A (en) * 2019-09-11 2019-11-26 江苏国瓷天诺新材料科技股份有限公司 A kind of preparation method of the class solid phase VOCs that crystallite dimension is controllable degradation high silica ZSM-5 molecular sieve
CN110482567A (en) * 2019-09-11 2019-11-22 江苏国瓷天诺新材料科技股份有限公司 A kind of preparation method of efficient and environmentally friendly ZSM-5 molecular sieve
CN112892471A (en) * 2021-01-13 2021-06-04 江苏国瓷新材料科技股份有限公司 Preparation method of VOCs adsorbent molecular sieve with ultrahigh hydrophobic property
CN113184876B (en) * 2021-07-05 2021-09-17 山东国瓷功能材料股份有限公司 ZSM-5 molecular sieve for sound-absorbing material, preparation method thereof and obtained product

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113044852A (en) * 2019-12-26 2021-06-29 镇江贝斯特新材料有限公司 Hierarchical pore ZSM-5 molecular sieve and preparation method and application thereof
CN113044853A (en) * 2021-04-19 2021-06-29 福州大学 Method for synthesizing nano ZSM-5 molecular sieve with high silica-alumina ratio

Also Published As

Publication number Publication date
CN113184876B (en) 2021-09-17
TW202302458A (en) 2023-01-16
CN113184876A (en) 2021-07-30
WO2023279513A1 (en) 2023-01-12

Similar Documents

Publication Publication Date Title
TWI788013B (en) Zsm-5 molecular sieve for sound-absorbing material, method for preparing the same, and product obtained therefrom
US10271130B2 (en) Sound absorbing material and manufacturing method thereof and speaker using sound absorbing material
US20230045179A1 (en) Hierarchical porous zsm-5 molecular sieve, preparation method therefor, hzsm-5 molecular sieve prepared therefrom, and use of molecular sieve
US10939195B2 (en) Sound absorbing material and speaker box using same
US11014820B2 (en) Molecular sieve, preparation thereof and acoustic absorption material and speaker containing the same
US11140475B2 (en) Sound absorbing material, method for process same and speaker using same
US20200031679A1 (en) Sound absorbing material, method processing same and speaker box using same
KR102087801B1 (en) Lta zeolite adsorbent and method for fabricating the same
US20200037066A1 (en) Sound absorbing material and speaker using same
CN104891523B (en) A kind of preparation method of mesoporous Y type molecular sieve
Anbia et al. Optimization of synthesis procedure for NaX zeolite by Taguchi experimental design and its application in CO2 adsorption
CN106888423A (en) Nano zeolite particle and preparation method thereof
Wang et al. A crystal seeds-assisted synthesis of microporous and mesoporous silicalite-1 and their CO2/N2/CH4/C2H6 adsorption properties
CN108751222A (en) A kind of preparation method and its acoustic applications of the MFI molecular sieves with interaction twin pattern
CA2148767A1 (en) High micropore volume low silica emt-containing metallosilicates
CN108117089B (en) Chabazite molecular sieve and application thereof
WO2018128136A1 (en) Xenon adsorbent
JP7432697B2 (en) Core shell molecular sieve and its manufacturing method, sound absorbing material and speaker
CN108455626A (en) The ZSM-5 multistage porous molecular sieves and preparation method thereof of block ZSM-5/ nanoscale twins composite constructions
CN113184878B (en) Hierarchical pore zeolite molecular sieve and preparation method and application thereof
CN108566593A (en) A kind of loud speaker of sound-absorbing material and its preparation method and application the sound-absorbing material
CN112919489B (en) Hierarchical pore molecular sieve particles and preparation method thereof
CN115140746B (en) ZSM-5 molecular sieve with cascade hole distribution and preparation method thereof
CN117142485A (en) Sound-absorbing microsphere material, preparation method thereof, loudspeaker and electronic equipment
CN117049563A (en) Controllable preparation method of hierarchical pore ZSM-5 type molecular sieve microsphere and application of hierarchical pore ZSM-5 type molecular sieve microsphere in loudspeaker