TWI786214B - 用於具有不同的數位方案的上行鏈路的時序提前粒度 - Google Patents

用於具有不同的數位方案的上行鏈路的時序提前粒度 Download PDF

Info

Publication number
TWI786214B
TWI786214B TW107138763A TW107138763A TWI786214B TW I786214 B TWI786214 B TW I786214B TW 107138763 A TW107138763 A TW 107138763A TW 107138763 A TW107138763 A TW 107138763A TW I786214 B TWI786214 B TW I786214B
Authority
TW
Taiwan
Prior art keywords
granularity
uplink
bwp
command
uplink carrier
Prior art date
Application number
TW107138763A
Other languages
English (en)
Other versions
TW201931906A (zh
Inventor
***納茲穆爾 伊斯萊
彼得培駱 安格
陳旺旭
彼得 加爾
濤 駱
李熙春
索尼 阿卡拉力南
晉 孫
Original Assignee
美商高通公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商高通公司 filed Critical 美商高通公司
Publication of TW201931906A publication Critical patent/TW201931906A/zh
Application granted granted Critical
Publication of TWI786214B publication Critical patent/TWI786214B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

本案內容的某些態樣係關於無線通訊系統,特定言之係關於決定用於具有不同的數位方案的上行鏈路通訊的時序提前粒度。

Description

用於具有不同的數位方案的上行鏈路的時序提前粒度
根據專利法請求優先權
本專利申請案請求享受於2017年11月3日提出申請的序號為62/581,579的美國臨時專利申請和於2017年11月17日提出申請的序號為62/588,269的臨時專利申請的權益,其全部內容經由引用併入本文。
本案內容大體係關於無線通訊系統,特定言之係關於用於上行鏈路通訊的時序提前配置。
無線通訊系統被廣泛部署以提供各種電信服務,諸如電話、視訊、資料、訊息傳遞和廣播。典型的無線通訊系統可以採用能夠經由共享可用的系統資源(例如,頻寬、發射功率)來支援與多個使用者的通訊的多工存取技術。此種多工存取技術的實例包括長期進化(LTE)系統、高級LTE(LTE-A)系統、分碼多工存取(CDMA)系統、分時多工存取(TDMA)系統、分頻多工存取(FDMA)系統、正交分頻多工存取(OFDMA)系統、單載波分頻多工存取(SC-FDMA)系統和分時同步分碼多工存取(TD-SCDMA)系統。
在一些實例中,無線多工存取通訊系統可以包括多個基地台,每個基地台同時支援用於多個通訊設備(亦稱為使用者設備(UE))的通訊。在LTE或LTE-A網路中,一組一或多個基地台可以定義進化節點B(eNB)。在其他示例中(例如,在下一代網路或5G網路中),無線多工存取通訊系統可以包括多個分散式單元(DU)(例如,邊緣單元(EU)、邊緣節點(EN)、無線電頭端(RH)、智能無線電頭端(SRH)、傳輸接收點(TRP)等),其與多個中央單元(CU)(例如,中央節點(CN)、存取節點控制器(ANC)等)進行通訊,其中與中央單元通訊的一組一或多個分散式單元可以定義存取節點(例如,新的無線電基地台(NR BS)、新的無線電節點B(NR NB)、網路節點、5G NB、eNB、下一代NB(gNB)等)。BS或DU可以在下行鏈路通道(例如,用於來自BS或去往到UE的傳輸)和上行鏈路通道(例如,用於從UE到BS或DU的傳輸)上與一組UE進行通訊。
該等多工存取技術已經在各種電信標準中採用,以提供使不同的無線設備能夠在市政、國家、地區甚至全球級別上通訊的通用協定。新興的電信標準的一個例子是新型無線電(NR),例如5G無線電存取。NR是第三代合作夥伴計畫(3GPP)頒佈的LTE行動服務標準的一組增強標準。其被設計為經由改進頻譜效率、降低成本、改善服務、利用新頻譜以及在下行鏈路(DL)上和在上行鏈路(UL)上使用具有循環字首(CP)的OFDMA與其他開放標準更好地整合,來更好地支援行動寬頻網際網路存取,亦被設計為支援波束成形、多輸入多輸出(MIMO)天線技術和載波聚合。
然而,隨著對行動寬頻存取的需求不斷增加,存在對NR技術進一步改進的需求。較佳地,該等改進應適用於其他多工存取技術和採用該等技術的電信標準。
本案內容的系統、方法和設備各自具有幾個態樣,其中沒有單獨的一個態樣負責其期望的屬性。在不限制由所附申請專利範圍表達的本案內容的範圍的情況下,現在將簡要地論述一些特徵。在考慮該論述之後,並且特別是在閱讀標題為「實施方式」的部分之後,一名技藝人士將理解本案內容的特徵如何提供包括無線網路中的存取點和站之間的改進的通訊的優點。
某些態樣提供了一種用於由基地台(BS)進行的無線通訊的方法。該方法大體包括:針對可用於與使用者設備(UE)通訊的一或多個上行鏈路載波之每一者上行鏈路載波,決定該上行鏈路載波的數位方案(numerology),其中該一或多個上行鏈路載波是與相同的時序提前組(TAG)相關聯的;部分地基於每個上行鏈路載波的數位方案來決定用於該一或多個上行鏈路載波的時序提前(TA)粒度;基於該TA粒度向UE發信號通知TA命令。
某些態樣提供了一種用於由UE進行的無線通訊的方法。該方法大體包括:接收要應用於具有不同的數位方案的一組上行鏈路載波中的第一上行鏈路載波上的上行鏈路傳輸的時序提前(TA)命令;基於來自該組上行鏈路載波組內的參考上行鏈路載波的數位方案來決定用於該TA命令的粒度;以基於該TA命令和所決定的粒度而調整的時序,在該第一上行鏈路載波上發送該上行鏈路傳輸。
某些態樣提供了一種用於由BS進行的無線通訊的方法。該方法大體包括:基於來自具有不同的數位方案的一組BWP的參考BWP的數位方案來決定用於時序提前(TA)命令的粒度,基於所決定的粒度來設置該TA命令的值,以及將該TA命令發送給UE以便當在該組中的該BWP中的一或多個BWP上發送上行鏈路傳輸時應用。
某些態樣提供了一種用於由UE進行的無線通訊的方法。該方法大體包括:接收要應用於來自具有不同的數位方案的一組上行鏈路頻寬部分(BWP)的第一BWP上的上行鏈路傳輸的時序提前(TA)命令,基於來自該組內的參考BWP的數位方案來決定用於該TA命令的粒度,以及以基於該TA命令和所決定的粒度而調整的時序,在該第一BWP上發送該上行鏈路傳輸。
各態樣大體包括如在本文中參照附圖描述的並且如附圖所示的方法、裝置、系統、電腦可讀取媒體和處理系統。
為了實現前述和相關目的,該一或多個態樣包括在下文中充分描述並且在申請專利範圍中特別指出的特徵。以下描述和附圖詳細闡述了一或多個態樣的某些示出性特徵。然而,該等特徵僅指示可以用於採用各個態樣的原理的各種方式中的一些,並且該描述意欲包括所有該等態樣及其均等物。
本案內容的各態樣提供了用於NR(新型無線電存取技術或5G技術)的裝置、方法、處理系統和電腦可讀取媒體。
NR可以支援各種無線通訊傳輸量,諸如針對寬頻寬(例如80MHz以上)的增強型行動寬頻(eMBB)、針對高載波頻率(例如27GHz或以上)的毫米波(mmW)、針對非與舊版相容的MTC技術的大規模MTC(mMTC),及/或針對超可靠低延遲通訊(URLLC)的關鍵型任務。該等服務可以包括延遲和可靠性要求。該等服務亦可以具有不同的傳輸時間間隔(TTI)以滿足相應的服務品質(QoS)要求。另外,該等服務可以在同一個子訊框中共存。
各態樣提供用於決定具有混合的(例如,不同的)UL數位方案的上行鏈路載波當中的(例如,用於TA命令的)TA粒度的技術和裝置。例如,NR可以支援跨利用載波聚合的細胞的以及跨細胞內的各頻寬部分(或各次頻帶)的混合的數位方案。使用在本文呈現的各態樣,gNB可以部分地基於與一或多個上行鏈路載波相關聯的數位方案及/或與在細胞中支援的一或多個上行鏈路頻寬部分相關聯的數位方案來決定要用於TA命令的TA粒度。gNB可以向UE發信號通知具有所決定的TA粒度的TA命令。這樣做允許gNB較有效地支援針對屬於相同的時序提前組但具有混合的數位方案的載波的上行鏈路通訊。經由載波聚合聚合的各個載波可以被稱為分量載波。
以下描述提供了實例,而不是限制在申請專利範圍中闡述的範圍、適用性或實例。在不脫離本案內容的範圍的情況下,可以對論述的元素的功能和佈置進行改變。各種示例可以適當地省略、替換或添加各種程序或元件。例如,所描述的方法可以以與所描述的順序不同的循序執行,並且可以添加、省略或組合各個步驟。而且,關於一些示例描述的特徵可以在一些其他示例中組合。例如,可以使用在本文中闡述的任何數量的態樣來實現一種裝置或實踐一種方法。另外,本案內容的範圍意欲涵蓋使用除了在本文中闡述的本案內容的各個態樣之外的或不是該各個態樣的其他結構、功能或結構和功能來實踐的此種裝置或方法。應理解,在本文揭露的本案內容的任何態樣可以經由請求項的一或多個元素來實施。在本文中使用詞語「示例性」來表示「用作示例、實例或圖示」。在本文中被描述為「示例性」的任何態樣不一定被解釋為比其他態樣優選或有利。
本文描述的技術可以用於諸如LTE、CDMA、TDMA、FDMA、OFDMA、SC-FDMA和其他網路的各種無線通訊網路。術語「網路」和「系統」經常互換使用。CDMA網路可以實現諸如通用陸地無線電存取(UTRA)、cdma2000等的無線電技術。UTRA包括寬頻CDMA(WCDMA)和CDMA的其他變體。cdma2000涵蓋了IS-2000、IS-95和IS-856標準。TDMA網路可以實現諸如行動通訊全球系統(GSM)之類的無線電技術。OFDMA網路可以實現諸如NR(例如5G RA)、進化的UTRA(E-UTRA)、超行動寬頻(UMB)、IEEE 802.11(Wi Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、 Flash-OFDMA等的無線電技術。UTRA和E-UTRA是通用行動電信系統(UMTS)的一部分。NR是聯合5G技術論壇(5GTF)開發的新興無線通訊技術。3GPP長期進化(LTE)和高級LTE(LTE-A)是使用E-UTRA的UMTS的版本。在來自名為「第三代合作夥伴計畫」(3GPP)的組織的文件中描述了UTRA、E-UTRA、UMTS、LTE、LTE-A和GSM。在來自名為「第三代合作夥伴計畫2」(3GPP2)的組織的文件中描述了cdma2000和UMB。在本文中描述的技術可以用於上面提到的無線網路和無線電技術以及其他無線網路和無線電技術。為了清楚起見,儘管在本文可以使用通常與3G及/或4G無線技術相關聯的術語來描述各態樣,但是本案內容的各態樣可以應用於基於其他世代的無線技術(例如5G及以後的技術,包括NR技術)的通訊系統。 示例無線通訊系統
圖1圖示在其中可以執行本案內容的各態樣的示例無線通訊網路100,例如新型無線電(NR)或5G網路。
如在圖1中所示,無線網路100可以包括多個BS 110和其他網路實體。BS可以是與UE通訊的站。每個BS 110可以為特定的地理區域提供通訊覆蓋。在3GPP中,術語「細胞」可以指服務覆蓋區域的節點B及/或節點B子系統的該覆蓋區域,這取決於使用該術語的上下文。在NR系統中,術語「細胞」和進化NB(eNB)、NB、5G NB、下一代NB(gNB)、存取點(AP)、BS、NR BS、5G BS或傳輸接收點(TRP)可以是可互換的。在一些實例中,細胞可能不一定是靜止的,並且細胞的地理區域可以根據行動BS的位置而移動。在一些實例中,BS可以使用任何合適的傳輸網路,經由各種類型的回載介面(諸如直接實體連接、虛擬網路等),來彼此互連及/或互連到無線通訊網路100中的一或多個其他BS或網路節點(未圖示)。
大體上,可以在給定的地理區域中部署任何數量的無線網路。每個無線網路可以支援特定的無線電存取技術(RAT)並且可以在一或多個頻率上工作。RAT亦可以被稱為無線電技術、空中介面等。頻率亦可以被稱為載波、頻率通道等。每個頻率可以支援給定的地理區域中的單個RAT,以便避免不同的RAT的無線網路之間的干擾。在某些情況下,可以部署NR或5G RAT網路。
BS可以為巨集細胞、微微細胞、毫微微細胞及/或其他類型的細胞提供通訊覆蓋。巨集細胞可以覆蓋相對較大的地理區域(例如,半徑幾公里),並且可以允許具有服務訂閱的UE進行不受限存取。微微細胞可以覆蓋相對較小的地理區域,並且可以允許具有服務訂閱的UE進行不受限存取。毫微微細胞可以覆蓋相對較小的地理區域(例如,家庭),並且可以允許與毫微微細胞相關聯的UE(例如,封閉用戶群組(CSG)中的UE、家庭中的使用者的UE等)受限存取。用於巨集細胞的BS可以被稱為巨集BS。用於微微細胞的BS可以被稱為微微BS。用於毫微微細胞的BS可以被稱為毫微微BS或家庭BS。在圖1中示出的實例中,BS 110a、110b和110c可以分別是巨集細胞102a、102b和102c的巨集BS。BS 110x可以是用於微微細胞102x的微微BS。BS 110y和110z可以分別是用於毫微微細胞102y和102z的毫微微BS。BS可以支援一或多個(例如,三個)細胞。
無線網路100亦可以包括中繼站。中繼站是從上游站(例如,BS或UE)接收資料及/或其他資訊的傳輸並且將資料及/或其他資訊的傳輸發送到下游站(例如,UE或BS)的站。中繼站亦可以是為其他UE中繼傳輸的UE。在圖1中示出的實例中,中繼站110r可以與BS 110a和UE 120r通訊,以促進BS 110a和UE 120r之間的通訊。中繼站亦可以被稱為中繼BS、中繼等。
無線網路100可以是包括不同類型的BS(例如,巨集BS、微微BS、毫微微BS、中繼等)的異質網路。該等不同類型的BS可以具有不同的發射功率水平、不同的覆蓋區域以及對無線網路100中的干擾的不同影響。例如,巨集BS可以具有高發射功率水平(例如20瓦),而微微BS、毫微微BS和中繼可以具有較低的發射功率水平(例如1瓦)。
無線網路100可以支援同步或非同步作業。對於同步操作,BS可以具有類似的訊框時序,並且來自不同BS的傳輸可以在時間上近似對準。對於非同步作業,BS可以具有不同的訊框時序,並且來自不同BS的傳輸可以在時間上不對準。在本文描述的技術可以用於同步操作和非同步作業兩者。
網路控制器130可以耦合到一組BS並為該等BS提供協調和控制。網路控制器130可以經由回載與BS 110進行通訊。BS 110亦可以例如直接或間接經由無線或有線回載彼此通訊。
UE 120(例如,120x、120y等)可以散佈在整個無線網路100中,並且每個UE可以是固定的或行動的。UE亦可以被稱為行動站、終端、存取終端、用戶單元、站、客戶端設備(CPE)、蜂巢式電話、智慧型電話、個人數位助理(PDA)、無線數據機、無線通訊設備、手持設備、膝上型電腦、無線電話、無線區域迴路(WLL)站、平板電腦、相機、遊戲裝置、小筆電、智慧型電腦、超極本、醫療設備或醫療裝置、生物辨識感測器/設備、諸如智慧手錶、智慧服裝、智慧眼鏡、智慧腕帶、智慧珠寶(例如,智慧戒指、智慧手環等)的可穿戴設備、娛樂設備(例如,音樂設備、視訊設備、衛星無線電單元等)、車輛部件或感測器、智慧型儀器表/感測器、工業製造設備、全球定位系統設備或被配置為經由無線或有線媒體進行通訊的任何其他合適的設備。一些UE可以被認為是進化型或機器型通訊(MTC)設備或進化型MTC(eMTC)設備。MTC和eMTC UE包括例如可以與BS、另一設備(例如,遠端設備)或某個其他實體通訊的機器人、無人機、遠端設備、感測器、儀錶、監測器、位置標籤等。無線節點可以例如經由有線或無線通訊鏈路提供用於或者到網路(例如,諸如網際網路或蜂巢網路的廣域網)的連線性。一些UE可以被認為是物聯網路(IoT)設備或者窄頻IoT(NB-IoT)設備。
在圖1中,具有雙箭頭的實線指示在UE和服務BS之間的期望的傳輸,該服務BS是被指定在下行鏈路及/或上行鏈路上服務UE的BS。帶有雙箭頭的虛線表示UE和BS之間的干擾傳輸。
某些無線網路(例如,LTE)在下行鏈路上使用正交分頻多工(OFDM),在上行鏈路上使用單載波分頻多工(SC-FDM)。OFDM和SC-FDM將系統頻寬劃分為多個(K)個正交次載波,其通常亦稱為音調(tone)、頻段(bin)、次頻帶等。每個次載波可以用資料調制。一般來說,調制符號以OFDM在頻域中發送,而以SC-FDM在時域中發送。相鄰的次載波之間的間隔可以是固定的,並且次載波的總數(K)可以取決於系統頻寬。例如,次載波的間隔可以是15kHz,並且最小資源配置(稱為資源區塊(RB))可以是12個次載波(或180kHz)。因此,對於1.25、2.5、5、10或20兆赫茲(MHz)的系統頻寬,標稱FFT大小可以分別等於128、256、512、1024或2048。系統頻寬亦可以被劃分成各次頻帶。例如,一次頻帶可以覆蓋1.08MHz(亦即,6個資源區塊),並且對於1.25、2.5、5、10或20MHz的系統頻寬,可以分別具有1、2、4、8或16個次頻帶。
儘管在本文描述的示例的各態樣可以與LTE技術相關聯,但是本案內容的各態樣可以適用於其他無線通訊系統,諸如NR。NR可以在上行鏈路和下行鏈路上利用帶有CP的OFDM,並且包括使用分時多工(TDD)支援半雙工操作。可以支援100MHz的單個分量載波頻寬。NR資源區塊可以在0.1ms的持續時間內跨越具有75kHz的次載波頻寬的12個次載波。每個無線電訊框可以由兩個半訊框組成,每個半訊框由5個子訊框組成,每個無線電訊框的長度為10ms。因此,每個子訊框可以具有1ms的長度。每個子訊框可以指示用於資料傳輸的鏈路方向(亦即,DL或者UL),並且每個子訊框的鏈路方向可以被動態地切換。每個子訊框可以包括DL/UL資料以及DL/UL控制資料。用於NR的UL子訊框和DL子訊框可以如下文關於圖6和7更詳細地被描述。波束成形可以被支援並且波束方向可以被動態地配置。利用預編碼的MIMO傳輸亦可以被支援。DL中的MIMO配置可以支援多達8個發射天線(具有多達8個串流的多層DL傳輸)並支援每UE多達2個串流。可以支援每UE多達2個串流的多層傳輸。可以用多達8個服務細胞支援多個細胞的聚合。或者,NR可以支援不同於基於OFDM的介面的不同的空中介面。NR網路可以包括諸如CU及/或DU的實體。
在一些實例中,可以排程對空中介面的存取,其中排程實體(例如,基地台)為其服務區域或細胞內的一些或全部設備和裝置之間的通訊分配資源。在本案內容內,如下文進一步論述地,排程實體可以負責排程、分配、重配置和釋放用於一或多個從屬實體的資源。亦即,對於被排程的通訊,從屬實體利用由排程實體分配的資源。BS不是唯一可以用作排程實體的實體。亦即,在一些實例中,UE可以用作排程實體,其為一或多個從屬實體(例如,一或多個其他UE)排程資源。在該例子中,UE用作排程實體,其他UE利用由UE排程的資源用於無線通訊。UE可以用作同級間(P2P)網路中及/或網狀網路中的排程實體。在網狀網路的實例中,除了與排程實體進行通訊之外,UE可以可選地彼此直接通訊。
因此,在利用對時頻資源的被排程的存取並具有蜂巢配置、P2P配置和網狀配置的無線通訊網路中,排程實體和一或多個從屬實體可以利用被排程的資源進行通訊。
圖2圖示可以在圖1中示出的無線通訊系統中實現的分散式無線電存取網路(RAN)200的示例邏輯架構。5G存取節點206可以包括存取節點控制器(ANC)202。ANC 202可以是分散式RAN 200的中央單元(CU)。到下一代核心網路(NG-CN)204的回載介面可以終止於ANC 202。到相鄰的下一代存取節點(NG-AN)的回載介面可以終止於ANC 202。ANC 202可以包括一或多個TRP 208。如前述,TRP可以與「細胞」互換使用。
TRP 208可以是DU。TRP可以連接到一個ANC(ANC 202)或多於一個ANC(未圖示)。例如,對於RAN共享、無線電作為服務(radio as a service,RaaS)以及特定於服務的ANC部署,TRP可以連接到多於一個ANC。TRP 208可以包括一或多個天線埠。TRP可以被配置為單獨地(例如,以動態選擇方式)或聯合地(例如,以聯合傳輸方式)向UE提供傳輸量。
邏輯架構可以支援不同的部署類型間的前程解決方案。例如,邏輯架構可以是基於發射網路能力(例如,頻寬、等待時間及/或信號干擾)的。邏輯架構200可以與LTE共享特徵及/或元件。NG-AN 210可以支援與NR的雙重連接。NG-AN 210可以共享用於LTE和NR的公共前程。邏輯架構可以實現各TRP 208之間和當中的合作。例如,合作可以經由ANC 202在一TRP內及/或跨各TRP間被預設。可能不存在TRP間介面。
邏輯架構可以具有拆分開的邏輯功能的動態配置。如將參照圖5詳細描述地,無線電資源控制(RRC)層、封包資料彙聚協定(PDCP)層、無線電鏈路控制(RLC)層、媒體存取控制(MAC)層和實體(PHY)層可以被適配地放置在DU或CU(例如,分別為TRP或ANC)處。BS可以包括中央單元(CU)(例如,ANC 202)及/或一或多個分散式單元(例如,一或多個TPR 208)。
圖3圖示根據本案內容的各態樣的分散式RAN 300的示例實體架構。集中式核心網路單元(C-CU)302可以代管(host)核心網路功能。C-CU 302可以被集中部署。C-CU功能可以被卸載(例如,到高級無線服務(AWS)),以求應對峰值容量。集中式RAN單元(C-RU)304可以代管一或多個ANC功能。可選地,C-RU 304可以在本端代管核心網路功能。C-RU可以具有分散式部署。C-RU 304可以接近網路邊緣。DU 306可以代管一或多個TRP。DU 306可以位於網路的邊緣,具有射頻(RF)功能。
圖4圖示圖1中所示的BS 110和UE 120的示例元件,其可以用於實現本案內容的各態樣。如前述,BS可以包括TRP。BS 110和UE 120的一或多個元件可以用於實踐本案內容的各態樣。例如,UE 120的天線452、Tx/Rx 454、處理器466、458、464及/或控制器/處理器480,及/或BS 110的天線434、處理器420、430、438及/或控制器/處理器440可以被用以執行在本文中描述的並參照圖9示出的操作。
圖4示出BS 110和UE 120的設計的方塊圖,BS 110和UE 120可以是圖1中的BS之一和UE之一。對於受限制關聯場景,BS 110可以是圖1中的巨集BS 110c,並且UE 120可以是UE 120y。BS 110亦可以是某個其他類型的BS。BS 110可以配備有天線434a至434t,並且UE 120可以配備有天線452a至452r。
在BS 110處,發射處理器420可以接收來自資料來源412的資料和來自控制器/處理器440的控制資訊。控制資訊可以用於實體廣播通道(PBCH)、實體控制格式指示符通道(PCFICH)、實體混合ARQ指示符通道(PHICH)、實體下行鏈路控制通道(PDCCH)等。該資料可以用於實體下行鏈路共享通道(PDSCH)等。處理器420可以處理(例如,編碼和符號映射)資料和控制資訊以分別獲得資料符號和控制符號。處理器420亦可以例如為PSS、SSS和特定於細胞的參考信號(CRS)產生參考符號。若適用的話,發射(TX)多輸入多輸出(MIMO)處理器430可以對資料符號、控制符號及/或參考符號執行空間處理(例如,預編碼),並且可以提供輸出符號串流給調制器(MOD)432a到432t。例如,TX MIMO處理器430可以執行在本文針對進行RS多工描述的某些態樣。每個調制器432可以處理(例如,針對OFDM等的)相應的輸出符號串流以獲得輸出取樣串流。每個調制器432可以進一步處理(例如,轉換為類比、放大、濾波和升頻轉換)輸出取樣串流以獲得下行鏈路信號。來自調制器432a到432t的下行鏈路信號可以分別經由天線434a到434t被發送。
在UE 120處,天線452a到452r可以從基地台110接收下行鏈路信號,並且可以將接收到的信號分別提供給解調器(DEMOD)454a到454r。每個解調器454可以調節(例如,濾波、放大、降頻轉換和數位化)相應的接收信號以獲得輸入取樣。每個解調器454可以進一步處理(例如,針對OFDM等的)輸入取樣以獲得接收符號。MIMO偵測器456可以從所有解調器454a到454r獲得接收到的符號,當適用時對接收到的符號執行MIMO偵測,並提供偵測到的符號。例如,MIMO偵測器456可以提供使用在本文描述的技術發送的偵測到的RS。接收處理器458可以處理(例如,解調、解交錯和解碼)偵測到的符號,將用於UE 120的經解碼的資料提供給資料槽460,並將經解碼的控制資訊提供給控制器/處理器480。
在上行鏈路上,在UE 120處,發射處理器464可以接收和處理來自資料來源462的(例如,針對實體上行鏈路共享通道(PUSCH)的)資料和來自控制器/處理器480的(例如,針對實體上行鏈路控制通道(PUCCH)的)控制資訊。發射處理器464亦可以產生針對參考信號的參考符號。來自發射處理器464的符號可以由TX MIMO處理器466(若適用的話)預編碼,由解調器454a到454r(例如,針對SC-FDM等)進一步處理,並被發送到BS 110。在BS 110處,來自UE 120的上行鏈路信號可以由天線434接收,由調制器432處理,由MIMO偵測器436偵測(若適用的話),並由接收處理器438進一步處理以獲得由UE 120發送的經解碼的資料和控制資訊。接收處理器438可以將經解碼的資料提供給資料槽439,並將經解碼的控制資訊提供給控制器/處理器440。
控制器/處理器440和480可以分別指導在基地台 110和UE 120處的操作。BS 110處的處理器440及/或其他處理器和模組可以執行或指導例如對在圖9中示出的功能方塊的執行及/或針對在本文描述的技術的其他處理程序。UE 120處的處理器480及/或其他處理器和模組亦可以執行或指導針對在本文描述的技術的處理程序。記憶體442和482可以分別儲存用於BS 110和UE 120的資料和程式碼。排程器444可以排程UE用於在下行鏈路及/或上行鏈路上進行資料傳輸。
圖5圖示根據本案內容的各態樣的用於實現通訊協定堆疊的示例的圖500。所示出的通訊協定堆疊可以由在5G系統(例如,支援基於上行鏈路的行動性的系統)中執行的設備來實現。圖500圖示包括無線電資源控制(RRC)層510、封包資料彙聚協定(PDCP)層515、無線電鏈路控制(RLC)層520、媒體存取控制(MAC)層525和實體(PHY)層530的通訊協定堆疊。在各種實例中,協定堆疊的層可以被實現為軟體的分開模組、處理器或ASIC的各部分、經由通訊鏈路連接的非並置設備的各部分,或上述各項的各種組合。例如,可以在用於網路存取設備(例如,AN、CU及/或DU)或UE的協定堆疊中使用並置和非並置的實現方案。
第一選項505-a示出協定堆疊的分割式實現方案,其中協定堆疊的實現方案被分割在集中式網路存取設備(例如,圖2中的ANC 202)和分散式網路存取設備(例如圖2中的DU 208)間。在第一選項505-a中,RRC層510和PDCP層515可以由中央單元實現,並且RLC層520、MAC層525和PHY層530可以由DU實現。在各種實例中,CU和DU可以並置或不並置。第一選項505-a在巨集細胞、微細胞或微微細胞部署中可以是有用的。
第二選項505-b示出協定堆疊的統一實現方案,其中協定堆疊被實現在單個網路存取設備(例如,存取節點(AN)、新型無線電基地台(NR BS)、新型無線電節點B(NR NB)、網路節點(NN)等)中。在第二選項中,RRC層510、PDCP層515、RLC層520、MAC層525和PHY層530均可以由AN來實現。第二選項505-b在毫微微細胞部署中可以是有用的。
無論網路存取設備是實現部分協定堆疊還是實現全部協定堆疊,UE皆可以實現整個協定堆疊(例如,RRC層510、PDCP層515、RLC層520、MAC層525、以及PHY層530)。
圖6是示出以DL為中心的子訊框600的示例的圖。以DL為中心的子訊框600可以包括控制部分602。控制部分602可以存在於以DL為中心的子訊框的初始部分或開頭部分中。控制部分602可以包括與以DL為中心的子訊框600的各個部分對應的各種排程資訊及/或控制資訊。在一些配置中,控制部分602可以是實體DL控制通道(PDCCH),如圖6所示。以DL為中心的子訊框 600亦可以包括DL資料部分604。DL資料部分604有時可以被稱為以DL為中心的子訊框600的有效載荷。DL資料部分604可以包括被用於從排程實體(例如,UE或BS)向從屬實體(例如,UE)傳送DL資料的通訊資源。在一些配置中,DL資料部分604可以是實體DL共享通道(PDSCH)。
以DL為中心的子訊框600亦可以包括共用UL部分606。共用UL部分606有時可以被稱為UL短脈衝、共用UL短脈衝及/或各種其他合適的術語。共用UL部分606可以包括與以DL為中心的子訊框 600的各個其他部分對應的回饋資訊。例如,共用UL部分606可以包括對應於控制部分602的回饋資訊。回饋資訊的非限制性示例可以包括ACK信號、NACK信號、HARQ指示符及/或各種其他合適類型的資訊。共用UL部分606可以包括附加的或替代的資訊,例如與隨機存取通道(RACH)程序、排程請求(SR)以及各種其他合適類型的資訊有關的資訊。如在圖6中所示,DL資料部分604的結尾可以與共用UL部分606的開頭在時間上分隔開。該時間分隔有時可以被稱為間隙、保護時段、保護間隔及/或各種其他合適的術語。該分隔為從DL通訊(例如,從屬實體(例如,UE)的接收操作)到UL通訊(例如,從屬實體(例如,UE)的傳輸)的切換提供時間。一名本領域的一般技藝人士將理解,以上僅僅是以DL為中心的子訊框的一個實例,並且具有類似特徵的替代結構可以存在,而不必偏離在本文描述的態樣。
圖7是示出以UL為中心的子訊框700的示例的圖。以UL為中心的子訊框700可以包括控制部分702。控制部分702可以存在於以UL為中心的子訊框700的初始部分或開頭部分中。圖7中的控制部分702可以類似於上面參照圖6描述的控制部分602。以UL為中心的子訊框700亦可以包括UL資料部分704。UL資料部分704有時可以被稱為以UL為中心的子訊框的有效載荷。UL部分可以指用於從從屬實體(例如,UE)向排程實體(例如,UE或BS)傳送UL資料的通訊資源。在一些配置中,控制部分702可以是PDCCH。
如在圖7中所示,控制部分702的結尾可以與UL資料部分704的開頭在時間上分隔開。該時間分隔有時可以被稱為間隙、保護時段、保護間隔及/或各種其他合適的術語。該分隔為從DL通訊(例如,排程實體的接收操作)到UL通訊(例如,排程實體的傳輸)的切換提供時間。以UL為中心的子訊框700亦可以包括共用UL部分706。圖7中的共用UL部分706可以類似於上面參照圖6描述的共用UL部分606。共用UL部分706可以額外或替代地包括關於通道品質指示符(CQI)、探測參考信號(SRS)以及各種其他合適類型的資訊的資訊。本領域的一般技藝人士將理解,以上僅僅是以UL為中心的子訊框的一個實例,並且具有類似特徵的替代結構可以存在,而不必偏離在本文描述的各態樣。
在一些情況下,兩個或更多個從屬實體(例如,UE)可以使用副鏈(sidelink)信號來彼此通訊。此種副鏈通訊的實際應用可以包括公共安全、鄰近服務、UE到網路中繼、車輛到車輛(V2V)通訊、萬物互聯(IoE)通訊、IoT通訊、關鍵任務型網狀網路及/或各種其他合適的應用。大體上,即使排程實體(例如,UE或BS)可以用於排程及/或控制的目的,副鏈信號亦可以指從一個從屬實體(例如,UE1)傳送到另一個從屬實體(例如,UE2)的信號,而不經由排程實體中繼該通訊。在一些實例中,可以使用經授權的頻譜(與通常使用未授權的頻譜的無線區域網路不同)來傳送副鏈信號。 示例補充上行鏈路
某些無線通訊系統部署利用了多個下行鏈路(DL)分量載波(CC)作為載波聚合(CA)方案的一部分。例如,除了主DL CC之外,可以使用一或多個補充DL(SDL)CC來增強資料輸送量及/或可靠性。
如在圖8中所示,對於NR,亦可以利用補充UL(SUL)。補充UL大體可以指在在細胞中沒有對應的DL CC(例如,沒有配對的DL)的情況下的UL CC。換句話說, SUL大體可以指當從NR設備的角度來看僅存在用於載波的UL資源時的情況。 SUL可以允許當在細胞中存在一個DL CC和多個UL CC時的場景。在某些情況下,DL和UL之間可能存在一對多關聯性。當各細胞被共置一處時,SUL和主UL(PUL)可以屬於相同的時序提前組。
在NR中,特定於UE的RRC訊號傳遞可以(重)配置PUCCH在SUL頻帶組合中在SUL載波上或在非SUL UL載波上的位置。在一些態樣中,PUSCH的預設位置可以是由PUCCH使用的相同的載波。
此外,特定於UE的RRC訊號傳遞可以(解)配置:PUSCH是被動態地排程在與SUL相比相同的細胞中的另一個(亦即,非PUCCH)載波上的。在此種情況下,UL准許中的載波指示符欄位可以用於指示(例如,動態地)PUSCH是在PUCCH載波上還是在另一載波上被發送的。在一些態樣中,可能不支援SUL載波和非SUL UL載波上的同時PUSCH傳輸。在SUL載波上可以有一個活動的頻寬部分(BWP),且在非SUL UL載波上可以有一個活動的BWP。換句話說,在一些情況下,可能存在多個活動的UL BWP(其可以是被配置的UL BWP的子集)。
BWP可以由特定的頻率範圍、中心頻率及/或數位方案來定義。儘管CC可以包括多個BWP配置,但大體上有一個BWP在任何給定的時間皆是活動的。然而,活動的UL BWP可以動態地改變(例如,基於DCI)。
可以針對在SUL頻帶組合中的SUL載波上的SRS和非SUL UL載波上的SRS獨立地配置SRS相關的RRC參數。例如,無論針對PUSCH和PUCCH的載波配置如何,皆可以在SUL載波和非SUL UL載波上配置SRS。 針對具有不同的數位方案的上行鏈路的示例時序提前粒度
對於上行鏈路傳輸,以TA命令來發信號通知的時序提前(TA)大體用於確保來自不同的UE的信號同步地到達基地台(例如,是正交的)以避免效能損失。通常,從gNB向UE(例如,在隨機存取程序期間的隨機存取回應(RAR)的媒體存取控制(MAC)控制元素(CE)中)發信號通知TA的量。在接收到RAR後,UE可基於TA發送第一上行鏈路傳輸。TA命令指示相對於當前的上行鏈路時序的(在基地台處計算的)上行鏈路時序變化。TA命令指示要乘以(例如,如下文在表I中所示的)TA粒度以實現要由UE應用於後續的上行鏈路傳輸的上行鏈路時序變化的值(以索引為單位元)。
在NR中,TA粒度(例如,TA命令的單位)大體是基於與上行鏈路載波的數位方案相關聯的一或多個參數。如在本文使用地,術語數位方案大體是指對用於通訊的時間和頻率資源的結構進行定義的一組參數。該等參數可以包括例如次載波間隔、循環字首的類型(例如,諸如普通CP或擴展CP)、以及傳輸時間間隔(TTI)(例如,諸如子訊框或時槽持續時間)。在表I中所示的一個參考實例中,TA粒度是基於在RAR之後的第一上行鏈路傳輸的次載波間隔的。 表I: TA 命令的[12] 位元的粒度
Figure 107138763-A0304-0001
如所示,對於單個數位方案情況(例如,在當一或多個上行鏈路載波具有相同的數位方案時的情況下),TA的單位(例如,TA粒度)根據次載波間隔(例如,數位方案的一個態樣)進行放縮。 如圖所示,較大的次載波間隔對應於較精細的TA粒度(較小的TA單位)。
然而,在一些情況下,NR可能能夠支援跨具有載波聚合的細胞及/或跨一細胞內的頻寬部分的混合的數位方案。在一個實例中,PUL和SUL(屬於相同的TAG)可以具有不同的數位方案。另外或替代地,在一個實例中,細胞內的(一或多個載波的)一或多個UL BWP可以具有不同的數位方案。在當細胞內的上行鏈路具有混合的數位方案的情形下,(使用傳統技術的)gNB可能無法準確地決定要用於TA命令的TA粒度。
本案的各態樣提供了使gNB能夠在與混合的(不同的)UL數位方案相關聯的各上行鏈路載波當中決定用於TA命令的TA配置(例如,TA粒度)的技術。
圖9圖示根據本案內容的各態樣的用於無線通訊的示例操作900。例如,可以由諸如在圖1中所示的BS 110的基地台(例如,gNB)來執行操作900。
操作900在902處開始,此處針對可用於與使用者設備(UE)的通訊的一或多個上行鏈路載波中的每一個上行鏈路載波,基地台決定該上行鏈路載波的數位方案。一或多個上行鏈路載波是與相同的時序提前組(TAG)相關聯的。在一個態樣中,一或多個上行鏈路載波可以包括PUL載波(例如,非SUL載波)和SUL載波。PUL載波和SUL載波可以具有不同的數位方案(例如,其具有不同的次載波間隔、不同的循環字首等)。
在904處,基地台部分地基於每個上行鏈路載波的數位方案來決定用於一或多個上行鏈路載波的TA粒度。在906處,基地台基於TA粒度來向UE發信號通知TA命令。
圖10圖示根據本案內容的各態樣的用於由使用者設備(UE)進行的無線通訊的示例性操作1000。例如,可以由UE(諸如在圖1中所示的UE 120)執行操作1000,以接收和處理由執行操作900的BS發送的TA命令。
操作1000在1002處開始於:接收要應用於具有不同的數位方案的一組上行鏈路載波當中的第一上行鏈路載波上的上行鏈路傳輸的時序提前(TA)命令。在1004處,UE基於來自該組上行鏈路載波內的參考上行鏈路載波的數位方案來決定用於TA命令的粒度。在1006處,UE以基於TA命令和所決定的粒度而調整的時序,在第二上行鏈路載波上發送上行鏈路傳輸。第一和第二UL載波可以相同或可以不同。例如,UE可以接收針對一個UL載波的TA命令,而稍後將其應用於另一個UL載波。
在本文呈現的各態樣提供了使得基地台能夠跨具有不同的數位方案的上行鏈路載波(例如,PUL和SUL)共享相同的TA命令的技術。
在一些態樣中,基地台可以基於被用於每個上行鏈路載波的TA粒度來決定要用於TA命令的TA配置(例如,粒度和發信號通知的實際值)。假設PUL和SUL是上行鏈路載波,基地台可以決定PUL CC的TA粒度(例如,基於被用於PUL CC的數位方案),並且決定SUL CC的TA粒度(例如,基於。被用於SUL CC的數位方案)。基地台可以基於PUL CC和SUL CC兩者的所決定的TA粒度來決定TA命令的TA粒度。例如,在一個態樣中,基地台可以基於SUL TA的TA粒度和PUL TA的TA粒度的最大值或最小值來決定要用於TA命令的TA粒度。
在一些態樣中,基地台可以基於PUCCH載波的數位方案來決定TA命令的TA粒度。例如,基地台可以決定哪個上行鏈路載波是與PUCCH相關聯的,並且基於與PUCCH相關聯的所決定的上行鏈路載波的TA粒度來決定TA命令的TA粒度。
在一些態樣中,基地台可以決定與特定的載波索引(例如,索引零,或所有上行鏈路載波索引中的最小值或最大值,或由RRC配置指示的專用索引)相關聯的上行鏈路載波之一,並且基於所決定的上行鏈路載波的TA粒度來決定TA命令的TA粒度。可以例如經由RRC訊號傳遞來配置或重配置每個載波本身的索引,並且這可以提供一種在需要時改變TA粒度的方法。
在一些態樣中,基地台可以基於由網路顯式配置的「參考」載波來決定TA粒度。例如,基地台可以接收對要用於TA命令的TA粒度的上行鏈路載波之一的指示,並且基於所指示的上行鏈路載波的TA粒度來決定TA命令的TA粒度。
從基地台接收TA命令的UE可以使用上述任何機制來決定TA粒度(例如,基於TAG中的載波的最小/最大TA粒度,基於參考載波,及/或基於基地台的訊號傳遞)。一旦決定了TA粒度,在給定TA命令中的值的情況下,UE可以決定要應用於後續的上行鏈路傳輸的時序調整的量。
如前述,NR亦可以跨細胞的一或多個載波內的頻寬的不同部分(或頻寬部分(BWP))支援不同的數位方案。亦即,包含UL的細胞可以被配置有具有不同的數位方案的多個UL BWP。 BWP可以由特定的頻率範圍、中心頻率及/或數位方案來定義。儘管CC可以包括多個BWP配置,但是大體上有一個BWP在任何給定的時間皆是活動的。然而,活動的UL BWP可以動態地改變(例如,基於DCI)。
因此,若TA粒度是基於當前的活動的UL BWP的數位方案的,則TA粒度亦必須在當前的活動的UL BWP改變的任何時間動態地改變。然而,因為BWP切換命令(其被用於切換活動的UL BWP)是基於DCI的並且TA命令是基於MAC CE的,所以基地台可能必須對準BWP切換命令和MAC CE命令的時序,以便確保將正確的TA粒度被用於當前的活動的UL BWP。
在本文呈現的各態樣提供了可以使基地台能夠實現(基於MAC-CE的)TA命令和(基於DCI的)BWP切換命令之間的時序對準的技術。
例如,假設BWP1和BWP2(對於單個載波)具有不同的數位方案。當MAC-CE命令被(例如,被UE)解碼時,TA粒度取決於在該時刻處活動的的BWP。然而,在此時刻處可能發生時序模糊。例如,即使MAC-CE命令是採用BWP1的TA粒度發送的,亦可能在第一次傳輸上未成功地解碼該命令,並且可能需要HARQ重傳。然而,在完成重傳之前,活動的BWP可以從BWP1切換到BWP2。在此種情況下,UE可能不知道如何解釋MAC-CE命令的TA粒度(例如,基於BWP1或BWP2)。
在此種場景中,各態樣可以使用MAC-CE TA命令ACK時序以決定要使用的BWP數位方案。為了避免模糊,當具有TA命令的MAC-CE正在待HARQ重傳時,gNB可以推遲進行BWP切換。若HARQ重傳完成並且仍存在NACK,則這意味著TA命令仍沒有通過。因此,gNB可以決定重新開始在BWP1中的MAC-CE TA命令傳輸並且繼續推遲切換到BWP2。或者,gNB可以決定在從BWP1切換到BWP2之後重新開始在BWP2中的MAC-CE TA命令傳輸。
然而,在許多情況下,部分地由於難以對準(基於DCI的)BWP切換命令的時序和(基於MAC CE的)TA命令的時序,因此以此種方式動態地改變TA粒度可能是不期望的。
相應地,各態樣提供了使得基地台能夠在活動的BWP正動態地改變的情況下可靠地決定用於TA命令的TA粒度的技術。
圖11圖示用於由基地台進行的無線通訊的示例性操作1100,用以在BWP具有不同的數位方案時決定TA粒度。例如,可以由諸如在圖1中所示的BS 110的基地台(例如,gNB)來執行操作1100。
操作1100在1102處開始於:基於來自具有不同的數位方案的一組BWP的參考BWP的數位方案來決定用於時序提前(TA)命令的粒度。在1104處,BS基於所決定的粒度來設置TA命令的值。在1106處,BS將TA命令發送給UE以便當在該組中的一或多個BWP上發送上行鏈路傳輸時應用。
圖12圖示用於由使用者設備(UE)進行的無線通訊的示例性操作1200,用以將TA命令應用於BWP上的上行鏈路傳輸。例如,可以由UE(諸如在圖1中所示的UE 120)執行操作1200,以接收和處理由執行操作1100的BS發送的TA命令。
操作1200在1202處開始於:接收要應用於來自具有不同的數位方案的一組上行鏈路頻寬部分(BWP)的第一BWP上的上行鏈路傳輸的時序提前(TA)命令。在1204處,UE基於來自該組內的參考BWP的數位方案來決定用於TA命令的粒度。在1206處,UE以基於TA命令和所決定的粒度而調整的時序,在第二BWP上發送上行鏈路傳輸。第一UL BWP和第二UL BWP可以相同或可以不同。例如,UE可以接收針對一個UL BWP的TA命令,而稍後將其應用於另一個UL BWP。
在一些態樣中,基地台可以針對一或多個上行鏈路載波中的每一個上行鏈路載波來決定與該上行鏈路載波的一或多個被配置的BWP相關聯的數位方案。每個載波可以有多個被配置的BWP,但該等被配置的BWP當中有一或多個活動的BWP。使用PUL和SUL作為參考實例,PUL可以包括具有不同的數位方案的一或多個被配置的BWP,並且SUL可以包括具有不同的數位方案的一或多個被配置的BWP。一旦被決定,基地台便可以進一步基於每個被配置的BWP的數位方案來決定要用於TA命令的TA配置。
在一些態樣中,基地台可以基於BWP的最大TA粒度或BWP的最小TA粒度來決定TA命令的TA粒度。如上在表I中所示,較大的次載波間隔(SCS)可以對應於較精細的粒度(具有較小的單位)。因此,基於BWP的最大TA粒度決定TA粒度可以是與決定相對於具有最小次載波間隔(SCS)的BWP的TA粒度基本相同的。類似地,基於BWP的最小TA粒度決定TA粒度可以是與決定相對於具有最大SCS的BWP的TA粒度基本相同的。在一些情況下,若時序調整值是基於同與用於其將應用到的UL傳輸的BWP相關聯的解析度相比而言較精細的解析度來計算的,則計算出的實際值可以被進行捨入以與BWP的(例如,較粗略的)粒度對準。
此決定可以以半靜態方式完成,這是因為通常UL BWP是針對細胞來被RRC配置的。因此,即使BWP正動態地改變,基地台(和UE)亦可以繼續針對TA命令使用相同的被決定的TA粒度。
在一些態樣中,基地台可以指定(或選擇)UL BWP之一作為「參考」UL BWP。例如,在TDD中,所指定的UL BWP可以是與預設DL BWP相關聯的一個UL BWP。在另一實例中,所指定的UL BWP可以是與特定的BWP索引(例如,索引零,或所有上行鏈路BWP索引當中的最小值或最大值)相關聯的一個UL BWP。在一些情況下,若UE具有多個活動的UL BWP,則參考UL BWP可以是具有最大SCS的UL BWP。
基地台可以基於所選擇的(參考)頻寬部分的TA粒度(其是根據參考UL BWP的數位方案來決定的)來決定TA命令的TA粒度。每個BWP本身的索引可以是例如經由RRC訊號傳遞來配置或重配置的,並且這可以提供一種在需要時改變TA粒度的方法。此外,BWP可以在每個分量載波內分開地被加索引,或者可以跨所有分量載波聯合地被加索引。若使用分開地加索引,則不同的分量載波中的多個BWP可以具有相同的索引,並且所指定的UL BWP則可以是與特定的載波索引內的特定的BWP索引相關聯的彼UL BWP。可以如前述來辨識載波索引。
相應地,在本文呈現的各態樣可以用於解決混合的UL數位方案中的TA粒度的模糊的問題。
在本文揭露的方法包括用於實現所描述的方法的一或多個步驟或動作。在不脫離申請專利範圍的範圍的情況下,方法的步驟及/或動作可以彼此互換。換句話說,除非指定了步驟或動作的具體順序,否則在不脫離申請專利範圍的範圍的情況下,可以修改具體步驟及/或動作的順序及/或使用。
如本文所使用地,提及項目列表中的「至少一個」的短語是指該等項目的任何組合,包括單個成員。舉例而言,「a、b或c中的至少一個」意欲涵蓋a、b、c、a-b、a-c、b-c和a-b-c以及具有多個相同元素的任何組合(例如,a-a、a-a-a、a-a-b、a-a-c、a-b-b、a-c-c、b-b、b-b-b、b-b-c、c-c和c-c-c或者a、b和c的任何其他排序)。
如本文所使用地,術語「決定」涵蓋各種各樣的動作。例如,「決定」可以包括估算、計算、處理、匯出、調查、檢視(例如,在表格、資料庫或另一資料結構中檢視)、核定等。而且,「決定」可以包括接收(例如,接收資訊)、存取(例如存取記憶體中的資料)等。而且,「決定」可以包括解析、選擇、選取、建立等。
提供之前的描述是為了使本領域的任何技藝人士能夠實踐本文描述的各個態樣。對該等態樣的各種修改對於本領域技藝人士而言將是顯而易見的,並且在本文定義的一般原理可以應用於其他態樣。因此,申請專利範圍不意欲限於在本文所示的態樣,而是要符合與語言申請專利範圍相一致的全部範圍,其中以單數形式引用元素並非意在表示「一個且僅一個」(除非特別如此說明)而是表示「一或多個」。除非另有特別說明,否則術語「一些」是指一或多個。貫穿本案內容所描述的各個態樣的元素的所有結構和功能均等物對於本領域一般技藝人士來說是已知的或隨後將知道的,且其經由引用明確地併入本文並且意欲被申請專利範圍所涵蓋。而且,在本文揭露的任何內容皆不意欲奉獻給公眾,而不管此種揭露內容是否在申請專利範圍中明確記載。沒有請求項的元素是要根據施行細則第18條第8項的規定來解釋的,除非使用短語「用於...的構件」明確記載該元素,或者在方法請求項的情況下使用短語「用於......的步驟」來記載該元素。
上述方法的各種操作可以經由能夠執行對應的功能的任何合適的構件來執行。構件可以包括各種硬體及/或軟體元件及/或模組,包括但不限於電路、特殊應用積體電路(ASIC)或處理器。一般來說,在圖中示出有操作的情況下,彼等操作可以具有對應的相當的具有相似編號的功能模組元件。
例如,用於發送的構件及/或用於接收的構件可以包括基地台110的發射處理器420、TX MIMO處理器430、接收處理器438或天線434及/或使用者設備120的發射處理器464、TX MIMO處理器466、接收處理器458或天線452中的一或多個。另外,用於產生的構件、用於多工的構件及/或用於應用的構件可以包括一或多個處理器,例如基地台110的控制器/處理器440及/或使用者設備120的控制器/處理器480。
結合本案內容描述的各種示出性邏輯區塊、模組和電路可以用被設計為執行本文所述功能的通用處理器、數位訊號處理器(DSP)、特殊應用積體電路(ASIC)、現場可程式化閘陣列(FPGA)或其他可程式化邏輯裝置(PLD)、個別閘門或電晶體邏輯、個別硬體元件,或上述各項的任何組合。通用處理器可以是微處理器,但是替代地,處理器可以是任何市場上可買到的處理器、控制器、微控制器或狀態機。處理器亦可以實現為計算設備的組合,例如,DSP和微處理器的組合、複數個微處理器、一或多個微處理器與DSP核的結合,或者任何其他此種配置。
若以硬體實現,則示例硬體配置可以包括無線節點中的處理系統。處理系統可以用匯流排架構來實現。根據處理系統的具體應用和整體設計約束,匯流排可以包括任意數量的互連匯流排和橋。匯流排可以將包括處理器、機器可讀取媒體和匯流排介面的各種電路連結在一起。匯流排介面可以用於經由匯流排將網路介面卡等連接到處理系統。網路配接器可以用於實現PHY層的信號處理功能。在使用者終端120(參見圖1)的情況下,使用者介面(例如,鍵盤、顯示器、滑鼠、操縱桿等)亦可以連接到匯流排。匯流排亦可以連結本領域公知的例如時序源、周邊設備、穩壓器、電源管理電路等各種其他電路,該等電路由於公知而因此將不再進行描述。處理器可以用一或多個通用及/或專用處理器來實現。例子係包括微處理器、微控制器、DSP處理器和可以執行軟體的其他電路。本領域技藝人士將認識到如何最好地實現處理系統的所描述的功能,這取決於特定的應用和施加在整個系統上的整體設計約束。
若以軟體實現,則可以將該等功能作為一或多個指令或代碼在電腦可讀取媒體上儲存或傳輸。無論被稱為軟體、韌體、仲介軟體、微代碼、硬體描述語言還是其他,軟體皆應被廣義地解釋為意味指令、資料或其任何組合。電腦可讀取媒體包括電腦儲存媒體和通訊媒體兩者,通訊媒體包括便於將電腦程式從一個地方轉移到另一個地方的任何媒體。處理器可以負責管理匯流排和通用處理,包括儲存在機器可讀儲存媒體上的軟體模組的執行。電腦可讀取儲存媒體可以耦合到處理器,使得處理器可以從儲存媒體讀取資訊並將資訊寫入儲存媒體。或者,儲存媒體可以整合到處理器中。作為實例,機器可讀取媒體可以包括傳輸線、由資料調制的載波,及/或其上儲存有指令的與無線節點分離的電腦可讀取儲存媒體,所有該等可以由處理器經由匯流排介面存取。可替換地或另外地,機器可讀取媒體或其任何部分可以被整合到處理器中,諸如在具有快取記憶體及/或通用暫存器檔的情況下。作為實例,機器可讀儲存媒體的示例可以包括RAM(隨機存取記憶體)、快閃記憶體、ROM(唯讀記憶體)、PROM(可程式化唯讀記憶體)、EPROM(可抹除可程式化唯讀記憶體)、EEPROM (電子可抹除可程式化唯讀記憶體)、暫存器、磁碟、光碟、硬碟或任何其他合適的儲存媒體或其任何組合。機器可讀取媒體可以實施在電腦程式產品中。
軟體模組可以包括單個指令或許多指令,並且可以分佈在幾個不同的程式碼片段、不同的程式之間以及跨越多個儲存媒體。電腦可讀取媒體可以包括多個軟體模組。軟體模組包括在由諸如處理器之類的裝置執行時使處理系統執行各種功能的指令。軟體模組可以包括傳輸模組和接收模組。每個軟體模組可以常駐在單個儲存裝置中或分佈在多個儲存裝置中。舉例而言,當觸發事件發生時,軟體模組可以從硬碟載入到RAM中。在執行軟體模組期間,處理器可以將一些指令載入到緩存中以提高存取速度。隨後可以將一或多個快取記憶體行載入到通用暫存器檔中以供處理器執行。當提及下文的軟體模組的功能時,應該理解,此種功能由處理器當執行來自該軟體模組的指令時實現。
而且,任何連接皆被適當地稱為電腦可讀取媒體。例如,若使用同軸電纜、光纖電纜、雙絞線、數位用戶線路(DSL)或諸如紅外(IR)、無線電以及微波的無線技術從網站、伺服器或其他遠端源傳輸軟體,則同軸電纜、光纖電纜、雙絞線、DSL或諸如紅外線、無線電和微波的無線技術皆包含在媒體的定義中。在本文使用的磁碟和光碟包括壓縮光碟(CD)、鐳射光碟、光碟、數位多功能光碟(DVD)、軟碟和藍光光碟®,其中磁碟通常磁性地再現資料,而光碟以鐳射光學地再現資料。因此,在一些態樣中,電腦可讀取媒體可以包括非暫時性電腦可讀取媒體(例如,有形媒體)。另外,對於其他態樣,電腦可讀取媒體可以包括暫時性電腦可讀取媒體(例如,信號)。上述的組合亦應該包括在電腦可讀取媒體的範圍內。
因此,某些態樣可以包括用於執行本文中呈現的操作的電腦程式產品。例如,此種電腦程式產品可以包括其上儲存(及/或編碼)指令的電腦可讀取媒體,該等指令可由一或多個處理器執行以執行本文描述的操作。例如,用於執行在本文描述的和在圖9中示出的操作的指令。
此外,應該理解地是,用於執行本文描述的方法和技術的模組及/或其他合適的構件可以適用時由使用者終端及/或基地台下載及/或以其他方式獲得。例如,此種設備可以耦合到伺服器以促進傳送用於執行在本文描述的方法的構件。或者,可以經由儲存構件(例如RAM、ROM、諸如壓縮光碟(CD)或軟碟之類的實體儲存媒體)來提供在本文描述的各種方法,使得使用者終端及/或基地台可以在將儲存構件耦合到或提供給設備時獲得各種方法。此外,可以利用用於將本文所述的方法和技術提供給設備的任何其他合適的技術。
應理解地是,申請專利範圍不限於以上所示的精確配置和元件。在不脫離申請專利範圍的範圍的情況下,可以對上述方法和裝置的佈置、操作和細節進行各種修改、改變和變化。
100‧‧‧示例無線通訊網路 102a‧‧‧巨集細胞 102b‧‧‧巨集細胞 102c‧‧‧巨集細胞 102x‧‧‧微微細胞 102y‧‧‧毫微微細胞 102z‧‧‧毫微微細胞 110‧‧‧BS 110a‧‧‧BS 110b‧‧‧BS 110c‧‧‧BS 110r‧‧‧中繼站 110x‧‧‧微微細胞 110y‧‧‧毫微微細胞 110z‧‧‧毫微微細胞 120‧‧‧UE 120r‧‧‧UE 120x‧‧‧UE 120y‧‧‧UE 130‧‧‧網路控制器 200‧‧‧分散式RAN 202‧‧‧ANC 204‧‧‧下一代核心網路(NG-CN) 206‧‧‧5G存取節點 208‧‧‧TRP 210‧‧‧NG-AN 300‧‧‧分散式RAN 302‧‧‧集中式核心網路單元(C-CU) 304‧‧‧集中式RAN單元(C-RU) 306‧‧‧DU 412‧‧‧資料來源 420‧‧‧處理器 430‧‧‧發射(TX)多輸入多輸出(MIMO)處理器 432a‧‧‧調制器(MOD) 432t‧‧‧調制器(MOD) 434a‧‧‧天線 434t‧‧‧天線 436‧‧‧MIMO偵測器 438‧‧‧接收處理器 439‧‧‧資料槽 440‧‧‧控制器/處理器 442‧‧‧記憶體 444‧‧‧排程器 452a‧‧‧天線 452r‧‧‧天線 454a‧‧‧解調器(DEMOD) 454r‧‧‧解調器(DEMOD) 456‧‧‧MIMO偵測器 458‧‧‧接收處理器 460‧‧‧資料槽 462‧‧‧資料來源 464‧‧‧發射處理器 466‧‧‧TX MIMO處理器 480‧‧‧控制器/處理器 482‧‧‧記憶體 500‧‧‧圖 505-a‧‧‧第一選項 505-b‧‧‧第二選項 510‧‧‧RRC層 515‧‧‧PDCP層 520‧‧‧RLC層 525‧‧‧MAC層 530‧‧‧PHY層 600‧‧‧以DL為中心的子訊框 602‧‧‧控制部分 604‧‧‧DL資料部分 606‧‧‧共用UL部分 700‧‧‧以UL為中心的子訊框 702‧‧‧控制部 704‧‧‧UL資料部分 706‧‧‧共用UL部分 900‧‧‧示例操作 902‧‧‧方塊 904‧‧‧方塊 906‧‧‧方塊 1000‧‧‧示例性操作 1002‧‧‧方塊 1004‧‧‧方塊 1006‧‧‧方塊 1100‧‧‧示例性操作 1102‧‧‧方塊 1104‧‧‧方塊 1106‧‧‧方塊 1200‧‧‧示例性操作 1202‧‧‧方塊 1204‧‧‧方塊 1206‧‧‧方塊
為了能夠實現詳細理解本案內容的上述特徵的方式,可以經由參照各態樣來獲得在上面簡要概述的更具體的描述,其中一些態樣在附圖中示出。然而,要注意地是,附圖僅圖示本案內容的某些典型態樣,並且因此不被認為是對其範圍的限制,因為該描述可以適於其他等效的態樣。
圖1是概念性地示出根據本案內容的某些態樣的示例電信系統的方塊圖。
圖2是示出根據本案內容的某些態樣的分散式無線電存取網路(RAN)的示例邏輯架構的方塊圖。
圖3是示出根據本案內容的某些態樣的分散式RAN的示例實體架構的圖。
圖4是概念性地示出根據本案內容的某些態樣的示例基地台(BS)和使用者設備(UE)的設計的方塊圖。
圖5是示出根據本案內容的某些態樣的用於實現通訊協定堆疊的示例的圖。
圖6圖示根據本案內容的某些態樣的以下行鏈路為中心的子訊框的實例。
圖7圖示根據本案內容的某些態樣的以上行鏈路為中心的子訊框的實例。
圖8圖示具有補充上行鏈路(SUL)分量載波的示例場景,其中可以實踐本案內容的各態樣。
圖9圖示根據本案內容的某些態樣的用於由基地台(BS)執行的無線通訊的示例性操作。
圖10圖示根據本案內容的某些態樣的用於由使用者設備(UE)執行的無線通訊的示例操作。
圖11圖示根據本案內容的某些態樣的用於由BS執行的無線通訊的示例操作。
圖12圖示根據本案內容的某些態樣的用於由UE執行的無線通訊的示例操作。
為了便於理解,在可能的情況下已經使用相同的元件符號來指示圖中共有的相同元素。預期地是,在一個態樣中揭示的元素可以有利地用於其他態樣而無需特別敘述。
國內寄存資訊 (請依寄存機構、日期、號碼順序註記) 無
國外寄存資訊 (請依寄存國家、機構、日期、號碼順序註記) 無
1000‧‧‧示例性操作
1002‧‧‧方塊
1004‧‧‧方塊
1006‧‧‧方塊

Claims (30)

  1. 一種用於由一使用者設備(UE)進行的無線通訊的方法,包括: 接收要應用於來自具有不同的數位的方案的一組上行鏈路頻寬部分(BWP)的一第一BWP上的上行鏈路傳輸的一時序提前(TA)命令; 基於來自該組內的一參考BWP的數位方案來決定用於該TA命令的一粒度;及 以基於該TA命令和所決定的粒度而調整的時序,在一第二BWP上發送該上行鏈路傳輸。
  2. 根據請求項1之方法,其中第一BWP和第二BWP是相同的BWP。
  3. 根據請求項1之方法,其中該一組上行鏈路BWP是一時序提前組(TAG)的一部分。
  4. 根據請求項1之方法,其中該參考BWP是活動的上行鏈路BWP當中的具有一最大次載波間隔的一BWP。
  5. 根據請求項1之方法,其中該參考BWP是被配置的BWP當中的具有一最大次載波間隔的一BWP。
  6. 根據請求項1之方法,其中該參考BWP是該組中的BWP當中的具有一最小TA粒度的一BWP。
  7. 根據請求項1之方法,其中該參考BWP是與一預設的下行鏈路BWP相關聯的。
  8. 根據請求項1之方法,亦包括:接收指示該參考BWP的訊號傳遞。
  9. 一種用於由一使用者設備(UE)進行的無線通訊的方法,包括: 接收要應用於具有不同的數位方案的一組上行鏈路載波當中的一第一上行鏈路載波上的一上行鏈路傳輸的一時序提前(TA)命令; 基於來自該一組上行鏈路載波內的一參考上行鏈路載波的一數位方案來決定用於該TA命令的一粒度;及 以基於該TA命令和所決定的粒度而調整的時序,在一第二上行鏈路載波上發送該上行鏈路傳輸。
  10. 根據請求項9之方法,其中第一上行鏈路載波和第二上行鏈路載波是相同的上行鏈路載波。
  11. 根據請求項9之方法,其中該參考上行鏈路載波是具有一最小TA粒度的一上行鏈路載波。
  12. 根據請求項9之方法,其中該參考上行鏈路載波是具有最大次載波間隔的一上行鏈路載波。
  13. 根據請求項9之方法,其中該參考上行鏈路載波對應於被用於實體上行鏈路控制通道(PUCCH)傳輸的一上行鏈路載波。
  14. 根據請求項9之方法,亦包括:接收指示該參考上行鏈路載波的訊號傳遞。
  15. 一種用於由一基地台進行的無線通訊的方法,包括: 基於來自具有不同的數位方案的一組頻寬部分(BWP)的一參考BWP的數位方案來決定用於一時序提前(TA)命令的一粒度; 基於所決定的粒度來設置用於該TA命令的一值;及 將該TA命令發送給一UE以便當在該組中的該BWP中的一或多個BWP上發送上行鏈路傳輸時應用。
  16. 根據請求項15之方法,其中該參考BWP是活動的上行鏈路BWP當中的具有一最大次載波間隔的一BWP。
  17. 根據請求項15之方法,其中該參考BWP是在被配置的BWP當中的具有一最大次載波間隔的一BWP。
  18. 根據請求項15之方法,其中該參考BWP是該TAG中的BWP當中的具有一最小TA粒度的一BWP。
  19. 根據請求項15之方法,其中該參考BWP是與一預設的下行鏈路BWP相關聯的。
  20. 根據請求項15之方法,亦包括向該UE提供指示該參考BWP的訊號傳遞。
  21. 一種用於由一基地台(BS)進行的無線通訊的方法,包括: 針對可用於與一使用者設備(UE)通訊的一或多個上行鏈路載波之每一者上行鏈路載波,決定該上行鏈路載波的一數位方案,其中該一或多個上行鏈路載波是與一相同的時序提前組(TAG)相關聯的; 部分地基於每個上行鏈路載波的數位方案來決定用於該一或多個上行鏈路載波的一時序提前(TA)粒度;及 基於該TA粒度來向該UE發信號通知一TA命令。
  22. 根據請求項21之方法,其中該TA粒度是基於該上行鏈路載波的一最大TA粒度來決定的。
  23. 根據請求項21之方法,其中該TA粒度是基於該上行鏈路載波的一最小TA粒度來決定的。
  24. 根據請求項21之方法,其中該參考上行鏈路載波是具有最大次載波間隔的一上行鏈路載波。
  25. 根據請求項21之方法,其中該TA配置是基於該上行鏈路載波中的與一實體上行鏈路控制通道(PUCCH)相關聯的一個上行鏈路載波來決定的。
  26. 根據請求項21之方法,其中該TA配置是基於該上行鏈路載波中的與一特定的載波索引相關聯的一個上行鏈路載波的。
  27. 根據請求項21之方法,亦包括: 針對該一或多個上行鏈路載波之每一者上行鏈路載波,決定與該上行鏈路載波的一或多個頻寬部分相關聯的一數位方案,其中該TA粒度是基於該頻寬部分中的至少一個頻寬部分的一數位方案來決定的。
  28. 根據請求項27之方法,其中該TA粒度是至少部分地基於該頻寬部分的一最大TA粒度來決定的。
  29. 根據請求項27之方法,其中該TA粒度是至少部分地基於該頻寬部分的一最小TA粒度來決定的。
  30. 根據請求項21之方法,其中決定該TA粒度包括: 選擇該等頻寬部分中的一個頻寬部分作為一參考;及 基於所選擇的頻寬部分來決定該TA粒度。
TW107138763A 2017-11-03 2018-11-01 用於具有不同的數位方案的上行鏈路的時序提前粒度 TWI786214B (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201762581579P 2017-11-03 2017-11-03
US62/581,579 2017-11-03
US201762588269P 2017-11-17 2017-11-17
US62/588,269 2017-11-17
US16/176,415 2018-10-31
US16/176,415 US11540256B2 (en) 2017-11-03 2018-10-31 Timing advance granularity for uplink with different numerologies

Publications (2)

Publication Number Publication Date
TW201931906A TW201931906A (zh) 2019-08-01
TWI786214B true TWI786214B (zh) 2022-12-11

Family

ID=66327937

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107138763A TWI786214B (zh) 2017-11-03 2018-11-01 用於具有不同的數位方案的上行鏈路的時序提前粒度

Country Status (9)

Country Link
US (1) US11540256B2 (zh)
EP (1) EP3704908A1 (zh)
JP (1) JP7247180B2 (zh)
KR (1) KR20200079487A (zh)
CN (1) CN111316720B (zh)
BR (1) BR112020008786A2 (zh)
CA (1) CA3076825A1 (zh)
TW (1) TWI786214B (zh)
WO (1) WO2019089964A1 (zh)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109005585A (zh) * 2017-06-06 2018-12-14 华为技术有限公司 发送上行信息的方法和装置
CN109391966B (zh) * 2017-08-11 2021-08-31 华为技术有限公司 一种定时提前确定方法及设备
US11665659B2 (en) * 2017-11-14 2023-05-30 Telefonaktiebolaget Lm Ericsson (Publ) Method for managing time alignment for uplink transmission between a UE and a network node in a wireless communication network
CN110572877B (zh) * 2017-11-17 2020-11-10 华为技术有限公司 一种信息发送、接收的方法及装置
CN109922534B (zh) * 2017-12-13 2020-06-23 华硕电脑股份有限公司 随机接入程序期间处理带宽部分定时器的方法和设备
US10750534B2 (en) * 2018-01-09 2020-08-18 Yeongmoon SON Method and apparatus to receive and transmit data in a mobile communication system
CN114845378B (zh) * 2018-01-10 2023-11-24 富士通株式会社 上行传输定时提前量的获取方法、装置以及通信***
CN110139363B (zh) * 2018-02-09 2021-11-09 维沃移动通信有限公司 发送uci的方法及用户终端
CN110167133B (zh) * 2018-02-13 2021-08-13 华为技术有限公司 一种上行同步方法及装置
US20220039150A1 (en) * 2018-09-27 2022-02-03 Telefonaktiebolaget Lm Ericsson (Publ) User Equipment for Obtaining a Band Width Part for a Random Access, a Network Node, and Corresponding Methods in a Wireless Communication Network
WO2021012249A1 (en) * 2019-07-25 2021-01-28 Qualcomm Incorporated Techniques for managing timing advance wireless communications
TWI724502B (zh) 2019-08-20 2021-04-11 中磊電子股份有限公司 主控基地台及資源分配指示方法
WO2021060231A1 (en) * 2019-09-25 2021-04-01 Sharp Kabushiki Kaisha User equipments, base stations and methods for transmission(s) of a physical uplink control channel (pucch) and a physical uplink shared channel (pusch)
CN112584482B (zh) * 2019-09-27 2022-03-25 华为技术有限公司 卫星通信的方法及装置
EP4088530A4 (en) * 2020-01-10 2023-09-06 Qualcomm Incorporated BANDWIDTH PART OPERATION FOR COMBINATION DCI INFORMATION TO SCHEDULE MULTIPLE CELLS
US11792750B2 (en) * 2020-05-15 2023-10-17 Qualcomm Incorporated Reference timing for multiple transmission and reception points in multi-radio dual connectivity
CN114258127B (zh) * 2020-09-25 2023-09-15 维沃移动通信有限公司 信息确定方法、信息发送方法、装置和设备
KR20240100345A (ko) * 2021-11-04 2024-07-01 엘지전자 주식회사 무선 통신 시스템에서 상향링크 송수신 방법 및 장치
CN118160389A (zh) * 2021-11-05 2024-06-07 Lg 电子株式会社 用于无线通信***中基于多频单元的同时发送或接收的方法和设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120282969A1 (en) * 2010-01-12 2012-11-08 Huawei Technologies Co., Ltd. Method, Device, and System for Determining Timing Advance Grouping
TW201349813A (zh) * 2012-02-08 2013-12-01 Ericsson Telefon Ab L M 上行鏈路時序對正
WO2015115794A1 (ko) * 2014-01-28 2015-08-06 엘지전자 주식회사 무선 통신 시스템에서 장치 대 장치 단말의 제어 채널 전송 방법 및 장치
CN107295649A (zh) * 2016-03-31 2017-10-24 华为技术有限公司 信息的传输方法及相关装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9402255B2 (en) 2010-09-30 2016-07-26 Panasonic Intellectual Property Corporation Of America Timing advance configuration for multiple uplink component carriers
EP4300868A3 (en) * 2017-05-05 2024-04-03 Apple Inc. Bandwidth part configuration and operation for new radio (nr) wideband user equipment (ue)
CN117675152A (zh) * 2017-06-13 2024-03-08 苹果公司 用于蜂窝通信的涉及多个带宽部分的新无线电的使用
WO2019066533A1 (en) * 2017-09-29 2019-04-04 Samsung Electronics Co., Ltd. APPARATUS AND METHOD FOR MANAGING CONFIGURATION OF BANDWIDTH PARTIES FOR RANDOM ACCESS CHANNEL PROCEDURE IN WIRELESS COMMUNICATION SYSTEM
JP7068331B2 (ja) * 2017-10-31 2022-05-16 株式会社Nttドコモ 端末および端末の送信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120282969A1 (en) * 2010-01-12 2012-11-08 Huawei Technologies Co., Ltd. Method, Device, and System for Determining Timing Advance Grouping
TW201349813A (zh) * 2012-02-08 2013-12-01 Ericsson Telefon Ab L M 上行鏈路時序對正
WO2015115794A1 (ko) * 2014-01-28 2015-08-06 엘지전자 주식회사 무선 통신 시스템에서 장치 대 장치 단말의 제어 채널 전송 방법 및 장치
CN107295649A (zh) * 2016-03-31 2017-10-24 华为技术有限公司 信息的传输方法及相关装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Qualcomm, "Summary of Remaining Details on RACH Procedure", R1-1719197, 3GPP TSG RAN WG1 Meeting 90bis, Prague, CZ, 9th – 13th, October 2017 *

Also Published As

Publication number Publication date
EP3704908A1 (en) 2020-09-09
WO2019089964A1 (en) 2019-05-09
CN111316720B (zh) 2022-03-29
JP2021502020A (ja) 2021-01-21
US11540256B2 (en) 2022-12-27
BR112020008786A2 (pt) 2020-10-13
KR20200079487A (ko) 2020-07-03
US20190141697A1 (en) 2019-05-09
CA3076825A1 (en) 2019-05-09
TW201931906A (zh) 2019-08-01
CN111316720A (zh) 2020-06-19
JP7247180B2 (ja) 2023-03-28

Similar Documents

Publication Publication Date Title
TWI786214B (zh) 用於具有不同的數位方案的上行鏈路的時序提前粒度
US11943771B2 (en) Resource allocation patterns for scheduling services in a wireless network
TWI809033B (zh) 針對具有重複的重疊上行鏈路資源配置的uci傳輸
TWI805689B (zh) 上行鏈路和下行鏈路搶佔指示
TWI803565B (zh) 針對非週期性通道狀態資訊參考信號觸發的准共置假設
CN109845352B (zh) 用于功率控制和管理的技术
TWI790300B (zh) 非週期性追蹤參考信號
TWI756376B (zh) 同步時槽中的資料傳輸
TWI798208B (zh) 用於不同操作模式下的新無線電技術同步配置的方法
CN117979362A (zh) 分组重复的配置、激活和停用
TWI767041B (zh) 優先化隨機存取程序
CN110249553B (zh) 多级时隙绑定设计方案
TWI797236B (zh) 上行鏈路功率控制配置
CN109565828B (zh) 不同子帧结构下的载波聚集的方法和装置
TWI816894B (zh) 對處理的下行鏈路控制資訊(dci)的數量的限制
CN110800355B (zh) 长上行链路突发信道设计
TWI782143B (zh) 用於雙無線電存取技術(rat)通訊的功率控制
TWI760520B (zh) 實體上行鏈路控制通道(pucch)序列配置
TWI775962B (zh) 與載波相關的隨機存取通道(rach)回應搜尋空間
CN111727621B (zh) 分组重复的配置、激活和停用