TWI785442B - Unmanned aerial vehicle and its flight control method - Google Patents

Unmanned aerial vehicle and its flight control method Download PDF

Info

Publication number
TWI785442B
TWI785442B TW109146169A TW109146169A TWI785442B TW I785442 B TWI785442 B TW I785442B TW 109146169 A TW109146169 A TW 109146169A TW 109146169 A TW109146169 A TW 109146169A TW I785442 B TWI785442 B TW I785442B
Authority
TW
Taiwan
Prior art keywords
uav
distance
echo signal
obstacle
radar
Prior art date
Application number
TW109146169A
Other languages
Chinese (zh)
Other versions
TW202225890A (en
Inventor
蔣文隆
常其民
姜信德
登峰 楊
Original Assignee
為升電裝工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 為升電裝工業股份有限公司 filed Critical 為升電裝工業股份有限公司
Priority to TW109146169A priority Critical patent/TWI785442B/en
Priority to CN202110702812.0A priority patent/CN114690797A/en
Publication of TW202225890A publication Critical patent/TW202225890A/en
Application granted granted Critical
Publication of TWI785442B publication Critical patent/TWI785442B/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一種無人機的飛行控制方法,包括以下步驟:獲取該無人機的一非旋 轉式雷達模組偵測到一前方區域的至少一第一回波訊號以及一底側區域的一第二回波訊號。根據該第一回波訊號以及該第二回波訊號得到位於該無人機前方的一障礙物的一空間資訊,該空間資訊至少包括該障礙物相對該無人機的一水平距離以及該障礙物相對一地面的一高度差。當該水平距離以及該高度差符合一預警條件時產生一預警訊號。其中該非旋轉式雷達模組包括偵測該第一回波訊號的一前視雷達以及偵測該第二回波訊號的一仿地雷達,該前視雷達具有垂直高度辨識能力。 A flight control method for an unmanned aerial vehicle, comprising the following steps: obtaining a non-rotating The rotary radar module detects at least a first echo signal in a front area and a second echo signal in a bottom area. According to the first echo signal and the second echo signal, a spatial information of an obstacle located in front of the UAV is obtained, and the spatial information includes at least a horizontal distance of the obstacle relative to the UAV and a relative distance between the obstacle and the UAV. A height difference of a ground. An early warning signal is generated when the horizontal distance and the height difference meet an early warning condition. Wherein the non-rotating radar module includes a forward-looking radar for detecting the first echo signal and a ground-following radar for detecting the second echo signal, and the forward-looking radar has vertical height identification capability.

Description

無人機及其飛行控制方法 Unmanned aerial vehicle and its flight control method

本發明是有關一種無人機,且特別關於一種避障及/或地形偵測的無人機及其飛行控制方法。 The present invention relates to an unmanned aerial vehicle, and in particular to an unmanned aerial vehicle for obstacle avoidance and/or terrain detection and a flight control method thereof.

無人機(UAV,Unmanned Aerial Vehicle)可以廣泛的應用在戶外或室內的環境中,執行例如監視或觀察等各種任務。無人機一般可以由使用者遙控操作,也可以透過程式及座標進行自動導航與飛行。無人機可以配備攝影機及/或偵測器等設備,以在飛行時提供影像,或是天氣、大氣條件、輻射值等各種資訊。無人機還可以具有貨艙,以供裝載各種物件。因此,無人機多元的應用潛力使其不斷的在蓬勃發展當中。 An unmanned aerial vehicle (UAV, Unmanned Aerial Vehicle) can be widely used in outdoor or indoor environments to perform various tasks such as monitoring or observation. UAVs can generally be operated remotely by users, and can also automatically navigate and fly through programs and coordinates. UAVs can be equipped with equipment such as cameras and/or detectors to provide images during flight, or various information such as weather, atmospheric conditions, and radiation levels. The drone can also have a cargo compartment for loading various items. Therefore, the diverse application potential of UAVs makes it continue to flourish.

當無人機應用在自動飛行巡檢時,常常會遇到各種可能的地形或障礙物。因此,如何讓無人機有效可靠的避開地形或障礙物,避免碰撞或損壞,實為本領域相關人員所關注的焦點。 When UAVs are used in automatic flight inspections, they often encounter various possible terrains or obstacles. Therefore, how to make the UAV effectively and reliably avoid terrain or obstacles, and avoid collision or damage has become the focus of attention of relevant personnel in this field.

本發明提供一種無人機的飛行控制方法,可以有效的避開障礙物。 The invention provides a flight control method of an unmanned aerial vehicle, which can effectively avoid obstacles.

本發明另提供一種無人機,可以有效的避開障礙物。 The present invention also provides a drone that can effectively avoid obstacles.

本發明的其他目的和優點可以從本發明所揭露的技術特徵中得到進一步的了解。 Other purposes and advantages of the present invention can be further understood from the technical features disclosed in the present invention.

本發明的無人機的飛行控制方法,包括以下步驟:步驟1-1:獲取該無人機的一非旋轉式雷達模組偵測到一前方區域的至少一第一回波訊號以及一底側區域的至少一第二回波訊號;步驟1-2:根據該第一回波訊號以及該第二回波訊號得到一障礙物的一空間資訊,該空間資訊至少包括該障礙物相對該無人機的一水平距離以及該障礙物相對一地面的一高度差;以及步驟1-3:當該水平距離以及該高度差符合一預警條件時產生一預警訊號;其中該非旋轉式雷達模組包括偵測該第一回波訊號的一前視雷達以及偵測該第二回波訊號的一仿地雷達,該前視雷達具有垂直高度辨識能力。 The flight control method of the unmanned aerial vehicle of the present invention comprises the following steps: Step 1-1: Obtain at least one first echo signal and a bottom side area detected by a non-rotating radar module of the unmanned aerial vehicle at least one second echo signal; step 1-2: Obtain a spatial information of an obstacle according to the first echo signal and the second echo signal, the spatial information at least includes the obstacle relative to the UAV A horizontal distance and a height difference of the obstacle relative to a ground; and step 1-3: generating an early warning signal when the horizontal distance and the height difference meet an early warning condition; wherein the non-rotating radar module includes detecting the A forward-looking radar for detecting the first echo signal and a ground-following radar for detecting the second echo signal, the forward-looking radar has vertical height identification capability.

在本發明的一實施例中,其中在步驟1-2,該水平距離以及該高度差的取得包括以下步驟:利用該前視雷達偵測的該第一回波訊號得到該障礙物相對該無人機的一第一相對距離D1以及一第一夾角θ1,該第一夾角θ1為該障礙物至該無人機的一假想線以及一假想平面之間所夾者;根據下式得到一第一高度差H1;H1=D1×sinθ1 In an embodiment of the present invention, in step 1-2, obtaining the horizontal distance and the height difference includes the following steps: using the first echo signal detected by the forward-looking radar to obtain the relative distance between the obstacle and the uninhabited person. A first relative distance D1 of the drone and a first angle θ1, the first angle θ1 is between the obstacle and an imaginary line of the drone and an imaginary plane; a first height is obtained according to the following formula Difference H1; H1=D1×sinθ1

利用該仿地雷達得到該無人機相對該地面的一高度差HUAV,且根據下式得到該障礙物和該地面之間的該高度差HTa;HTa=HUAV-H1 Use the ground-following radar to obtain a height difference H UAV of the UAV relative to the ground, and obtain the height difference H Ta between the obstacle and the ground according to the following formula; H Ta =H UAV -H1

根據下式得到該障礙物相對該無人機的該水平距離:DTa=D1×cosθ1 The horizontal distance of the obstacle relative to the UAV is obtained according to the following formula: D Ta =D1×cosθ1

在本發明的一實施例中,上述之該前視雷達包括一短距天線以及一長距天線。 In an embodiment of the present invention, the aforementioned forward-looking radar includes a short-range antenna and a long-range antenna.

在本發明的一實施例中,上述之該短距天線具有一100m之內的偵測距離,該長距天線具有一介於50m至300m之間的偵測距離。 In an embodiment of the present invention, the above-mentioned short-distance antenna has a detection distance within 100m, and the long-distance antenna has a detection distance between 50m and 300m.

在本發明的一實施例中,其中在步驟1-2,該水平距離以及該高度差的取得包括以下步驟:利用該長距天線偵測的一長距回波訊號得到該障礙物相對該無人機的一第一相對距離D1以及一第一夾角θ1,該第一夾角θ1為該障礙物至該無人機的一假想線以及一假想平面之間所夾者;根據下式得到一第一高度差H1;H1=D1×sinθ’ In an embodiment of the present invention, wherein in step 1-2, obtaining the horizontal distance and the height difference includes the following steps: using a long-distance echo signal detected by the long-distance antenna to obtain the relative distance between the obstacle and the unmanned person A first relative distance D1 of the drone and a first angle θ1, the first angle θ1 is between the obstacle and an imaginary line of the drone and an imaginary plane; a first height is obtained according to the following formula Difference H1; H1=D1×sinθ'

其中,θ’為該第一夾角θ1和該無人機的一俯仰角之間的加成;利用該仿地雷達得到該無人機相對該地面的一高度差HUAV,且根據下式得到該障礙物和該地面之間的該高度差HTa;HTa=HUAV-H1 Among them, θ' is the addition between the first included angle θ1 and a pitch angle of the UAV; a height difference H UAV of the UAV relative to the ground is obtained by using the ground-following radar, and the obstacle is obtained according to the following formula The height difference H Ta between the object and the ground; H Ta =H UAV -H1

根據下式得到該障礙物相對該無人機的該水平距離:DTa=D1×cosθ’ The horizontal distance of the obstacle relative to the UAV is obtained according to the following formula: D Ta =D1×cosθ'

在本發明的一實施例中,其中在步驟1-2,該水平距離以及該高度差的取得包括以下步驟:利用該短距天線偵測的一短距回波訊號得到該障礙物相對該無人機的一第二相對距離D2以及一第二夾角 θ2,該第二夾角θ2為該障礙物至該無人機的一假想線以及一假想平面之間所夾者;根據下式得到一第二高度差H2;H2=D2×sinθ2 In an embodiment of the present invention, in step 1-2, the obtaining of the horizontal distance and the height difference includes the following steps: using a short-distance echo signal detected by the short-distance antenna to obtain the relative distance between the obstacle and the uninhabited person. A second relative distance D2 of the machine and a second included angle θ2, the second included angle θ2 is between the obstacle and an imaginary line of the UAV and an imaginary plane; a second height difference H2 is obtained according to the following formula; H2=D2×sinθ2

利用該仿地雷達得到該無人機相對該地面的一高度差HUAV,並根據下式得到該障礙物和該地面之間的該高度差HTa;HTa=HUAV-H2 Use the ground-following radar to obtain a height difference H UAV of the UAV relative to the ground, and obtain the height difference H Ta between the obstacle and the ground according to the following formula; H Ta =H UAV -H2

根據下式得到該障礙物相對該無人機的該水平距離:DTa=D2×cosθ2 The horizontal distance of the obstacle relative to the UAV is obtained according to the following formula: D Ta =D2×cosθ2

本發明的一飛行控制方法,包括以下步驟:步驟2-1:獲取該無人機的一非旋轉式雷達模組偵測到一前方區域的至少一第一回波訊號以及一底側區域的至少一第二回波訊號;步驟2-2:根據該第一回波訊號以及該第二回波訊號得到一障礙物的一水平距離,並根據該第二回波訊號得到該無人機相對一地面的一高度差;步驟2-3:判斷複數個時間點的該水平距離及/或該高度差是否符合一坡度地形條件;以及步驟2-4:當符合該坡度地形條件時,根據一空間資訊調整該無人機的一飛行軌跡,其中該空間資訊至少包括該水平距離及/或該高度差;其中該非旋轉式雷達模組包括至少一偵測該第一回波訊號的前視雷達以及一偵測該第二回波訊號的仿地雷達,該前視雷達具有垂直高度辨識能力。 A flight control method of the present invention includes the following steps: Step 2-1: Obtain at least one first echo signal of a front area detected by a non-rotating radar module of the drone and at least one of a bottom area A second echo signal; step 2-2: obtain a horizontal distance of an obstacle according to the first echo signal and the second echo signal, and obtain the UAV relative to a ground according to the second echo signal a height difference; step 2-3: judging whether the horizontal distance and/or the height difference at multiple time points meet a slope terrain condition; and step 2-4: when the slope terrain condition is met, according to a spatial information Adjusting a flight trajectory of the UAV, wherein the spatial information includes at least the horizontal distance and/or the height difference; wherein the non-rotating radar module includes at least one forward-looking radar for detecting the first echo signal and a detection A ground-following radar for measuring the second echo signal, and the forward-looking radar has a vertical height identification capability.

在本發明的一實施例中,其中在步驟2-2,該水平距離的取得包括以下步驟:利用該長距天線偵測的一長距回波訊號得到該障礙物相對該無人機的一第一相對距離D1以及一第一夾角θ1,該第一夾 角θ1為該障礙物至該無人機的一假想線以及一假想平面之間所夾者;根據下式得到該障礙物相對該無人機的該水平距離:DTa=D1×cosθ’ In an embodiment of the present invention, in step 2-2, the acquisition of the horizontal distance includes the following steps: using a long-distance echo signal detected by the long-distance antenna to obtain a first distance of the obstacle relative to the UAV A relative distance D1 and a first angle θ1, the first angle θ1 is between the obstacle and an imaginary line of the UAV and an imaginary plane; according to the following formula, the obstacle relative to the UAV is obtained. The horizontal distance: D Ta =D1×cosθ'

其中,θ’為該第一夾角θ1和該無人機的一俯仰角之間的加成。 Wherein, θ' is the addition between the first angle θ1 and a pitch angle of the UAV.

在本發明的一實施例中,其中在步驟2-2,該水平距離的取得包括以下步驟:利用該短距天線偵測的一短距回波訊號得到該障礙物相對該無人機的一第二相對距離D2以及一第二夾角θ2,該第二夾角θ2為該障礙物至該無人機的一假想線以及一假想平面之間所夾者;根據下式得到該障礙物相對該無人機的該水平距離:DTa=D2×cosθ2 In an embodiment of the present invention, in step 2-2, the acquisition of the horizontal distance includes the following steps: using a short-distance echo signal detected by the short-distance antenna to obtain a first distance of the obstacle relative to the UAV Two relative distances D2 and a second angle θ2, the second angle θ2 is between the obstacle and an imaginary line of the UAV and an imaginary plane; get the obstacle relative to the UAV according to the following formula The horizontal distance: D Ta =D2×cosθ2

在本發明的一實施例中,上述之步驟2-4中,當符合該坡度地形條件時,根據該空間資訊動態地補償該無人機相對於一地形的一飛行高度。 In an embodiment of the present invention, in the above steps 2-4, when the slope terrain condition is met, dynamically compensate a flying height of the drone relative to a terrain according to the spatial information.

本發明的無人機包括一飛行器及一非旋轉式雷達模組。該非旋轉式雷達模組裝設於該飛行器上,該非旋轉式雷達模組包括至少一前視雷達以及一仿地雷達,該前視雷達具有垂直高度辨識能力;其中,該前視雷達偵測一前方區域的至少一第一回波訊號,該仿地雷達偵測一底側區域的至少一第二回波訊號,根據該第一回波訊號以及該第二回波訊號得到位於該無人機前方的一障礙物的一空間資訊,當該空間資訊符合一警示條件時產生一預警訊號。 The drone of the present invention includes an aircraft and a non-rotating radar module. The non-rotating radar module is installed on the aircraft. The non-rotating radar module includes at least one forward-looking radar and one ground-following radar. The forward-looking radar has vertical height identification capability; wherein, the forward-looking radar detects a At least one first echo signal in the front area, the ground-following radar detects at least one second echo signal in a bottom side area, and the position in front of the UAV is obtained according to the first echo signal and the second echo signal A spatial information of an obstacle, and an early warning signal is generated when the spatial information meets a warning condition.

基於上述,本發明提供的無人機及其飛行控制方法,透過設置一非旋轉式雷達模組,可以讓無人機有效可靠的避開地形或障礙物,避免碰撞或損壞。 Based on the above, the UAV and its flight control method provided by the present invention can effectively and reliably avoid terrain or obstacles, and avoid collision or damage by setting a non-rotating radar module.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail together with the accompanying drawings.

10:無人機 10: Drone

11:非旋轉式雷達模組 11: Non-rotating radar module

111:前視雷達 111:Forward-looking radar

111a:前方偵測範圍 111a: Front detection range

1111:短距天線 1111:Short distance antenna

1111a:前方短距偵測範圍 1111a: Front short-range detection range

1113:長距天線 1113:Long distance antenna

1113a:前方長距偵測範圍 1113a: Front long-distance detection range

113:仿地雷達 113: Ground imitation radar

113a:底側偵測範圍 113a: Bottom detection range

115:處理裝置 115: processing device

117:後視雷達 117: Rear view radar

13:飛行器 13: Aircraft

20:調整後飛行軌跡 20: Adjusted flight trajectory

F:前方區域 F: front area

Wr1:第一回波訊號 W r1 : the first echo signal

Wr1-1:長距回波訊號 W r1-1 : Long distance echo signal

Wr1-2:短距回波訊號 W r1-2 : short distance echo signal

Wr2:第二回波訊號 W r2 : Second echo signal

Wt1:第一雷達訊號 W t1 : first radar signal

Wt2:第二雷達訊號 W t2 : second radar signal

Ba、Bb、Bc:障礙物 B a , B b , B c : Obstacles

D1:第一相對距離 D1: The first relative distance

D2:第二相對距離 D2: Second relative distance

DTa:水平距離 D Ta : Horizontal distance

G:地面 G: Ground

H1:第一高度差 H1: the first height difference

H2:第二高度差 H2: second height difference

HTa:高度差 H Ta : height difference

HUAV:高度差 H UAV : height difference

HUAV1:前側高度差 H UAV1 : front height difference

HUAV2:中間高度差 H UAV2 : intermediate height difference

HUAV3:後側高度差 H UAV3 : Rear height difference

LI:假想線 L I : imaginary line

PI:假想平面 P I : imaginary plane

θ1:第一夾角 θ1: the first included angle

θ2:俯仰角 θ2: pitch angle

U:底側區域 U: Bottom side area

1-1、1-2、1-3:步驟 1-1, 1-2, 1-3: Steps

2-1、2-2、2-3:步驟 2-1, 2-2, 2-3: Steps

『圖1』是本發明一實施例的無人機的外觀示意圖。 [Fig. 1] is a schematic diagram of the appearance of a drone according to an embodiment of the present invention.

『圖2』是本發明一實施例的無人機的功能方塊示意圖。 [FIG. 2] is a schematic functional block diagram of an unmanned aerial vehicle according to an embodiment of the present invention.

『圖3』是本發明一實施例的飛行控制方法流程示意圖。 [FIG. 3] is a flow chart of a flight control method according to an embodiment of the present invention.

『圖4』是本發明一實施例中無人機進行避障警示的示意圖。 [Fig. 4] is a schematic diagram of the UAV performing obstacle avoidance warning in an embodiment of the present invention.

『圖5A』至『圖5B』是本發明第一實施例中無人機進行避障警示的示意圖。 [FIG. 5A] to [FIG. 5B] are schematic diagrams of the UAV performing obstacle avoidance warning in the first embodiment of the present invention.

『圖6』是本發明第二實施例中無人機進行避障警示的示意圖。 [Fig. 6] is a schematic diagram of the UAV performing obstacle avoidance warning in the second embodiment of the present invention.

『圖7』是本發明第三實施例的飛行控制方法流程示意圖。 [FIG. 7] is a schematic flow chart of the flight control method of the third embodiment of the present invention.

『圖8』是本發明第三實施例中無人機進行避障警示的示意圖。 [Fig. 8] is a schematic diagram of the UAV performing obstacle avoidance warning in the third embodiment of the present invention.

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一較佳實施例的詳細說明中,將可清楚的呈現。以下實施例中所提到的方向用語,例如:上、下、左、右、前或後等,僅是參考附加圖式的方向。因此,使用的方向用語是用來說明並非用來限制本發明。 The aforementioned and other technical contents, features and effects of the present invention will be clearly presented in the following detailed description of a preferred embodiment with reference to the drawings. The directional terms mentioned in the following embodiments, such as: up, down, left, right, front or back, etc., are only directions referring to the attached drawings. Accordingly, the directional terms are used to illustrate and not to limit the invention.

參照『圖1』及『圖2』,『圖1』是本發明一實施例的無人機10的外觀示意圖,『圖2』是『圖1』所示的該無人機10的功能 方塊的示意圖。該無人機10包括一非旋轉式雷達模組11以及一飛行器13。該非旋轉式雷達模組11裝設於該飛行器13上。該非旋轉式雷達模組11可以進行障礙物及/或地形地貌的偵測,藉此該無人機10可以安全飛行並避免碰撞。 Referring to "Fig. 1" and "Fig. 2", "Fig. 1" is a schematic view of the appearance of the drone 10 according to an embodiment of the present invention, and "Fig. 2" is the function of the drone 10 shown in "Fig. 1" A schematic diagram of a block. The drone 10 includes a non-rotating radar module 11 and an aircraft 13 . The non-rotating radar module 11 is mounted on the aircraft 13 . The non-rotating radar module 11 can detect obstacles and/or terrain features, so that the UAV 10 can fly safely and avoid collisions.

本實施例中,該非旋轉式雷達模組11包括一前視雷達111、一仿地雷達113、一處理裝置115以及一後視雷達117。參閱『圖2』,該前視雷達111進一步地包括一短距天線1111以及一長距天線1113,該前視雷達111、該後視雷達117以及該仿地雷達113與該處理裝置115電性連接,並可與該處理裝置115進行訊號的傳輸及/或交換。本實施例中,該短距天線1111以及該長距天線1113係採用發射源為電磁波的雷達模組,該短距天線1111具有一100m之內的偵測距離,最佳短距偵測範圍為50m至80m之間。該長距天線1113具有一介於50m至300m之間的偵測距離,最佳長距偵測範圍為60m至160m之間。 In this embodiment, the non-rotating radar module 11 includes a forward-looking radar 111 , a ground-following radar 113 , a processing device 115 and a rear-looking radar 117 . Referring to "Fig. 2", the forward-looking radar 111 further includes a short-distance antenna 1111 and a long-distance antenna 1113, the forward-looking radar 111, the rear-looking radar 117 and the ground-following radar 113 are electrically connected to the processing device 115 connected, and can perform signal transmission and/or exchange with the processing device 115. In this embodiment, the short-distance antenna 1111 and the long-distance antenna 1113 are radar modules whose emission sources are electromagnetic waves. The short-distance antenna 1111 has a detection distance within 100m, and the best short-distance detection range is Between 50m and 80m. The long-distance antenna 1113 has a detection range between 50m and 300m, and the optimal long-distance detection range is between 60m and 160m.

本實施例中,在硬體方面,該前視雷達111本身兼具有水平距離辨識能力以及垂直高度辨識能力。以下以該前視雷達111包括該短距天線1111以及該長距天線1113舉例說明,而依照應用的不同,該前視雷達111也可僅包括該短距天線1111或該長距天線1113。 In this embodiment, in terms of hardware, the forward-looking radar 111 itself has both the ability to identify the horizontal distance and the ability to identify the vertical height. Hereinafter, the forward-looking radar 111 includes the short-range antenna 1111 and the long-range antenna 1113 for example, and according to different applications, the forward-looking radar 111 may only include the short-range antenna 1111 or the long-range antenna 1113 .

在本實施例的該無人機10中,該非旋轉式雷達模組11固定地裝設於該飛行器13上,並不相對該飛行器13旋轉。該非旋轉式雷達模組11不具有用於旋轉的機械軸承或機械結構,可以降低損壞的 可能,提升使用壽命並降低成本。該非旋轉式雷達模組11不需進行旋轉就可以進行偵測,可以有效避免旋轉所需的時間造成的時間延遲或誤差。同時該無人機10在製造時不需考量用於旋轉的機械結構的校準問題,可以有效提高生產效率與降低成本。該非旋轉式雷達模組11更可以避免因旋轉產生的位移造成的距離/高度偵測錯誤。具體的結構與操作細節以下將會詳細說明。 In the drone 10 of this embodiment, the non-rotating radar module 11 is fixedly installed on the aircraft 13 and does not rotate relative to the aircraft 13 . The non-rotating radar module 11 does not have mechanical bearings or mechanical structures for rotation, which can reduce damage Possibly, increase service life and reduce costs. The non-rotating radar module 11 can detect without rotating, which can effectively avoid time delay or error caused by the time required for rotating. At the same time, the drone 10 does not need to consider the calibration of the rotating mechanical structure during manufacture, which can effectively improve production efficiency and reduce costs. The non-rotating radar module 11 can also avoid distance/height detection errors caused by displacement caused by rotation. The specific structure and operation details will be described in detail below.

『圖1』所示的該飛行器13僅為一舉例說明。本發明並不限制該飛行器13的結構,也不限制該飛行器13的動力方式與動力來源。只要該無人機10可以透過該飛行器13進行飛行,就在本發明所包含的範圍內。 The aircraft 13 shown in Fig. 1 is only an example. The present invention does not limit the structure of the aircraft 13 , nor does it limit the power mode and source of the aircraft 13 . As long as the UAV 10 can fly through the aircraft 13, it is within the scope of the present invention.

參閱『圖3』及『圖4』,『圖3』是本發明一實施例的無人機的飛行控制方法的流程圖,『圖4』是本發明一實施例的無人機進行避障警示的示意圖。以下實施例以『圖1』及『圖2』的該無人機10來舉例說明,該無人機10是沿『圖4』的左方朝右方飛行,而該無人機10的前方存在一障礙物Ba。該無人機10的飛行控制方法包括以下步驟。 Referring to "Fig. 3" and "Fig. 4", "Fig. 3" is a flow chart of the flight control method of the UAV according to an embodiment of the present invention, and "Fig. 4" is an example of the UAV performing obstacle avoidance warning according to an embodiment of the present invention. schematic diagram. The following embodiments are illustrated with the UAV 10 in "Fig. 1" and "Fig. 2". The UAV 10 is flying along the left side of "Fig. 4" to the right, and there is an obstacle in front of the UAV 10. Object B a . The flight control method of the UAV 10 includes the following steps.

在步驟1-1中,先獲取該無人機10的該非旋轉式雷達模組11偵測到一前方區域F的至少一第一回波訊號Wr1以及一底側區域U的一第二回波訊號Wr2,此處的該前方區域F是指該無人機10的一飛行方向的前側區域。本實施例中,是採用該前視雷達111發出一第一雷達訊號Wt1,經該障礙物Ba反射後產生該第一回波訊號Wr1, 且採用該仿地雷達113發出一第二雷達訊號Wt2,經一地面G反射後產生該第二回波訊號Wr2,該前視雷達111具有一前方偵測範圍111a,該仿地雷達113具有一底側偵測範圍113a。本發明並不限於此,只要可獲取該前方區域F以及該底側區域U的雷達裝置,均可採用。 In step 1-1, at least one first echo signal W r1 of a front area F detected by the non-rotating radar module 11 of the UAV 10 and a second echo signal of a bottom area U are obtained first. In the signal W r2 , the front area F here refers to the front area of a flying direction of the UAV 10 . In this embodiment, the forward-looking radar 111 is used to send a first radar signal W t1 , which is reflected by the obstacle B a to generate the first echo signal W r1 , and the ground-following radar 113 is used to send a second radar signal W t1 . The radar signal W t2 is reflected by a ground G to generate the second echo signal W r2 . The forward-looking radar 111 has a front detection range 111a, and the ground-following radar 113 has a bottom detection range 113a. The present invention is not limited thereto, and any radar device that can capture the front area F and the bottom area U can be used.

在步驟1-2中,根據該第一回波訊號Wr1以及該第二回波訊號Wr2得到位於該無人機10前方的該障礙物Ba的一空間資訊以及該無人機10相對該地面G的一高度差HUAV。該空間資訊至少包括該障礙物Ba相對該無人機10的一水平距離DTa以及該障礙物Ba相對該地面G的一高度差HTaIn step 1-2, according to the first echo signal W r1 and the second echo signal W r2 , a spatial information of the obstacle B a in front of the UAV 10 and the UAV 10 relative to the ground are obtained. An altitude difference H UAV of G. The spatial information at least includes a horizontal distance D Ta of the obstacle B a relative to the UAV 10 and a height difference H Ta of the obstacle B a relative to the ground G.

接著,在步驟1-3中,當該水平距離DTa以及該高度差HTa符合一預警條件時產生一預警訊號,舉例來說,該預警條件的判斷可以包括下列的任一或組合:a.該水平距離DTa是否小於一最小安全距離;以及b.該高度差HUAV以及高度差HTa之間的一差值是否小於一最小安全值。 Next, in step 1-3, an early warning signal is generated when the horizontal distance D Ta and the height difference H Ta meet an early warning condition. For example, the judgment of the early warning condition may include any or a combination of the following: a . whether the horizontal distance D Ta is less than a minimum safety distance; and b. whether a difference between the height difference H UAV and the height difference H Ta is less than a minimum safety value.

當符合時即表示該無人機10可能即將碰撞到該障礙物Ba,該無人機10可以根據該預警訊號改變飛行的狀態,可以有效避免該無人機10與該障礙物Ba碰撞。該預警訊號可直接或轉換為其他訊號並經由無線方式傳送至該無人機10的一操控者的一遠端控制器,在其他例子中,也可能是直接傳送給該無人機10的其他電子元件而修正該無人機10的飛行軌跡。 When it matches, it means that the UAV 10 may collide with the obstacle B a soon, and the UAV 10 can change the flying state according to the warning signal, which can effectively avoid the collision between the UAV 10 and the obstacle B a . The early warning signal can be directly or converted into other signals and transmitted wirelessly to a remote controller of an operator of the UAV 10, and in other examples, may also be directly transmitted to other electronic components of the UAV 10 And correct the flight path of the drone 10 .

參閱『圖5A』以及『圖5B』,是本發明第一實施例中無人機進行避障警示的示意圖,本實施例是使用該長距天線1113搭配該仿地雷達113來進行避障警示的操作,該長距天線1113具有一前方長距偵測範圍1113a,該仿地雷達113具有一底側偵測範圍113a。先以『圖5A』說明,當在前述步驟1-2中,該水平距離DTa以及該高度差HTa的取得如下所述。 Referring to "Figure 5A" and "Figure 5B", it is a schematic diagram of the UAV performing obstacle avoidance warning in the first embodiment of the present invention. In this embodiment, the long-distance antenna 1113 is used together with the ground imitation radar 113 for obstacle avoidance warning. In operation, the long-range antenna 1113 has a front long-range detection range 1113a, and the ground-following radar 113 has a bottom-side detection range 113a. Firstly, "Fig. 5A" is used to illustrate that in the aforementioned step 1-2, the acquisition of the horizontal distance D Ta and the height difference H Ta is as follows.

利用該長距天線1113偵測的一長距回波訊號Wr1-1得到該障礙物Ba相對該無人機10的一第一相對距離D1以及一第一夾角θ1。該第一夾角θ1為該障礙物Ba至該無人機10的一假想線LI以及一假想平面PI之間所夾者。該假想線LI是該無人機10到該障礙物Ba的連線線段,該假想平面PI是該無人機10所在的水平面。配合『圖5A』的幾何關係,根據下列方程式可以得到一第一高度差H1。 A first relative distance D1 and a first included angle θ1 of the obstacle B a relative to the UAV 10 are obtained by using a long-distance echo signal W r1-1 detected by the long-distance antenna 1113 . The first included angle θ1 is defined between an imaginary line L I from the obstacle Ba to the drone 10 and an imaginary plane P I. The imaginary line L I is a line segment connecting the UAV 10 to the obstacle Ba, and the imaginary plane P I is the horizontal plane where the UAV 10 is located. Cooperating with the geometric relationship in "Fig. 5A", a first height difference H1 can be obtained according to the following equation.

H1=D1×sinθ1(式1) H1=D1×sinθ1 (Formula 1)

接著,利用該仿地雷達113偵測的該第二回波訊號Wr2得到該無人機10相對該地面G的一高度差HUAV,配合圖5A的幾何關係,根據下列方程式可以得到該障礙物Ba和該地面G之間的該高度差HTa。該高度差HUAV即該無人機10的高度,該高度差HTa即該障礙物Ba的高度。 Next, using the second echo signal W r2 detected by the ground-following radar 113 to obtain a height difference H UAV of the UAV 10 relative to the ground G, with the geometric relationship in Figure 5A, the obstacle can be obtained according to the following equation The height difference H Ta between Ba and the ground G. The height difference H UAV is the height of the drone 10 , and the height difference H Ta is the height of the obstacle Ba.

HTa=HUAV-H1(式2) H Ta =H UAV -H1 (Formula 2)

根據下列方程式可以得到該障礙物Ba相對該無人機10的該水平距離DTaThe horizontal distance D Ta of the obstacle Ba relative to the UAV 10 can be obtained according to the following equation.

DTa=D1×cosθ1(式3) D Ta =D1×cosθ1 (Formula 3)

藉此,該無人機10透過該前視雷達111可以獲得相對該障礙物Ba的該水平距離DTa及該障礙物Ba的高度(即該高度差HTa)。 Thereby, the drone 10 can obtain the horizontal distance D Ta relative to the obstacle Ba and the height of the obstacle Ba (that is, the height difference H Ta ) through the forward-looking radar 111 .

承上,在其他實施例中,考慮到該無人機10在飛行時可能產生傾斜而形成一俯仰角,又該長距天線1113所偵測到的該障礙物Ba距離較遠,將使得推算的距離產生誤差,因此該長距天線1113得到的訊號需進行修正或補償。參閱『圖5B』,本實施例中,該無人機10傾斜一俯仰角θ2,配合『圖5B』的幾何關係,上述的(式1)需改採用以下的(式1’)。 On top of that, in other embodiments, considering that the UAV 10 may be tilted during flight to form a pitch angle, and the distance of the obstacle Ba detected by the long-distance antenna 1113 is relatively far, it will make the calculation Therefore, the signal obtained by the long-distance antenna 1113 needs to be corrected or compensated. Referring to "Fig. 5B", in this embodiment, the UAV 10 is tilted by a pitch angle θ2, and in accordance with the geometric relationship of "Fig. 5B", the above (Formula 1) needs to be changed to the following (Formula 1').

H1=D1×sinθ’(式1’) H1=D1×sinθ' (Formula 1')

其中,θ’為該第一夾角θ1和該無人機10的該俯仰角θ2之間的加成。透過考慮該俯仰角θ2的修正,可以補償因該無人機10傾斜造成的距離計算誤差。 Wherein, θ' is the addition between the first angle θ1 and the pitch angle θ2 of the UAV 10. By considering the correction of the pitch angle θ2, the distance calculation error caused by the tilt of the UAV 10 can be compensated.

參閱『圖6』,是本發明第二實施例中無人機進行避障警示的示意圖,本實施例是使用該短距天線1111搭配該仿地雷達113來進行避障警示的操作,該短距天線1111具有一前方短距偵測範圍1111a,該仿地雷達113具有一底側偵測範圍113a。,以下實施例仍以『圖1』及『圖2』的該無人機10來舉例說明,該無人機10是沿『圖6』的左方朝右方飛行,而該無人機10的前方存在一障礙物BbReferring to "Fig. 6", it is a schematic diagram of the UAV performing obstacle avoidance warning in the second embodiment of the present invention. The antenna 1111 has a front short-distance detection range 1111a, and the ground-following radar 113 has a bottom detection range 113a. , the following embodiments are still illustrated with the unmanned aerial vehicle 10 of "Fig. 1" and "Fig. 2". The unmanned aerial vehicle 10 flies along the left side of "Fig. An obstacle B b .

當在前述步驟1-2中,該水平距離DTa以及該高度差HTa的取得如下所述。 In the aforementioned step 1-2, the horizontal distance D Ta and the height difference H Ta are obtained as follows.

利用該短距天線1111偵測的一短距回波訊號Wr1-2得到一障礙物Bb相對該無人機10的一第二相對距離D2以及一第二夾角θ2。該第二夾角θ2為該障礙物Bb至該無人機10的一假想線LI以及一假想平面PI之間所夾者。該假想線LI是該無人機10到該障礙物Bb的連線線段,該假想平面PI是該無人機10所在的水平面。配合『圖6』的幾何關係,根據下列方程式可以得到一第二高度差H2。 A second relative distance D2 and a second included angle θ2 of an obstacle B b relative to the UAV 10 are obtained by using a short-distance echo signal W r1-2 detected by the short-distance antenna 1111 . The second included angle θ2 is defined between an imaginary line L I from the obstacle B b to the UAV 10 and an imaginary plane P I. The imaginary line L I is a line segment connecting the UAV 10 to the obstacle B b , and the imaginary plane P I is the horizontal plane where the UAV 10 is located. Cooperating with the geometric relationship in "Fig. 6", a second height difference H2 can be obtained according to the following equation.

H2=D2×sinθ2(式4) H2=D2×sinθ2 (Formula 4)

利用該仿地雷達113偵測的該第二回波訊號Wr2可以得到該無人機10相對該地面的一高度差HUAV,並根據下列方程式可以得到該障礙物Bb和該地面G之間的該高度差HTaUsing the second echo signal W r2 detected by the ground-following radar 113, a height difference H UAV of the UAV 10 relative to the ground can be obtained, and the distance between the obstacle B b and the ground G can be obtained according to the following equation. This height difference H Ta .

HTa=HUAV-H2(式5) H Ta =H UAV -H2 (Formula 5)

根據下列方程式可以得到該障礙物Bb相對該無人機10的該水平距離DTaThe horizontal distance D Ta of the obstacle B b relative to the UAV 10 can be obtained according to the following equation.

DTa=D2×cosθ2(式6) D Ta =D2×cosθ2 (Formula 6)

藉此,該無人機10可以透過該短距天線1111獲得相對該障礙物Bb的該水平距離DTa。藉此,該無人機10可以依此避開障礙物Bb,有效避免碰撞。 Thereby, the UAV 10 can obtain the horizontal distance D Ta relative to the obstacle B b through the short-distance antenna 1111 . Thereby, the UAV 10 can avoid the obstacle B b accordingly, effectively avoiding collision.

參閱『圖7』及『圖8』,『圖7』是本發明第三實施例的無人機的飛行控制方法的流程圖,『圖8』是本發明第三實施例的無人機進行避障警示的示意圖。以下實施例以『圖1』及『圖2』的該無人機10來舉例說明,該無人機10是沿『圖8』的左方朝右方飛行,而該無人機10沿著一具有上傾坡度的地形T進行飛行,而該地形T 可視為等同於或存在一障礙物Bc。該無人機10的飛行控制方法包括以下步驟。 Referring to "Fig. 7" and "Fig. 8", "Fig. 7" is a flow chart of the flight control method of the unmanned aerial vehicle according to the third embodiment of the present invention, and "Fig. 8" is the obstacle avoidance of the unmanned aerial vehicle according to the third embodiment of the present invention Schematic diagram of the warning. The following embodiments are illustrated with the UAV 10 of "Fig. 1" and "Fig. 2". The UAV 10 flies along the left side of "Fig. The flight is carried out on a sloped terrain T which can be considered to be equal to or exist an obstacle B c . The flight control method of the UAV 10 includes the following steps.

在步驟2-1,先獲取該無人機10的該非旋轉式雷達模組11偵測到一前方區域F的至少一第一回波訊號以及一底側區域U的至少一第二回波訊號Wr2。本實施例中,是採用該短距天線1111偵測的一短距回波訊號Wr1-2得到該障礙物Bc相對該無人機10的一第二相對距離D2以及一第二夾角θ2,且採用該仿地雷達113偵測經該地形T反射的該第二回波訊號Wr2,此處的該第二回波訊號Wr2包括一前側回波訊號、一後側回波訊號以及一中間回波訊號,分別對應一前方區域、一後方區域以及一中間區域接受到的回波訊號,該前方區域為方位角介於+30°至+60°之間的區域,該後方區域為方位角介於-60°至-31°之間的區域,該中間區域為方位角介於-30°至+30°之間的區域。本發明並不限於此,只要可獲取該前方區域F以及該底側區域U的雷達裝置,均可採用。 In step 2-1, at least one first echo signal of a front area F detected by the non-rotating radar module 11 of the UAV 10 and at least one second echo signal W of a bottom area U are obtained. r2 . In this embodiment, a second relative distance D2 and a second included angle θ2 of the obstacle Bc relative to the UAV 10 are obtained by using a short-distance echo signal W r1-2 detected by the short-distance antenna 1111, And the ground-following radar 113 is used to detect the second echo signal W r2 reflected by the terrain T, where the second echo signal W r2 includes a front echo signal, a rear echo signal and a The middle echo signals correspond to the echo signals received by a front area, a rear area and a middle area respectively, the front area is an area with an azimuth angle between +30° and +60°, and the rear area is an azimuth The region with angles between -60° and -31°, the intermediate region is the region with azimuth angles between -30° and +30°. The present invention is not limited thereto, and any radar device that can capture the front area F and the bottom area U can be used.

在步驟2-2中,根據該第一回波訊號Wr1-2以及該第二回波訊號Wr2得到位於該無人機10前方的該障礙物Bc的一水平距離DTa,並根據該第二回波訊號Wr2得到該無人機10相對該地形T的一高度差,本實施例中,該高度差根據該前側回波訊號、該後側回波訊號以及該中間回波訊號包括有一前側高度差HUAV1、一後側高度差HUAV3以及一中間高度差HUAV2In step 2-2, a horizontal distance D Ta of the obstacle B c in front of the UAV 10 is obtained according to the first echo signal W r1-2 and the second echo signal W r2 , and according to the The second echo signal W r2 obtains a height difference of the UAV 10 relative to the terrain T. In this embodiment, the height difference includes a A front height difference H UAV1 , a rear height difference H UAV3 and a middle height difference H UAV2 .

接著,在步驟2-3中,判斷該水平距離DTa以及該高度差是否符合一坡度地形條件,舉例來說,該坡度地形條件可以包括下列的組合:c.該水平距離DTa是否小於一最小安全距離;d.該中間高度差HUAV2是否小於一最小安全高度;e.根據該前側高度差HUAV1、該中間高度差HUAV2以及該後側高度差HUAV3之間的差值計算出一實際坡度,該實際坡度是否高於一預設坡度。 Then, in step 2-3, it is judged whether the horizontal distance D Ta and the height difference meet a slope terrain condition, for example, the slope terrain condition can include the following combination: c. whether the horizontal distance D Ta is less than a Minimum safety distance; d. whether the middle height difference H UAV2 is less than a minimum safety height; e. calculated according to the difference between the front side height difference H UAV1 , the middle height difference H UAV2 and the rear side height difference H UAV3 An actual slope, whether the actual slope is higher than a preset slope.

進一步地,考慮該坡度地形條件符合與否的判斷可能需要該無人機10處於不同位置時的多個空間資料,始能達到一定的精確度。在一實施例中,係取得複數個時間點時,該無人機10的該水平距離DTa以及該高度差,來作為判斷的基礎。 Further, considering whether the slope terrain condition is satisfied or not may require a plurality of spatial data when the UAV 10 is in different positions, so that a certain accuracy can be achieved. In one embodiment, the horizontal distance D Ta and the height difference of the UAV 10 are obtained at multiple time points as the basis for judgment.

在步驟2-4中,當符合該坡度地形條件時,根據一空間資訊調整該無人機10的一飛行軌跡,如『圖8』舉例,該無人機10可沿一調整後飛行軌跡20進行飛行。其中該空間資訊至少包括該水平距離DTa及該高度差。 In steps 2-4, when the slope terrain condition is met, a flight trajectory of the UAV 10 is adjusted according to a spatial information, as shown in Fig. 8 , the UAV 10 can fly along an adjusted flight trajectory 20 . Wherein the spatial information at least includes the horizontal distance D Ta and the height difference.

藉此,透過在多個時間點偵測該水平距離DTa及該高度差,並配合該坡度地形條件的判斷,該無人機10可以依此避開地形,有效避免碰撞。 Thereby, by detecting the horizontal distance D Ta and the height difference at multiple time points, and coordinating with the judgment of the slope terrain condition, the UAV 10 can avoid the terrain and effectively avoid collisions.

此外,在步驟2-4,當符合該坡度地形條件時,該無人機10可以根據該空間資訊動態地補償該無人機10相對於一地形的一飛行高度(即高度差)。 In addition, in step 2-4, when the slope terrain condition is met, the UAV 10 can dynamically compensate a flying height (ie height difference) of the UAV 10 relative to a terrain according to the spatial information.

綜上所述,本發明實施例的無人機及其飛行控制方法,透過設置一非旋轉式雷達模組,可以讓無人機有效可靠的避開地形或障礙物,避免碰撞或損壞。 To sum up, the UAV and its flight control method according to the embodiment of the present invention, by setting a non-rotating radar module, can enable the UAV to avoid terrain or obstacles effectively and reliably, and avoid collision or damage.

10:無人機 10: Drone

111a:前方偵測範圍 111a: Front detection range

113a:底側偵測範圍 113a: Bottom detection range

F:前方區域 F: front area

Wr1:第一回波訊號 W r1 : the first echo signal

Wr1-1:長距回波訊號 W r1-1 : Long distance echo signal

Wr1-2:短距回波訊號 W r1-2 : short distance echo signal

Wr2:第二回波訊號 W r2 : Second echo signal

Wt1:第一雷達訊號 W t1 : first radar signal

Wt2:第二雷達訊號 W t2 : second radar signal

Ba:障礙物 B a : Obstacles

DTa:水平距離 D Ta : Horizontal distance

G:地面 G: Ground

HTa:高度差 H Ta : height difference

HUAV:高度差 H UAV : height difference

U:底側區域 U: Bottom side area

Claims (15)

一種無人機的飛行控制方法,包括以下步驟:步驟1-1:獲取該無人機的一非旋轉式雷達模組偵測到一前方區域的至少一第一回波訊號以及一底側區域的至少一第二回波訊號;步驟1-2:根據該第一回波訊號以及該第二回波訊號得到一障礙物的一空間資訊,該空間資訊至少包括該障礙物相對該無人機的一水平距離以及該障礙物相對一地面的一高度差;以及步驟1-3:當該水平距離以及該高度差符合一預警條件時產生一預警訊號;其中該非旋轉式雷達模組包括偵測該第一回波訊號的一前視雷達以及偵測該第二回波訊號的一仿地雷達,該前視雷達具有垂直高度辨識能力。 A flight control method for an unmanned aerial vehicle, comprising the following steps: Step 1-1: Obtain at least one first echo signal of a front area detected by a non-rotating radar module of the unmanned aerial vehicle and at least one echo signal of a bottom area A second echo signal; step 1-2: Obtain a spatial information of an obstacle according to the first echo signal and the second echo signal, the spatial information at least includes a level of the obstacle relative to the UAV distance and a height difference of the obstacle relative to a ground; and step 1-3: generating an early warning signal when the horizontal distance and the height difference meet an early warning condition; wherein the non-rotating radar module includes detecting the first A forward-looking radar for the echo signal and a ground-following radar for detecting the second echo signal, the forward-looking radar has vertical height identification capability. 如請求項1所述的方法,其中在步驟1-2,該水平距離以及該高度差的取得包括以下步驟:利用該前視雷達偵測的該第一回波訊號得到該障礙物相對該無人機的一第一相對距離D1以及一第一夾角θ1,該第一夾角θ1為該障礙物至該無人機的一假想線以及一假想平面之間所夾者;根據下式得到一第一高度差H1;H1=D1×sinθ1利用該仿地雷達得到該無人機相對該地面的一高度差HUAV,且根據下式得到該障礙物和該地面之間的該高度差HTa;HTa=HUAV-H1根據下式得到該障礙物相對該無人機的該水平距離: DTa=D1×cosθ1。 The method according to claim 1, wherein in step 1-2, obtaining the horizontal distance and the height difference includes the following steps: using the first echo signal detected by the forward-looking radar to obtain the relative distance between the obstacle and the uninhabited person A first relative distance D1 of the drone and a first angle θ1, the first angle θ1 is between the obstacle and an imaginary line of the drone and an imaginary plane; a first height is obtained according to the following formula Difference H1; H1=D1×sinθ1 Use the ground-following radar to obtain a height difference H UAV of the UAV relative to the ground, and obtain the height difference H Ta between the obstacle and the ground according to the following formula; H Ta = H UAV -H1 obtains the horizontal distance of the obstacle relative to the UAV according to the following formula: D Ta =D1×cosθ1. 如請求項1所述的方法,其中,該前視雷達包括一短距天線以及一長距天線。 The method of claim 1, wherein the forward-looking radar includes a short-range antenna and a long-range antenna. 如請求項3所述的方法,其中,該短距天線具有一100m之內的偵測距離,該長距天線具有一介於50m至300m之間的偵測距離。 The method according to claim 3, wherein the short-distance antenna has a detection range within 100m, and the long-distance antenna has a detection range between 50m and 300m. 如請求項3所述的方法,其中在步驟1-2,該水平距離以及該高度差的取得包括以下步驟:利用該長距天線偵測的一長距回波訊號得到該障礙物相對該無人機的一第一相對距離D1以及一第一夾角θ1,該第一夾角θ1為該障礙物至該無人機的一假想線以及一假想平面之間所夾者;根據下式得到一第一高度差H1;H1=D1×sinθ’其中,θ’為該第一夾角θ1和該無人機的一俯仰角之間的加成;利用該仿地雷達得到該無人機相對該地面的一高度差HUAV,且根據下式得到該障礙物和該地面之間的該高度差HTa;HTa=HUAV-H1根據下式得到該障礙物相對該無人機的該水平距離:DTa=D1×cosθ’。 The method as described in claim 3, wherein in step 1-2, obtaining the horizontal distance and the height difference includes the following steps: using a long-distance echo signal detected by the long-distance antenna to obtain the relative distance between the obstacle and the uninhabited person A first relative distance D1 of the drone and a first angle θ1, the first angle θ1 is between the obstacle and an imaginary line of the drone and an imaginary plane; a first height is obtained according to the following formula Difference H1; H1=D1×sinθ' where, θ' is the addition between the first angle θ1 and a pitch angle of the UAV; using the ground-following radar to obtain a height difference H of the UAV relative to the ground UAV , and the height difference H Ta between the obstacle and the ground is obtained according to the following formula; H Ta =H UAV -H1 The horizontal distance of the obstacle relative to the UAV is obtained according to the following formula: D Ta =D1× cos θ'. 如請求項3所述的方法,其中在步驟1-2,該水平距離以及該高度差的取得包括以下步驟: 利用該短距天線偵測的一短距回波訊號得到該障礙物相對該無人機的一第二相對距離D2以及一第二夾角θ2,該第二夾角θ2為該障礙物至該無人機的一假想線以及一假想平面之間所夾者;根據下式得到一第二高度差H2;H2=D2×sinθ2利用該仿地雷達得到該無人機相對該地面的一高度差HUAV,並根據下式得到該障礙物和該地面之間的該高度差HTa;HTa=HUAV-H2根據下式得到該障礙物相對該無人機的該水平距離:DTa=D2×cosθ2。 The method as described in claim 3, wherein in step 1-2, obtaining the horizontal distance and the height difference includes the following steps: using a short-distance echo signal detected by the short-distance antenna to obtain the relative distance between the obstacle and the uninhabited person A second relative distance D2 of the drone and a second angle θ2, the second angle θ2 is between the obstacle and an imaginary line of the drone and an imaginary plane; a second height is obtained according to the following formula Difference H2; H2=D2×sinθ2 Use the ground-following radar to obtain a height difference H UAV of the UAV relative to the ground, and obtain the height difference H Ta between the obstacle and the ground according to the following formula; H Ta = H UAV -H2 obtains the horizontal distance of the obstacle relative to the UAV according to the following formula: D Ta =D2×cosθ2. 一種無人機的飛行控制方法,包括以下步驟:步驟2-1:獲取該無人機的一非旋轉式雷達模組偵測到一前方區域的至少一第一回波訊號以及一底側區域的至少一第二回波訊號;步驟2-2:根據該第一回波訊號以及該第二回波訊號得到一障礙物的一水平距離,並根據該第二回波訊號得到該無人機相對一地面的一高度差;步驟2-3:判斷該水平距離及/或該高度差是否符合一坡度地形條件;以及步驟2-4:當符合該坡度地形條件時,根據一空間資訊調整該無人機的一飛行軌跡,其中該空間資訊至少包括該水平距離及/或該高度差;其中該非旋轉式雷達模組包括至少一偵測該第一回波訊號的前視雷達以及一偵測該第二回波訊號的仿地雷達,該前視雷達具有垂直高度辨識能力。 A flight control method for an unmanned aerial vehicle, comprising the following steps: Step 2-1: Obtaining at least one first echo signal of a front area detected by a non-rotating radar module of the unmanned aerial vehicle and at least one echo signal of a bottom area A second echo signal; step 2-2: obtain a horizontal distance of an obstacle according to the first echo signal and the second echo signal, and obtain the UAV relative to a ground according to the second echo signal a height difference; step 2-3: judging whether the horizontal distance and/or the height difference conforms to a slope terrain condition; and step 2-4: when the slope terrain condition is met, adjust the UAV’s position according to a spatial information A flight trajectory, wherein the spatial information includes at least the horizontal distance and/or the altitude difference; wherein the non-rotating radar module includes at least one forward-looking radar for detecting the first echo signal and one for detecting the second echo signal Wave signal ground-following radar, the forward-looking radar has vertical height identification capability. 如請求項7所述的方法,其中,該前視雷達包括一短距天線以及一長距天線。 The method of claim 7, wherein the forward-looking radar includes a short-range antenna and a long-range antenna. 如請求項8所述的方法,其中,該短距天線具有一100m之內的偵測距離,該長距天線具有一介於50m至300m之間的偵測距離。 The method as claimed in claim 8, wherein the short-distance antenna has a detection range within 100m, and the long-distance antenna has a detection range between 50m and 300m. 如請求項8所述的方法,其中在步驟2-2,該水平距離的取得包括以下步驟:利用該長距天線偵測的一長距回波訊號得到該障礙物相對該無人機的一第一相對距離D1以及一第一夾角θ1,該第一夾角θ1為該障礙物至該無人機的一假想線以及一假想平面之間所夾者;根據下式得到該障礙物相對該無人機的該水平距離:DTa=D1×cosθ’其中,θ’為該第一夾角θ1和該無人機的一俯仰角之間的加成。 The method as described in claim 8, wherein in step 2-2, obtaining the horizontal distance includes the following steps: using a long-distance echo signal detected by the long-distance antenna to obtain a first distance of the obstacle relative to the UAV A relative distance D1 and a first angle θ1, the first angle θ1 is between the obstacle and an imaginary line of the UAV and an imaginary plane; according to the following formula, the obstacle relative to the UAV is obtained. The horizontal distance: D Ta =D1×cosθ' where θ' is the addition between the first angle θ1 and a pitch angle of the drone. 如請求項8所述的方法,其中在步驟2-2,該水平距離的取得包括以下步驟:利用該短距天線偵測的一短距回波訊號得到該障礙物相對該無人機的一第二相對距離D2以及一第二夾角θ2,該第二夾角θ2為該障礙物至該無人機的一假想線以及一假想平面之間所夾者;根據下式得到該障礙物相對該無人機的該水平距離:DTa=D2×cosθ2。 The method as described in claim 8, wherein in step 2-2, obtaining the horizontal distance includes the following steps: using a short-distance echo signal detected by the short-distance antenna to obtain a first distance of the obstacle relative to the UAV Two relative distances D2 and a second angle θ2, the second angle θ2 is between the obstacle and an imaginary line of the UAV and an imaginary plane; get the obstacle relative to the UAV according to the following formula The horizontal distance: D Ta =D2×cosθ2. 如請求項7所述的方法,其中在步驟2-4,當符合該坡度地形條件時,根據該空間資訊動態地補償該無人機相對於一地形的一飛行高度。 The method according to claim 7, wherein in step 2-4, when the slope terrain condition is met, dynamically compensate a flying height of the UAV relative to a terrain according to the spatial information. 一種無人機,包括:一飛行器;以及一非旋轉式雷達模組,裝設於該飛行器上,該非旋轉式雷達模組包括至少一前視雷達以及一仿地雷達,該前視雷達具有垂直高度辨識能力;其中,該前視雷達偵測一前方區域的至少一第一回波訊號,該仿地雷達偵測一底側區域的至少一第二回波訊號,根據該第一回波訊號以及該第二回波訊號得到一障礙物的一空間資訊,當該空間資訊符合一預警條件時產生一預警訊號。 An unmanned aerial vehicle, comprising: an aircraft; and a non-rotating radar module mounted on the aircraft, the non-rotating radar module including at least one forward-looking radar and a ground-following radar, the forward-looking radar has a vertical height of Identification capability; wherein, the forward-looking radar detects at least one first echo signal in a front area, and the ground-following radar detects at least one second echo signal in a bottom area, according to the first echo signal and A spatial information of an obstacle is obtained from the second echo signal, and an early warning signal is generated when the spatial information meets an early warning condition. 如請求項13所述的無人機,其中該前視雷達包括一短距天線以及一長距天線。 The drone according to claim 13, wherein the forward-looking radar includes a short-range antenna and a long-range antenna. 如請求項13所述的無人機,其中該非旋轉式雷達模組固定地設置於該飛行器上。 The unmanned aerial vehicle as claimed in claim 13, wherein the non-rotating radar module is fixedly arranged on the aircraft.
TW109146169A 2020-12-25 2020-12-25 Unmanned aerial vehicle and its flight control method TWI785442B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW109146169A TWI785442B (en) 2020-12-25 2020-12-25 Unmanned aerial vehicle and its flight control method
CN202110702812.0A CN114690797A (en) 2020-12-25 2021-06-24 Unmanned aerial vehicle and flight control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109146169A TWI785442B (en) 2020-12-25 2020-12-25 Unmanned aerial vehicle and its flight control method

Publications (2)

Publication Number Publication Date
TW202225890A TW202225890A (en) 2022-07-01
TWI785442B true TWI785442B (en) 2022-12-01

Family

ID=82135363

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109146169A TWI785442B (en) 2020-12-25 2020-12-25 Unmanned aerial vehicle and its flight control method

Country Status (2)

Country Link
CN (1) CN114690797A (en)
TW (1) TWI785442B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116203554B (en) * 2023-05-06 2023-07-07 武汉煜炜光学科技有限公司 Environment point cloud data scanning method and system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012084958A1 (en) * 2010-12-21 2012-06-28 Thales Method and device for monitoring variations in terrain
CN105607642A (en) * 2015-09-18 2016-05-25 广东中安金狮科创有限公司 Method for unmanned aerial vehicle to automatically carry out range finding, avoiding and crossing flight in three-dimensional space
CN105974936A (en) * 2016-04-26 2016-09-28 北京博瑞空间科技发展有限公司 Unmanned aerial vehicle obstacle avoidance system
CN106292699A (en) * 2016-08-03 2017-01-04 广州极飞电子科技有限公司 Method, device and the unmanned plane that unmanned plane flies imitatively
CN108319288A (en) * 2016-01-26 2018-07-24 深圳市大疆创新科技有限公司 Unmanned plane and its flight control method and system
TWI656325B (en) * 2017-12-14 2019-04-11 國家中山科學研究院 UAV navigation obstacle avoidance system and method thereof
TW201931040A (en) * 2018-01-03 2019-08-01 美商高通公司 Adjusting flight parameters of an aerial robotic vehicle based on presence of propeller guard(s)
CN110622087A (en) * 2017-05-01 2019-12-27 苏州极目机器人科技有限公司 Autonomous detection and following of terrain altitude along flight path

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012084958A1 (en) * 2010-12-21 2012-06-28 Thales Method and device for monitoring variations in terrain
CN105607642A (en) * 2015-09-18 2016-05-25 广东中安金狮科创有限公司 Method for unmanned aerial vehicle to automatically carry out range finding, avoiding and crossing flight in three-dimensional space
CN108319288A (en) * 2016-01-26 2018-07-24 深圳市大疆创新科技有限公司 Unmanned plane and its flight control method and system
CN105974936A (en) * 2016-04-26 2016-09-28 北京博瑞空间科技发展有限公司 Unmanned aerial vehicle obstacle avoidance system
CN106292699A (en) * 2016-08-03 2017-01-04 广州极飞电子科技有限公司 Method, device and the unmanned plane that unmanned plane flies imitatively
CN110622087A (en) * 2017-05-01 2019-12-27 苏州极目机器人科技有限公司 Autonomous detection and following of terrain altitude along flight path
TWI656325B (en) * 2017-12-14 2019-04-11 國家中山科學研究院 UAV navigation obstacle avoidance system and method thereof
TW201931040A (en) * 2018-01-03 2019-08-01 美商高通公司 Adjusting flight parameters of an aerial robotic vehicle based on presence of propeller guard(s)

Also Published As

Publication number Publication date
CN114690797A (en) 2022-07-01
TW202225890A (en) 2022-07-01

Similar Documents

Publication Publication Date Title
US11380995B2 (en) Two-dimensional antenna system and method and device for positioning a target
JP5832629B2 (en) Measuring system for determining 3D coordinates of the surface of an object
JP2024010161A (en) Systems and methods for detecting objects
CA2832956C (en) System and method for controlling an unmanned aerial vehicle
US9758239B2 (en) System and method for controlling an unmanned air vehicle
CN110192122B (en) System and method for radar control on unmanned mobile platforms
CN109313452B (en) Unmanned aerial vehicle obstacle avoidance control method, radar system and unmanned aerial vehicle
WO2019119183A1 (en) Agricultural drone flight control method , radar system, and agricultural drone
WO2021087701A1 (en) Terrain prediction method and apparatus for undulating ground, and radar, unmanned aerial vehicle and operating control method
US20200117197A1 (en) Obstacle detection assembly for a drone, drone equipped with such an obstacle detection assembly and obstacle detection method
GB2571711A (en) Drone control system
US11721222B2 (en) Ruggedized autonomous helicopter platform
TWI785442B (en) Unmanned aerial vehicle and its flight control method
WO2018094576A1 (en) Unmanned aerial vehicle control method, flight controller, and unmanned aerial vehicle
CN111650589A (en) Unmanned aerial vehicle millimeter wave radar detection system, detection method and unmanned aerial vehicle
CN113820709B (en) Through-wall radar detection system and detection method based on unmanned aerial vehicle
CN112986958B (en) Large-range laser scanning device based on high-density echo analysis and control system thereof
WO2021087643A1 (en) Ground clutter suppression and terrain estimation method, unmanned aerial vehicle, rotating radar, and storage medium
CN113589314A (en) Water surface target detection stability augmentation system and method based on laser vision
CN113029158B (en) Rotary wing aircraft based on laser and sound fusion positioning and positioning method thereof
CN215813856U (en) Bridge detection device
CN209086758U (en) A kind of unmanned plane monitoring positioning device
WO2023082282A1 (en) Control method, control device, and unmanned aerial vehicle
WO2022094962A1 (en) Hovering method for unmanned aerial vehicle, unmanned aerial vehicle and storage medium
US20230420837A1 (en) System and method for aligning rf phase in a distributed mobile platform ensemble utilizing a free space optical system to improve rf phase alignment