TWI781689B - Micro light emitting diode display panel - Google Patents

Micro light emitting diode display panel Download PDF

Info

Publication number
TWI781689B
TWI781689B TW110126175A TW110126175A TWI781689B TW I781689 B TWI781689 B TW I781689B TW 110126175 A TW110126175 A TW 110126175A TW 110126175 A TW110126175 A TW 110126175A TW I781689 B TWI781689 B TW I781689B
Authority
TW
Taiwan
Prior art keywords
emitting diode
light emitting
micro
micro light
sub
Prior art date
Application number
TW110126175A
Other languages
Chinese (zh)
Other versions
TW202207197A (en
Inventor
李允立
李玉柱
廖冠詠
Original Assignee
錼創顯示科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US16/988,717 external-priority patent/US11289012B2/en
Application filed by 錼創顯示科技股份有限公司 filed Critical 錼創顯示科技股份有限公司
Publication of TW202207197A publication Critical patent/TW202207197A/en
Priority to US17/673,808 priority Critical patent/US20220172673A1/en
Application granted granted Critical
Publication of TWI781689B publication Critical patent/TWI781689B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Led Device Packages (AREA)
  • Illuminated Signs And Luminous Advertising (AREA)

Abstract

A micro light emitting diode display panel including a plurality of display units and a controlling element is provided. The plurality of display units are arranged in an array and each of the plurality of display units includes a first sub-pixel. The first sub-pixel includes a first micro light emitting diode and a second micro light emitting diode. The controlling element is configured to control light emission of the first micro light emitting diode and the second micro light emitting diode and determines operating currents of the first micro light emitting diode and the second micro light emitting diode. In the same display image, the operating current of the first micro light emitting diode increases as an operating temperature of the first sub-pixel increases.

Description

微型發光二極體顯示面板Miniature Light Emitting Diode Display Panel

本發明是有關於一種顯示面板,且特別是有關於一種微型發光二極體顯示面板。The present invention relates to a display panel, and in particular to a micro light-emitting diode display panel.

隨著光電技術的演進,固態光源(如發光二極體)已廣泛應用於各領域,例如道路照明、大型戶外看板、交通號誌燈等。近期更發展出一種微型發光二極體顯示面板,其以微型發光二極體作為顯示面板中的子像素,使得每一個子像素都可以單獨驅動發光。將這些可獨立發光的微型發光二極體所發出的光束組合成影像的顯示面板即為微型發光二極體顯示面板。With the evolution of optoelectronic technology, solid-state light sources (such as light-emitting diodes) have been widely used in various fields, such as road lighting, large outdoor signage, traffic lights, etc. Recently, a micro light emitting diode display panel has been developed, which uses micro light emitting diodes as sub-pixels in the display panel, so that each sub-pixel can be driven to emit light independently. The display panel that combines the light beams emitted by these micro light-emitting diodes that can emit light independently to form an image is a micro light-emitting diode display panel.

在現有的高解析度或大尺寸的微型發光二極體顯示面板中,由於每條資料線分到的電流供給時間很短,因此每條資料線所傳遞的電流密度需提高,從而容易受熱毀損。另外,隨著操作溫度的增加,微型發光二極體容易有發光效率降低或波長偏移的問題,造成微型發光二極體顯示面板在亮度或色彩的表現上不一致。In the existing high-resolution or large-size micro-LED display panels, since the current supply time for each data line is very short, the current density delivered by each data line needs to be increased, which is easy to be damaged by heat . In addition, as the operating temperature increases, the micro-LEDs tend to have problems such as reduced luminous efficiency or wavelength shift, resulting in inconsistencies in brightness or color performance of the micro-LED display panel.

本發明提供一種微型發光二極體顯示面板,其有助於改善高溫操作時亮度降低或色偏的問題。The invention provides a micro light-emitting diode display panel, which helps to improve the problem of brightness reduction or color shift during high temperature operation.

根據本發明的一實施例,微型發光二極體顯示面板包括多個顯示單元以及控制元件。多個顯示單元陣列排列且每一顯示單元包含第一子畫素。第一子畫素包括第一微型發光二極體以及第二微型發光二極體。控制元件用以控制第一微型發光二極體與第二微型發光二極體的發光並決定第一微型發光二極體與第二微型發光二極體的操作電流。在同一顯示畫面下,第一微型發光二極體的操作電流隨著第一子畫素的操作溫度增加而增加。According to an embodiment of the present invention, the micro light emitting diode display panel includes a plurality of display units and control elements. A plurality of display units are arranged in an array, and each display unit includes a first sub-pixel. The first sub-pixel includes a first micro light emitting diode and a second micro light emitting diode. The control element is used for controlling the light emission of the first micro light emitting diode and the second micro light emitting diode and determining the operating current of the first micro light emitting diode and the second micro light emitting diode. Under the same display frame, the operating current of the first micro light emitting diode increases as the operating temperature of the first sub-pixel increases.

在本發明的一實施例中,第一微型發光二極體的阻抗小於第二微型發光二極體的阻抗。In an embodiment of the present invention, the impedance of the first miniature LED is smaller than the impedance of the second miniature LED.

在本發明的一實施例中,第一微型發光二極體的操作電流是由控制元件控制輸入。In an embodiment of the present invention, the operating current of the first micro light emitting diode is controlled and input by the control element.

在本發明的一實施例中,第二微型發光二極體的操作電流隨著第一子畫素的操作溫度增加而減少。In an embodiment of the present invention, the operating current of the second micro light emitting diode decreases as the operating temperature of the first sub-pixel increases.

在本發明的一實施例中,第一子畫素在高溫操作時,第一微型發光二極體的操作電流大於第二微型發光二極體的操作電流。第一子畫素在低溫操作時,第二微型發光二極體的操作電流大於第一微型發光二極體的操作電流。In an embodiment of the present invention, when the first sub-pixel is operating at high temperature, the operating current of the first micro-LED is greater than the operating current of the second micro-LED. When the first sub-pixel operates at a low temperature, the operating current of the second micro light emitting diode is greater than that of the first micro light emitting diode.

在本發明的一實施例中,微型發光二極體顯示面板更包括基板。控制元件與顯示單元中的第一微型發光二極體以及第二微型發光二極體接合在基板上。In an embodiment of the invention, the micro light emitting diode display panel further includes a substrate. The control element is bonded with the first micro light emitting diode and the second micro light emitting diode in the display unit on the substrate.

在本發明的一實施例中,微型發光二極體顯示面板更包括多個微型晶片。多個微型晶片接合在基板上且每一個微型晶片位於複數個顯示單元之間並與複數個顯示單元電性連接。In an embodiment of the present invention, the micro-LED display panel further includes a plurality of micro-chips. A plurality of microchips are bonded on the substrate, and each microchip is located between the plurality of display units and is electrically connected with the plurality of display units.

在本發明的一實施例中,第一微型發光二極體以及第二微型發光二極體在以下至少一者中不同:電流擴散層的面積、電流擴散層的厚度、電極與磊晶層的接面面積以及電極與磊晶層中至少一個的材料。In an embodiment of the present invention, the first micro light emitting diode and the second micro light emitting diode are different in at least one of the following: the area of the current diffusion layer, the thickness of the current diffusion layer, the thickness of the electrode and the epitaxial layer The junction area and the material of at least one of the electrode and the epitaxial layer.

在本發明的一實施例中,每一顯示單元更包含第二子畫素。第一子畫素與第二子畫素發出不同顏色,其中第一子畫素的第一微型發光二極體具有比第二微型發光二極體短的波長。In an embodiment of the invention, each display unit further includes a second sub-pixel. The first sub-pixel and the second sub-pixel emit different colors, wherein the first micro light-emitting diode of the first sub-pixel has a wavelength shorter than that of the second micro light-emitting diode.

在本發明的一實施例中,第一子畫素更包括阻抗可變元件。阻抗可變元件與第一微型發光二極體以及第二微型發光二極體連接。In an embodiment of the invention, the first sub-pixel further includes a variable impedance element. The impedance variable element is connected with the first micro light emitting diode and the second micro light emitting diode.

在本發明的一實施例中,在第一子畫素中,第一微型發光二極體以及第二微型發光二極體串聯,且阻抗可變元件與第一微型發光二極體並聯。In an embodiment of the present invention, in the first sub-pixel, the first micro-LED and the second micro-LED are connected in series, and the impedance variable element is connected in parallel with the first micro-LED.

在本發明的一實施例中,阻抗可變元件的阻抗隨著第一子畫素的操作溫度增加而增加。In an embodiment of the invention, the impedance of the variable impedance element increases as the operating temperature of the first sub-pixel increases.

在本發明的一實施例中,第一微型發光二極體的操作電流隨著第一子畫素的操作溫度增加而增加。In an embodiment of the invention, the operating current of the first micro-LED increases as the operating temperature of the first sub-pixel increases.

在本發明的一實施例中,第一微型發光二極體具有比第二微型發光二極體短的波長。In an embodiment of the present invention, the first micro-LED has a wavelength shorter than that of the second micro-LED.

基於上述,在本發明的實施例中,第一子畫素具有兩個微型發光二極體,且根據第一子畫素的操作溫度而控制至少一個微型發光二極體的操作電流,以補償微型發光二極體在高溫操作時亮度降低或色偏的問題,進而提升微型發光二極體顯示面板在亮度或色彩表現上的一致性。Based on the above, in an embodiment of the present invention, the first sub-pixel has two micro-LEDs, and the operating current of at least one micro-LED is controlled according to the operating temperature of the first sub-pixel to compensate The problem of brightness reduction or color shift of micro light emitting diodes when operating at high temperature can improve the consistency of brightness or color performance of micro light emitting diode display panels.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。In order to make the above-mentioned features and advantages of the present invention more comprehensible, the following specific embodiments are described in detail together with the accompanying drawings.

本文中所提到的方向用語,例如:「上」、「下」、「前」、「後」、「左」、「右」等,僅是參考附圖的方向。因此,使用的方向用語是用來說明,而並非用來限制本發明。The directional terms mentioned in this document, such as "upper", "lower", "front", "rear", "left", "right", etc., are only referring to the directions of the drawings. Accordingly, the directional terms used are illustrative, not limiting, of the invention.

在附圖中,各圖式繪示的是特定實施例中所使用的方法、結構或材料的通常性特徵。然而,這些圖式不應被解釋為界定或限制由這些實施例所涵蓋的範圍或性質。舉例來說,為了清楚起見,各膜層、區域或結構的相對尺寸、厚度及位置可能縮小或放大。In the drawings, each figure illustrates the general features of methods, structure or materials used in a particular embodiment. However, these drawings should not be interpreted as defining or limiting the scope or nature encompassed by these embodiments. For example, the relative sizes, thicknesses and positions of layers, regions or structures may be reduced or exaggerated for clarity.

本說明書或申請專利範圍中提及的「第一」、「第二」等用語僅用以命名不同元件或區別不同實施例或範圍,而並非用來限制元件數量上的上限或下限,也並非用以限定元件的製造順序或設置順序。此外,一元件/膜層設置在另一元件/膜層上(或上方)可涵蓋所述元件/膜層直接設置在所述另一元件/膜層上(或上方),且兩個元件/膜層直接接觸的情況;以及所述元件/膜層間接設置在所述另一元件/膜層上(或上方),且兩個元件/膜層之間存在一或多個元件/膜層的情況。Terms such as "first" and "second" mentioned in this specification or the scope of the patent application are only used to name different elements or to distinguish different embodiments or ranges, and are not used to limit the upper or lower limit of the number of elements, nor are they intended to Used to define the manufacturing sequence or arrangement sequence of components. In addition, an element/film layer being disposed on (or over) another element/film layer may encompass that the element/film layer is directly disposed on (or over) the other element/film layer, and both elements/film layers The case where the film layers are in direct contact; and the said element/film layer is indirectly disposed on (or over) the other element/film layer, and there are one or more elements/film layers between the two elements/film layers Condition.

圖1是依照本發明的一實施例的一種微型發光二極體顯示面板的局部上視示意圖。圖2是圖1中控制元件以及第一子畫素的第一種簡單電路圖。圖3A及圖3B分別是圖2中第一微型發光二極體以及第二微型發光二極體的剖面示意圖。圖4是圖1中控制元件以及第一子畫素的第二種簡單電路圖。圖5是圖2的第一子畫素中第一微型發光二極體以及第二微型發光二極體的波長與光強度的示意圖。圖6至圖8分別是依照本發明的其他實施例的微型發光二極體顯示面板的局部上視示意圖。FIG. 1 is a schematic partial top view of a micro LED display panel according to an embodiment of the present invention. FIG. 2 is a first simple circuit diagram of the control element and the first sub-pixel in FIG. 1 . 3A and 3B are schematic cross-sectional views of the first micro light emitting diode and the second micro light emitting diode in FIG. 2 , respectively. FIG. 4 is a second simple circuit diagram of the control element and the first sub-pixel in FIG. 1 . FIG. 5 is a schematic diagram of the wavelength and light intensity of the first micro-LED and the second micro-LED in the first sub-pixel in FIG. 2 . 6 to 8 are schematic partial top views of micro light emitting diode display panels according to other embodiments of the present invention.

在圖1至圖8中,相同或相似的元件將採用相同或相似的標號,且將省略其贅述。此外,不同實施例中的特徵在沒有衝突的情況下可相互組合,且依本說明書或申請專利範圍所作之簡單的等效變化與修飾,皆仍屬本專利涵蓋的範圍內。In FIGS. 1 to 8 , the same or similar elements will be given the same or similar reference numerals, and redundant descriptions thereof will be omitted. In addition, features in different embodiments can be combined without conflict, and simple equivalent changes and modifications made in accordance with the specification or scope of the patent application are still within the scope of the patent.

請參照圖1,微型發光二極體顯示面板100可包括多個顯示單元U,每個顯示單元U由第一子畫素112、第二子畫素114以及第三子畫素116共同構成。多個顯示單元U陣列排列,以令微型發光二極體顯示面板100進行影像的顯示(圖1僅示意性繪示出四個顯示單元U)。第一子畫素112。第一子畫素112可包括多個微型發光二極體。圖1示意性繪示出第一子畫素112包括微型發光二極體112A(又可稱作第一微型發光二極體)以及微型發光二極體112B(又可稱作第二微型發光二極體)。然而,第一子畫素112中的微型發光二極體的數量不以此為限。在一些實施例中,多個微型發光二極體可具有相同的尺寸,以利於接合製程以及線路設計,但不以此為限。Referring to FIG. 1 , the micro-LED display panel 100 may include a plurality of display units U, and each display unit U is composed of a first sub-pixel 112 , a second sub-pixel 114 and a third sub-pixel 116 . A plurality of display units U are arranged in an array to enable the micro light emitting diode display panel 100 to display images (only four display units U are schematically shown in FIG. 1 ). The first sub-pixel 112 . The first sub-pixel 112 may include a plurality of miniature light emitting diodes. FIG. 1 schematically shows that the first sub-pixel 112 includes a miniature light-emitting diode 112A (also called a first miniature light-emitting diode) and a miniature light-emitting diode 112B (also called a second miniature light-emitting diode). polar body). However, the number of miniature LEDs in the first sub-pixel 112 is not limited thereto. In some embodiments, the plurality of miniature light emitting diodes may have the same size to facilitate bonding process and circuit design, but not limited thereto.

在一些實施例中,如圖2所示,微型發光二極體112A以及微型發光二極體112B可彼此電性獨立。舉例來說,微型發光二極體顯示面板100可進一步包括控制元件120。控制元件120用以控制微型發光二極體112A以及微型發光二極體112B的發光並決定微型發光二極體112A以及微型發光二極體112B的操作電流。具體地,控制元件120可控制微型發光二極體的發光狀態(發光、不發光或發光強度),其中微型發光二極體112A以及微型發光二極體112B可獨立地與控制元件120電性連接,使得控制元件120能夠個別控制輸入至微型發光二極體112A的電流I112A以及輸入至微型發光二極體112B的電流I112B。控制元件120可以是電路晶片或微型發光二極體的驅動器,但不以此為限。In some embodiments, as shown in FIG. 2 , the micro LEDs 112A and the micro LEDs 112B can be electrically independent from each other. For example, the micro LED display panel 100 may further include a control element 120 . The control element 120 is used to control the light emission of the micro LED 112A and the micro LED 112B and determine the operating current of the micro LED 112A and the micro LED 112B. Specifically, the control element 120 can control the light-emitting state (emission, non-light or light intensity) of the miniature light-emitting diodes, wherein the micro-light-emitting diodes 112A and the micro-light-emitting diodes 112B can be electrically connected to the control element 120 independently , so that the control element 120 can individually control the current I112A input to the micro-LED 112A and the current I112B input to the micro-LED 112B. The control element 120 may be a circuit chip or a driver of miniature LEDs, but is not limited thereto.

在一些實施例中,如圖1所示,控制元件120可設置於微型發光二極體顯示面板100的一側,且藉由導線(未繪示)個別地連接每一子畫素,以個別控制輸入至每一子畫素中的微型發光二極體的電流。然而,在其他實施例中,微型發光二極體顯示面板100可包括多個控制元件120,且多個控制元件120可分別對應設置於個別的子畫素中。In some embodiments, as shown in FIG. 1, the control element 120 can be disposed on one side of the micro-LED display panel 100, and each sub-pixel is individually connected by a wire (not shown) to individually Controlling the current input to the miniature light-emitting diodes in each sub-pixel. However, in other embodiments, the micro-LED display panel 100 may include a plurality of control elements 120 , and the plurality of control elements 120 may be correspondingly disposed in individual sub-pixels.

在一些實施例中,微型發光二極體112A以及微型發光二極體112B可具有相同或接近的發光波長。發光波長指的是微型發光二極體的頻譜中光強度最大值所對應的波長。多個微型發光二極體具有接近的發光波長指的是多個微型發光二極體的發光波長差值不超過10nm,例如落在1nm至10nm的範圍內,且較佳落在3nm至5nm的範圍內,但不以此為限。In some embodiments, the micro-LEDs 112A and the micro-LEDs 112B may have the same or close light-emitting wavelengths. The light emitting wavelength refers to the wavelength corresponding to the maximum light intensity in the spectrum of the micro light emitting diode. A plurality of miniature light emitting diodes having similar light emission wavelengths means that the difference between the light emission wavelengths of the plurality of micro light emitting diodes does not exceed 10nm, for example falls within the range of 1nm to 10nm, and preferably falls within the range of 3nm to 5nm within, but not limited to.

在第一子畫素112中,至少一個微型發光二極體的操作電流隨著第一子畫素112的操作溫度改變而改變。具體地,根據第一子畫素112的操作溫度而控制至少一個微型發光二極體(如微型發光二極體112A或微型發光二極體112B)的操作電流,以補償微型發光二極體在高溫操作時亮度降低或色偏的問題,進而提升微型發光二極體顯示面板100在亮度或色彩表現上的一致性。In the first sub-pixel 112 , the operating current of at least one miniature light emitting diode changes as the operating temperature of the first sub-pixel 112 changes. Specifically, the operating current of at least one micro-LED (such as micro-LED 112A or micro-LED 112B) is controlled according to the operating temperature of the first sub-pixel 112, so as to compensate the micro-LED in The problem of brightness reduction or color shift during high temperature operation improves the consistency of brightness or color performance of the micro light emitting diode display panel 100 .

舉例來說,在圖2的架構下,微型發光二極體112A以及微型發光二極體112B可具有不同的阻抗。在高溫操作時,阻抗小的微型發光二極體可具有較大的操作電流,而在低溫或常溫操作時,阻抗大的微型發光二極體可具有較大的操作電流。使微型發光二極體112A以及微型發光二極體112B具有不同的阻抗的方法可包括使微型發光二極體112A以及微型發光二極體112B在以下至少一者中不同:電流擴散層的面積、電流擴散層的厚度、電極與磊晶層的接面面積以及電極與磊晶層中至少一個的材料。For example, under the framework of FIG. 2 , the micro LED 112A and the micro LED 112B may have different impedances. When operating at high temperature, the micro light emitting diode with small impedance can have a relatively large operating current, and when operating at low or normal temperature, the micro light emitting diode with large impedance can have a relatively large operating current. The method of making the micro-LED 112A and the micro-LED 112B have different impedances may include making the micro-LED 112A and the micro-LED 112B different in at least one of the following: the area of the current spreading layer, The thickness of the current diffusion layer, the junction area of the electrode and the epitaxial layer, and the material of at least one of the electrode and the epitaxial layer.

以微型發光二極體112A的阻抗小於微型發光二極體112B的阻抗為例,微型發光二極體112A可具有比微型發光二極體112B更小的電流擴散層的面積、電流擴散層的厚度或電極與磊晶層的接面面積,或者可調整電極與磊晶層中至少一個的材料使得微型發光二極體112A的阻抗小於微型發光二極體112B的阻抗。Taking the impedance of the micro-LED 112A as an example lower than that of the micro-LED 112B, the micro-LED 112A may have a smaller area of the current diffusion layer and a smaller thickness of the current diffusion layer than the micro-LED 112B. Or the interface area between the electrode and the epitaxial layer, or the material of at least one of the electrode and the epitaxial layer can be adjusted so that the impedance of the micro-LED 112A is smaller than the impedance of the micro-LED 112B.

圖3A及圖3B示意性繪示出透過調整電流擴散層的面積來使微型發光二極體112A的阻抗小於微型發光二極體112B的阻抗。如圖3A及圖3B所示,微型發光二極體112A以及微型發光二極體112B中的每一者例如可包括磊晶層1120、電流擴散層1121以及電極層1123。3A and 3B schematically illustrate that the impedance of the micro-LED 112A is made smaller than the impedance of the micro-LED 112B by adjusting the area of the current diffusion layer. As shown in FIG. 3A and FIG. 3B , each of the micro LEDs 112A and 112B may include an epitaxial layer 1120 , a current spreading layer 1121 and an electrode layer 1123 , for example.

磊晶層1120可包括n型半導體層(如n-GaN或類似者)1120-1、多重量子井(Multiple-Quantum Well,MQW)層1120-2以及p型半導體層(如p-GaN或類似者)1120-3,其中多重量子井層1120-2位於n型半導體層1120-1與p型半導體層1120-3之間,且p型半導體層1120-3位於多重量子井層1120-2與電流擴散層1121之間。在一些實施例中,n型半導體層1120-1的厚度T1120-1為3000nm,多重量子井層1120-2的厚度T1120-2為300nm,p型半導體層1120-3的厚度T1120-3為600nm,且磊晶層1120的厚度(即厚度T1120-1、厚度T1120-2以及厚度T1120-3的總和)為4μm至5μm,但不以此為限。The epitaxial layer 1120 may include an n-type semiconductor layer (such as n-GaN or the like) 1120-1, a multiple quantum well (Multiple-Quantum Well, MQW) layer 1120-2, and a p-type semiconductor layer (such as p-GaN or the like). or) 1120-3, wherein the multiple quantum well layer 1120-2 is located between the n-type semiconductor layer 1120-1 and the p-type semiconductor layer 1120-3, and the p-type semiconductor layer 1120-3 is located between the multiple quantum well layer 1120-2 and between the current spreading layers 1121 . In some embodiments, the thickness T1120-1 of the n-type semiconductor layer 1120-1 is 3000nm, the thickness T1120-2 of the multiple quantum well layer 1120-2 is 300nm, and the thickness T1120-3 of the p-type semiconductor layer 1120-3 is 600nm , and the thickness of the epitaxial layer 1120 (ie the sum of the thickness T1120-1, the thickness T1120-2 and the thickness T1120-3) is 4 μm to 5 μm, but not limited thereto.

電流擴散層1121設置在磊晶層1120上。在一些實施例中,電流擴散層1121是金屬氧化層(如ITO層或其類似者),且電流擴散層1121的厚度T1121為100nm,但不以此為限。The current spreading layer 1121 is disposed on the epitaxial layer 1120 . In some embodiments, the current spreading layer 1121 is a metal oxide layer (such as an ITO layer or the like), and the thickness T1121 of the current spreading layer 1121 is 100 nm, but not limited thereto.

電流擴散層1121的面積越大,電流密度越小、阻抗越大,因此藉由使微型發光二極體112A的電流擴散層1121的面積小於微型發光二極體112B的電流擴散層1121的面積,可使微型發光二極體112A具有比微型發光二極體112B小的阻抗。電流擴散層1121的面積指的是電流擴散層1121在n型半導體層1120-1上的正投影的面積。The larger the area of the current spreading layer 1121, the lower the current density and the greater the impedance. Therefore, by making the area of the current spreading layer 1121 of the miniature light emitting diode 112A smaller than the area of the current spreading layer 1121 of the miniature light emitting diode 112B, The micro LED 112A can be made to have a lower impedance than the micro LED 112B. The area of the current spreading layer 1121 refers to the area of the orthographic projection of the current spreading layer 1121 on the n-type semiconductor layer 1120-1.

在一些實施例中,微型發光二極體112B的電流擴散層1121與微型發光二極體112A的電流擴散層1121的面積比值可落在1.2至2的範圍內。舉例來說,微型發光二極體112A的電流擴散層1121的面積為10μm2 至30μm2 (大致小於15μm2 ),且微型發光二極體112B的電流擴散層1121的面積為30μm2 至100μm2 ,但不以此為限。In some embodiments, the area ratio of the current spreading layer 1121 of the micro LED 112B to the current spreading layer 1121 of the micro LED 112A may fall within a range of 1.2-2. For example, the area of the current spreading layer 1121 of the miniature LED 112A is 10 μm 2 to 30 μm 2 (approximately less than 15 μm 2 ), and the area of the current spreading layer 1121 of the miniature LED 112B is 30 μm 2 to 100 μm 2 , but not limited to this.

電極層1123設置在電流擴散層1121上。在一些實施例中,電極層1123是金屬層(如銅層或其類似者),且電極層1123的厚度T1123為2nm,但不以此為限。The electrode layer 1123 is disposed on the current spreading layer 1121 . In some embodiments, the electrode layer 1123 is a metal layer (such as a copper layer or the like), and the thickness T1123 of the electrode layer 1123 is 2 nm, but not limited thereto.

在一些實施例中,微型發光二極體112A以及微型發光二極體112B中的每一者例如還可包括絕緣層1122。絕緣層1122覆蓋電流擴散層1121以及磊晶層1120(例如絕緣層1122覆蓋磊晶層1120的側壁SW)。絕緣層1122的材料可包括氧化矽、氮化矽或類似者,且絕緣層1122的厚度T1122可為700nm,但不以此為限。In some embodiments, each of the micro-LEDs 112A and 112B may further include an insulating layer 1122 , for example. The insulating layer 1122 covers the current spreading layer 1121 and the epitaxial layer 1120 (for example, the insulating layer 1122 covers the sidewall SW of the epitaxial layer 1120 ). The material of the insulating layer 1122 may include silicon oxide, silicon nitride or the like, and the thickness T1122 of the insulating layer 1122 may be 700 nm, but not limited thereto.

絕緣層1122可具有曝露出電流擴散層1121的開口O1以及曝露出磊晶層1120的開口O2,電極層1123可具有透過開口O2而與磊晶層1120接觸的第一電極E1以及透過開口O1而與電流擴散層1121接觸的第二電極E2,且第一電極E1以及第二電極E2彼此電性絕緣。在微型發光二極體112A中,電流擴散層1121與第二電極E2重疊且大於開口O1。在微型發光二極體112B中,電流擴散層1121覆蓋磊晶層1120,且電流擴散層1121的開孔A1121曝露出磊晶層1120的凹槽G。The insulating layer 1122 may have an opening O1 exposing the current spreading layer 1121 and an opening O2 exposing the epitaxial layer 1120. The electrode layer 1123 may have a first electrode E1 contacting the epitaxial layer 1120 through the opening O2 and a first electrode E1 contacting the epitaxial layer 1120 through the opening O1. The second electrode E2 is in contact with the current spreading layer 1121 , and the first electrode E1 and the second electrode E2 are electrically insulated from each other. In the miniature light emitting diode 112A, the current spreading layer 1121 overlaps with the second electrode E2 and is larger than the opening O1. In the miniature light emitting diode 112B, the current spreading layer 1121 covers the epitaxial layer 1120 , and the opening A1121 of the current spreading layer 1121 exposes the groove G of the epitaxial layer 1120 .

應理解,圖3A及圖3B僅是示意性繪示出一種微型發光二極體的結構,然而微型發光二極體112A以及微型發光二極體112B的結構、膜層數量及/或各層、各開口或各開孔的形狀或尺寸可依需求改變。本文中的微型發光二極體112A以及微型發光二極體112B欲概括已知的任一種形式的微型發光二極體。It should be understood that FIG. 3A and FIG. 3B only schematically depict the structure of a micro light emitting diode, but the structure of the micro light emitting diode 112A and the micro light emitting diode 112B, the number of film layers and/or each layer, each The shape or size of the opening or each opening can be changed as required. The micro LED 112A and the micro LED 112B herein are intended to generalize any known micro LED.

請參照圖2,在第一子畫素112中,微型發光二極體112A(阻抗小的微型發光二極體)的操作電流例如可隨著第一子畫素112的操作溫度增加而增加,而微型發光二極體112B(阻抗大的微型發光二極體)的操作電流例如可隨著第一子畫素112的操作溫度增加而減少。換句話說,在高溫操作時的微型發光二極體112A的操作電流大於在常溫操作時的微型發光二極體112A的操作電流,而在常溫操作時的微型發光二極體112B的操作電流大於在高溫操作時的微型發光二極體112B的操作電流。Referring to FIG. 2 , in the first sub-pixel 112, the operating current of the miniature light-emitting diode 112A (micro-light-emitting diode with small impedance), for example, can increase as the operating temperature of the first sub-pixel 112 increases, The operating current of the miniature light emitting diode 112B (miniature light emitting diode with high impedance), for example, may decrease as the operating temperature of the first sub-pixel 112 increases. In other words, the operating current of the miniature LED 112A when operating at a high temperature is greater than that of the miniature LED 112A when operating at a normal temperature, and the operating current of the miniature LED 112B is greater than that when operating at a normal temperature. The operating current of the miniature light-emitting diode 112B when operating at high temperature.

在一些實施例中,第一子畫素112在高溫操作時,微型發光二極體112A(阻抗小的微型發光二極體)的操作電流可大於微型發光二極體112B(阻抗大的微型發光二極體)的操作電流。另一方面,第一子畫素112在低溫操作時,微型發光二極體112B的操作電流可大於微型發光二極體112A的操作電流。具體地,在低溫或常溫操作時,可使阻抗大的微型發光二極體(如微型發光二極體112B)具有較大的操作電流,以維持所需亮度;而在高溫操作時,由於微型發光二極體112A以及微型發光二極體112B皆會有高溫光衰問題(即微型發光二極體112A以及微型發光二極體112B的亮度皆會降低),此時可使阻抗小的微型發光二極體(如微型發光二極體112A)具有較大的操作電流(例如提升阻抗小的微型發光二極體的操作電流),以藉由高電流密度來提升亮度,從而在不同操作溫度下維持均一的亮度。應理解,在任一操作溫度下,微型發光二極體112A以及微型發光二極體112B可以是一開一關或是皆被點亮。當任一微型發光二極體的操作溫度過高時,基於安全性或壽命等考量,可關閉該微型發光二極體或降低該微型發光二極體的操作電流。In some embodiments, when the first sub-pixel 112 operates at a high temperature, the operating current of the miniature light-emitting diode 112A (miniature light-emitting diode with small impedance) can be greater than that of the micro-light-emitting diode 112B (miniature light-emitting diode with large impedance). Diode) operating current. On the other hand, when the first sub-pixel 112 operates at a low temperature, the operating current of the micro LED 112B may be greater than that of the micro LED 112A. Specifically, when operating at low temperature or normal temperature, the micro light-emitting diode with large impedance (such as micro light-emitting diode 112B) can have a larger operating current to maintain the required brightness; Both the light-emitting diode 112A and the miniature light-emitting diode 112B have the problem of high-temperature light decay (that is, the brightness of the micro-light-emitting diode 112A and the micro-light-emitting diode 112B will both decrease), and at this time, the micro-light-emitting diode with small impedance can be made Diodes (such as miniature light-emitting diodes 112A) have a larger operating current (for example, to increase the operating current of micro-light-emitting diodes with small impedance), so as to improve brightness through high current density, so that the Maintain uniform brightness. It should be understood that at any operating temperature, the micro LED 112A and the micro LED 112B can be turned on and off or both can be turned on. When the operating temperature of any micro-LED is too high, the micro-LED can be turned off or the operating current of the micro-LED can be reduced based on considerations such as safety or lifetime.

在本文中,高溫操作中的高溫指的是微型發光二極體產生顯著的亮度或壽命衰減的溫度,通常為攝氏60度以上,但不以此為限。常溫操作中的常溫指的是微型發光二極體典型的工作溫度,通常為攝氏25度,但不以此為限。微型發光二極體的操作電流指的是流經微型發光二極體的電流。第一子畫素的操作溫度指的是第一子畫素所在區域的溫度。Herein, the high temperature in high temperature operation refers to the temperature at which the miniature light-emitting diodes produce significant brightness or lifetime decay, usually above 60 degrees Celsius, but not limited thereto. The normal temperature in the normal temperature operation refers to the typical working temperature of the miniature LED, usually 25 degrees Celsius, but not limited thereto. The operating current of the micro light emitting diode refers to the current flowing through the micro light emitting diode. The operating temperature of the first sub-pixel refers to the temperature of the area where the first sub-pixel is located.

在一些實施例中,可利用溫度感測器(未繪示)量測微型發光二極體顯示面板中的單一子畫素或單一顯示單元的溫度,或是量測包含有多個子畫素或多個顯示單元的區域的溫度。在另一些實施例中,藉由子畫素中微型發光二極體的操作電流回推子畫素的操作溫度,可省略溫度感測器。在又一些實施例中,在採用脈衝寬度調變(Pulse-Width Modulation,PWM)的方式驅動微型發光二極體的架構下,藉由子畫素中微型發光二極體的操作時間回推子畫素的操作溫度,可省略溫度感測器。在再一些實施例中,藉由微型發光二極體兩端因操作溫度升高造成的壓降(voltage drop)來回推子畫素的操作溫度,可省略溫度感測器。藉由上述方式獲得子畫素的操作溫度,並將此資訊回饋給控制元件,有助於控制元件做出對應的處置(例如基於子畫素的操作溫度改變微型發光二極體的操作電流或操作時間)。In some embodiments, a temperature sensor (not shown) can be used to measure the temperature of a single sub-pixel or a single display unit in a micro-LED display panel, or measure the temperature of a single sub-pixel or a single display unit comprising multiple sub-pixels or The temperature of the area of multiple display units. In other embodiments, the temperature sensor can be omitted by adjusting the operating temperature of the sub-pixel back from the operating current of the micro LEDs in the sub-pixel. In some other embodiments, under the framework of driving the micro-LEDs in a pulse-width modulation (Pulse-Width Modulation, PWM) manner, the sub-picture is pushed back by the operating time of the micro-LEDs in the sub-pixels. The operating temperature of the element can omit the temperature sensor. In still other embodiments, the temperature sensor can be omitted by adjusting the operating temperature of the sub-pixels back and forth through the voltage drop across the micro-LEDs due to the increase in operating temperature. Obtaining the operating temperature of the sub-pixel by the above-mentioned method, and feeding this information back to the control element, helps the control element to make corresponding treatment (for example, changing the operating current of the micro light-emitting diode based on the operating temperature of the sub-pixel or operating time).

在一些實施例中,可利用光感測器(未繪示)量測微型發光二極體顯示面板中的單一子畫素或單一顯示單元的亮度或發光波長,或是量測包含有多個子畫素或多個顯示單元的區域的亮度或發光波長,以作為控制元件判斷是否需做出對應處置的依據,或用以在控制元件調整微型發光二極體的發光狀態後確認所述調整的有效性。舉例來說,可將光感測器所測得的亮度或發光波長與預設亮度或預設發光波長進行比較,以判斷是否需要對微型發光二極體的發光狀態進行調整。例如當微型發光二極體的亮度或發光波長產生變異時,可將產生變異的資訊回饋給控制元件,以利控制元件做出對應的處置。在控制元件做出對應的處置之後,可利用光感測器量測經調整的亮度或發光波長,以判斷所述調整是否有效或適當。若所述調整有效地將亮度或發光波長調回至可接受範圍,則可免去二度調整。若所述調整沒有將亮度或發光波長調回至可接受範圍,則可再進行一次或多次調整,直至將亮度或發光波長調回至可接受範圍。若在多次調整後都無法將亮度或發光波長調回至可接受範圍或是當欲調整之操作參數超出可操作範圍(如欲調整之操作電流超出微型發光二極體所能承受的最大電流)時,終止調整。In some embodiments, a light sensor (not shown) can be used to measure the brightness or light emission wavelength of a single sub-pixel or a single display unit in a micro-LED display panel, or to measure The brightness or luminous wavelength of the pixel or the area of multiple display units is used as the basis for the control element to judge whether to take corresponding measures, or to confirm the adjustment after the control element adjusts the light-emitting state of the micro light-emitting diode effectiveness. For example, the luminance or luminous wavelength measured by the light sensor can be compared with the preset luminance or preset luminous wavelength to determine whether it is necessary to adjust the luminous state of the micro light emitting diode. For example, when the luminance or light emission wavelength of the micro light-emitting diodes varies, the information of the variation can be fed back to the control element, so that the control element can make corresponding treatment. After the control element makes a corresponding treatment, the light sensor can be used to measure the adjusted brightness or luminous wavelength to determine whether the adjustment is effective or appropriate. If the adjustment is effective in bringing the brightness or emission wavelength back into an acceptable range, then a second adjustment can be avoided. If the adjustment does not bring the luminance or luminous wavelength back to an acceptable range, one or more adjustments may be performed until the luminance or luminous wavelength is brought back to an acceptable range. If the brightness or luminous wavelength cannot be adjusted back to the acceptable range after repeated adjustments or when the operating parameters to be adjusted exceed the operable range (such as the operating current to be adjusted exceeds the maximum current that the micro-LED can withstand ), the adjustment is terminated.

在一些實施例中,如圖1所示,除了第一子畫素112之外,微型發光二極體顯示面板100可進一步包括第二子畫素114以及第三子畫素116。第二子畫素114例如具有一個微型發光二極體(如微型發光二極體114A),而第三子畫素116例如具有一個微型發光二極體(如微型發光二極體116A),但不以此為限。控制元件120還電性連接於第二子畫素114中的微型發光二極體114A及第三子畫素116中的微型發光二極體116A,以控制微型發光二極體114A及微型發光二極體116A的發光狀態。In some embodiments, as shown in FIG. 1 , in addition to the first sub-pixel 112 , the micro LED display panel 100 may further include a second sub-pixel 114 and a third sub-pixel 116 . The second sub-pixel 114, for example, has a miniature light-emitting diode (such as a miniature light-emitting diode 114A), and the third sub-pixel 116, for example, has a miniature light-emitting diode (such as a miniature light-emitting diode 116A), but This is not the limit. The control element 120 is also electrically connected to the micro-LED 114A in the second sub-pixel 114 and the micro-LED 116A in the third sub-pixel 116 to control the micro-LED 114A and the micro-LED. The light emitting state of pole body 116A.

在一些實施例中,第一子畫素112、第二子畫素114以及第三子畫素116為不同顏色的子畫素。如此,微型發光二極體顯示面板100可進行全彩顯示。舉例來說,第一子畫素112、第二子畫素114以及第三子畫素116可分別為紅色子畫素、綠色子畫素以及藍色子畫素。也就是說,微型發光二極體112A以及微型發光二極體112B是紅色微型發光二極體,微型發光二極體114A是綠色微型發光二極體,且微型發光二極體116A是藍色微型發光二極體。In some embodiments, the first sub-pixel 112 , the second sub-pixel 114 and the third sub-pixel 116 are sub-pixels of different colors. In this way, the micro light emitting diode display panel 100 can display in full color. For example, the first sub-pixel 112 , the second sub-pixel 114 and the third sub-pixel 116 may be red sub-pixels, green sub-pixels and blue sub-pixels respectively. That is to say, micro-LED 112A and micro-LED 112B are red micro-LEDs, micro-LED 114A is a green micro-LED, and micro-LED 116A is a blue micro-LED. LEDs.

由於紅光高溫光衰問題較綠光或藍光顯著,因此本實施例藉由在紅色子畫素中設置兩個不同阻抗的紅色微型發光二極體,且兩個紅色微型發光二極體中的至少一個的輸入電流基於操作溫度改變,以在不同操作溫度下維持紅光的光強度的一致性,從而微型發光二極體顯示面板100可具有良好的顯示品質。Since the high-temperature light decay problem of red light is more significant than that of green light or blue light, in this embodiment, two red micro-LEDs with different impedances are arranged in the red sub-pixel, and the red micro-LEDs in the two red micro-LEDs At least one input current is changed based on the operating temperature to maintain the consistency of the light intensity of the red light at different operating temperatures, so that the micro LED display panel 100 can have good display quality.

應理解,雖然上述改善光衰問題的方法或結構是以紅色子畫素舉例說明,但不以此為限。在其他實施例中,上述改善光衰問題的方法或結構也可應用於其他色的子畫素。此外,微型發光二極體顯示面板100中的一種或多種顏色的子畫素皆可採用上述改善光衰問題的方法或結構。It should be understood that although the above-mentioned method or structure for improving the light attenuation problem is illustrated by using the red sub-pixel as an example, it is not limited thereto. In other embodiments, the above method or structure for improving the light attenuation problem can also be applied to sub-pixels of other colors. In addition, the sub-pixels of one or more colors in the micro light-emitting diode display panel 100 can adopt the above-mentioned method or structure for improving the problem of light attenuation.

另外,圖1雖繪示四個顯示單元U與一個控制元件120電性連接,即四個顯示單元U共用一個控制元件120,但不以此為限。在另一實施例中,一個顯示單元U可連接一個控制元件120。In addition, although FIG. 1 shows that four display units U are electrically connected to one control element 120 , that is, four display units U share one control element 120 , it is not limited thereto. In another embodiment, one display unit U can be connected with one control element 120 .

在一些實施例中,如圖1所示,微型發光二極體顯示面板100可進一步包括基板130。控制元件120與顯示單元U中的微型發光二極體可共同接合在基板130上。舉例來說,基板130可以是印刷電路板(Printed Circuit Board,PCB)、軟性印刷電路板(Flexible Printed Circuit Board,FPCB)、具有線路的玻璃載板或具有線路的陶瓷基板,但不以此為限。In some embodiments, as shown in FIG. 1 , the micro-LED display panel 100 may further include a substrate 130 . The control element 120 and the miniature light-emitting diodes in the display unit U can be jointly bonded on the substrate 130 . For example, the substrate 130 may be a printed circuit board (Printed Circuit Board, PCB), a flexible printed circuit board (Flexible Printed Circuit Board, FPCB), a glass substrate with lines or a ceramic substrate with lines, but it is not intended to be limit.

上述實施例是以微型發光二極體112A以及微型發光二極體112B具有不同的阻抗,且控制元件120個別控制微型發光二極體112A以及微型發光二極體112B的操作電流進行說明,但本揭露不以此為限。在圖4的架構下,微型發光二極體112A以及微型發光二極體112B可具有相同的阻抗,且微型發光二極體112A以及微型發光二極體112B為串聯設置。具體地,微型發光二極體112B電性連接於控制元件120與微型發光二極體112A之間,且第一子畫素112更包括阻抗可變元件112C。阻抗可變元件112C與微型發光二極體112A並聯,其中阻抗可變元件112C的阻抗隨著第一子畫素112的操作溫度增加而增加。The above-mentioned embodiment is described with the micro-LED 112A and the micro-LED 112B having different impedances, and the control element 120 individually controls the operating current of the micro-LED 112A and the micro-LED 112B, but this Disclosure is not limited to this. Under the framework of FIG. 4 , the micro LED 112A and the micro LED 112B may have the same impedance, and the micro LED 112A and the micro LED 112B are arranged in series. Specifically, the micro LED 112B is electrically connected between the control element 120 and the micro LED 112A, and the first sub-pixel 112 further includes an impedance variable element 112C. The variable impedance element 112C is connected in parallel with the miniature LED 112A, wherein the impedance of the variable impedance element 112C increases as the operating temperature of the first sub-pixel 112 increases.

根據圖4,流經微型發光二極體112B的電流I112B等於流經微型發光二極體112A的電流I112A與流經阻抗可變元件112C的電流I112C的總和。在定電流操作下(即電流I112B維持定值),流經阻抗可變元件112C的電流I112C隨著阻抗可變元件112C的阻抗增加而減少,使得流經微型發光二極體112A的電流I112A增加。換句話說,流經微型發光二極體112A的電流I112A隨著第一子畫素112的操作溫度增加而增加。在定電流操作下,當第一子畫素112處於高溫時,微型發光二極體112A以及微型發光二極體112B的亮度皆會下降,此時藉由阻抗可變元件112C的阻抗增加,可增加流經微型發光二極體112A的電流I112A,使微型發光二極體112A的亮度提升,藉此補償微型發光二極體在高溫操作時亮度降低的問題,進而提升微型發光二極體顯示面板在亮度表現上的一致性。According to FIG. 4 , the current I112B flowing through the micro LED 112B is equal to the sum of the current I112A flowing through the micro LED 112A and the current I112C flowing through the impedance variable element 112C. Under constant current operation (that is, the current I112B maintains a constant value), the current I112C flowing through the variable impedance element 112C decreases as the impedance of the variable impedance element 112C increases, so that the current I112A flowing through the micro light emitting diode 112A increases . In other words, the current I112A flowing through the miniature LED 112A increases as the operating temperature of the first sub-pixel 112 increases. Under constant current operation, when the first sub-pixel 112 is at a high temperature, the luminance of the miniature light emitting diode 112A and the micro light emitting diode 112B will both decrease. Increasing the current I112A flowing through the micro-LEDs 112A increases the brightness of the micro-LEDs 112A, thereby compensating for the problem of reduced brightness of the micro-LEDs during high-temperature operation, thereby improving the micro-LED display panel Consistency in brightness performance.

雖然圖2及圖4的實施例皆以微型發光二極體112A以及微型發光二極體112B具有相同波長舉例說明,但本揭露不以此為限。在圖2及圖4的架構下,微型發光二極體112A也可具有比微型發光二極體112B短的波長。如圖5所示,微型發光二極體112B的頻譜與微型發光二極體112A的頻譜可部分重疊,且微型發光二極體112B的發光波長W112B大於微型發光二極體112A的發光波長W112A。在一些實施例中,微型發光二極體112A的發光波長W112A及微型發光二極體112B的發光波長W112B的差值落在1nm至10nm的範圍內,且較佳落在3nm至5nm的範圍內。Although the embodiments of FIG. 2 and FIG. 4 are all illustrated with the micro LED 112A and the micro LED 112B having the same wavelength, the present disclosure is not limited thereto. Under the framework of FIG. 2 and FIG. 4 , the micro-LED 112A can also have a wavelength shorter than that of the micro-LED 112B. As shown in FIG. 5 , the spectrum of the micro-LED 112B and the spectrum of the micro-LED 112A may partially overlap, and the light-emitting wavelength W112B of the micro-LED 112B is greater than the light-emitting wavelength W112A of the micro-LED 112A. In some embodiments, the difference between the emission wavelength W112A of the micro-LED 112A and the emission wavelength W112B of the micro-LED 112B falls within the range of 1 nm to 10 nm, and preferably falls within the range of 3 nm to 5 nm. .

在第一子畫素112中,透過改變具有不同發光波長的微型發光二極體的輸入電流比值能夠控制重心波長W的大小,且可降低每一個微型發光二極體所需的電流密度。由於電流密度的改變量越小,重心波長的偏移量越小,因此以多個微型發光二極體取代單一個微型發光二極體有助於降低每一個微型發光二極體的色偏量。如此,可在不同灰階下維持重心波長與光強度的一致性。在一些實施例中,控制元件120控制通入微型發光二極體112A及微型發光二極體112B的電流密度分別小於3 A/cm2 ,可明顯改善色偏問題。In the first sub-pixel 112 , by changing the input current ratio of the micro-LEDs with different light-emitting wavelengths, the center of gravity wavelength W can be controlled, and the current density required by each micro-LED can be reduced. Since the smaller the change in current density, the smaller the shift in the wavelength of the center of gravity, replacing a single micro-LED with multiple micro-LEDs helps reduce the color shift of each micro-LED . In this way, the consistency of the wavelength of the center of gravity and the light intensity can be maintained under different gray scales. In some embodiments, the control element 120 controls the current densities of the micro-LEDs 112A and 112B to be less than 3 A/cm 2 , which can significantly improve the problem of color shift.

另外,微型發光二極體在高溫操作時,發光波長容易往長波長偏移,而微型發光二極體的操作電流越大,發光波長往短波長偏移。因此在高溫操作時,使波長短的微型發光二極體(如微型發光二極體112A)具有較大的操作電流(或較大的電流密度)有助於補償波長偏移所造成的色偏現象。In addition, when the micro light emitting diode is operated at high temperature, the light emitting wavelength tends to shift to a longer wavelength, and the greater the operating current of the micro light emitting diode, the light emitting wavelength shifts to a shorter wavelength. Therefore, when operating at high temperature, making the short-wavelength miniature light-emitting diode (such as the miniature light-emitting diode 112A) have a larger operating current (or a larger current density) helps to compensate for the color shift caused by the wavelength shift. Phenomenon.

由於在紅光、綠光以及藍光中,人眼對綠光最敏感(在相同亮度下看起來較亮),因此綠色微型發光二極體的色偏問題(藍移現象)較為顯著。本實施例可藉由在綠色子畫素中設置兩個不同發光波長的綠色微型發光二極體,且兩個綠色微型發光二極體中的至少一個的輸入電流基於操作溫度改變,以在不同操作溫度下維持綠光的重心波長與光強度的一致性,從而微型發光二極體顯示面板可具有良好的顯示品質。Since the human eye is most sensitive to green light (it looks brighter at the same brightness) among red light, green light and blue light, the color shift problem (blue shift phenomenon) of green micro-LEDs is more significant. In this embodiment, two green micro-LEDs with different light-emitting wavelengths can be arranged in the green sub-pixel, and the input current of at least one of the two green micro-LEDs is changed based on the operating temperature, so as to achieve different The consistency of the wavelength of the center of gravity of the green light and the light intensity is maintained at the operating temperature, so that the micro light-emitting diode display panel can have good display quality.

應理解,雖然上述改善光衰及色偏問題的方法或結構是以綠色子畫素舉例說明,但不以此為限。在其他實施例中,上述改善光衰及色偏問題的方法或結構也可應用於其他色的子畫素。此外,微型發光二極體顯示面板中的一種或多種顏色的子畫素皆可採用上述改善光衰問題的方法或結構。It should be understood that although the above method or structure for improving the problems of light attenuation and color shift is illustrated by using the green sub-pixel as an example, it is not limited thereto. In other embodiments, the above method or structure for improving the problems of light attenuation and color shift can also be applied to sub-pixels of other colors. In addition, the sub-pixels of one or more colors in the micro light-emitting diode display panel can adopt the above-mentioned method or structure for improving the problem of light attenuation.

如圖6所示,在微型發光二極體顯示面板200中,可進一步將上述改善光衰及/或色偏的方法應用在第二子畫素114。具體地,在微型發光二極體顯示面板200中,第二子畫素114(例如綠色子畫素)包括微型發光二極體114A以及微型發光二極體114B。微型發光二極體114A及微型發光二極體114B可具有相同的尺寸,以利於接合製程以及線路設計,但不以此為限。微型發光二極體114A及微型發光二極體114B的設計可參照圖2、圖4或圖5的說明,於此不再重述。As shown in FIG. 6 , in the micro light-emitting diode display panel 200 , the above-mentioned method for improving light attenuation and/or color shift can be further applied to the second sub-pixel 114 . Specifically, in the micro-LED display panel 200 , the second sub-pixel 114 (for example, the green sub-pixel) includes a micro-LED 114A and a micro-LED 114B. The micro LEDs 114A and the micro LEDs 114B may have the same size to facilitate the bonding process and circuit design, but not limited thereto. The design of the miniature LED 114A and the miniature LED 114B can refer to the description of FIG. 2 , FIG. 4 or FIG. 5 , and will not be repeated here.

如圖7所示,在微型發光二極體顯示面板300中,可進一步將上述改善光衰及/或色偏的方法應用在第三子畫素116。具體地,在微型發光二極體顯示面板300中,第三子畫素116(例如藍色子畫素)包括微型發光二極體116A以及微型發光二極體116B。微型發光二極體116A及微型發光二極體116B可具有相同的尺寸,以利於接合製程以及線路設計,但不以此為限。微型發光二極體116A及微型發光二極體116B的設計可參照圖2、圖4或圖5的說明,於此不再重述。As shown in FIG. 7 , in the micro light-emitting diode display panel 300 , the above-mentioned method for improving light attenuation and/or color shift can be further applied to the third sub-pixel 116 . Specifically, in the micro-LED display panel 300 , the third sub-pixel 116 (for example, a blue sub-pixel) includes micro-LEDs 116A and micro-LEDs 116B. The micro LEDs 116A and the micro LEDs 116B may have the same size to facilitate bonding process and circuit design, but not limited thereto. The design of the miniature LED 116A and the miniature LED 116B can refer to the description of FIG. 2 , FIG. 4 or FIG. 5 , and will not be repeated here.

請參照圖8,微型發光二極體顯示面板400與圖1的微型發光二極體顯示面板100類似,差異在於微型發光二極體顯示面板400進一步包括多個微型晶片(micro IC)140。多個微型晶片140接合在基板130上,且每一個微型晶片140位於多個(如四個,但不以此為限)顯示單元U之間並與所述多個顯示單元U電性連接,以控制位於所述多個顯示單元U中的多個微型發光二極體。在一些實施例中,微型晶片140與微型發光二極體的厚度比值可落在0.8至1.2的範圍內,但不以此為限。在一些實施例中,微型晶片140的厚度為5μm至10μm,且微型發光二極體的厚度為5μm至10μm,但不以此為限。上述小尺寸(如厚度)的設計有助於轉移製程或顯示品質。Please refer to FIG. 8 , the micro LED display panel 400 is similar to the micro LED display panel 100 of FIG. A plurality of microchips 140 are bonded on the substrate 130, and each microchip 140 is located between a plurality (such as four, but not limited to this) of display units U and is electrically connected to the plurality of display units U, to control a plurality of miniature light emitting diodes located in the plurality of display units U. In some embodiments, the thickness ratio of the micro-chip 140 to the micro-LEDs may fall within a range of 0.8 to 1.2, but is not limited thereto. In some embodiments, the thickness of the microchip 140 is 5 μm to 10 μm, and the thickness of the micro light emitting diode is 5 μm to 10 μm, but not limited thereto. The design of the above-mentioned small size (such as thickness) is helpful for transfer process or display quality.

綜上所述,在本發明的實施例中,第一子畫素具有兩個微型發光二極體,且根據第一子畫素的操作溫度而控制至少一個微型發光二極體的操作電流,以補償微型發光二極體在高溫操作時亮度降低或色偏的問題,進而提升微型發光二極體顯示面板在亮度或色彩表現上的一致性。To sum up, in the embodiment of the present invention, the first sub-pixel has two miniature LEDs, and the operating current of at least one miniature LED is controlled according to the operating temperature of the first sub-pixel, In order to compensate the problem of the brightness reduction or color shift of the miniature light-emitting diodes during high-temperature operation, thereby improving the consistency of the brightness or color performance of the miniature light-emitting diode display panel.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed above with the embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field may make some changes and modifications without departing from the spirit and scope of the present invention. The scope of protection of the present invention should be defined by the scope of the appended patent application.

100、200、300、400:微型發光二極體顯示面板 112:第一子畫素 112A、112B:微型發光二極體 112C:阻抗可變元件 114:第二子畫素 114A、114B:微型發光二極體 116:第三子畫素 116A、116B:微型發光二極體 120:控制元件 130:基板 140:微型晶片 1120:磊晶層 1120-1:n型半導體層 1120-2:多重量子井層 1120-3:p型半導體層 1121:電流擴散層 1122:絕緣層 1123:電極層 A1121:開孔 E1:第一電極 E2:第二電極 G:凹槽 I112A、112B、112C:電流 O1、O2:開口 SW:側壁 T1120-1、T1120-2、T1120-3、T1121、T1122、T1123:厚度 U:顯示單元 W:重心波長 W112A、W112B:發光波長100, 200, 300, 400: Micro LED display panel 112: The first sub-pixel 112A, 112B: miniature light-emitting diodes 112C: impedance variable element 114: Second sub-pixel 114A, 114B: miniature light-emitting diodes 116: The third sub-pixel 116A, 116B: miniature light-emitting diodes 120: Control element 130: Substrate 140:Microchip 1120: epitaxial layer 1120-1: n-type semiconductor layer 1120-2: Multiple Quantum Well Layers 1120-3: p-type semiconductor layer 1121: current spreading layer 1122: insulation layer 1123: electrode layer A1121: Hole opening E1: first electrode E2: second electrode G: Groove I112A, 112B, 112C: Current O1, O2: opening SW: side wall T1120-1, T1120-2, T1120-3, T1121, T1122, T1123: Thickness U: display unit W: center of gravity wavelength W112A, W112B: Luminous wavelength

圖1是依照本發明的一實施例的一種微型發光二極體顯示面板的局部上視示意圖。 圖2是圖1中控制元件以及第一子畫素的第一種簡單電路圖。 圖3A及圖3B分別是圖2中第一微型發光二極體以及第二微型發光二極體的剖面示意圖。 圖4是圖1中控制元件以及第一子畫素的第二種簡單電路圖。 圖5是圖2的第一子畫素中第一微型發光二極體以及第二微型發光二極體的波長與光強度的示意圖。 圖6至圖8分別是依照本發明的其他實施例的微型發光二極體顯示面板的局部上視示意圖。FIG. 1 is a schematic partial top view of a micro LED display panel according to an embodiment of the present invention. FIG. 2 is a first simple circuit diagram of the control element and the first sub-pixel in FIG. 1 . 3A and 3B are schematic cross-sectional views of the first micro light emitting diode and the second micro light emitting diode in FIG. 2 , respectively. FIG. 4 is a second simple circuit diagram of the control element and the first sub-pixel in FIG. 1 . FIG. 5 is a schematic diagram of the wavelength and light intensity of the first micro-LED and the second micro-LED in the first sub-pixel in FIG. 2 . 6 to 8 are schematic partial top views of micro light emitting diode display panels according to other embodiments of the present invention.

100:微型發光二極體顯示面板100: Miniature light-emitting diode display panel

112:第一子畫素112: The first sub-pixel

112A、112B:微型發光二極體112A, 112B: miniature light-emitting diodes

114:第二子畫素114: Second sub-pixel

114A:微型發光二極體114A: Miniature Light Emitting Diodes

116:第三子畫素116: The third sub-pixel

116A:微型發光二極體116A: Miniature Light Emitting Diodes

120:控制元件120: Control element

130:基板130: Substrate

U:顯示單元U: display unit

Claims (14)

一種微型發光二極體顯示面板,包括: 多個顯示單元,陣列排列且每一顯示單元包含第一子畫素,所述第一子畫素包括第一微型發光二極體以及第二微型發光二極體;以及 控制元件,用以控制所述第一微型發光二極體與所述第二微型發光二極體的發光並決定所述第一微型發光二極體與所述第二微型發光二極體的操作電流; 其中在同一顯示畫面下,所述第一微型發光二極體的所述操作電流隨著所述第一子畫素的操作溫度增加而增加。A miniature light-emitting diode display panel, comprising: A plurality of display units are arranged in an array and each display unit includes a first sub-pixel, and the first sub-pixel includes a first miniature light-emitting diode and a second miniature light-emitting diode; and The control element is used to control the light emission of the first micro light emitting diode and the second micro light emitting diode and determine the operation of the first micro light emitting diode and the second micro light emitting diode current; Wherein, under the same display frame, the operating current of the first miniature light-emitting diode increases as the operating temperature of the first sub-pixel increases. 如請求項1所述的微型發光二極體顯示面板,其中所述第一微型發光二極體的阻抗小於所述第二微型發光二極體的阻抗。The micro light emitting diode display panel as claimed in claim 1, wherein the impedance of the first micro light emitting diode is smaller than the impedance of the second micro light emitting diode. 如請求項2所述的微型發光二極體顯示面板,其中所述第一微型發光二極體的操作電流是由所述控制元件控制輸入。The micro light emitting diode display panel as claimed in claim 2, wherein the operating current of the first micro light emitting diode is controlled and input by the control element. 如請求項3所述的微型發光二極體顯示面板,其中所述第二微型發光二極體的操作電流隨著所述第一子畫素的所述操作溫度增加而減少。The micro light emitting diode display panel as claimed in claim 3, wherein the operating current of the second micro light emitting diode decreases as the operating temperature of the first sub-pixel increases. 如請求項3所述的微型發光二極體顯示面板,其中所述第一子畫素在高溫操作時,所述第一微型發光二極體的所述操作電流大於所述第二微型發光二極體的所述操作電流,且所述第一子畫素在低溫操作時,所述第二微型發光二極體的所述操作電流大於所述第一微型發光二極體的所述操作電流。The micro light emitting diode display panel according to claim 3, wherein when the first sub-pixel operates at high temperature, the operating current of the first micro light emitting diode is greater than that of the second micro light emitting diode The operating current of the polar body, and when the first sub-pixel is operating at a low temperature, the operating current of the second micro light emitting diode is greater than the operating current of the first micro light emitting diode . 如請求項1所述的微型發光二極體顯示面板,更包括: 基板,所述控制元件與所述顯示單元中的所述第一微型發光二極體以及所述第二微型發光二極體接合在所述基板上。The miniature light-emitting diode display panel as described in claim item 1, further comprising: The substrate, the control element and the first micro light emitting diode and the second micro light emitting diode in the display unit are bonded on the substrate. 如請求項6所述的微型發光二極體顯示面板,更包括: 多個微型晶片,所述多個微型晶片接合在所述基板上且每一個微型晶片位於複數個所述顯示單元之間並與所述複數個顯示單元電性連接。The miniature light-emitting diode display panel as described in claim item 6, further comprising: A plurality of microchips are bonded on the substrate, and each microchip is located between the plurality of display units and is electrically connected to the plurality of display units. 如請求項2所述的微型發光二極體顯示面板,其中所述第一微型發光二極體以及所述第二微型發光二極體在以下至少一者中不同: 電流擴散層的面積; 所述電流擴散層的厚度; 電極與磊晶層的接面面積;以及 所述電極與所述磊晶層中至少一個的材料。The micro light emitting diode display panel as claimed in claim 2, wherein the first micro light emitting diode and the second micro light emitting diode are different in at least one of the following: The area of the current spreading layer; the thickness of the current spreading layer; the junction area of the electrode and the epitaxial layer; and A material for at least one of the electrode and the epitaxial layer. 如請求項1所述的微型發光二極體顯示面板,其中每一顯示單元更包含第二子畫素,所述第一子畫素與所述第二子畫素發出不同顏色,其中所述第一子畫素的所述第一微型發光二極體具有比所述第二微型發光二極體短的波長。The micro light-emitting diode display panel as described in claim 1, wherein each display unit further includes a second sub-pixel, and the first sub-pixel and the second sub-pixel emit different colors, wherein the The first micro light emitting diode of the first sub-pixel has a wavelength shorter than that of the second micro light emitting diode. 如請求項1所述的微型發光二極體顯示面板,其中所述第一子畫素更包括阻抗可變元件,所述阻抗可變元件與所述第一微型發光二極體以及所述第二微型發光二極體連接。The micro light emitting diode display panel as claimed in item 1, wherein the first sub-pixel further includes an impedance variable element, and the impedance variable element is connected to the first micro light emitting diode and the second micro light emitting diode Two miniature LEDs are connected. 如請求項10所述的微型發光二極體顯示面板,其中在所述第一子畫素中,所述第一微型發光二極體以及所述第二微型發光二極體串聯,且所述阻抗可變元件與所述第一微型發光二極體並聯。The micro light emitting diode display panel according to claim 10, wherein in the first sub-pixel, the first micro light emitting diode and the second micro light emitting diode are connected in series, and the The impedance variable element is connected in parallel with the first miniature light emitting diode. 如請求項11所述的微型發光二極體顯示面板,其中所述阻抗可變元件的阻抗隨著所述第一子畫素的所述操作溫度增加而增加。The micro light emitting diode display panel as claimed in claim 11, wherein the impedance of the variable impedance element increases as the operating temperature of the first sub-pixel increases. 如請求項12所述的微型發光二極體顯示面板,其中所述第一微型發光二極體的操作電流隨著所述第一子畫素的所述操作溫度增加而增加。The micro light emitting diode display panel as claimed in claim 12, wherein the operating current of the first micro light emitting diode increases as the operating temperature of the first sub-pixel increases. 如請求項11所述的微型發光二極體顯示面板,其中所述第一微型發光二極體具有比所述第二微型發光二極體短的波長。The micro light emitting diode display panel as claimed in claim 11, wherein the first micro light emitting diode has a wavelength shorter than that of the second micro light emitting diode.
TW110126175A 2017-09-07 2021-07-16 Micro light emitting diode display panel TWI781689B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/673,808 US20220172673A1 (en) 2017-09-07 2022-02-17 Micro light-emitting diode display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/988,717 2020-08-10
US16/988,717 US11289012B2 (en) 2017-09-07 2020-08-10 Micro light emitting diode display panel and driving method thereof

Publications (2)

Publication Number Publication Date
TW202207197A TW202207197A (en) 2022-02-16
TWI781689B true TWI781689B (en) 2022-10-21

Family

ID=77686958

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110126175A TWI781689B (en) 2017-09-07 2021-07-16 Micro light emitting diode display panel

Country Status (2)

Country Link
CN (1) CN113410262B (en)
TW (1) TWI781689B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116110295B (en) * 2023-01-03 2024-07-09 业成光电(深圳)有限公司 Micro display structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200734997A (en) * 2006-01-24 2007-09-16 Samsung Electro Mech Color LED driver
US20180146521A1 (en) * 2013-02-05 2018-05-24 Lumens Co., Ltd. Led lighting device
TWM579865U (en) * 2018-11-30 2019-06-21 宏碁股份有限公司 Light-emitting diode driving circuit
TW201944849A (en) * 2018-04-18 2019-11-16 聯詠科技股份有限公司 LED driving system and LED driving device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100638304B1 (en) * 2002-04-26 2006-10-26 도시바 마쯔시따 디스플레이 테크놀로지 컴퍼니, 리미티드 Driver circuit of el display panel
KR20090011702A (en) * 2007-07-27 2009-02-02 삼성모바일디스플레이주식회사 Organic light emitting display and driving method thereof
JP2011013551A (en) * 2009-07-03 2011-01-20 Toshiba Mobile Display Co Ltd Organic el device
US8907991B2 (en) * 2010-12-02 2014-12-09 Ignis Innovation Inc. System and methods for thermal compensation in AMOLED displays
US8890437B2 (en) * 2012-12-12 2014-11-18 Ledzworld Sdn Bhd Method and system of automatically adjusting light intensity of a lighting fixture having multiple emitters
US9831387B2 (en) * 2014-06-14 2017-11-28 Hiphoton Co., Ltd. Light engine array
US10255834B2 (en) * 2015-07-23 2019-04-09 X-Celeprint Limited Parallel redundant chiplet system for controlling display pixels
CN106782308B (en) * 2017-02-10 2020-05-01 上海天马有机发光显示技术有限公司 Organic light-emitting circuit structure with temperature compensation function
CN106910461B (en) * 2017-05-11 2020-12-22 京东方科技集团股份有限公司 Display panel, display device and display driving method
CN107946369B (en) * 2017-11-24 2020-10-13 合肥鑫晟光电科技有限公司 Thin film transistor, preparation method, detection device, array substrate and display device
CN110416254B (en) * 2018-04-27 2022-03-01 上海和辉光电股份有限公司 Array substrate and display panel
CN109445159B (en) * 2018-12-27 2021-07-09 厦门天马微电子有限公司 Flexible display module, driving method thereof and flexible display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200734997A (en) * 2006-01-24 2007-09-16 Samsung Electro Mech Color LED driver
US20180146521A1 (en) * 2013-02-05 2018-05-24 Lumens Co., Ltd. Led lighting device
TW201944849A (en) * 2018-04-18 2019-11-16 聯詠科技股份有限公司 LED driving system and LED driving device
TWM579865U (en) * 2018-11-30 2019-06-21 宏碁股份有限公司 Light-emitting diode driving circuit

Also Published As

Publication number Publication date
CN113410262A (en) 2021-09-17
CN113410262B (en) 2023-07-04
TW202207197A (en) 2022-02-16

Similar Documents

Publication Publication Date Title
JP6845913B2 (en) Image forming element and manufacturing method
US12009385B2 (en) Light-emitting diode unit for display comprising plurality of pixels and display device having same
US10777123B2 (en) Micro light emitting diode display panel and driving method thereof
TWI495145B (en) Led lamp using blue and cyan leds and a phosphor
JP2024088724A (en) Display device
US7781957B2 (en) Electro-luminescent device with improved efficiency
JP5166085B2 (en) Light emitting diode
JP4279698B2 (en) LED element driving method and driving device, lighting device and display device
TWI316766B (en) Illuminating device for the background-illumination of an image-reproduction device
US8704265B2 (en) Light emitting device package and lighting apparatus using the same
US10861398B2 (en) Quantum photonic imager incorporating color-tunable solid state light emitting micro pixels
JP2010525555A (en) Array of light emitting elements
JP2013004792A (en) Light-emitting device and self-luminous display device, as well as luminaire and backlight incorporating light-emitting device
EP1964184A2 (en) Solid-state light source and method of producing light of a desired color point
CN105322084A (en) Light emitting device module
US20230335538A1 (en) Chip-on-board design with color mixing
KR20230056050A (en) Monolithic nanocolumn structure
US9947833B2 (en) Semiconductor light-emitting element and semiconductor light-emitting device
TWI781689B (en) Micro light emitting diode display panel
JP4122552B2 (en) Light emitting device
US20230106427A1 (en) White-light-emitting led structures
US11289012B2 (en) Micro light emitting diode display panel and driving method thereof
US20220172673A1 (en) Micro light-emitting diode display panel
TW202207487A (en) Full-color light emitting device
CN109473047B (en) Micro light emitting diode display panel and driving method thereof

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent