TWI780213B - A photovoltaic charger for charging an electronic device, a method for producing the photovoltaic charger, and use of the photovoltaic charger for charging an electronic device - Google Patents

A photovoltaic charger for charging an electronic device, a method for producing the photovoltaic charger, and use of the photovoltaic charger for charging an electronic device Download PDF

Info

Publication number
TWI780213B
TWI780213B TW107129601A TW107129601A TWI780213B TW I780213 B TWI780213 B TW I780213B TW 107129601 A TW107129601 A TW 107129601A TW 107129601 A TW107129601 A TW 107129601A TW I780213 B TWI780213 B TW I780213B
Authority
TW
Taiwan
Prior art keywords
solar cell
cell unit
photovoltaic charger
light
conductive layer
Prior art date
Application number
TW107129601A
Other languages
Chinese (zh)
Other versions
TW201947840A (en
Inventor
亨瑞克 林史多
吉歐凡尼 菲力
Original Assignee
瑞典商艾克瑟格操作公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞典商艾克瑟格操作公司 filed Critical 瑞典商艾克瑟格操作公司
Publication of TW201947840A publication Critical patent/TW201947840A/en
Application granted granted Critical
Publication of TWI780213B publication Critical patent/TWI780213B/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2077Sealing arrangements, e.g. to prevent the leakage of the electrolyte
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Photovoltaic Devices (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a photovoltaic charger (1) specially adapted for charging an electronic device, comprising a solar cell unit (2) comprising a working electrode comprising a porous light-absorbing layer (10) including dyed TiO2, a porous first conducting layer (12) for extracting photo-generated electrons from the light-absorbing layer (10), wherein the light-absorbing layer is arranged on top of the first conducting layer, a porous substrate (14) made of an insulating material and extending through the entire solar cell unit, wherein the first conducting layer (12) is formed on one side of the porous substrate (14), a counter electrode including a second conducting layer (16), wherein the second conducting layer is formed on the opposite side of the porous substrate (14), and a conducting medium for transferring charges between the counter electrode and the light-absorbing layer, a encapsulation (5) enclosing the solar cell unit, a first conductor (18) electrically connected to the first conducting layer (12), and at least one second conductor (20) electrically connected to the second conducting layer (16). The photovoltaic charger contains only one single solar cell unit (2) and a boost converter (22) electrically connected to the first and second conductors (18, 20), and the boost converter is adapted to step up the voltage from the solar cell unit while stepping down the current from the solar cell unit.

Description

用於充電電子裝置的光伏充電器、製造該光伏充電器的方法及該光伏充電器作為充電電子裝置之用途 Photovoltaic charger for charging electronic devices, method for manufacturing the same and use of the photovoltaic charger for charging electronic devices

本發明係有關於一種特別被調適以用於充電一電子裝置的光伏充電器、該光伏充電器的使用、以及一種用於製造該光伏充電器的方法。 The present invention relates to a photovoltaic charger especially adapted for charging an electronic device, the use of the photovoltaic charger, and a method for manufacturing the photovoltaic charger.

太陽能電池係已經長時間被使用於轉換光的能量成為電力。一太陽能板係包含多個串聯連接的太陽能電池,並且被用來吸收太陽光作為一能量來源以產生電力。大量的太陽能板通常是一起被配置在大型的太陽能園區中,以用於產生電力至一電力供應網路。 Solar cells have long been used to convert the energy of light into electricity. A solar panel consists of a plurality of solar cells connected in series and is used to absorb sunlight as an energy source to generate electricity. A large number of solar panels are usually deployed together in a large solar park for generating electricity to a power supply grid.

太陽能電池正變得越來越有效率,而且製造起來越便宜。因此,公司自然而然地使得所有類型的消費者產品至少部分是由太陽能電池來供電。許多可攜式的電子裝置現今是設置有內建的儲存能量的可再充電的電池、以及被配置以供應電力至該些電池以用於將其充電的光伏充電器。一光伏充電器或是一太陽能充電器係利用太陽能以供應電力至該些裝置,並且充電電池。此種可攜式的裝置的例子是平板電腦、行動電話、頭戴式耳機、以及計算機。 當太陽能電池被使用時,該裝置的電池係予以補足,使得在需要從一外部來源充電該裝置之前的使用時間係被增長。根據該光伏充電器的效率以及該裝置的功率消耗,對於利用一外部來源以充電該裝置的需求甚至可能已經是不用的,因而該裝置於是只藉由太陽能來加以供電。例如,小型的計算機通常是單獨藉由光伏充電器來加以供電。 Solar cells are becoming more efficient and cheaper to manufacture. It is therefore natural for companies to make all types of consumer products powered at least in part by solar cells. Many portable electronic devices today are provided with built-in rechargeable batteries for energy storage, and photovoltaic chargers configured to supply power to the batteries for charging them. A photovoltaic charger or a solar charger uses solar energy to supply power to the devices and to charge batteries. Examples of such portable devices are tablets, mobile phones, headsets, and computers. When the solar cells are used, the battery of the device is replenished so that the time of use before the device needs to be charged from an external source is increased. Depending on the efficiency of the photovoltaic charger and the power consumption of the device, the need to use an external source to charge the device may even have been eliminated, so that the device is then only powered by solar energy. For example, small computers are usually powered solely by photovoltaic chargers.

現今在市場上的光伏充電器係使用各種類型的太陽能板,其範圍是從具有範圍從7到15%的效率的薄膜面板,到提供高達18%的效率的稍微較有效率的單晶面板。該效率通常是利用標準的測試條件STC來加以測試的,其係為針對於太陽能板被測試所在的條件的產業的標準。在該STC中,該照射是1000W/m2,溫度是25℃,並且大氣品質是1.5。舉例而言,一給予200W/m2的輸出功率的太陽能板係具有一20%的效率。這些條件係模擬一太陽能板在夏日無雲的室外條件下的效率。室內光的波長頻譜係與戶外光的波長頻譜不同。例如,在可見光範圍之外的波長通常在室內光中並不存在,因為玻璃窗係過濾UV光,並且室內燈主要是產生在可見光範圍內的光。因此,一太陽能板在室外條件下量測的效率並無法適用於室內條件。典型的人眼將會響應於從約390至700nm的波長,並且室內光大部分都是在可見光的頻譜內。 Photovoltaic chargers on the market today use various types of solar panels, ranging from thin film panels with efficiencies ranging from 7 to 15%, to somewhat more efficient monocrystalline panels offering efficiencies as high as 18%. The efficiency is typically tested using Standard Test Conditions, STC, which is an industry standard for the conditions under which solar panels are tested. In the STC, the irradiation was 1000 W/m 2 , the temperature was 25° C., and the air quality was 1.5. For example, a solar panel giving an output power of 200W/m2 has an efficiency of 20 %. These conditions simulate the efficiency of a solar panel outdoors under cloudless summer conditions. The wavelength spectrum of indoor light is different from that of outdoor light. For example, wavelengths outside the visible range typically do not exist in indoor light because glass windows filter UV light and indoor lights primarily produce light in the visible range. Therefore, the efficiency of a solar panel measured under outdoor conditions may not be applicable to indoor conditions. A typical human eye will respond to wavelengths from about 390 to 700 nm, and room light is mostly in the visible spectrum.

在由Georgia Apostolou等人的"12種市售的PV產品的室內效能藉由一簡單模型的比較"的文章中,其係解說室內照明是與戶外照明如何不同的。該文章的作者係陳述在一雙層玻璃絕緣的窗戶的情形中,在距離該窗戶1m及5m之處的輻射功率上的減低分別將會是在70%以及97%左右。該文章係展示現今的太陽能板在室內照明中係喪失其效率的一大部分。因此,有關那些太陽能板的一缺點是它們在低的光強度下具有低的效率。 In the article "Comparison of Indoor Performance of 12 Commercially Available PV Products by a Simple Model" by Georgia Apostolou et al., it is explained how indoor lighting differs from outdoor lighting. The authors of the article stated that in the case of a double glazed insulating window, the reduction in radiated power at 1 m and 5 m from the window would be around 70% and 97%, respectively. This article shows that today's solar panels lose a large part of their efficiency in indoor lighting. Therefore, one disadvantage about those solar panels is that they have low efficiency at low light intensities.

有關現有用於供電電子裝置的太陽能電池面板的其它缺點是其中的某些太陽能電池面板是有毒的,具有不良的機械性質,而且是昂貴的。 Other disadvantages associated with existing solar panels for powering electronic devices are that some of them are toxic, have poor mechanical properties, and are expensive.

OnBeat Ltd.所擁有的GB2510451(A)係展示藉由太陽能電池所供電的一組頭戴式耳機。一撓性的太陽能板係被設置在該頭帶(headband)的外表面上以及在該些耳機上。該頭戴式耳機亦可被利用以供電一外部的裝置所儲存的太陽能。對於旁觀者而言,在視覺上明顯的是該OnBeat頭帶係被覆蓋一面板的太陽能電池,但是太陽能電池的類型並未被指明。 GB2510451(A) owned by OnBeat Ltd. shows a set of headphones powered by solar cells. A flexible solar panel is disposed on the outer surface of the headband and on the earphones. The headset can also be utilized to power an external device with stored solar energy. To onlookers, it is visually apparent that the OnBeat headband is covered with a panel of solar cells, but the type of solar cell is not specified.

Battery Just In CaseTM是一種行動電話盒,其係具有一備用電池以及數個用於充電其的太陽能板。在此同樣視覺上明顯的是在該蓋子的一側上有數個太陽能電池的面板,但是太陽能電池的類型並未被指明。 The Battery Just In Case is a mobile phone case that has a backup battery and several solar panels for charging it. Also visually evident here is a panel of several solar cells on one side of the cover, but the type of solar cells is not specified.

相較於用在大型的太陽能園區中產生電力的靜止的太陽能板,對於用在供電消費者產品的太陽能板的需求是相當不同的。例如,在一消費者產品中的太陽能板需要是更強健的、撓性的、並且能夠抵擋撞擊。再者,它們必須能夠在室內及戶外兩者的各種光條件下產生電力。在太陽能板的不同的部分上的光條件亦可能由於該太陽能板的部分的遮蔽而不同,此係降低該太陽能板的效率。太陽能板具有美觀的訴求也是所要的,因為它們是使用者可見的。 The needs for solar panels used to power consumer products are quite different compared to stationary solar panels used in large solar parks to generate electricity. For example, solar panels in a consumer product need to be more robust, flexible, and able to withstand impacts. Again, they must be able to generate electricity under a variety of light conditions, both indoors and outdoors. Light conditions on different parts of a solar panel may also differ due to partial shading of the solar panel, which reduces the efficiency of the solar panel. It is also desirable that the solar panels have an aesthetic appeal since they are visible to the user.

應注意到的是,有許多具有一太陽能板的光伏充電器的例子,其係包含複數個串聯連接的太陽能電池以用於供電可攜式的電子裝置。然而,利用已知的太陽能板供電可攜式的電子裝置有數個問題:它們係對於光強度以及進入的光的角度非常敏感的。一具有串聯連接的太陽能電池的太陽能板係對於部分的遮蔽敏感的,因為若一太陽能電池並未產生一電流,則該整體串聯的太陽能電池都將會停止產生電力。它們是相當敏感的,並且容易破裂。例如,晶態矽太陽能電池是脆性的,並且當被使用在可攜式的電子裝置上時可能會裂開。再者,使用者可能會不認同美觀,其中該產品的大部分都被在上方側上具有一格子的可見的電流收集器的太陽能板所覆蓋。因此,有需要改善使用於可攜式的電子裝置的光伏充電器。 It should be noted that there are many examples of photovoltaic chargers with a solar panel comprising a plurality of solar cells connected in series for powering portable electronic devices. However, there are several problems with known solar panels for powering portable electronic devices: they are very sensitive to light intensity and angle of incoming light. A solar panel with solar cells connected in series is sensitive to partial shading because if one solar cell is not producing a current, the entire series of solar cells will stop producing power. They are quite sensitive and break easily. For example, crystalline silicon solar cells are brittle and may crack when used in portable electronic devices. Also, the user may not agree with the aesthetics, where most of the product is covered by solar panels with a grid of visible current collectors on the upper side. Therefore, there is a need for improved photovoltaic chargers for portable electronic devices.

WO2013/149787係揭示一種具有一串列結構的染料敏化的太陽能電池模組,該串列結構係包括複數個相鄰彼此而被配置且串聯連接的染料敏化的太陽能電池單元。每一個電池單元係包含一工作電極、一用於從該工作電極抽取光子產生的電子的第一導電層、一包含一第二導電層的相對電極、用於從該相對電極傳輸電子至該工作電極的電解質、以及一用於電連接該相對電極至一相鄰的電池單元的一工作電極的串聯連接元件。該太陽能電池模組係包括一多孔的絕緣基板,該第一導電層是一被形成在該多孔的絕緣基板的一側上的多孔的導電層,並且該第二導電層是一被形成在該多孔的絕緣基板的相反側上的多孔的導電層,並且該串聯連接元件是一導電層,其係貫穿該多孔的絕緣基板並且延伸在該些電池單元中之一的第一導電層以及相鄰的電池單元的第二導電層之間,藉此電連接該些電池單元中之一的第一導電層與相鄰的電池單元的第二導電層。 WO2013/149787 discloses a dye-sensitized solar cell module having a tandem structure, the tandem structure includes a plurality of dye-sensitized solar cell units arranged adjacent to each other and connected in series. Each battery cell includes a working electrode, a first conductive layer for extracting photon-generated electrons from the working electrode, and an opposing electrode including a second conductive layer for transporting electrons from the opposing electrode to the working electrode. The electrolyte of the electrode, and a series connection element for electrically connecting the opposing electrode to a working electrode of an adjacent battery cell. The solar cell module includes a porous insulating substrate, the first conductive layer is a porous conductive layer formed on one side of the porous insulating substrate, and the second conductive layer is a porous conductive layer formed on The porous conductive layer on the opposite side of the porous insulating substrate, and the series connection element is a conductive layer that penetrates the porous insulating substrate and extends over the first conductive layer of one of the battery cells and the corresponding between the second conductive layers of adjacent battery cells, thereby electrically connecting the first conductive layer of one of the battery cells with the second conductive layer of the adjacent battery cells.

本發明的目標是至少部份地克服以上的問題,並且提供一種被調適以用於充電用在消費者應用的電子裝置,並且更特別是用於充電該電子裝置的可再充電的電池的改良的光伏充電器。 It is an object of the present invention to at least partially overcome the above problems and to provide an improvement in rechargeable batteries adapted for charging electronic devices used in consumer applications, and more particularly for charging such electronic devices photovoltaic charger.

此目標係藉由如同在請求項1中所界定的一種光伏充電器來加以達成。 This object is achieved by a photovoltaic charger as defined in claim 1.

該光伏充電器係包括一太陽能電池單元,其係包含一工作電極,該工作電極係包括一包含染色的TiO2的多孔的光吸收層、一多孔的第一導電層,其係用於從該光吸收層抽取光子產生的電子,其中該光吸收層係被配置在該第一導電層的頂端上、一多孔的基板,其係由一種絕緣材料所做成的,並且延伸穿過該整個太陽能電池單元,其中該第一導電層係被形成在該多孔的基 板的一側上、一相對電極,其係包含一第二導電層,其中該第二導電層係被形成在該多孔的基板的該相反側上、以及一導電介質,其係用於在該相對電極以及該光吸收層之間傳輸電荷。該光伏充電器進一步包括一封裝,其係封入該太陽能電池單元、一第一導體,其係電連接至該第一導電層、以及至少一第二導體,其係電連接至該第二導電層。根據本發明,該光伏充電器只包含一單一太陽能電池單元以及一電連接至該第一及第二導體的升壓轉換器,並且該升壓轉換器係適配於在步降來自該太陽能電池單元的該電流時,步升來自該太陽能電池單元的該電壓。 The photovoltaic charger comprises a solar cell unit comprising a working electrode comprising a porous light absorbing layer comprising dyed TiO2 , a porous first conductive layer for The light-absorbing layer extracts photon-generated electrons, wherein the light-absorbing layer is disposed on top of the first conductive layer, a porous substrate made of an insulating material, and extends through the The entire solar cell unit, wherein the first conductive layer is formed on one side of the porous substrate, an opposite electrode, which includes a second conductive layer, wherein the second conductive layer is formed on the porous substrate On the opposite side of the substrate, and a conductive medium for transferring charge between the opposite electrode and the light absorbing layer. The photovoltaic charger further comprises an encapsulation enclosing the solar cell unit, a first conductor electrically connected to the first conductive layer, and at least one second conductor electrically connected to the second conductive layer . According to the invention, the photovoltaic charger comprises only a single solar cell unit and a boost converter electrically connected to the first and second conductors, and the boost converter is adapted to step down the voltage from the solar cell Stepping up the voltage from the solar cell while increasing the current to the cell.

本發明是基於理解到此種類型的太陽能電池單元係具有極佳的性質,此係使得其特別適合用於充電用在室內及戶外的消費者應用的電子裝置。本發明亦基於理解到在該光伏充電器中只有單一太陽能電池單元係提供進一步的益處,並且使得該光伏充電器甚至更適合用於充電用在消費者應用的電子裝置。 The present invention is based on the understanding that this type of solar cell has excellent properties that make it particularly suitable for charging electronic devices for consumer applications both indoors and outdoors. The invention is also based on the understanding that having only a single solar cell in the photovoltaic charger provides further benefits and makes the photovoltaic charger even more suitable for charging electronic devices for consumer applications.

根據本發明的光伏充電器係能夠在該些光條件是非常差的時候充電裝置。例如,該光伏充電器係能夠在唯一的光源是一燈時充電該電子裝置。此係使得在夜晚的室內充電電子裝置是可能的。 The photovoltaic charger according to the invention is capable of charging devices when the light conditions are very poor. For example, the photovoltaic charger is capable of charging the electronic device when the only light source is a lamp. This system makes it possible to charge electronic devices indoors at night.

再者,由於該光伏充電器係只有單一太陽能電池單元,因此將不會有來自部分的遮蔽的問題。即使該太陽能電池單元的表面的部分被遮蔽,該些未被遮蔽的部件仍將會產生一電流。因此,即使當該光伏充電器的主動區域係部分地被遮蔽時,根據本發明的光伏充電器仍然能夠充電該電子裝置。該主動區域係表示該太陽能電池單元的當曝露到光時會貢獻來產生電力的區域。 Furthermore, since the photovoltaic charger has only a single solar cell, there will be no problem with partial shading. Even if portions of the surface of the solar cell unit are shaded, the unshaded parts will still generate a current. Therefore, even when the active area of the photovoltaic charger is partially shaded, the photovoltaic charger according to the invention is still able to charge the electronic device. The active area refers to the area of the solar cell unit that contributes to generating electricity when exposed to light.

該第一導體係作用為一電流收集器,並且從該第一導電層收集電流。該第二導體係作用為一電流分配器,並且分佈電流至該第二導電層。該光伏充電器係具有單一可擴充的太陽能電池,其可以適配於一可攜式的電子裝 置的任何形狀或尺寸。並沒有必要橫跨該光伏充電器的可見的一側來配置複數個電流收集器,因而沒有多個可見的電流收集器係導致一在視覺上均質的表面。因此,該光伏充電器可被利用在該可攜式的電子裝置上,而不影響到該裝置的設計。換言之,一可攜式的電子裝置可以在該光伏充電器不為旁觀者可見的之下,藉由該光伏充電器來加以供電。另一不具有被配置在該太陽能電池單元的表面之上的許多連接元件的優點是該太陽能電池單元的更大的區域可被利用於產生電力,因為並沒有阻擋進入的光的複數個電流收集器。 The first conductor acts as a current collector and collects current from the first conductive layer. The second conductor acts as a current distributor and distributes current to the second conductive layer. The photovoltaic charger has a single expandable solar cell, which can be adapted to a portable electronic device any shape or size. It is not necessary to arrange multiple current collectors across the visible side of the photovoltaic charger, so the absence of multiple visible current collectors results in a visually homogeneous surface. Therefore, the photovoltaic charger can be utilized on the portable electronic device without affecting the design of the device. In other words, a portable electronic device can be powered by the photovoltaic charger when the photovoltaic charger is not visible to bystanders. Another advantage of not having many connecting elements arranged over the surface of the solar cell is that a larger area of the solar cell can be utilized to generate electricity because there are no current collectors that block incoming light device.

有關該光伏充電器的進一步的優點係包含低成本、耐撞擊性、可撓性、以及與進入的光的角度無關。一包含染色的TiO2的多孔的光吸收層係非脆性的,並且不是根據進入的光的角度而定的。再者,該單一太陽能電池單元的尺寸是可擴充的,並且於是該光伏充電器的尺寸及功率可以被適配到待被充電的不同裝置的尺寸及功率的需求。藉由增加該太陽能電池單元的面積,藉由該光伏充電器所產生的功率係被增大。 Further advantages related to the photovoltaic charger include low cost, impact resistance, flexibility, and independence from the angle of incoming light. A porous light absorbing layer comprising dyed TiO2 is non-brittle and not dependent on the angle of incoming light. Furthermore, the size of the single solar cell unit is scalable, and thus the size and power of the photovoltaic charger can be adapted to the size and power requirements of different devices to be charged. By increasing the area of the solar cell unit, the power generated by the photovoltaic charger is increased.

該光伏充電器係包括一電連接至該第一及第二導體的升壓轉換器,並且該升壓轉換器係適配於在步降來自該太陽能電池單元的該電流時,步升來自該太陽能電池單元的該電壓。因此,該光伏充電器係能夠在一廣範圍的不同的光條件中,產生一足夠用於充電電子裝置的電壓位準。不同類型的電池係需要不同的電壓位準。該升壓轉換器係使得提供電子裝置的可再充電的電池該電池的類型所需的電壓位準成為可能的。藉由該單一太陽能電池單元所產生的電壓是太低而無法充電某些類型的電池,例如是需要約3.6V的鋰電池。在習知技術中,該所需的電壓係藉由配置複數個串聯連接的太陽能電池單元而被達成。根據本發明,該所需的電壓係藉由連接一升壓轉換器至該單一太陽能電池單元來加以達成。因此,提供一種能夠充電需要不同電壓位準的只具有一電池的太陽能電池單元的光伏充電器是可行的。 The photovoltaic charger includes a boost converter electrically connected to the first and second conductors, and the boost converter is adapted to step up the current from the solar cell while stepping down the current from the solar cell unit. This voltage of the solar cell. Thus, the photovoltaic charger is capable of generating a voltage level sufficient for charging electronic devices in a wide range of different light conditions. Different types of battery systems require different voltage levels. The boost converter makes it possible to provide a rechargeable battery of an electronic device with a voltage level required for that type of battery. The voltage generated by the single solar cell unit is too low to charge certain types of batteries, such as lithium batteries which require about 3.6V. In the prior art, the required voltage is achieved by arranging a plurality of solar cells connected in series. According to the invention, the required voltage is achieved by connecting a boost converter to the single solar cell unit. Therefore, it is feasible to provide a photovoltaic charger capable of charging solar cell units with only one battery that require different voltage levels.

在一特點中,該升壓轉換器係被配置以轉換來自該太陽能電池單元的輸出電壓成為一位於1到10V之間的電壓。因此,該光伏充電器係能夠充電被用於許多類型的用在消費者應用的電子裝置的電池,例如是鋰或鎳基的電池。 In one feature, the boost converter is configured to convert the output voltage from the solar cell unit to a voltage between 1 and 10V. Thus, the photovoltaic charger is capable of charging batteries, such as lithium or nickel based batteries, used in many types of electronic devices used in consumer applications.

用於在該相對電極以及該光吸收層之間傳輸電荷的該導電介質例如可以是一種液體,例如一種液體的碘化物(iodide)/三碘化物(triiodide)電解質、一種液體的銅錯合物或是一種液體的鈷錯合物基的電解質、一種凝膠、或是一種固體的材料,例如是一種固體的孔洞導體。 The conductive medium used to transport charge between the counter electrode and the light absorbing layer can be, for example, a liquid, such as a liquid iodide/triiodide electrolyte, a liquid copper complex Either a liquid cobalt complex-based electrolyte, a gel, or a solid material such as a solid hole conductor.

根據一特點,該導電介質是一種離子基的電解質。該電解質可以是一種液體、或是一種凝膠。利用一離子基的電解質的一優點是其可以產生高的長期穩定性至該太陽能電池的效能。另一優點是該光伏充電器的效率是穩定的、或是隨著增高溫度而增高。於是,該光伏充電器係在一廣範圍的溫度中良好地操作。 According to a characteristic, the conductive medium is an ion-based electrolyte. The electrolyte can be a liquid, or a gel. An advantage of using an ion-based electrolyte is that it can lead to high long-term stability to the efficiency of the solar cell. Another advantage is that the efficiency of the photovoltaic charger is constant or increases with increasing temperature. Thus, the photovoltaic charger operates well over a wide range of temperatures.

根據本發明之一特點,當藉由該光吸收層接收到的光強度是200勒克斯(Lux)時,該太陽能電池單元係產生在主動的太陽能電池區域上量測到的超過5μW/cm2。已經透過測試而證明的是當藉由該光吸收層接收到的光強度是200勒克斯時,根據本發明的光伏充電器係能夠產生超過5μW/cm2。勒克斯是一種用於量測光強度的適當的單位,因為其係量測人眼所感受到的光強度。勒克斯通常是被用來量測室內光的強度,該室內光大部分都是在電磁頻譜的人眼可見的部分之內。於是,將該太陽能電池單元的效率關聯至以勒克斯量測的光強度是適當的。 According to an aspect of the invention, the solar cell unit produces more than 5 μW/cm 2 measured on the active solar cell area when the light intensity received by the light absorbing layer is 200 Lux. It has been proven through tests that the photovoltaic charger system according to the invention is capable of generating more than 5 μW/cm 2 when the light intensity received through the light absorbing layer is 200 lux. Lux is an appropriate unit for measuring light intensity because it measures the intensity of light as perceived by the human eye. Lux is commonly used to measure the intensity of room light, which is mostly within the portion of the electromagnetic spectrum visible to the human eye. It is then appropriate to relate the efficiency of the solar cell to the light intensity measured in lux.

根據本發明之一特點,當藉由該光吸收層接收到的光強度是200勒克斯時,該太陽能電池單元係產生超過5.5μW/cm2。已經透過測試而證明的是,根據本發明的光伏充電器係能夠在藉由該光吸收層接收到的光強度是200 勒克斯時,產生超過5.5μW/cm2According to an aspect of the invention, when the light intensity received by the light absorbing layer is 200 lux, the solar cell unit generates more than 5.5 μW/cm 2 . It has been proven through tests that the photovoltaic charger according to the invention is capable of generating more than 5.5 μW/cm 2 when the light intensity received through the light absorbing layer is 200 lux.

根據本發明之一特點,當藉由該光吸收層接收到的光強度是5000勒克斯時,該太陽能電池單元係產生至少150μW/cm2According to an aspect of the invention, when the light intensity received by the light absorbing layer is 5000 lux, the solar cell unit generates at least 150 μW/cm 2 .

根據本發明之一特點,當藉由該光吸收層接收到的光強度是20000勒克斯時,該太陽能電池單元係產生至少600μW/cm2,並且較佳的是至少700μW/cm2。更具體而言,當藉由該光吸收層接收到的光強度是介於200到20000勒克斯之間時,該太陽能電池單元係至少能夠產生在5到600μW/cm2之間。當藉由該光吸收層接收到的光強度係從200增加至20000勒克斯時,藉由該光伏充電器所產生的功率係實質線性地增加。因此,該光伏充電器係能夠在一廣範圍的不同的光條件下產生電力。該光伏充電器係工作在劣質與極佳的照明條件期間,例如是在人造光下的室內、在陰影下的戶外、以及當曝露到強烈的太陽光時。 According to an aspect of the invention, when the light intensity received by the light absorbing layer is 20000 lux, the solar cell generates at least 600 μW/cm 2 , and preferably at least 700 μW/cm 2 . More specifically, when the light intensity received by the light absorbing layer is between 200 to 20000 lux, the solar cell unit can generate at least 5 to 600 μW/cm 2 . When the light intensity received by the light absorbing layer increases from 200 to 20000 lux, the power generated by the photovoltaic charger increases substantially linearly. Thus, the photovoltaic charger is capable of generating power under a wide range of different light conditions. The photovoltaic charger operates during poor and excellent lighting conditions, such as indoors under artificial light, outdoors in shade, and when exposed to strong sunlight.

其中實質線性係指至少在該間隔200到20000勒克斯的一主要的部分中,所產生的功率係隨著增高的光強度而線性地增高。例如,在200到1000勒克斯之間的強度下,所產生的功率可以稍微不同於線性。 Where substantially linear means that the generated power increases linearly with increasing light intensity at least in a substantial part of the interval 200 to 20000 lux. For example, at intensities between 200 and 1000 lux, the power produced can vary slightly from linear.

根據本發明之一特點,當藉由該光吸收層接收到的光強度係在200到50000勒克斯之間改變時,該太陽能電池單元係產生一變化小於40%的電壓。例如,當藉由該光吸收層接收到的光強度係在200到50000勒克斯之間改變時,該太陽能電池單元係產生一變化小於0.4V,並且較佳的是變化小於0.3V的電壓。在該間隔200到50000勒克斯中,藉由該太陽能電池單元所產生的電壓是相當均一的。此係表示所產生的電壓係與該光強度相當無關的。由於實際狀況是當藉由該光吸收層接收到的光強度在200到50000勒克斯之間變化時,從該太陽能電池單元輸出的電壓只有很小的變化,因此在該轉換期間無大量的損失下,使用一升壓轉換器以針對於一廣範圍的不同的光強度來步升該電壓是可行 的。 According to an aspect of the invention, when the intensity of light received through the light absorbing layer varies between 200 and 50,000 lux, the solar cell generates a voltage that varies less than 40%. For example, when the intensity of light received by the light absorbing layer is varied between 200 and 50000 lux, the solar cell unit generates a voltage that varies less than 0.4V, and preferably less than 0.3V. In the interval of 200 to 50000 lux, the voltage generated by the solar cells is quite uniform. This means that the voltage generated is quite independent of the light intensity. Since the actual situation is that when the light intensity received by the light absorbing layer varies between 200 and 50000 lux, the output voltage from the solar cell has only a small change, so there is no large loss during the conversion. , it is feasible to use a boost converter to step up the voltage for a wide range of different light intensities of.

根據本發明之一特點,該電解質係包括離子,例如是銅離子、或是碘化物及三碘化物離子。所產生的電壓的位準係依據在該電解質中的該些離子而定。例如,若該電解質包含銅離子,則該太陽能電池單元可以在藉由該光吸收層接收到的光強度是20000勒克斯時,在一開路中產生一約1V的電壓,並且若該電解質包含碘化物以及三碘化物離子,則該太陽能電池單元可以在藉由該光吸收層接收到的光強度是20000勒克斯時,在一開路中產生一0.65V的電壓。 According to a feature of the invention, the electrolyte system includes ions, such as copper ions, or iodide and triiodide ions. The level of the generated voltage depends on the ions in the electrolyte. For example, if the electrolyte contains copper ions, the solar cell can generate a voltage of about 1 V in an open circuit when the light intensity received by the light absorbing layer is 20,000 lux, and if the electrolyte contains iodide and triiodide ions, the solar cell unit can generate a voltage of 0.65V in an open circuit when the light intensity received by the light absorbing layer is 20000 lux.

根據本發明之一特點,當藉由該光吸收層接收到的光強度是200勒克斯時,該太陽能電池單元係在一開路中產生一至少0.3V的電壓。 According to an aspect of the present invention, when the light intensity received by the light absorbing layer is 200 lux, the solar cell generates a voltage of at least 0.3V in an open circuit.

再者,當藉由該光吸收層接收到的光強度是20000勒克斯時,該太陽能電池單元係在一開路中產生一小於1.2V的電壓。 Furthermore, when the light intensity received by the light absorbing layer is 20000 lux, the solar battery unit generates a voltage less than 1.2V in an open circuit.

根據本發明之一特點,該升壓轉換器係能夠轉換一介於0.25到1V之間的電壓成為一超過3V,並且較佳的是超過3.5V的電壓。因此,該光伏充電器可被利用以充電一具有一超過3V的負載電壓的電池,例如一鋰電池通常需要一在3到4、5V之間的負載電壓,其係根據該電池的負載是如何的而定。 According to an aspect of the invention, the boost converter is capable of converting a voltage between 0.25 and 1V to a voltage exceeding 3V, and preferably exceeding 3.5V. Therefore, the photovoltaic charger can be utilized to charge a battery with a load voltage exceeding 3V, for example a lithium battery usually requires a load voltage between 3 and 4, 5V, depending on how the battery is loaded depends.

根據本發明之一特點,當藉由該光吸收層接收到的光強度係從200增加到20000勒克斯時,由該光伏充電器所產生的電流係線性地增加。 According to an aspect of the present invention, when the light intensity received by the light absorbing layer increases from 200 to 20000 lux, the current generated by the photovoltaic charger increases linearly.

根據本發明之一特點,當藉由該光吸收層接收到的光強度是200勒克斯時,該太陽能電池單元係產生一至少15μA/cm2的電流,並且當藉由該光吸收層接收到的光強度係從200增加到20000勒克斯時,由該太陽能電池單元所產生的電流係線性地增加。由於該線性以及實際狀況是該太陽能電池單元在該光強度是零時並不產生任何電流,並且在該光強度是200勒克斯時產生一至少15μA/cm2的電流,因此該太陽能電池單元係在藉由該光吸收層接收到的光強度 是20000勒克斯時產生一約1500μA/cm2的電流。因此,該太陽能電池單元係能夠在一廣範圍的光強度中產生充分的功率以充電電子裝置的電池。 According to a feature of the present invention, when the light intensity received through the light absorbing layer is 200 lux, the solar cell generates a current of at least 15 μA/cm 2 , and when the light received through the light absorbing layer As the light intensity increases from 200 to 20000 lux, the current generated by the solar cell increases linearly. Due to the linearity and the fact that the solar cell does not generate any current when the light intensity is zero and generates a current of at least 15 μA/cm when the light intensity is 200 lux, the solar cell is A current of about 1500 μA/cm 2 is generated when the light intensity received by the light absorbing layer is 20000 lux. Thus, the solar cell is capable of generating sufficient power to charge the battery of an electronic device over a wide range of light intensities.

根據本發明之一特點,該第一及第二導電層係包括金屬或是一金屬合金。金屬以及金屬合金是電力的良好的導體。因此,當高電流係在該太陽能電池單元中被產生時,使得導電層是由金屬或金屬合金所做成的係導致在電流收集以及電流分布期間的小的電阻性功率損失。 According to a feature of the present invention, the first and second conductive layers include metal or a metal alloy. Metals and metal alloys are good conductors of electricity. Therefore, having the conductive layer made of metal or metal alloy results in little resistive power loss during current collection and distribution when high currents are generated in the solar cell.

根據本發明之一特點,該第一及第二導電層係包括鈦或是其之一種合金。使用鈦是有利的,因為其係高度抗腐蝕的,並且可以在空氣中耐高溫而不顯著地氧化,此係在該太陽能電池單元的製造期間有利的。 According to a feature of the present invention, the first and second conductive layers include titanium or an alloy thereof. The use of titanium is advantageous because it is highly corrosion resistant and can withstand high temperatures in air without significant oxidation, which is advantageous during the manufacture of the solar cell unit.

根據本發明之一特點,該升壓轉換器係能夠處理介於15到9000mA/cm2之間的電流。因此,該升壓轉換器係能夠處理從200勒克斯到120000勒克斯(其係為全日光)的來自該太陽能電池單元的電流。 According to an aspect of the invention, the boost converter is capable of handling currents between 15 and 9000 mA/cm 2 . Thus, the boost converter is capable of handling current from the solar cell from 200 lux to 120,000 lux, which is full sunlight.

根據本發明的一實施例,該導電介質係包括碘化物(I-)以及三碘化物(I3 -),並且三碘化物在該導電介質中的含量是介於1mM到20mM之間。此實施例係使得在低的光強度下達成高功率的產生為可能的。 According to an embodiment of the present invention, the conductive medium includes iodide (I ) and triiodide (I 3 ), and the content of triiodide in the conductive medium is between 1 mM and 20 mM. This embodiment makes it possible to achieve high power generation at low light intensities.

根據一特點,該第一導電層以及該多孔的基板係連續地延伸穿過該整個太陽能電池單元。 According to a feature, the first conductive layer and the porous substrate extend continuously through the entire solar cell unit.

根據本發明之一特點,該多孔的基板是延伸穿過該整個太陽能電池單元的一包括編織的微纖維的片。例如,該些編織的微纖維係由玻璃纖維所做成的。延伸穿過該整個太陽能電池單元的包括編織的微纖維的該片係貢獻以提供一種撓性的、可扭曲的、以及耐撞擊的光伏充電器。 According to a feature of the invention, the porous substrate is a sheet comprising woven microfibers extending through the entire solar cell unit. For example, the woven microfibers are made of glass fibers. The sheet comprising woven microfibers extending across the entire solar cell unit contributes to provide a flexible, twistable, and impact-resistant photovoltaic charger.

根據一特點,該太陽能電池單元係具有一面對該光的頂端側以及一底部側,該第一導體是細長的,並且被設置在該太陽能電池單元的該底部側、或是沿著該太陽能電池單元的該頂端側的一邊緣延伸的任一者,並且該第 二導體是細長的,而且被設置在該太陽能電池單元的該底部側上。若該第一導體係沿著該太陽能電池單元的該頂端側的一邊緣、或是在該太陽能電池單元的該底部側而被配置的話,則隱藏是容易的,而且將不會是使用者可見的。 According to a feature, the solar cell has a top side facing the light and a bottom side, the first conductor is elongated and is arranged on the bottom side of the solar cell or along the solar cell An edge of the top side of the battery cell extends either, and the first Two conductors are elongated and disposed on the bottom side of the solar cell unit. If the first conductor is arranged along an edge of the top side of the solar cell unit, or at the bottom side of the solar cell unit, concealment is easy and will not be visible to the user of.

根據一特點,該太陽能電池單元係具有一面對該光的頂端側以及一底部側,並且該第一及第二導體是細長的,而且被設置在該太陽能電池單元的該底部側上。因此,該第一及第二導體是使用者不可見的,並且該太陽能電池單元的該頂端側的外觀是均質的。 According to a feature, the solar cell unit has a top side facing the light and a bottom side, and the first and second conductors are elongate and are arranged on the bottom side of the solar cell unit. Therefore, the first and second conductors are invisible to the user, and the appearance of the top side of the solar cell unit is homogeneous.

根據一特點,該封裝係包括複數個貫穿,其係實體及電連接至用於連接該光伏裝置至該外部的裝置的該第一及第二導體。換言之,在該封裝中有貫穿以用於接達藉由該光伏裝置所產生的電力。某種類型的佈線將會穿過該些貫穿。例如,該第一及第二導體可以透過該些貫穿而從該封裝延伸出,以連接至用於供電該外部的裝置的佈線。或者是,來自該封裝之外的導線係穿過該些貫穿,並且電連接至該第一及第二導體。該些貫穿係緊密地伏貼在通過該封裝的佈線的周圍,使得沒有氣體或液體能夠通過貫穿。例如,該些貫穿是在該封裝中的開口,其係緊密地伏貼在通過該封裝的佈線的周圍。 According to a feature, the encapsulation comprises a plurality of through-throughs that are physically and electrically connected to the first and second conductors for connecting the photovoltaic device to the external device. In other words, there are penetrations in the package for accessing the power generated by the photovoltaic device. Some type of wiring will go through these penetrations. For example, the first and second conductors may extend from the package through the through-throughs to connect to wiring for powering the external device. Alternatively, wires from outside the package pass through the through-throughs and are electrically connected to the first and second conductors. The through-throughs fit snugly around the wiring through the package so that no gas or liquid can pass through the through-throughs. For example, the through-throughs are openings in the package that fit snugly around the wiring that passes through the package.

根據一特點,該封裝係包括一覆蓋該太陽能電池單元的一頂端側的至少部份透明的頂端片、以及一覆蓋該太陽能電池單元的一底部側的底部片。其中的封裝係表示一種覆蓋,其係密封圍繞該太陽能電池單元以避免灰塵及濕氣進入該太陽能電池單元,並且避免來自內部的電解質從該裝置洩漏出。該封裝之目的是用以維持該太陽能電池構件以及太陽能電池組成物的完整性。 According to a feature, the encapsulation comprises an at least partially transparent top sheet covering a top side of the solar cell unit, and a bottom sheet covering a bottom side of the solar cell unit. Encapsulation therein means a covering that is sealed around the solar cell to prevent dust and moisture from entering the solar cell and to prevent electrolyte from inside from leaking out of the device. The purpose of the encapsulation is to maintain the integrity of the solar cell components and solar cell composition.

根據一特點,該第一導體係被設置在該太陽能電池單元的該頂端側上,並且沿著該太陽能電池單元的該頂端側的一邊緣延伸。該第一導體接著可以被例如是塑膠所覆蓋,使得其是旁觀者不可見的。由於該第一導體係沿著該邊緣而被設置,因此其係輕易地被覆蓋,而不影響到該光伏充電器的效率 或是其整體外觀。 According to a feature, the first conductor is arranged on the top side of the solar cell unit and extends along an edge of the top side of the solar cell unit. The first conductor may then be covered, eg, with plastic, so that it is invisible to onlookers. Since the first conductor is positioned along the edge, it is easily covered without affecting the efficiency of the photovoltaic charger Or its overall appearance.

根據一特點,該第一導體以及該第二導體係被設置在該太陽能電池單元的該底部側上。因此,在該光伏充電器的上方側上於是將不會有可見的佈線。該第一及第二導體可以藉由將該光伏充電器設置在該裝置的一表面、或是該裝置的一覆蓋上而輕易地隱藏。此係表示當該光伏充電器被設置在該裝置的一表面上時,該第一導體是使用者不可見的。此係使得將該光伏充電器整合在該裝置或是該裝置的一覆蓋中成為可能的,因而使用者甚至將不會注意到有一整合在該裝置中的光伏充電器。該裝置的一實質整體的表面可以被該光伏充電器所覆蓋。因此,該裝置或是該裝置的覆蓋的整體表面可被利用以產生電力,而不影響該裝置的可見的外觀。 According to a feature, the first conductor and the second conductor are arranged on the bottom side of the solar cell unit. Therefore, there will then be no visible wiring on the upper side of the photovoltaic charger. The first and second conductors can be easily hidden by placing the photovoltaic charger on a surface of the device, or on a cover of the device. This means that when the photovoltaic charger is placed on a surface of the device, the first conductor is not visible to the user. This makes it possible to integrate the photovoltaic charger in the device or a covering of the device, so that the user will not even notice that there is a photovoltaic charger integrated in the device. A substantially entire surface of the device may be covered by the photovoltaic charger. Thus, the device, or the entire surface covered by the device, can be utilized to generate electricity without affecting the visible appearance of the device.

根據一特點,該第二導電層以及該多孔的基板係連續地延伸穿過該整個太陽能電池單元。 According to a feature, the second conductive layer and the porous substrate extend continuously through the entire solar cell unit.

根據一特點,該第一導電層是非透明的,並且連續地延伸穿過該整個太陽能電池單元。除了可能用於該第一導電層的被保留用於該第一導體的一較小的區域之外,該光吸收層係在該第一導電層的頂端上連續地延伸穿過該太陽能電池單元。 According to a feature, the first conductive layer is non-transparent and extends continuously across the entire solar cell unit. The light absorbing layer extends continuously across the solar cell unit on top of the first conductive layer, except possibly for a small area of the first conductive layer reserved for the first conductor .

根據一特點,該太陽能電池單元的該頂端側的外觀是均質的。由於實際裝況是該光伏充電器只包含單一太陽能電池單元,該光吸收層係在該第一導電層的頂端上連續地延伸穿過該太陽能電池單元,並且沒有可見的導體延伸橫跨該太陽能電池單元的頂表面,因此該太陽能電池單元的該頂端側的表面係變成視覺上均質的。此係表示該光伏充電器的上方側的外觀是均質的,並且不被任何電流收集器所中斷、或是有在色彩上的任何改變。此係使得在不損害該電子裝置的可見的外觀下,將該光伏充電器整合在電子裝置中成為可能的。使用者甚至可能不會注意到該光伏充電器。 According to a feature, the appearance of the top side of the solar cell unit is homogeneous. Since the actual situation is that the photovoltaic charger contains only a single solar cell, the light absorbing layer extends continuously across the solar cell on top of the first conductive layer, and there are no visible conductors extending across the solar cell. The top surface of the battery cell, thus the surface of the top side of the solar cell becomes visually homogeneous. This means that the appearance of the upper side of the photovoltaic charger is homogeneous and not interrupted by any current collectors, or has any change in color. This makes it possible to integrate the photovoltaic charger in the electronic device without compromising the visible appearance of the electronic device. The user may not even notice the photovoltaic charger.

根據一特點,該太陽能電池單元的該頂端側是均質黑色的。該光吸收層的TiO2是黑色的,並且達成該太陽能電池單元的一黑色表面。由於實際裝況是該光吸收層係包括TiO2,並且在該第一導電層的頂端上連續地延伸穿過該太陽能電池單元,因此該太陽能電池單元的頂表面係變成均質黑色的。覆蓋該太陽能電池單元的該頂端側的該頂端片較佳的是被配置成使得其將不會影響該頂表面的外觀。該頂端片是透明的、或是至少覆蓋該太陽能電池單元的主動區域的部分是透明的。因此,該光伏充電器的上表面也是均質黑色的。一均質黑色的光吸收的主動表面的一優點是其係具有最大的光吸收的性質。另一優點是一均質黑色的表面是美觀而有吸引力的。 According to a feature, the top side of the solar cell unit is homogeneously black. The TiO2 of the light absorbing layer is black and achieves a black surface of the solar cell. Due to the fact that the light absorbing layer comprises TiO2 and extends continuously through the solar cell on top of the first conductive layer, the top surface of the solar cell becomes uniformly black. The top sheet covering the top side of the solar cell unit is preferably configured such that it will not affect the appearance of the top surface. The top sheet is transparent, or at least the portion covering the active area of the solar cell unit is transparent. Therefore, the upper surface of the photovoltaic charger is also uniformly black. An advantage of a homogeneously black light-absorbing active surface is that it has the property of maximal light absorption. Another advantage is that a uniform black surface is aesthetically pleasing and attractive.

根據一特點,該封裝是由一種透明的塑膠所做成的。此特點係貢獻以提供一撓性的、可扭曲的、並且耐撞擊的光伏充電器。 According to a feature, the package is made of a transparent plastic. This feature contributes to provide a flexible, twistable, and impact-resistant photovoltaic charger.

根據某些特點,該單一太陽能電池單元的形狀及尺寸係適配於其所供電的可攜式的電子裝置的尺寸及形狀。再者,該太陽能電池單元的主動區域係被適配成充電該裝置所需的功率。 According to certain features, the shape and size of the single solar cell unit is adapted to the size and shape of the portable electronic device it powers. Furthermore, the active area of the solar cell unit is adapted to the power required to charge the device.

根據一特點,從該太陽能電池單元的主動區域的一邊到另一邊的最短距離是大於1cm,並且較佳的是大於1.5cm。 According to a characteristic, the shortest distance from one side of the active area of the solar cell unit to the other is greater than 1 cm, and preferably greater than 1.5 cm.

根據一特點,從該太陽能電池單元的主動區域的一邊到另一邊的最短距離是大於1.5cm,並且該太陽能電池單元的主動區域係大於25cm2。此種光伏充電器例如對於充電頭戴式耳機而言是有用的。 According to a feature, the shortest distance from one side of the active area of the solar cell unit to the other is greater than 1.5 cm, and the active area of the solar cell unit is greater than 25 cm 2 . Such photovoltaic chargers are for example useful for charging headphones.

根據一特點,從該太陽能電池的主動區域的一邊到另一邊的最短距離是大於10cm。因此,該太陽能電池單元的主動區域係大於100cm2。此種光伏充電器例如對於充電一平板電腦是有用的。 According to a characteristic, the shortest distance from one side of the active area of the solar cell to the other is greater than 10 cm. Therefore, the active area of the solar cell is greater than 100 cm 2 . Such a photovoltaic charger is useful, for example, for charging a tablet computer.

根據一特點,該可攜式的電子裝置是頭戴式耳機、一平板電腦、或是一行動電話的任一種。 According to a feature, the portable electronic device is any one of a headset, a tablet computer, or a mobile phone.

根據本發明的另一特點,其係包括根據以上的光伏充電器用於供電一可攜式的電子裝置的用途。例如,該可攜式的電子裝置是頭戴式耳機、一行動電話、或是一平板電腦。 According to another feature of the present invention, it includes the use of the above photovoltaic charger for powering a portable electronic device. For example, the portable electronic device is a headset, a mobile phone, or a tablet computer.

根據某些特點,該可攜式的電子裝置是頭戴式耳機,其係包括一用於到達在一穿戴者的頭之上的頭帶,其中該光伏充電器係被配置在該頭帶的一頂表面上。 According to some features, the portable electronic device is a headset comprising a headband for reaching over a wearer's head, wherein the photovoltaic charger is disposed on the headband on a top surface.

根據某些特點,該可攜式的電子裝置是一平板電腦,其中該光伏充電器係被整合在該平板電腦、或是該平板電腦的一殼體中。 According to some features, the portable electronic device is a tablet computer, wherein the photovoltaic charger is integrated in the tablet computer or a housing of the tablet computer.

根據某些特點,該可攜式的電子裝置是一行動電話,其中該光伏充電器係被整合在該行動電話中、或是在該行動電話的一殼體中。 According to some features, the portable electronic device is a mobile phone, wherein the photovoltaic charger is integrated in the mobile phone or in a casing of the mobile phone.

根據本發明的另一特點,其係包括一種用於製造一用在供電一可攜式的電子裝置的光伏充電器之方法。 According to another feature of the present invention, it includes a method for manufacturing a photovoltaic charger for powering a portable electronic device.

該方法係包括:‧產生一具有該單一太陽能電池單元的片,‧調適該單一太陽能電池單元的形狀及尺寸至一其上將設置該單一太陽能電池單元的表面,此係藉由切割具有該單一太陽能電池單元的該片中的一塊成為該形狀及尺寸,‧將該第一導體配置成和該第一導電層電性接觸,‧將該第二導體配置成和該第二導電層電性接觸,‧配置該封裝的一頂端片以及一底部片,使得它們圍繞該片的塊並且至少部份地圍繞該第一及第二導體,使得該封裝的該形狀及尺寸係適配於該單一太陽能電池單元的該形狀及尺寸,以及‧密封該頂端片以及該底部片的該些邊緣以形成該封裝。 The method comprises: ‧creating a sheet with the single solar cell unit, ‧adapting the shape and size of the single solar cell unit to a surface on which the single solar cell unit will be placed, by cutting the sheet with the single solar cell unit One of the sheets of the solar cell unit has the shape and size, ‧the first conductor is configured to be in electrical contact with the first conductive layer, ‧the second conductor is configured to be in electrical contact with the second conductive layer , ‧ disposing a top sheet and a bottom sheet of the package so that they surround the block of the sheet and at least partially surround the first and second conductors such that the shape and size of the package are adapted to the single solar energy The shape and size of the battery cell, and • sealing the edges of the top sheet and the bottom sheet to form the package.

該用於製造該光伏充電器之方法是簡單而且有成本效率的。 The method for manufacturing the photovoltaic charger is simple and cost-effective.

根據一特點,該方法係包括將第一及第二導體配置在該太陽能電池單元以及在該單一太陽能電池單元的該底部側上的該封裝之間。 According to a feature, the method comprises disposing first and second conductors between the solar cell unit and the encapsulation on the bottom side of the single solar cell unit.

根據一特點,該方法係包括沿著該頂端側的一邊緣的至少一部分配置該第一導體、以及在該單一太陽能電池單元的該底部側上配置該至少一第二導體。 According to a feature, the method includes disposing the first conductor along at least a portion of an edge of the top side, and disposing the at least one second conductor on the bottom side of the single solar cell unit.

1:光伏充電器 1: Photovoltaic charger

1a:光伏充電器 1a: Photovoltaic charger

1b:光伏充電器 1b: Photovoltaic charger

2:太陽能電池單元 2: Solar cell unit

3:第一連接元件 3: The first connecting element

4:第二連接元件 4: Second connecting element

5:封裝 5: Encapsulation

5a:頂端片 5a: top piece

5b:底部片 5b: Bottom piece

7a-b:貫穿 7a-b: through

10:光吸收層 10: Light absorbing layer

12:第一導電層 12: The first conductive layer

14:多孔的基板 14: Porous substrate

16:第二導電層 16: Second conductive layer

18:第一導體 18: First conductor

20:第二導體 20: Second conductor

22:升壓轉換器 22: Boost Converter

24:絕緣間隙 24: Insulation gap

26:貫孔 26: through hole

28:平板電腦 28: Tablet PC

29:殼體 29: shell

30:頭戴式耳機 30: Headphones

32:頭帶 32: headband

本發明現在將會更仔細地藉由本發明的不同實施例的說明並且參考所附的圖式來加以解說。 The invention will now be illustrated more closely by the description of different embodiments of the invention and with reference to the accompanying drawings.

圖1是展示根據本發明的一或多個實施例的一種光伏充電器的俯視圖。 FIG. 1 is a top view showing a photovoltaic charger according to one or more embodiments of the present invention.

圖2是以一放大的視圖來展示穿過在圖1中所示的光伏充電器的橫截面。 FIG. 2 shows a cross-section through the photovoltaic charger shown in FIG. 1 in an enlarged view.

圖3是展示根據本發明的一或多個實施例的一種光伏充電器的一部分的俯視圖。 Figure 3 is a top view showing a portion of a photovoltaic charger according to one or more embodiments of the present invention.

圖4是展示在圖3中所示的光伏充電器的該部分的仰視圖。 FIG. 4 is a bottom view showing the portion of the photovoltaic charger shown in FIG. 3 .

圖5是展示穿過在圖3中所示的光伏充電器的該部分的橫截面。 FIG. 5 is a diagram showing a cross section through the portion of the photovoltaic charger shown in FIG. 3 .

圖6是展示穿過根據本發明的一或多個實施例的一種光伏充電器的一部分的橫截面。 Figure 6 is a cross-section showing a portion through a photovoltaic charger according to one or more embodiments of the present invention.

圖7是展示針對於一具有一種包括碘化物及三碘化物離子的電解質的太陽能電池單元的一第一個例子,針對介於200到20000勒克斯之間的光強度所產生的電壓(mV)的量測到的值的圖。 7 is a graph showing the voltage (mV) generated for light intensities between 200 and 20,000 lux for a first example of a solar cell unit with an electrolyte comprising iodide and tri-iodide ions A plot of the measured values.

圖8是展示針對於該太陽能電池單元的該第一個例子,根據對於介於200到20000勒克斯之間的光強度所產生的電流(μA/cm2)的量測到的值的圖。 Fig. 8 is a graph showing, for the first example of the solar cell, according to the measured values of the generated current (μA/cm 2 ) for light intensities between 200 and 20000 lux.

圖9是展示針對於該太陽能電池單元的該第一個例子,根據對於介於200到20000勒克斯之間的光強度所產生的每面積的功率(μW/cm2)的量測到的值的 圖。 Fig. 9 is a diagram showing measured values of power per area (μW/cm 2 ) produced for light intensities between 200 and 20000 lux for the first example of the solar cell unit picture.

圖10係展示針對於一具有一種包括銅離子的電解質的太陽能電池單元的一第二例子,對於介於200到50000勒克斯之間的光強度所產生的電壓(mV)的量測到的值的圖。 FIG. 10 shows the plot of measured values of the generated voltage (mV) for light intensities between 200 and 50000 lux for a second example of a solar cell with an electrolyte comprising copper ions picture.

圖11係展示針對於該太陽能電池單元的該第二例子,根據對於介於200到50000勒克斯之間的光強度所產生的電流(μA/cm2)的量測到的值的圖。 Fig. 11 is a graph showing, for the second example of the solar cell, according to the measured values of the generated current (μA/cm 2 ) for light intensities between 200 and 50000 lux.

圖12係展示針對於該太陽能電池單元的該第二例子,根據對於介於200到50000勒克斯之間的光強度所產生的每面積的功率(μW/cm2)的量測到的值的圖。 Figure 12 is a graph showing for the second example of the solar cell unit according to the measured values of the generated power per area (μW/cm 2 ) for light intensities between 200 and 50000 lux .

圖13係展示一平板電腦的一個例子,其係具有一被整合在一覆蓋中的用於充電該平板電腦的光伏充電器。 Figure 13 shows an example of a tablet computer with a photovoltaic charger integrated in a cover for charging the tablet computer.

圖14係展示頭戴式耳機的一個例子的俯視圖,其係具有一被整合在該頭戴式耳機的一頭帶中的光伏充電器。 14 is a top view showing an example of a headset with a photovoltaic charger integrated into a headband of the headset.

圖15a-b係展示在圖14中所示的頭戴式耳機的側視圖。 15a-b show side views of the headset shown in FIG. 14 .

圖16係展示一種用於製造該光伏充電器之方法的流程圖。 FIG. 16 is a flowchart showing a method for manufacturing the photovoltaic charger.

本揭露內容的特點將會在以下參考所附的圖式來更完整地加以描述。然而,在此揭露的光伏充電器及方法可以用許多不同的形式來加以實現,因而不應該被解釋為受限於在此闡述的該些特點。在圖式中相同的元件符號是指通篇中的相似的元件。 Features of the present disclosure will be more fully described below with reference to the accompanying drawings. However, the photovoltaic chargers and methods disclosed herein may be implemented in many different forms and thus should not be construed as limited to the features set forth herein. Like element numbers in the drawings refer to like elements throughout.

在此所用的術語只是為了描述本揭露內容的特定的特點之目的而已,因而並不欲限制本發明。 The terminology used herein is for the purpose of describing specific features of the disclosure only, and thus is not intended to limit the present invention.

除非另有定義,否則在此使用的所有術語都具有和此揭露內容 所屬的技術的通常知識者所通常理解的相同的意義。 Unless otherwise defined, all terms used herein have the same meaning as this Disclosure The same meaning as commonly understood by those skilled in the art to which it belongs.

圖1是展示根據本發明的一實施例的一種光伏充電器1的俯視圖。該光伏充電器1係特別被調適以用於供電可被利用於室內及戶外的可攜式的電子裝置,例如是耳機、膝上型電腦、平板電腦、行動電話、以及遙控單元。該光伏充電器1亦可被利用於供電內嵌在其它例如是被稱為物聯網(IoT)的車輛及家用電器的實體裝置中的小型的電子裝置。 Fig. 1 is a top view showing a photovoltaic charger 1 according to an embodiment of the present invention. The photovoltaic charger 1 is especially adapted for powering portable electronic devices such as earphones, laptops, tablets, mobile phones, and remote control units that can be utilized indoors and outdoors. The photovoltaic charger 1 can also be used to power small electronic devices embedded in other physical devices such as vehicles and household appliances called Internet of Things (IoT).

該光伏充電器1係包括一太陽能電池單元2、一圍繞該太陽能電池單元2的封裝5、一第一導體18、以及一第二導體20。該光伏充電器可以進一步包括用於連接該光伏充電器1至該電子裝置的連接元件(未顯示)。該太陽能電池單元是一種染料敏化的太陽能電池(DSC)。較佳的是,該太陽能電池單元是一種單石類型DSC。該單石類型的DSC不同於標準的DSC是在於其係在單一基板上加以製造的,其中多個層係被設置在該基板上。 The photovoltaic charger 1 includes a solar cell unit 2 , an encapsulation 5 surrounding the solar cell unit 2 , a first conductor 18 , and a second conductor 20 . The photovoltaic charger may further comprise a connecting element (not shown) for connecting the photovoltaic charger 1 to the electronic device. The solar cell is a dye-sensitized solar cell (DSC). Preferably, the solar cell unit is a monolithic type DSC. The monolithic type of DSC differs from a standard DSC in that it is fabricated on a single substrate on which multiple layers are disposed.

該封裝係包括複數個和該第一及第二導體相關連的貫穿,以用於連接該光伏裝置至該外部的裝置。換言之,在該封裝中有貫穿以用於接達藉由該光伏裝置所產生的電力。某種佈線將會穿過該些貫穿。例如,該第一及第二導體可以透過該些貫穿而從該封裝延伸出,以連接至用於供電該外部的裝置的佈線。或者是,來自該封裝之外的導線係穿過該些貫穿,並且電連接至該第一及第二導體。該些貫穿係緊密地伏貼在通過該封裝的佈線的周圍,使得沒有氣體或液體能夠通過貫穿。例如,該些貫穿是在該封裝中的開口,其係緊密地伏貼在通過該封裝的佈線的周圍。 The package includes a plurality of through-holes associated with the first and second conductors for connecting the photovoltaic device to the external device. In other words, there are penetrations in the package for accessing the power generated by the photovoltaic device. Some kind of wiring will go through these penetrations. For example, the first and second conductors may extend from the package through the through-throughs to connect to wiring for powering the external device. Alternatively, wires from outside the package pass through the through-throughs and are electrically connected to the first and second conductors. The through-throughs fit snugly around the wiring through the package so that no gas or liquid can pass through the through-throughs. For example, the through-throughs are openings in the package that fit snugly around the wiring that passes through the package.

該封裝5係包括複數個關連到該第一導體18以及該第二導體20而被配置的貫穿7a-b,該第一導體18以及該第二導體20係用於連接該光伏裝置1至該外部的裝置,並且藉此來接達由該光伏裝置所產生的電力。例如,該些貫穿係被導引穿過在該封入中的開口。某種類型的佈線將會穿過該些開口。例如, 如同在圖1中所示,該第一及第二導體18、20可以透過該些貫穿7a-b而從該封裝延伸出,以連接至用於供電該外部的裝置的佈線。或者是,來自該封裝之外的導線係穿過該些貫穿,並且電連接至該第一及第二導體。該些貫穿係緊密地伏貼在該佈線的周圍,使得沒有氣體或液體能夠通過其。該些貫穿可以藉由使得應該穿過該些孔洞的導線或導體在該封裝被配置在該太陽能電池單元2上時位在適當的地方來加以做成。例如,該頂端片5a以及底部片5b是黏著膜,其係一起被置放在該太陽能電池單元2之上。或者是,該頂端片及底部片係由一種撓性的塑膠材料所做成的,並且該頂端片及底部片的邊緣係藉由熔化該塑膠材料來加以彼此接合。若該些導線/導體在該接合以及在該些片的邊緣突出之前已經處於在片之間的適當處,則該些貫穿將會在該接合期間被產生。或者是,該些貫穿係包括在該太陽能電池單元的封入之後所做成的在該封裝中的貫孔。該些貫孔係在該導線/導體已經被配置在該些貫孔中之後加以密封。該些貫穿的位置將會依據該第一及第二導體的位置而定。貫穿的數目可以變化。該第一及第二導體的每一個至少有一貫穿。然而,該第一及第二導體的每一個具有複數個貫穿也是可行的。 The package 5 comprises a plurality of through-throughs 7a-b arranged in relation to the first conductor 18 and the second conductor 20 for connecting the photovoltaic device 1 to the external device, and thereby access the power generated by the photovoltaic device. For example, the feedthroughs are guided through openings in the enclosure. Some type of wiring will pass through these openings. E.g, As shown in Figure 1, the first and second conductors 18, 20 may extend from the package through the through-throughs 7a-b to connect to wiring for powering the external device. Alternatively, wires from outside the package pass through the through-throughs and are electrically connected to the first and second conductors. The penetrations fit snugly around the wiring so that no gas or liquid can pass through it. The penetrations can be made by having wires or conductors that should pass through the holes be in place when the encapsulation is arranged on the solar cell unit 2 . For example, the top sheet 5 a and the bottom sheet 5 b are adhesive films, which are placed together on the solar cell unit 2 . Alternatively, the top and bottom sheets are made of a flexible plastic material, and the edges of the top and bottom sheets are joined to each other by melting the plastic material. If the wires/conductors are already in place between the sheets before the bonding and the edges of the sheets protrude, the penetrations will be created during the bonding. Alternatively, the through-holes include through-holes in the encapsulation made after encapsulation of the solar cell unit. The through holes are sealed after the wire/conductor has been disposed in the through holes. The locations of the penetrations will depend on the locations of the first and second conductors. The number of penetrations can vary. Each of the first and second conductors has at least one through. However, it is also possible that each of the first and second conductors has a plurality of penetrations.

圖2係展示穿過在圖1中所示的光伏充電器1的一部分的一放大的橫截面。該太陽能電池單元2係包括一包含一多孔的光吸收層10的工作電極、一用於從該光吸收層10抽取光子產生的電子的多孔的第一導電層12。該光吸收層10係包括染色的TiO2。此項技術中已知的習知的染料可加以利用。染料係被選擇以給予該太陽能電池的良好的效率,尤其是結合一種銅基的導電介質。該光吸收層亦可包括矽(Si)顆粒、或是CdTe、CIGS、CIS、GaAs、鈣鈦礦(perovskite)的顆粒亦可以是可適用的。 FIG. 2 shows an enlarged cross-section through a part of the photovoltaic charger 1 shown in FIG. 1 . The solar cell unit 2 includes a working electrode comprising a porous light absorbing layer 10 , and a porous first conductive layer 12 for extracting electrons generated by photons from the light absorbing layer 10 . The light absorbing layer 10 includes dyed TiO 2 . Conventional dyes known in the art can be used. The dye system was chosen to give good efficiency of the solar cell, especially in combination with a copper-based conductive medium. The light absorbing layer may also include silicon (Si) particles, or particles of CdTe, CIGS, CIS, GaAs, perovskite (perovskite) may also be applicable.

該光吸收層10係被配置在該第一導電層12的頂端上。該太陽能電池單元2進一步包括一由一種絕緣材料所做成的多孔的基板14、以及一包含 一第二導電層16的相對電極。在此例子中,該第二導電層是多孔的。然而,在一替代實施例中,該第二導電層並不必須是多孔的。例如,該第二導電層可以是由一金屬箔所做成的。該第一導電層12係被形成在該多孔的基板14的一側上,並且該第二導電層16係被形成在該多孔的基板14的相反側上。該第一導電層12係直接電性接觸到該光吸收層10。該多孔的基板14係提供在該第一及第二導電層12、16之間的電性絕緣。該第一及第二導電層12、16係藉由該多孔的基板14而被實體且電性地分開。該多孔的基板14的多孔性將會致能穿過該基板的離子的傳輸。例如,該多孔的絕緣基板14的厚度係大於4μm,並且小於100μm。該第一及第二導電層12、16的多孔性將會致能穿過該些導電層的離子的傳輸。 The light absorbing layer 10 is disposed on top of the first conductive layer 12 . The solar cell unit 2 further includes a porous substrate 14 made of an insulating material, and a An opposite electrode of the second conductive layer 16 . In this example, the second conductive layer is porous. However, in an alternative embodiment, the second conductive layer need not be porous. For example, the second conductive layer can be made of a metal foil. The first conductive layer 12 is formed on one side of the porous substrate 14 and the second conductive layer 16 is formed on the opposite side of the porous substrate 14 . The first conductive layer 12 is in direct electrical contact with the light absorbing layer 10 . The porous substrate 14 provides electrical insulation between the first and second conductive layers 12 , 16 . The first and second conductive layers 12 , 16 are physically and electrically separated by the porous substrate 14 . The porosity of the porous substrate 14 will enable the transport of ions through the substrate. For example, the thickness of the porous insulating substrate 14 is greater than 4 μm and less than 100 μm. The porosity of the first and second conductive layers 12, 16 will enable transport of ions through the conductive layers.

該多孔的光吸收層10是一被沉積到該第一導電層12之上的多孔的TiO2層。該TiO2層係包括藉由在TiO2粒子的表面上吸收染料分子所染色的該些TiO2粒子。該光吸收層10係被設置在該太陽能電池單元2的一頂端側上。該頂端側應該面對光,以容許該光來擊中該工作電極的染料分子。 The porous light absorbing layer 10 is a porous TiO 2 layer deposited onto the first conductive layer 12 . The TiO 2 layer system includes the TiO 2 particles dyed by absorbing dye molecules on the surface of the TiO 2 particles. The light absorbing layer 10 is arranged on a top side of the solar cell 2 . The top side should face the light to allow the light to hit the dye molecules of the working electrode.

該光伏充電器1只包含單一太陽能電池單元2。至少該第一導電層12以及該多孔的基板14是連續地延伸穿過該整個太陽能電池單元。該光吸收層10以及該第二導電層16係連續地至少延伸穿過太陽能電池單元的一主要的部分。在一替代的例子中,該光吸收層10的一較小的部分可以沿著該太陽能電池單元的一邊緣而被移除,以容許在該太陽能電池單元的一頂端側上的一第一導體18能夠電性接觸到該第一導電層12。在另一替代的例子中,該第二導電層16的一較小的部分可被移除,以容許該第一導體18能夠從該太陽能電池單元的一底部側而電性接觸到該第一導電層12。在此例子中,該太陽能電池單元係被填入一種電解質,以用於在該相對電極以及該光吸收層10之間傳輸電荷。該電解質例如是一習知的I-/I-3電解質或一類似的電解質、或是一銅(Cu)基電解質、或 是鈷(Co)錯合物基電解質。該電解質係包括離子,例如是碘化物離子(I-)以及三碘化物離子(I3 -)、或是銅離子(Cu2+及Cu+)。太陽光係藉由該染料來加以收穫,此係產生光激勵的電子,該些電子係被注入到該些TiO2粒子的導電帶之中,並且進一步藉由該第一導電層來加以收集。同時,在該電解質中的離子係傳輸來自該第二導電層的電子至該光吸收層10。該第一導體18係從該第一導電層收集該些電子,並且該第二導體係提供電子至該第二導電層,使得該太陽能電池單元可以持續地從該些進入的光子產生電力。 The photovoltaic charger 1 only includes a single solar battery unit 2 . At least the first conductive layer 12 and the porous substrate 14 extend continuously through the entire solar cell unit. The light absorbing layer 10 and the second conductive layer 16 continuously extend through at least a substantial portion of the solar cell unit. In an alternative example, a smaller portion of the light absorbing layer 10 may be removed along an edge of the solar cell to allow a first conductor on a top side of the solar cell 18 can electrically contact the first conductive layer 12 . In another alternative example, a smaller portion of the second conductive layer 16 may be removed to allow the first conductor 18 to make electrical contact with the first conductor 18 from a bottom side of the solar cell unit. Conductive layer 12. In this example, the solar cell unit is filled with an electrolyte for charge transfer between the opposite electrode and the light absorbing layer 10 . The electrolyte is, for example, a conventional I-/I - 3 electrolyte or a similar electrolyte, or a copper (Cu)-based electrolyte, or a cobalt (Co) complex-based electrolyte. The electrolyte system includes ions, such as iodide ions (I ) and triiodide ions (I 3 ), or copper ions (Cu 2+ and Cu + ). Sunlight is harvested by the dye, which generates photo-excited electrons, which are injected into the conductive bands of the TiO2 particles and further collected by the first conductive layer. At the same time, the ions in the electrolyte transport electrons from the second conductive layer to the light absorbing layer 10 . The first conductor 18 collects the electrons from the first conductive layer, and the second conductor provides electrons to the second conductive layer, so that the solar cell unit can continuously generate electricity from the incoming photons.

該電解質係貫穿該光吸收層10、該第一導電層12、該多孔的基板14、以及該第二導電層16的孔,以容許該些離子能夠被傳輸在該光吸收層10以及該第二導電層16之間,並且藉此從該第二導電層傳輸電子至該光吸收層。 The electrolyte system runs through the light absorbing layer 10, the first conductive layer 12, the porous substrate 14, and the pores of the second conductive layer 16, so that the ions can be transported in the light absorbing layer 10 and the second conductive layer 16. Between the two conductive layers 16, electrons are transported from the second conductive layer to the light absorbing layer.

有許多可被利用的染料,並且根據某些特點,該染料係包括三芳胺(triarylamine)有機染料,其係包括在予體-π橋-受體(D-π-A)的類別中以及在予體-受體-π橋-受體(D-A-π-A)的類別中的染料的任一者或是一混合物。此種染料係給予該太陽能電池的良好的效率,尤其是結合一種銅基的導電介質時。該第一類別的光敏劑例如是經取代的(二苯基胺基苯基)-噻吩-2-氰基丙烯酸(substituted(diphenylaminophenyl)-thiophene-2-cyanoacrylic acids)、或是經取代的(二苯基胺基苯基)環戊并-二噻吩-2-氰基丙烯酸(substituted(diphenylaminophenyl)cyclopenta-dithiophene-2-cyanoacrylic acids)。該第二類別例如是經取代的(((二苯基胺基苯基)苯并噻二唑基)-環戊并二噻基)芳基/雜芳基-2--氰基丙烯酸(substituted(((diphenylaminophenyl)benzothia-diazolyl)-cyclopentadithiophenyl)aryl/heteroaryl-2-cyanoacrylic acids)、或是(((二苯基胺基苯基)-環戊并二噻基)苯并噻二唑基)芳基/雜芳基-2-氰基丙烯酸((((diphenyl-aminophenyl)-cyclopentadithiophenyl)benzothiadiazolyl)aryl/heteroaryl-2-cyano-acrylic acids)。 There are many dyes available, and according to certain characteristics, the dye family includes triarylamine (triarylamine) organic dyes, which are included in the class of donor-π bridge-acceptor (D-π-A) and in Any one or a mixture of dyes in the class of donor-acceptor-π bridge-acceptor (D-A-π-A). Such dyes give good efficiencies of the solar cells, especially in combination with a copper-based conductive medium. The first class of photosensitizers are, for example, substituted (diphenylaminophenyl)-thiophene-2-cyanoacrylic acids, or substituted (diphenylaminophenyl)-thiophene-2-cyanoacrylic acids, Phenylaminophenyl)cyclopenta-dithiophene-2-cyanoacrylic acids (substituted(diphenylaminophenyl)cyclopenta-dithiophene-2-cyanoacrylic acids). This second class is, for example, substituted (((diphenylaminophenyl)benzothiadiazolyl)-cyclopentadithiyl)aryl/heteroaryl-2-cyanoacrylic acid (substituted (((diphenylaminophenyl)benzothia-diazolyl)-cyclopentadithiophenyl)aryl/heteroaryl-2-cyanoacrylic acids), or (((diphenylaminophenyl)-cyclopentadithiophenyl)benzothiadiazolyl) Aryl/heteroaryl-2-cyano-acrylic acids ((((diphenyl-aminophenyl)-cyclopentadithiophenyl)benzothiadiazolyl)aryl/heteroaryl-2-cyano-acrylic acids).

該第一導體18係電連接至該第一導電層12,並且該第二導體20係電連接至該第二導電層16。例如,該第一及第二導體係由金屬所做成的,以達成高的導電度。 The first conductor 18 is electrically connected to the first conductive layer 12 , and the second conductor 20 is electrically connected to the second conductive layer 16 . For example, the first and second conductors are made of metal to achieve high conductivity.

該封裝5係包括一覆蓋該太陽能電池單元2的一頂端側的頂端片5a、以及一覆蓋該太陽能電池單元的一底部側的底部片5b。該封裝5係封入該太陽能電池單元以及該電解質,並且作用為用於該電解質的液體阻障,因而避免該電解質從該光伏充電器1洩漏。該頂端片5a是透明的、或是至少覆蓋該太陽能電池單元2的主動區域的部分是透明的。在該太陽能電池單元的頂端側上的頂端片5a係覆蓋該光吸收層10,並且容許光通過。該頂端片以及底部片5a-b例如是由一種聚合物材料所做成的。一種聚合物材料是強健且耐撞擊的,而且是撓性的。該頂端片以及底部片5a-b係在該些邊緣處被密封,以便於保護該太陽能電池單元對抗周圍的大氣,並且避免該電解質從在該太陽能電池單元的內部的蒸發或洩漏。 The package 5 comprises a top sheet 5a covering a top side of the solar cell unit 2, and a bottom sheet 5b covering a bottom side of the solar cell unit. The encapsulation 5 encloses the solar cell unit and the electrolyte and acts as a liquid barrier for the electrolyte, thus avoiding leakage of the electrolyte from the photovoltaic charger 1 . The top sheet 5 a is transparent, or at least the part covering the active area of the solar cell 2 is transparent. The top sheet 5a on the top side of the solar cell covers the light absorbing layer 10 and allows light to pass through. The top and bottom sheets 5a-b are for example made of a polymer material. A polymer material is strong and impact resistant, yet flexible. The top and bottom sheets 5a-b are sealed at the edges in order to protect the solar cell against the surrounding atmosphere and avoid evaporation or leakage of the electrolyte from inside the solar cell.

該相對電極可包括一觸媒層。或者是,該第二導電層16可包括被整合在該第二導電層中的觸媒粒子。 The opposite electrode may include a catalyst layer. Alternatively, the second conductive layer 16 may include catalyst particles integrated in the second conductive layer.

例如,該第一及第二導電層12、16是由一種從一由鈦、鈦合金、鎳合金、石墨、以及非晶碳、或是其之混合物所構成的群組選出的材料所做成的。較佳的是,該第一及第二導電層12、16是由金屬或是一金屬合金所做成的,以提供高的導電度。最佳的是,該些多孔的導電層是由鈦或是一鈦合金所做成的。在此例子中,該第一及第二多孔的導電層12、16是由鈦(Ti)所做成的。 For example, the first and second conductive layers 12, 16 are made of a material selected from the group consisting of titanium, titanium alloys, nickel alloys, graphite, and amorphous carbon, or mixtures thereof of. Preferably, the first and second conductive layers 12, 16 are made of metal or a metal alloy to provide high conductivity. Most preferably, the porous conductive layers are made of titanium or a titanium alloy. In this example, the first and second porous conductive layers 12, 16 are made of titanium (Ti).

在一例子中,該多孔的基板是一包括一種具有編織的微纖維的織物的片。一微纖維是一種具有一小於10μm並且大於1nm的直徑的纖維。一具有編織的微纖維的織物可以被做成是非常薄的,而且在機械上非常強健的。該 具有編織的微纖維的織物係包含在該些編織的紗之間的孔洞。該多孔的基板可以進一步包括一或多層被設置在該些編織的微纖維上的非編織的微纖維,以至少部份地擋住在該些紗之間的孔洞。再者,該非編織的層係在該基板上提供一平滑的表面,其係適合用於在該基板上藉由印刷來施加一平滑的導電層。該基板例如是由玻璃、二氧化矽(SiO2)、氧化鋁(Al2O3)、鋁矽酸鹽(aluminosilicate)或是石英所做成的。適當的是,該多孔的基板的非編織以及編織的微纖維如是由玻璃纖維所做成的,其係提供一強健且撓性的基板。該具有編織的微纖維的織物的厚度適當的是在4μm到30μm之間,較佳的是在4μm到20μm之間,以提供所需的機械強度,同時其係足夠薄的以致能離子在該相對電極以及工作電極之間的快速的傳輸。 In one example, the porous substrate is a sheet comprising a fabric with woven microfibers. A microfiber is a fiber having a diameter less than 10 μm and greater than 1 nm. A fabric with woven microfibers can be made to be very thin and mechanically very strong. The fabric with woven microfibers contains holes between the woven yarns. The porous substrate can further include one or more layers of non-woven microfibers disposed on the woven microfibers to at least partially block pores between the yarns. Furthermore, the non-woven layer provides a smooth surface on the substrate, which is suitable for applying a smooth conductive layer on the substrate by printing. The substrate is made of, for example, glass, silicon dioxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), aluminosilicate or quartz. Suitably, the non-woven and woven microfibers of the porous substrate, such as those made of glass fibers, provide a strong and flexible substrate. The thickness of the fabric with woven microfibers is suitably between 4 μm and 30 μm, preferably between 4 μm and 20 μm, to provide the required mechanical strength, while being thin enough to allow ions to pass through the Fast transfer between counter and working electrodes.

在一特點中,光吸收層10以及該第一導電層12是非透明的。在此例子中,該太陽能電池單元2的上表面是均勻黑色的,即如同在圖1中所展示者。該光吸收層的TiO2是黑色的。並沒有如同在習知技術的太陽能電池面板中地延伸橫跨該太陽能電池單元2的表面導體。這是因為該光伏充電器1只包含單一太陽能電池單元,而不是如同在用於習知技術的光伏充電器的太陽能板中的複數個串聯連接的太陽能電池單元。 In one feature, the light absorbing layer 10 and the first conductive layer 12 are non-transparent. In this example, the upper surface of the solar cell unit 2 is uniformly black, ie as shown in FIG. 1 . The TiO2 of the light absorbing layer is black. There are no surface conductors extending across the solar cells 2 as in prior art solar cell panels. This is because the photovoltaic charger 1 comprises only a single solar cell, rather than a plurality of solar cells connected in series as in solar panels used in prior art photovoltaic chargers.

該太陽能電池單元2的尺寸,亦即該太陽能電池單元的長度及寬度可以根據其所適配於充電的何種裝置來變化。於是,該太陽能電池單元的主動區域可以根據要充電的裝置的功率需求來變化。該太陽能電池單元的可能的形狀及尺寸並沒有限制。例如,該太陽能電池單元的尺寸可以在1×1cm的具有一1cm2的主動區域到1×1m的具有一1m2的主動區域之間變化。該太陽能電池單元的長度及寬度並沒有上限。然而,一大於1×1m的太陽能電池單元在該太陽能電池單元的製造期間可能會過於龐大而難以傳輸的。 The size of the solar cell unit 2 , ie the length and width of the solar cell unit can vary according to which device it is adapted to charge. The active area of the solar cell can then be varied according to the power requirements of the device to be charged. The possible shapes and sizes of the solar cells are not limited. For example, the size of the solar cell can vary from 1 x 1 cm with a 1 cm 2 active area to 1 x 1 m with a 1 m 2 active area. There is no upper limit to the length and width of the solar cell unit. However, a solar cell unit larger than 1 x 1 m may be too bulky to transport during the manufacture of the solar cell unit.

該光伏充電器1係包含一單一太陽能電池單元2以及一電連接至 該第一及第二導體18、20的升壓轉換器22。一升壓轉換器(亦稱為步升轉換器或是步升調節器)是一種DC至DC電源轉換器,其係在步降從其輸入至其輸出的電流時步升電壓。藉由該單一太陽能電池單元所產生的電壓是太低而無法充電某些類型的電池,例如是需要約3.6V的鋰電池。該升壓轉換器係適配於在步降來自該太陽能電池單元的電流時,步升來自該太陽能電池單元2的電壓。所需的電壓位準係藉由連接一升壓轉換器至該單一太陽能電池單元來加以達成。因此,提供一種能夠充電需要不同的電壓位準的電池的只有單一太陽能電池單元之光伏充電器是可能的。 The photovoltaic charger 1 consists of a single solar cell unit 2 and an electrical connection to The boost converter 22 of the first and second conductors 18 , 20 . A boost converter (also known as a step-up converter or a step-up regulator) is a DC-to-DC power converter that steps up the voltage while stepping down the current from its input to its output. The voltage generated by the single solar cell unit is too low to charge certain types of batteries, such as lithium batteries which require about 3.6V. The boost converter is adapted to step up the voltage from the solar cell 2 while stepping down the current from the solar cell unit. The required voltage level is achieved by connecting a boost converter to the single solar cell unit. Therefore, it is possible to provide a photovoltaic charger with only a single solar cell capable of charging batteries requiring different voltage levels.

該光伏充電器1係包括連接元件3、4以用於連接該光伏充電器1至其正在充電的該電子裝置的一電池。該升壓轉換器22係包括電連接至該第一及第二導體18、20的輸入端子、以及電連接至該些連接元件3、4的輸出端子。 The photovoltaic charger 1 comprises connecting elements 3, 4 for connecting the photovoltaic charger 1 to a battery of the electronic device it is charging. The boost converter 22 comprises an input terminal electrically connected to the first and second conductors 18 , 20 and an output terminal electrically connected to the connecting elements 3 , 4 .

所產生的電壓的位準係依據在該電解質中的離子而定。例如,若該電解質包含銅離子,則該太陽能電池單元2係在藉由該光吸收層接收到的光強度是20000勒克斯時,在一開路中產生一約1V的電壓,並且若該電解質包含碘化物以及三碘化物離子,則該太陽能電池單元係在藉由該光吸收層10接收到的光強度是20000勒克斯時,在一開路中產生一約0.65V的電壓。然而,當藉由該光吸收層接收到的光強度係變化在200到20000勒克斯之間時,該太陽能電池單元2係在一開路中產生一最多變化0.4V的電壓。在該升壓轉換器22的電壓轉換上的要求係依據該可再充電的電池的電壓要求而定。大多數用於消費者應用的電子裝置的可再充電的電池的類型都需要一介於1到10V之間的電壓。該升壓轉換器係使得產生一在該可再充電的電池所需的一位準的穩定的電壓成為可能的。較佳的是,該升壓轉換器22係能夠轉換來自該太陽能電池單元的輸出電壓及電流至一位在1到10V之間的電壓位準。不同的升壓轉換器可以根據所需的輸出電壓而被利用。因此,該光伏充電器1係能夠充電用於許多類型的電子裝 置的電池,例如是鋰電池(3.6V)、NiCd以及NiMH電池(1.25V)。 The level of the generated voltage depends on the ions in the electrolyte. For example, if the electrolyte contains copper ions, the solar cell 2 generates a voltage of about 1 V in an open circuit when the light intensity received by the light absorbing layer is 20000 lux, and if the electrolyte contains iodine compound and triiodide ions, the solar cell unit generates a voltage of about 0.65V in an open circuit when the light intensity received by the light absorbing layer 10 is 20000 lux. However, when the light intensity received by the light absorbing layer varies between 200 and 20000 lux, the solar cell 2 generates a voltage that varies by at most 0.4V in an open circuit. The requirements on the voltage conversion of the boost converter 22 depend on the voltage requirements of the rechargeable battery. Most rechargeable battery types used in electronic devices for consumer applications require a voltage between 1 and 10V. The boost converter makes it possible to generate a stable voltage at a level required by the rechargeable battery. Preferably, the boost converter 22 is capable of converting the output voltage and current from the solar cell unit to a voltage level between 1 and 10V. Different boost converters can be utilized depending on the desired output voltage. Therefore, the photovoltaic charger 1 series is capable of charging many types of electronic devices installed batteries, such as lithium batteries (3.6V), NiCd and NiMH batteries (1.25V).

從測試已經展示該太陽能電池單元2係能夠在藉由該光吸收層接收到的光強度是200勒克斯時產生一至少15μA/cm2的電流,並且在藉由該光吸收層10接收到的光強度是20000勒克斯時產生一至少1500μA/cm2的電流。因此,該太陽能電池單元係能夠在一廣範圍的光強度中產生充分的電力以充電電子裝置的電池。 It has been shown from tests that the solar cell unit 2 is capable of generating a current of at least 15 μA/cm 2 when the light intensity received through the light-absorbing layer is 200 lux, and when the light received through the light-absorbing layer 10 is An intensity of 20,000 lux produces a current of at least 1500 μA/cm 2 . Thus, the solar cell unit is capable of generating sufficient power to charge the battery of an electronic device over a wide range of light intensities.

根據某些特點,至少該第一導電層12以及該多孔的基板14係連續地延伸穿過該整個太陽能電池單元2。該光吸收層10以及該第二導電層16至少連續地延伸穿過該太陽能電池單元的一主要的部分。在一例子中,如同在圖5中所示,該光吸收層10的一較小的部分可被移除,使得在該太陽能電池單元2的一頂端側上的第一導體18係具有與該第一導電層的直接的電性接觸。在此例子中,該太陽能電池單元2的頂端側是該光吸收層10的頂端側、以及該第一導電層12的其中該光吸收層已經被移除的頂端側。在另一例子中,如同在圖6中所示,該第二導電層16的一或多個較小的部分可被移除,使得該第一導體18可以具有從該太陽能電池單元2的一底部側來與該第一導電層12的電性接觸。 According to certain characteristics, at least the first conductive layer 12 and the porous substrate 14 extend continuously through the entire solar cell unit 2 . The light absorbing layer 10 and the second conductive layer 16 extend continuously through at least a substantial portion of the solar cell unit. In one example, as shown in FIG. 5 , a smaller portion of the light absorbing layer 10 can be removed so that the first conductor 18 on a top side of the solar cell unit 2 has a Direct electrical contact to the first conductive layer. In this example, the top side of the solar cell unit 2 is the top side of the light absorbing layer 10 and the top side of the first conductive layer 12 where the light absorbing layer has been removed. In another example, as shown in FIG. 6, one or more smaller portions of the second conductive layer 16 can be removed so that the first conductor 18 can have a The bottom side is in electrical contact with the first conductive layer 12 .

圖3-5係展示如何在該太陽能電池單元2上配置該第一及第二導體18、20的一第一例子。圖3係展示一光伏充電器1a的俯視圖。圖4係展示該光伏充電器1a的仰視圖,並且圖5是展示穿過該光伏充電器1a的一橫截面。如同在圖1中所示,該光伏充電器1a可包括一電連接至該第一及第二導體18的升壓轉換器22(未顯示),其係適配於步升來自該太陽能電池單元2的電壓。在此例子中,如同在圖3中所示,該第一導體18係電連接至該第一導電層12,並且沿著該太陽能電池單元2的頂端側的一邊緣延伸。如同在圖4中所示,該第二導體20係電連接至該第二導電層16,並且被設置在該太陽能電池單元2的底部側上。例如,該第一及第二導體18、20係包括一導電箔或是一導線。該第一導體18係 被設置在該第一導電層12上,並且沿著該第一導電層的一邊緣延伸。因此,該第一導體18並不干擾到該光伏充電器、或是其所充電的裝置的設計,並且可以輕易地被覆蓋。第一導電層12的一上表面係包括一面對該頂端片5a的細長的表面部分,並且該第一導體18係被設置在該細長的表面部分上。該第一導體18係與該第一導電層機械式且電性接觸,並且沿著該細長的表面部分延伸。該光吸收層10的末端係接近該第一導體18,而且並不覆蓋該第一導電層12的其中該第一導體18係被設置的該細長的部分。 3-5 show a first example of how to arrange the first and second conductors 18 , 20 on the solar cell unit 2 . FIG. 3 shows a top view of a photovoltaic charger 1a. FIG. 4 shows a bottom view of the photovoltaic charger 1a, and FIG. 5 shows a cross section through the photovoltaic charger 1a. As shown in FIG. 1, the photovoltaic charger 1a may include a boost converter 22 (not shown) electrically connected to the first and second conductors 18, which is adapted to step up the voltage from the solar cell unit. 2 voltage. In this example, as shown in FIG. 3 , the first conductor 18 is electrically connected to the first conductive layer 12 and extends along an edge of the solar cell unit 2 on the top side. As shown in FIG. 4 , the second conductor 20 is electrically connected to the second conductive layer 16 and is arranged on the bottom side of the solar cell unit 2 . For example, the first and second conductors 18, 20 include a conductive foil or a wire. The first conductor 18 is is disposed on the first conductive layer 12 and extends along an edge of the first conductive layer. Therefore, the first conductor 18 does not interfere with the design of the photovoltaic charger, or the device it charges, and can be easily covered. An upper surface of the first conductive layer 12 includes an elongated surface portion facing the top sheet 5a, and the first conductor 18 is provided on the elongated surface portion. The first conductor 18 is in mechanical and electrical contact with the first conductive layer and extends along the elongated surface portion. The end of the light absorbing layer 10 is close to the first conductor 18 and does not cover the elongated portion of the first conductive layer 12 where the first conductor 18 is disposed.

該第二導電層16係具有一面對該底部片5b的底表面。該第二導體係與該底表面機械式且電性接觸,並且該第二導體係沿著該底表面延伸。在此例子中,該光伏充電器1a只有一第二導體20。或者是,該光伏充電器可以具有複數個延伸橫跨該第二導電層16的底表面的第二導體。在此例子中,如同在圖4中所示,該第二導體20係沿著該太陽能電池單元2的該底部側的一邊緣延伸。然而,該第二導體20可以用許多不同的方式來加以配置,只要其係和該第二導電層16電性接觸即可,因為該第二導體20是從該光伏充電器1a的外部看不見的。 The second conductive layer 16 has a bottom surface facing the bottom sheet 5b. The second conductor is in mechanical and electrical contact with the bottom surface, and the second conductor extends along the bottom surface. In this example, the photovoltaic charger 1 a has only a second conductor 20 . Alternatively, the photovoltaic charger may have a plurality of second conductors extending across the bottom surface of the second conductive layer 16 . In this example, as shown in FIG. 4 , the second conductor 20 extends along an edge of the bottom side of the solar cell unit 2 . However, the second conductor 20 can be configured in many different ways as long as it is in electrical contact with the second conductive layer 16 because the second conductor 20 is not visible from the outside of the photovoltaic charger 1a. of.

該第一導體18是細長的,並且在該太陽能電池單元2的該頂端側延伸在該封裝5的頂端片5a與該第一導電層12之間。該第二導體20是細長的,並且在該太陽能電池單元的該底部側延伸在該封裝5的底部片5b與該第二導電層16之間。該封裝係被設置有複數個關連到該第一及第二導體18、20的末端的入口,以容許該光伏充電器1a電連接至其將會供電的外部的裝置。該第一及第二導體18、20的末端係穿過在該封裝中的入口而延伸至該光伏充電器的外部。適當的是,該些入口係被配置在該封裝的該頂端片與底部片之間。該些導體18、20係延伸在接近該光伏充電器的末端的該頂端片與底部片之間,並且該些片係在該些導體周圍加以密封。此將會使得該光伏充電器的製造變得容易。 The first conductor 18 is elongated and extends between the top sheet 5 a of the encapsulation 5 and the first conductive layer 12 at the top side of the solar cell unit 2 . The second conductor 20 is elongated and extends between the bottom sheet 5b of the encapsulation 5 and the second conductive layer 16 at the bottom side of the solar cell unit. The enclosure is provided with a plurality of inlets connected to the ends of the first and second conductors 18, 20 to allow the photovoltaic charger 1a to be electrically connected to external devices that it will power. The ends of the first and second conductors 18, 20 extend through inlets in the package to the outside of the photovoltaic charger. Suitably, the inlets are arranged between the top and bottom sheets of the package. The conductors 18, 20 extend between the top and bottom sheets near the ends of the photovoltaic charger, and the sheets are sealed around the conductors. This will ease the manufacture of the photovoltaic charger.

圖6係展示在該太陽能電池單元2上如何配置該第一及第二導體18、20的一第二例子。圖6係展示穿過一光伏充電器1b的一橫截面。此例子係與先前的例子不同在於該第一導體18以及該第二導體20係被設置在該太陽能電池單元2的底部側。因此,在該光伏充電器1b的一正面側上沒有可見的導體。該第一導體18係被配置在該多孔的基板14與該底部片5b之間。該第一導體18係與該第二導電層16電性絕緣的。例如,該第二導電層16係終端在與該第一導體18隔一段距離處,因而一絕緣間隙24係被形成在該第一導體18與該第二導電層16之間。在此例子中,該第一導體18係沿著該多孔的基板的一邊緣延伸。然而,該第一導體18可以用不同的方式而被設置在該多孔的基板14上。該第一導體18係和該第一導電層12電性接觸。此可以用不同的方式來加以達成。例如,該多孔的基板係包括被設置在該第一導體以及該第一導電層之間的導電材料,以達成在該第一導體18以及該第一導電層12之間的電性接觸。譬如,該多孔的基板的一部分可包括一或多個被填入一種例如是導電粒子的導電材料的貫孔26、或是該部分可包括被容置在該多孔的基板的孔中的導電粒子,並且形成一穿過該多孔的基板的導電路徑。此可以藉由在該第一導體與該第一導電層之間滲透導電粒子到該多孔的基板來加以達成。該光伏充電器1b可以包括一升壓轉換器22(未顯示),其係電連接至該第一及第二導體18、20並且適配於步升來自該太陽能電池單元2的電壓,即如同在圖1中所示者。 FIG. 6 shows a second example of how the first and second conductors 18 , 20 are arranged on the solar cell unit 2 . Figure 6 shows a cross-section through a photovoltaic charger 1b. This example is different from the previous examples in that the first conductor 18 and the second conductor 20 are arranged on the bottom side of the solar cell unit 2 . Therefore, there are no visible conductors on a front side of the photovoltaic charger 1b. The first conductor 18 is disposed between the porous substrate 14 and the bottom sheet 5b. The first conductor 18 is electrically insulated from the second conductive layer 16 . For example, the second conductive layer 16 is terminated at a distance from the first conductor 18 such that an insulating gap 24 is formed between the first conductor 18 and the second conductive layer 16 . In this example, the first conductor 18 extends along an edge of the porous substrate. However, the first conductor 18 can be disposed on the porous substrate 14 in different ways. The first conductor 18 is in electrical contact with the first conductive layer 12 . This can be achieved in different ways. For example, the porous substrate includes a conductive material disposed between the first conductor and the first conductive layer to achieve electrical contact between the first conductor 18 and the first conductive layer 12 . For example, a portion of the porous substrate may include one or more through-holes 26 filled with a conductive material such as conductive particles, or the portion may include conductive particles received in the pores of the porous substrate. , and form a conductive path through the porous substrate. This can be achieved by infiltrating the porous substrate with conductive particles between the first conductor and the first conductive layer. The photovoltaic charger 1b may include a boost converter 22 (not shown) electrically connected to the first and second conductors 18, 20 and adapted to step up the voltage from the solar cell 2, i.e. as Those shown in Figure 1.

針對於不同的光條件所產生的每面積的功率的量測係已經在本發明的一種光伏充電器的一個例子上做成。在此例子中,該太陽能電池單元係具有一14.5×23.4cm的尺寸、以及一340cm2的主動面積。該太陽能電池單元的電解質係包括碘化物以及三碘化物離子,並且該第一及第二導電層是由鈦(Ti)所做成的。未加載的光伏充電器係被曝露在介於200到20000勒克斯(每平方公尺流明)之間的光下,並且來自該光伏充電器的輸出電壓以及輸出電流係加以量測。 該量測的結果係被展示在以下的表1中。所產生的總功率係根據量測到的電流及電壓而被判斷出,並且所產生的每面積的功率係藉由將該總功率除以該太陽能電池單元的主動面積而被判斷出。 Measurements of the generated power per area for different light conditions have been made on an example of a photovoltaic charger of the present invention. In this example, the solar cell unit has a size of 14.5 x 23.4 cm, and an active area of 340 cm 2 . The electrolyte system of the solar cell unit includes iodide and triiodide ions, and the first and second conductive layers are made of titanium (Ti). An unloaded photovoltaic charger was exposed to light between 200 and 20,000 lux (lumens per square meter), and the output voltage and output current from the photovoltaic charger were measured. The results of this measurement are shown in Table 1 below. The total power generated is determined from the measured current and voltage, and the power per area generated is determined by dividing the total power by the active area of the solar cell unit.

Figure 107129601-A0305-02-0030-1
Figure 107129601-A0305-02-0030-1

表1是對於一具有一種包括碘化物(I-)以及三碘化物(I3 -)離子的電解質的太陽能電池單元,針對於在200-20000勒克斯之間的光強度所產生的每主動面積功率、每主動面積電流、電壓以及填入因子(ff)的量測。三碘化物的含量係在1mM到20mM之間。碘化物係作用為ox,並且三碘化物係作用為紅色。 Table 1 is the power per active area produced for a light intensity between 200-20000 lux for a solar cell unit with an electrolyte comprising iodide (I ) and triiodide (I 3 ) ions , measurement of current, voltage and fill factor (ff) per active area. The content of triiodide is between 1mM and 20mM. The iodide system acts as ox, and the triiodide system acts as red.

該太陽能電池單元在不同的光強度(以勒克斯單元量測的強度)下的效能的量測可藉由照光在該太陽能電池單元上,並且同時掃描一橫跨該太陽能電池單元的施加的電壓以量測及收集該太陽能電池的電流-電壓的響應來加以完成。該些量測是利用一暖白光LED作為光源來加以執行的。 The performance of the solar cell at different light intensities (intensities measured in lux units) can be measured by shining light on the solar cell and simultaneously sweeping an applied voltage across the solar cell to This is accomplished by measuring and collecting the current-voltage response of the solar cell. The measurements were performed using a warm white LED as the light source.

在照明之下收集到的IV曲線係提供有關該開路電壓、短路電流、填充因子、該功率以及該電力轉換效率的資訊。藉由在不同的光強度下收集IV曲線,收集分別有關該開路電壓、短路電流、填充因子、該功率以及該電力轉換效率的光強度相依性的資訊是可能的。 IV curves collected under illumination provide information on the open circuit voltage, short circuit current, fill factor, the power, and the power conversion efficiency. By collecting IV curves at different light intensities, it is possible to gather information on the light intensity dependence of the open circuit voltage, short circuit current, fill factor, the power and the power conversion efficiency, respectively.

來自表1的結果是來自在一太陽能電池單元的一樣本上的量測。在此類型的不同的太陽能電池單元上的量測可能會變化。例如,所產生的每面積的功率可能會是5μW/cm2到8μW/cm2The results from Table 1 are from measurements on a sample of a solar cell. Measurements on different solar cells of this type may vary. For example, the generated power per area might be 5 μW/cm 2 to 8 μW/cm 2 .

用於照光在該太陽能電池上的光源可以根據該太陽能電池的應 用而變化。用於室內應用,使用螢光燈泡或是室內LED照明可能是有用的。用於利用戶外光的太陽能電池應用,利用一太陽光模擬器來產生人造日光以照光在該太陽能電池上可能是有用的。 The light source for illuminating on this solar cell can be according to the application of this solar cell Use and change. For indoor applications, it may be useful to use fluorescent bulbs or indoor LED lighting. For solar cell applications utilizing outdoor light, it may be useful to utilize a solar simulator to generate artificial sunlight to shine on the solar cell.

該光源的光強度可以用不同的方式來加以量測,其例如是利用被設置在相對於該光源的和該太陽能電池單元相同的位置處的一照度計或是一分光輻射度計(spectroradiometer)。在此例中,該光強度係利用一照度計來加以量測的。 The light intensity of the light source can be measured in different ways, for example by using an illuminometer or a spectroradiometer placed at the same position relative to the light source as the solar cell . In this example, the light intensity is measured using a lux meter.

表1係展示對於以勒克斯量測的不同的光強度,所判斷出的以每平方公分微瓦(μW/cm2)的功率。如同從該表可見的,該太陽能電池單元係在藉由該太陽能電池單元接收到的光強度是200勒克斯時產生6.2μW/cm2,在藉由該太陽能電池單元接收到的光強度是5000勒克斯時產生208μW/cm2,並且在藉由該太陽能電池單元接收到的光強度是20000勒克斯時產生730μW/cm2。此係展示當藉由該光吸收層接收到的光強度是200勒克斯時,該光伏充電器係能夠產生超過5μW/cm2,並且甚至是超過5.5μW/cm2。此亦展示當藉由該光吸收層接收到的光強度是20000勒克斯時,該光伏充電器係能夠產生超過700μW/cm2。因此,當藉由該光吸收層接收到的光強度是介於200到20000勒克斯之間時,該太陽能電池單元係至少能夠產生5.5到700μW/cm2。當藉由該光吸收層接收到的光強度係從200增高到20000勒克斯時,藉由該光伏充電器所產生的功率係實質線性地增高。因此,該光伏充電器係能夠在一廣範圍的不同的光條件下產生電力。 Table 1 shows the determined power in microwatts per square centimeter (μW/cm 2 ) for different light intensities measured in lux. As can be seen from the table, the solar cell produces 6.2 μW/cm 2 when the light intensity received by the solar cell is 200 lux and when the light intensity received by the solar cell is 5000 lux 208 μW/cm 2 is generated when the solar cell unit receives light intensity of 20000 lux and 730 μW/cm 2 is generated. This shows that the photovoltaic charger is capable of generating more than 5 μW/cm 2 , and even more than 5.5 μW/cm 2 , when the light intensity received by the light absorbing layer is 200 lux. It also shows that the photovoltaic charger system can generate more than 700 μW/cm 2 when the light intensity received by the light absorbing layer is 20000 lux. Therefore, when the light intensity received by the light absorbing layer is between 200 to 20000 lux, the solar cell unit can generate at least 5.5 to 700 μW/cm 2 . When the light intensity received by the light absorbing layer increases from 200 to 20000 lux, the power generated by the photovoltaic charger increases substantially linearly. Thus, the photovoltaic charger is capable of generating power under a wide range of different light conditions.

圖7係根據表1的量測到的值,展示對於介於200到20000勒克斯之間的光強度所產生的電壓(mV)的圖。如同從該圖及表1可見的,該太陽能電池單元係能夠在藉由該太陽能電池單元接收到的光強度是200勒克斯時,在一開路中產生一480mV的電壓。再者,該光伏充電器係能夠在藉由該太陽能電池 單元接收到的光強度是20000勒克斯時,在一開路中產生一650mV的電壓。如同從該圖可見的,所產生的電壓的增加是在200到3000勒克斯之間最大的。所產生的電壓在3000到20000勒克斯之間是實質線性的。如同從該表1可見的,在介於200到20000勒克斯之間產生的電壓上的差值係只有167mV。因此,當藉由該光吸收層接收到的光強度係變化在200到20000勒克斯之間時,該太陽能電池單元係在一開路中產生一變化小於0.2V的電壓。於是,在200到20000勒克斯之間所產生的電壓上的差值是約35%。 FIG. 7 is a graph showing the voltage (mV) generated for light intensities between 200 and 20000 lux according to the measured values of Table 1. FIG. As can be seen from the figure and Table 1, the solar cell was able to generate a voltage of 480 mV in an open circuit when the light intensity received by the solar cell was 200 lux. Furthermore, the photovoltaic charger is able to use the solar cell When the light intensity received by the unit is 20000 lux, a voltage of 650mV is generated in an open circuit. As can be seen from the figure, the resulting increase in voltage is greatest between 200 and 3000 lux. The generated voltage is substantially linear between 3000 and 20000 lux. As can be seen from this Table 1, the difference in voltage generated between 200 and 20000 lux is only 167 mV. Therefore, when the intensity of light received by the light absorbing layer varies between 200 and 20000 lux, the solar cell unit generates a voltage that varies less than 0.2V in an open circuit. Thus, the difference in voltage generated between 200 and 20000 lux is about 35%.

圖8係根據表1的量測到的值,展示對於介於200到20000勒克斯之間的光強度所產生的電流(μA/cm2)的圖。如同從該圖可見的,該電流係線性地增加。 FIG. 8 is a graph showing the generated current (μA/cm 2 ) for light intensities between 200 and 20000 lux according to the measured values of Table 1. FIG. As can be seen from the figure, the current increases linearly.

圖9係展示根據表1的量測到的電壓及電流的值所計算出的對於介於200到20000勒克斯之間的光強度所產生的每面積的功率(μW/cm2)的圖。如同從該圖可見的,在該間隔200-20000勒克斯中,該量測到的功率係實質成比例於該進入的光強度。 9 is a graph showing the generated power per area (μW/cm 2 ) for light intensities between 200 and 20000 lux calculated from the measured voltage and current values in Table 1. FIG. As can be seen from the figure, in the interval 200-20000 lux, the measured power is substantially proportional to the incoming light intensity.

對於不同的光條件所產生的每面積的功率的進一步量測係已經在本發明的一光伏充電器的另一個例子上加以做成。在此例子中,該太陽能電池單元的電解質係包括銅離子(Cu+及Cu2+),此係為在被量測的光伏充電器之間唯一的差異。該些量測條件是相同的。未加載的光伏充電器係被曝露到介於200到20000勒克斯(每平方公尺流明)之間的光,並且來自該光伏充電器的輸出電壓及輸出電流係被量測。該些量測的結果係被展示在以下的表2中。 Further measurements of the power per area produced for different light conditions have been made on another example of a photovoltaic charger of the present invention. In this example, the solar cell's electrolyte system included copper ions (Cu + and Cu 2+ ), which was the only difference between the photovoltaic chargers measured. These measurement conditions are the same. An unloaded photovoltaic charger was exposed to light between 200 and 20000 lux (lumens per square meter), and the output voltage and output current from the photovoltaic charger were measured. The results of these measurements are shown in Table 2 below.

Figure 107129601-A0305-02-0033-4
Figure 107129601-A0305-02-0033-4

表2是針對於一具有一種包括銅離子的電解質的太陽能電池單元,對於在200-20000勒克斯之間的光強度所產生的每面積的功率、每面積的電流、電壓以及填充因子(ff)的量測;Cu+為紅色,並且Cu2+為ox。 Table 2 is the power per area, current per area, voltage and fill factor (ff) produced for a solar cell with an electrolyte comprising copper ions for light intensities between 200-20000 lux Measured; Cu + is red and Cu 2+ is ox.

如同從該表2可見的,該太陽能電池單元係在藉由該太陽能電池單元接收到的光強度是200勒克斯時產生12.8μW/cm2,在藉由該太陽能電池單元接收到的光強度是5000勒克斯時產生498μW/cm2,並且在藉由該太陽能電池單元接收到的光強度是20000勒克斯時產生2020μW/cm2。此係展示此光伏充電器係能夠在藉由該光吸收層接收到的光強度是200勒克斯時產生超過12μW/cm2。此亦展示該光伏充電器係能夠在藉由該光吸收層接收到的光強度是20000勒克時產生超過2000μW/cm2。當藉由該光吸收層接收到的光強度係從200增加到20000勒克斯時,藉由該光伏充電器所產生的功率係實質線性地增加。因此,該光伏充電器係能夠在一廣範圍的不同的光條件下產生電力。 As can be seen from the Table 2, the solar cell generates 12.8 μW/cm 2 when the light intensity received by the solar cell is 200 lux, and when the light intensity received by the solar cell is 5000 lux 498 μW/cm 2 is produced at lux, and 2020 μW/cm 2 is produced when the light intensity received by the solar cell unit is 20000 lux. This shows that the photovoltaic charger is capable of generating more than 12 μW/cm 2 when the light intensity received by the light absorbing layer is 200 lux. It is also shown that the photovoltaic charger is capable of generating more than 2000 μW/cm 2 when the light intensity received by the light absorbing layer is 20000 lux. When the light intensity received by the light absorbing layer increases from 200 to 20000 lux, the power generated by the photovoltaic charger increases substantially linearly. Thus, the photovoltaic charger is capable of generating power under a wide range of different light conditions.

圖10係根據表2的量測到的值,展示對於在200到50000勒克斯之間的光強度所產生的電壓(mV)的圖。如同從該圖及表2可見的,該太陽能電池單元係能夠在藉由該太陽能電池單元接收到的光強度是200勒克斯時,在一開路中產生一699mV的電壓。再者,該光伏充電器係能夠在藉由該太陽能電池單元接收到的光強度是20000勒克斯時,在一開路中產生一943mV的電壓。如同從該圖可見的,在3000到50000勒克斯之間所產生的電壓是實質線性的。如同 從該表2可見的,在200到20000勒克斯之間所產生的電壓上的差值係只有244mV。於是,在200到20000勒克斯之間所產生的電壓上的差值係約35%。在200到50000勒克斯之間所產生的電壓上的差值係只有259mV。因此,當藉由該光吸收層接收到的光強度係在200到50000勒克斯之間變化時,該太陽能電池單元係在一開路中產生一變化小於300mV的電壓。於是,在200到50000勒克斯之間所產生的電壓上的差值係約37%。 FIG. 10 is a graph showing the generated voltage (mV) for light intensities between 200 and 50000 lux according to the measured values of Table 2. FIG. As can be seen from the figure and Table 2, the solar cell was able to generate a voltage of 699 mV in an open circuit when the light intensity received by the solar cell was 200 lux. Furthermore, the photovoltaic charger is capable of generating a voltage of 943mV in an open circuit when the light intensity received by the solar cell unit is 20000 lux. As can be seen from this figure, the voltage generated is substantially linear between 3000 and 50000 lux. as From this table 2 it can be seen that the difference in the voltage generated between 200 and 20000 lux is only 244mV. Thus, the difference in voltage generated between 200 and 20000 lux is about 35%. The difference in voltage produced between 200 and 50,000 lux is only 259mV. Therefore, when the intensity of light received by the light absorbing layer varies between 200 and 50,000 lux, the solar cell unit generates a voltage that varies less than 300 mV in an open circuit. Thus, the difference in voltage generated between 200 and 50,000 lux is about 37%.

圖11係根據表2的量測到的值,展示對於在200到50000勒克斯之間的光強度所產生的電流(μA/cm2)的圖。如同從該圖可見的,該電流係線性地增加。 FIG. 11 is a graph showing the generated current (μA/cm 2 ) for light intensities between 200 and 50000 lux according to the measured values of Table 2. FIG. As can be seen from the figure, the current increases linearly.

圖12係展示根據表1的電壓及電流的量測到的值計算出的對於在200到50000勒克斯之間的光強度所產生的每面積的功率(μW/cm2)的圖。如同從該圖可見的,在該間隔200-20000勒克斯中,該量測到的功率係實質成比例於該進入的光強度。 12 is a graph showing the generated power per area (μW/cm 2 ) for light intensities between 200 and 50000 lux calculated from the measured values of voltage and current in Table 1. FIG. As can be seen from the figure, in the interval 200-20000 lux, the measured power is substantially proportional to the incoming light intensity.

圖13係展示一平板電腦28的一個例子,其係包括一可再充電的電池(未顯示)、一殼體29、以及一整合在該殼體29中的用於充電該電池的光伏充電器1。該光伏充電器1可以是具有該類型1a或1b。該平板電腦係以一俯視圖來加以展示。該光伏充電器的太陽能電池單元2的形狀及尺寸係適配於該殼體29的一上表面的尺寸及形狀。例如,該太陽能電池單元的尺寸是15×20cm、或是20×30cm。該光伏充電器的頂表面是均質的,並且在該光伏充電器的表面上沒有可見的導體。該光伏充電器的太陽能電池單元可以完全地覆蓋該殼體的頂表面、或是其可以終端在相隔該殼體的邊緣一段距離處,即如同由該圖中的虛線所描繪者。若在圖5中所示的光伏充電器1a被使用,則該第一導體18係沿著該封裝的邊緣中之一來加以配置,因而可以輕易地被覆蓋,並且因此是使用者不可見的。該升壓轉換器22的輸出端子係連接至該平板電腦的可再充電的電 池。 Figure 13 shows an example of a tablet computer 28 that includes a rechargeable battery (not shown), a housing 29, and a photovoltaic charger integrated in the housing 29 for charging the battery 1. The photovoltaic charger 1 may be of the type 1a or 1b. The tablet computer is shown in a top view. The shape and size of the solar battery unit 2 of the photovoltaic charger are adapted to the size and shape of an upper surface of the casing 29 . For example, the size of the solar battery unit is 15×20 cm, or 20×30 cm. The top surface of the photovoltaic charger was homogeneous and there were no visible conductors on the surface of the photovoltaic charger. The solar cells of the photovoltaic charger may completely cover the top surface of the housing, or they may terminate at a distance from the edge of the housing, ie as depicted by the dashed lines in the figure. If the photovoltaic charger 1a shown in FIG. 5 is used, the first conductor 18 is arranged along one of the edges of the package and thus can be easily covered and thus is not visible to the user. . The output terminal of the boost converter 22 is connected to the rechargeable battery of the tablet computer. pool.

圖14及15a-b係展示包括一頭帶32的頭戴式耳機30的一個例子,該頭帶32係具有一被配置在該頭帶的一頂表面上的光伏充電器1。圖14係展示該頭戴式耳機30的一俯視圖,並且圖15a-b係展示該頭戴式耳機的側視圖。該頭戴式耳機係包括一可再充電的電池(未顯示),並且該升壓轉換器22的輸出端子係連接至該電池,使得該電池係藉由該光伏充電器來加以充電。該光伏充電器的太陽能電池單元2的形狀及尺寸係適配於該頭戴式耳機的頭帶32的尺寸及形狀。例如,該太陽能電池單元2的尺寸是1.5×25cm。該光伏充電器的頂表面係均質的,並且在該光伏充電器的表面上沒有可見的導體。該升壓轉換器22的輸出端子係連接至該頭帶的一可再充電的電池。 Figures 14 and 15a-b show an example of a headset 30 comprising a headband 32 with a photovoltaic charger 1 configured on a top surface of the headband. Figure 14 shows a top view of the headset 30, and Figures 15a-b show side views of the headset. The headset includes a rechargeable battery (not shown), and the output terminal of the boost converter 22 is connected to the battery so that the battery is charged by the photovoltaic charger. The shape and size of the solar cell unit 2 of the photovoltaic charger is adapted to the size and shape of the headband 32 of the headset. For example, the size of the solar battery unit 2 is 1.5×25 cm. The top surface of the photovoltaic charger was homogeneous and there were no visible conductors on the surface of the photovoltaic charger. The output terminal of the boost converter 22 is connected to a rechargeable battery of the headband.

圖16係展示一種用於製造該光伏充電器之方法的流程圖。該方法係包括產生S1一具有單一太陽能電池單元的片。該太陽能電池單元以及如何產生其有數種可能的變化。除了在此揭露的細節之外,公開的專利申請案WO2013149787(A1)及WO2014184379(A1)、以及未公開的EP申請案EP17209762.8係描述如何產生該太陽能電池單元2。於是,該三份文件係在此被揭露作為參考。 FIG. 16 is a flowchart showing a method for manufacturing the photovoltaic charger. The method includes producing S1, a sheet having a single solar cell. There are several possible variations of this solar cell unit and how it is produced. Apart from the details disclosed here, the published patent applications WO2013149787 (A1 ) and WO2014184379 (A1 ), and the unpublished EP application EP17209762.8 describe how to produce the solar cell 2 . Accordingly, these three documents are hereby disclosed by reference.

該方法進一步包括調適S2該單一太陽能電池單元的形狀及尺寸至一其上將設置該單一太陽能電池單元的表面,此係藉由切割具有該單一太陽能電池單元的該片中的一塊成為該形狀及尺寸來達成的。任何根據以上論述的限制的形狀及尺寸都是可能的。該單一太陽能電池單元因此可以被切割成為一產品的設計者所選擇的一形狀。 The method further includes adapting S2 the shape and size of the single solar cell unit to a surface on which the single solar cell unit is to be disposed by cutting one of the sheets with the single solar cell unit into the shape and size is achieved. Any shape and size according to the limitations discussed above is possible. The single solar cell unit can thus be cut into a shape chosen by the designer of a product.

該方法進一步包括配置S3該第一導體以和該第一導電層電性接觸、以及配置S4該第二導體以和該第二導電層電性接觸。針對於該第一及第二導體如何被配置的替換方案係已經於先前論述。 The method further includes configuring S3 the first conductor to be in electrical contact with the first conductive layer, and configuring S4 the second conductor to be in electrical contact with the second conductive layer. Alternatives for how the first and second conductors are configured have been discussed previously.

該方法進一步包括配置S5該封裝的一頂端片以及一底部片,使得它們圍繞該片的塊並且至少部份地圍繞該第一及第二導體,使得該封裝的該形狀及尺寸係適配於該單一太陽能電池單元的該形狀及尺寸。 The method further comprises configuring S5 a top sheet and a bottom sheet of the package such that they surround the block of the sheet and at least partially surround the first and second conductors such that the shape and dimensions of the package are adapted to The shape and size of the single solar cell unit.

該方法進一步包括密封S6該頂端片以及該底部片的邊緣以形成該封裝。該頂端片以及底部片面對該片的塊的側邊可以是黏性的,使得當它們被配置在該片之上時,它們係黏著至該片。根據某些特點,該頂端片以及底部片係大於該片的塊,使得它們在該些末端處附接至彼此。根據某些特點,一黏著劑可被設置在該些片上,而不是它們係為黏性的。 The method further includes sealing S6 edges of the top sheet and the bottom sheet to form the package. The top sheet and bottom sheet may be adhesive facing the side of the piece of the sheet so that when they are deployed over the sheet they adhere to the sheet. According to certain features, the top sheet and the bottom sheet are larger than the pieces of the sheet so that they are attached to each other at the ends. According to certain features, an adhesive may be provided on the sheets instead of them being sticky.

該方法進一步包括在該單一太陽能電池單元的該底部側上配置S3a、S4a該第一及第二導體。它們應該被配置在何處係已經於先前論述。或者是,該方法係包括沿著該太陽能電池單元的一頂端側的一邊緣的至少部分配置S3b、S4a該第一導體、以及在該單一太陽能電池單元的一底部側上配置至少一第二導體。該第一導體被配置在哪一側是該系統設計者的選擇。 The method further includes disposing S3a, S4a the first and second conductors on the bottom side of the single solar cell unit. Where they should be configured has been discussed previously. Alternatively, the method comprises disposing S3b, S4a the first conductor along at least part of an edge of a top side of the solar cell unit, and disposing at least a second conductor on a bottom side of the single solar cell unit . Which side the first conductor is configured on is a choice of the system designer.

根據某些特點,配置S3該第一導體以電性接觸到該第一導電層、以及配置S4該第二導體以電性接觸到該第二導電層係包括在配置S5該封裝的該頂端片以及一底部片之前,附接該第一導體至該頂端片5a或一底部片5b、以及附接該第二導體至該底部片5b。因此,該第一及第二導體係和該頂端片以及底部片被配置的同時而被配置在適當的地方。該至少一第一導體係接著附接至該頂端片5a或該底部片5b,使得其係在該封裝被形成時以和該第一導電層電性接觸,並且其中該至少一第二導體係被附接至該底部片5b,使得其係在該覆蓋被形成時以和該第二導電層電性接觸。該方法係提供一種方式來製造該裝置,其中在該第一及第二導體以及該第一及第二導電層之間並不需要任何的黏著材料。當該些薄的導體附接至該封裝的表面時,處理該些薄的導體也是容易的。換言之,當製造該光伏裝置時,該太陽能電池單元係被設置,並且當該第 一及第二導體將被配置在該太陽能電池單元上時,它們係首先被設置在該頂端片5a以及底部片5b上的對應的位置上,使得當該頂端片5a以及該底部片5b被配置在該太陽能電池單元上時,該第一及第二導體係被併置到其在該太陽能電池單元上的位置。 According to certain features, configuring S3 the first conductor to make electrical contact with the first conductive layer, and configuring S4 the second conductor to electrically contact the second conductive layer is comprised in configuration S5 of the top tab of the package and a bottom sheet, attaching the first conductor to the top sheet 5a or a bottom sheet 5b, and attaching the second conductor to the bottom sheet 5b. Therefore, the first and second guides, the top sheet and the bottom sheet are arranged at appropriate places at the same time as they are arranged. The at least one first conductor is then attached to the top sheet 5a or the bottom sheet 5b so that it is in electrical contact with the first conductive layer when the package is formed, and wherein the at least one second conductor is attached to the bottom sheet 5b such that it is in electrical contact with the second conductive layer when the cover is formed. The method provides a way to manufacture the device without requiring any adhesive material between the first and second conductors and the first and second conductive layers. Handling of the thin conductors is also easy when they are attached to the surface of the package. In other words, when manufacturing the photovoltaic device, the solar cell unit is set, and when the first When the first and second conductors are to be arranged on the solar cell unit, they are first arranged at corresponding positions on the top sheet 5a and the bottom sheet 5b, so that when the top sheet 5a and the bottom sheet 5b are arranged While on the solar cell unit, the first and second conductors are juxtaposed to their position on the solar cell unit.

本發明並不限於所揭露的實施例,而是可以在以下的請求項的範疇之內加以改變及修改。例如,多孔的基板可包括一第一部分,其係包含一網路的被容置在該多孔的基板的孔中的導電粒子、以及一不具有導電粒子的第二部分,以便於縮短在該相對電極以及該光吸收層之間的距離。該光伏裝置可包括超過一個的被配置在該封裝以及該太陽能電池單元之間的第二導體。該光伏裝置亦可包括超過一個的被配置在該封裝以及該太陽能電池單元之間的第一導體。 The invention is not limited to the disclosed embodiments, but changes and modifications are possible within the scope of the following claims. For example, a porous substrate may comprise a first portion comprising a network of conductive particles housed in the pores of the porous substrate, and a second portion free of conductive particles, so as to shorten the relative The distance between the electrodes and the light absorbing layer. The photovoltaic device may include more than one second conductor disposed between the encapsulation and the solar cell unit. The photovoltaic device may also include more than one first conductor disposed between the encapsulation and the solar cell unit.

1a:光伏充電器 1a: Photovoltaic charger

2:太陽能電池單元 2: Solar cell unit

3:第一連接元件 3: The first connecting element

4:第二連接元件 4: Second connecting element

5:封裝 5: Encapsulation

5a:頂端片 5a: top piece

18:第一導體 18: First conductor

20:第二導體 20: Second conductor

22:升壓轉換器 22: Boost Converter

Claims (9)

一種特別被調適以用於充電電子裝置之光伏充電器(1;1a;1b),其包括:太陽能電池單元(2),其包括:工作電極,其包括包含染色的TiO2的多孔的光吸收層(10),多孔的第一導電層(12),其係用於從該光吸收層(10)抽取光子產生的電子,其中該光吸收層係被配置在該第一導電層的頂端上,多孔的基板(14),其係由一種絕緣材料所做成的,並且延伸穿過該整個太陽能電池單元,其中該第一導電層(12)係被形成在該多孔的基板(14)的一側上,相對電極,其包含第二導電層(16),其中該第二導電層係被形成在該多孔的基板(14)的該相反側上,以及導電介質,其係用於在該相對電極以及該光吸收層之間傳輸電荷,封裝(5),其係封入該太陽能電池單元,第一導體(18),其係電連接至該第一導電層(12),以及至少一第二導體(20),其係電連接至該第二導電層(16),其中該光伏充電器只包含單一太陽能電池單元(2)以及電連接至該第一導體及該第二導體(18、20)的升壓轉換器(22),並且該升壓轉換器係適配於在步降來自該太陽能電池單元的該電流時,步升來自該太陽能電池單元的該電壓,當藉由該光吸收層接收到的光強度是介於200到20000勒克斯之間時,該太陽能電池單元係至少能夠產生在5到600μW/cm2之間。 A photovoltaic charger (1; 1a; 1b) particularly adapted for charging electronic devices, comprising: a solar cell unit ( 2 ) comprising: a working electrode comprising a porous light-absorbing Layer (10), a porous first conductive layer (12) for extracting photon-generated electrons from the light absorbing layer (10), wherein the light absorbing layer is disposed on top of the first conductive layer , a porous substrate (14) made of an insulating material and extending through the entire solar cell unit, wherein the first conductive layer (12) is formed on the porous substrate (14) On one side, the opposite electrode, which comprises a second conductive layer (16), wherein the second conductive layer is formed on the opposite side of the porous substrate (14), and a conductive medium, which is used for the Charge transmission between the opposite electrode and the light absorbing layer, encapsulation (5), which encloses the solar cell unit, a first conductor (18), which is electrically connected to the first conductive layer (12), and at least one first Two conductors (20) electrically connected to the second conductive layer (16), wherein the photovoltaic charger comprises only a single solar cell unit (2) and electrically connected to the first conductor and the second conductor (18, 20) the boost converter (22), and the boost converter is adapted to step up the voltage from the solar cell unit when stepping down the current from the solar cell unit, when by the light When the light intensity received by the absorbing layer is between 200 and 20000 lux, the solar battery unit system can generate at least 5 to 600 μW/cm 2 . 如請求項1所述之光伏充電器,其中該升壓轉換器(22)係被配置以轉換來自該太陽能電池單元(2)的該電壓成為位在1到10V之間的電壓。 The photovoltaic charger as claimed in claim 1, wherein the boost converter (22) is configured to convert the voltage from the solar battery unit (2) into a voltage between 1 and 10V. 如請求項1所述之光伏充電器,其中該升壓轉換器(22)係能夠轉 換介於0.25到1V之間的電壓成為超過3V、並且較佳的是超過3.5V的電壓。 The photovoltaic charger as described in claim 1, wherein the boost converter (22) is capable of converting The voltage between 0.25 and 1V is changed to a voltage exceeding 3V, and preferably exceeding 3.5V. 如請求項1所述之光伏充電器,其中當藉由該光吸收層接收到的光強度是5000勒克斯時,該太陽能電池單元(2)產生至少150μW/cm2The photovoltaic charger as claimed in claim 1, wherein when the light intensity received through the light absorbing layer is 5000 lux, the solar battery unit (2) generates at least 150 μW/cm 2 . 如請求項1所述之光伏充電器,其中當藉由該光吸收層接收到的光強度是變化在200到50000勒克斯之間時,該太陽能電池單元(2)產生變化小於40%的電壓。 The photovoltaic charger as claimed in claim 1, wherein when the intensity of light received by the light absorbing layer varies between 200 and 50000 lux, the solar cell (2) generates a voltage that varies less than 40%. 如請求項1所述之光伏充電器,其中當藉由該光吸收層(10)接收到的光強度是200勒克斯時,該太陽能電池單元(2)係產生至少15μA/cm2的電流,並且當藉由該光吸收層接收到的光強度係從200增加到20000勒克斯時,由該太陽能電池單元所產生的電流係線性地增加。 The photovoltaic charger as claimed in claim 1, wherein when the light intensity received by the light absorbing layer (10) is 200 lux, the solar battery unit (2) generates a current of at least 15 μA/cm 2 , and When the light intensity received by the light absorbing layer increases from 200 to 20000 lux, the current generated by the solar cell unit increases linearly. 一種光伏充電器作為供電一可攜式的電子裝置(28;30)之用途,其中該光伏充電器是如請求項1的光伏充電器,其中該單一太陽能電池單元(2)的形狀及尺寸係適配於其所供電的該可攜式的電子裝置的尺寸及形狀。 A photovoltaic charger for powering a portable electronic device (28; 30), wherein the photovoltaic charger is the photovoltaic charger according to claim 1, wherein the shape and size of the single solar cell unit (2) are Adapt to the size and shape of the portable electronic device it powers. 一種光伏充電器作為供電一可攜式的電子裝置之用途,其中該光伏充電器是如請求項1-6中任一項的光伏充電器,其中該可攜式的電子裝置是頭戴式耳機(30),其係包括用於到達在穿戴者的頭之上的頭帶(32)、以及被配置在該頭帶的頂表面上的該光伏充電器(1)。 A photovoltaic charger for powering a portable electronic device, wherein the photovoltaic charger is a photovoltaic charger according to any one of claims 1-6, wherein the portable electronic device is a headset (30) comprising a headband (32) for reaching over the wearer's head, and the photovoltaic charger (1) arranged on the top surface of the headband. 一種用於製造光伏充電器之方法,其中該光伏充電器是如請求項1-6中任一項的光伏充電器,其中該方法包括:產生具有該單一太陽能電池單元的片(S1),調適該單一太陽能電池單元的形狀及尺寸至上方設置有該單一太陽能電池單元的一表面,此係藉由切割具有該單一太陽能電池單元的該片中的一塊成為該形狀及尺寸(S2),將該第一導體配置成和該第一導電層電性接觸(S3), 將該第二導體配置成和該第二導電層電性接觸(S4),配置該封裝的頂端片以及底部片,使得它們圍繞該片的該塊並且至少部份地圍繞該第一導體及該第二導體,使得該封裝的該形狀及尺寸適配於該單一太陽能電池單元的該形狀及尺寸(S5),以及密封該頂端片以及該底部片的邊緣以形成該封裝(S6)。 A method for manufacturing a photovoltaic charger, wherein the photovoltaic charger is a photovoltaic charger according to any one of claims 1-6, wherein the method comprises: producing a sheet (S1) with the single solar cell unit, adapting The shape and size of the single solar cell unit to a surface on which the single solar cell unit is disposed by cutting one of the sheets having the single solar cell unit into the shape and size (S2), the a first conductor configured to be in electrical contact with the first conductive layer (S3), disposing the second conductor in electrical contact with the second conductive layer (S4), disposing the top sheet and the bottom sheet of the package such that they surround the block of the sheet and at least partially surround the first conductor and the a second conductor, adapting the shape and size of the package to the shape and size of the single solar cell unit (S5), and sealing the edges of the top sheet and the bottom sheet to form the package (S6).
TW107129601A 2018-05-16 2018-08-24 A photovoltaic charger for charging an electronic device, a method for producing the photovoltaic charger, and use of the photovoltaic charger for charging an electronic device TWI780213B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
SE1850574 2018-05-16
SE1850574-3 2018-05-16

Publications (2)

Publication Number Publication Date
TW201947840A TW201947840A (en) 2019-12-16
TWI780213B true TWI780213B (en) 2022-10-11

Family

ID=68585260

Family Applications (1)

Application Number Title Priority Date Filing Date
TW107129601A TWI780213B (en) 2018-05-16 2018-08-24 A photovoltaic charger for charging an electronic device, a method for producing the photovoltaic charger, and use of the photovoltaic charger for charging an electronic device

Country Status (3)

Country Link
JP (1) JP2019201196A (en)
CN (1) CN110504736A (en)
TW (1) TWI780213B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2956237T3 (en) * 2020-04-17 2023-12-15 Exeger Operations Ab photovoltaic device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090146604A1 (en) * 2007-12-11 2009-06-11 Samsung Electronics Co., Ltd. Complex lithium secondary battery and electronic device employing the same
WO2013149789A2 (en) * 2012-04-04 2013-10-10 Exeger Sweden Ab A dye-sensitized solar cell including a porous insulation substrate and a method for producing the porous insulation substrate
TW201545186A (en) * 2013-05-17 2015-12-01 Exeger Sweden Ab A dye-sensitized solar cell and a method for manufacturing the solar cell
TW201726026A (en) * 2016-01-05 2017-08-01 施華洛世奇股份有限公司 Decorative composite body with transparent electrically conductive layer and solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090146604A1 (en) * 2007-12-11 2009-06-11 Samsung Electronics Co., Ltd. Complex lithium secondary battery and electronic device employing the same
WO2013149789A2 (en) * 2012-04-04 2013-10-10 Exeger Sweden Ab A dye-sensitized solar cell including a porous insulation substrate and a method for producing the porous insulation substrate
TW201545186A (en) * 2013-05-17 2015-12-01 Exeger Sweden Ab A dye-sensitized solar cell and a method for manufacturing the solar cell
TW201726026A (en) * 2016-01-05 2017-08-01 施華洛世奇股份有限公司 Decorative composite body with transparent electrically conductive layer and solar cell

Also Published As

Publication number Publication date
JP2019201196A (en) 2019-11-21
CN110504736A (en) 2019-11-26
TW201947840A (en) 2019-12-16

Similar Documents

Publication Publication Date Title
US10964486B2 (en) Dye-sensitized solar cell unit and a photovoltaic charger including the solar cell unit
Sacco et al. Characterization of photovoltaic modules for low-power indoor application
US7649140B2 (en) Photovoltaic module with full utilization of surface area
JP3879917B2 (en) Solar blinds
WO2017121382A1 (en) Solar charger
KR20210025235A (en) Solar module
KR102513067B1 (en) A dye-sensitized solar cell unit, a photovoltaic charger including the dye-sensitized solar cell unit and a method for producing the solar cell unit
TWI780213B (en) A photovoltaic charger for charging an electronic device, a method for producing the photovoltaic charger, and use of the photovoltaic charger for charging an electronic device
US20140318603A1 (en) All Plastic Solar Panel
EP3598465A1 (en) Photovoltaic cell with fiber mesh support and charger for portable electronics
CN202949381U (en) Photovoltaic cell device for photovoltaic solar building integration
RU2792023C1 (en) Dye-sensitized solar cell unit, a photovoltaic charger including a dye-sensitized solar cell unit, and a method for manufacturing a solar cell unit
CN209244038U (en) A kind of photovoltaic module for photovoltaic curtain wall
CN106952977A (en) A kind of solar cell encapsulation structure
CN207743232U (en) Bamboo slip type device of solar generating
CN112164727A (en) BIPV glass assembly capable of continuously generating electricity
JP2020161766A (en) Solar cell element and solar cell module
CN208371129U (en) A kind of Portable photovoltaic umbrella with charging of mobile devices function
CN206775432U (en) A kind of solar charger
JP2002026359A (en) Solar cell module
KR20240079475A (en) Bidirectional Transparent Photovoltaics and Manufacturing Method Thereof
KR200241357Y1 (en) Panel with Solar Cell
JP2003152214A (en) Photovoltaic power generation apparatus incorporated in plant and the like
TWI381539B (en) Method of manufacturing solar cell with backside dielectric layer
CN106847961A (en) A kind of solar cell encapsulation structure and solar cell

Legal Events

Date Code Title Description
GD4A Issue of patent certificate for granted invention patent