TWI773010B - Radiated energy distribution structure of millimeter-wave antenna - Google Patents

Radiated energy distribution structure of millimeter-wave antenna Download PDF

Info

Publication number
TWI773010B
TWI773010B TW109143718A TW109143718A TWI773010B TW I773010 B TWI773010 B TW I773010B TW 109143718 A TW109143718 A TW 109143718A TW 109143718 A TW109143718 A TW 109143718A TW I773010 B TWI773010 B TW I773010B
Authority
TW
Taiwan
Prior art keywords
microstrip line
millimeter
antenna
wave
radiating element
Prior art date
Application number
TW109143718A
Other languages
Chinese (zh)
Other versions
TW202224258A (en
Inventor
朱衛
翹韜 梁
莊皓琳
林晉輝
楊婷婷
Original Assignee
大陸商江陰康瑞成型技術科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商江陰康瑞成型技術科技有限公司 filed Critical 大陸商江陰康瑞成型技術科技有限公司
Priority to TW109143718A priority Critical patent/TWI773010B/en
Publication of TW202224258A publication Critical patent/TW202224258A/en
Application granted granted Critical
Publication of TWI773010B publication Critical patent/TWI773010B/en

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Abstract

一種毫米波天線之輻射能量均佈結構,具有由至少一梳狀天線元件組成的發射陣列天線及/或接收陣列天線;該梳狀天線元件具有一長條狀之天線本體及一微帶線輻射組件,該天線本體一端能夠連通於可產生毫米波之毫米波電路,該微帶線輻射組件由多個間隔排列於該天線本體中段之中間微帶線輻射單元,以及一設於該天線本體尾端的末端微帶線輻射單元組成,該等中間微帶線輻射單元的面積,係由接近該毫米波電路之一端朝向另一端逐漸增加,使各中間微帶線輻射單元對外輻射能量的分佈趨近於平均。A radiated energy uniform distribution structure of a millimeter-wave antenna, comprising a transmitting array antenna and/or a receiving array antenna composed of at least one comb-shaped antenna element; the comb-shaped antenna element has an elongated antenna body and a microstrip line radiation An assembly, one end of the antenna body can be connected to a millimeter-wave circuit that can generate millimeter waves, the microstrip line radiation assembly consists of a plurality of intermediate microstrip line radiation units arranged at intervals in the middle section of the antenna body, and a tail of the antenna body. The area of these intermediate microstrip line radiation units gradually increases from one end close to the millimeter-wave circuit toward the other end, so that the distribution of the external radiated energy of each intermediate microstrip line radiation unit tends to on average.

Description

毫米波天線之輻射能量均佈結構Radiated energy distribution structure of millimeter-wave antenna

本發明是有關毫米波天線之輻射能量均佈結構,尤指一種具有較佳增益,可有效提昇毫米波作用距離之天線結構。The present invention relates to a radiated energy uniform distribution structure of a millimeter-wave antenna, especially an antenna structure with better gain that can effectively increase the millimeter-wave action distance.

隨著消費者對於汽車的使用安全日益重視,以及相關科技發展逐漸成熟,各種可偵測車輛周遭的動態狀況(如:車輛、行人或其它障礙物的相對位置、相對速度與角度等訊息)以輔助駕駛防止碰撞意外之汽車防撞偵測裝置亦逐漸被廣泛應用;目前一般常見的防撞偵測裝置所應用的技術手段,大約可分為以下幾種:As consumers pay more and more attention to the safety of the use of cars and the development of related technologies gradually matures, various dynamic conditions around the vehicle (such as the relative position, relative speed and angle of vehicles, pedestrians or other obstacles) can be detected. Vehicle collision avoidance detection devices for assisting driving to prevent collision accidents are also gradually being widely used; the technical means used in common collision avoidance detection devices can be roughly divided into the following categories:

超聲波:係為一種利用超聲波來測量到物體的距離的機制,利用一超聲波傳感器經由換能器發送和接收超聲脈衝波,此種超聲波傳感器可以在啟動時,或在每個量程讀數之前皆依據溫度、電壓等參數變化而進行校準,具有一定的準確性;但在使用時,由於過於細小的被偵測物難以有效反射超聲波,因此物體太小可能無法反射足夠的超聲波以供該超聲波傳感器的檢測需求,形成應用上的限制。Ultrasonic: is a mechanism that uses ultrasonic waves to measure the distance to an object, using an ultrasonic sensor to send and receive ultrasonic pulses through a transducer. This ultrasonic sensor can be activated, or before each range reading based on temperature , voltage and other parameters change to calibrate with certain accuracy; but in use, because the detected object is too small to effectively reflect the ultrasonic wave, so the object too small may not be able to reflect enough ultrasonic wave for the detection of the ultrasonic sensor requirements, resulting in application constraints.

紅外線:係利用光反射的測距原理,經由一紅外LED發光,由另一個紅外接收元件接收並測量紅外光的強度,藉由其強度的大小來判斷距離;但紅外線測距的角度小且缺乏整體性,由於偵測的基礎原理是利用光線的反射,因此當使用在反射效率較差的表面(如:深色表面)時,會嚴重影響偵測的結果,形成應用上的缺失。Infrared: It uses the ranging principle of light reflection, emits light through an infrared LED, and receives and measures the intensity of infrared light by another infrared receiving element, and judges the distance by its intensity; however, the angle of infrared ranging is small and lacks Integrity, since the basic principle of detection is to use the reflection of light, when it is used on a surface with poor reflection efficiency (such as a dark surface), it will seriously affect the detection result and form a lack of application.

雷射:係利用一發射器發射雷射光束並記下時間(T1),當雷射光束打到物體上之後反射回來,由傳感器接收到返回光的時間為(T2),假設雷射光束在空氣中傳播的速度為V,則可計算出該傳感器與被測物之間的距離為:S=V*(T2-T1)/2;然而,雷射裝置在使用時,若發射器表面沾黏水、灰等雜質時,會將雷射光線反射回去,產生假信號,且雷射測距的測量精度較差,係為其使用的缺點。Laser: It uses a transmitter to emit a laser beam and record the time (T1). When the laser beam hits the object and then reflects back, the time when the sensor receives the returned light is (T2). Assuming that the laser beam is at The speed of propagation in the air is V, the distance between the sensor and the measured object can be calculated as: S=V*(T2-T1)/2; however, when the laser device is in use, if the surface of the transmitter is stained When there are impurities such as sticky water and ash, the laser light will be reflected back, resulting in false signals, and the measurement accuracy of laser ranging is poor, which is a disadvantage of its use.

毫米波:係利用波長在1mm~10mm(頻率在30GHz~300GHz)範圍之間的電磁波,量測其發射與接收的時間差,進而可計算其距離;若要適用於車用長距離的偵測,使用77GHz毫米波頻段應較為適合,而目前應用於車用環車雷達的毫米波頻段大約落在24GHz,由於毫米波的波長最長,因此較不受環境氣候的影響,最適合應用在遠距離的偵測。Millimeter wave: It uses electromagnetic waves with wavelengths in the range of 1mm~10mm (frequency in the range of 30GHz~300GHz) to measure the time difference between its emission and reception, and then calculate its distance; if it is suitable for long-distance detection in vehicles, It should be more suitable to use the 77GHz millimeter-wave frequency band, and the millimeter-wave frequency band currently used in the car surround radar is about 24GHz. Since the millimeter-wave has the longest wavelength, it is less affected by the environmental climate and is most suitable for long-distance applications. detect.

傳統應用在毫米波裝置中,藉以進行發射或接收毫米波的天線結構,有如第1圖所示,其毫米波天線B之結構主要係可直接蝕刻於電路板C上,包括:分別由複數梳狀天線元件2所組成的發射陣列天線B1及接收陣列天線B2二部份;在第1圖所揭露的實施例中,該發射陣列天線B1係由三個梳狀天線元件2組成,而該接收陣列天線B2係由四個梳狀天線元件2組成(位於該接收陣列天線B2二旁側之梳狀天線元件2係為隔離作用,並未導入毫米波),在實際應用時,可依照該毫米波發射強度及接收靈敏度,而分別調整該等梳狀天線元件2的數量,以滿足不同之需求。Traditionally used in millimeter-wave devices to transmit or receive millimeter-wave antenna structures, as shown in Figure 1, the structure of the millimeter-wave antenna B can be directly etched on the circuit board C, including: In the embodiment disclosed in FIG. 1, the transmitting array antenna B1 is composed of three comb-shaped antenna elements 2, and the receiving array antenna B1 is composed of three comb-shaped antenna elements 2. The array antenna B2 is composed of four comb-shaped antenna elements 2 (the comb-shaped antenna elements 2 located on both sides of the receiving array antenna B2 are for isolation and do not introduce millimeter waves). The number of the comb-shaped antenna elements 2 is adjusted according to the wave emission intensity and reception sensitivity to meet different requirements.

上述傳統的梳狀天線元件2結構,主要係由多個微帶線輻射單元22串接而成,各微帶線輻射單元22係為具有固定大小之矩形(或可為正方形)結構,且等間距地正向排列於一條狀之天線本體21上,藉以形成一由串聯饋入架構所組成的梳狀天線元件2;此種串聯饋入架構的梳狀天線元件2若應用於發射陣列天線B1在發射毫米波的狀態下,其由電路板C上預設毫米波電路C1所輸出的毫米波能量先由該梳狀天線元件2頭端(接近該毫米波電路C1之一端)饋入,經過第一個(最接近該毫米波電路C1)微帶線輻射單元22時向外輻射一部分能量,剩餘的能量繼續沿該天線本體21朝向末(尾)端(遠離該毫米波電路C1之一端)饋送,並分別由中間各微帶線輻射單元22逐一向外輻射部分能量(另有一小部分在傳輸的過程中損耗),直到最末(尾)端的一個微帶線輻射單元22將全部剩餘的能量輻射出去。The above-mentioned conventional comb-shaped antenna element 2 structure is mainly composed of a plurality of microstrip line radiating elements 22 connected in series, and each microstrip line radiating element 22 is a rectangular (or square) structure with a fixed size, and the like The antenna bodies 21 are arranged on a strip of antenna body 21 in a forward direction, so as to form a comb-shaped antenna element 2 composed of a series-feeding structure; if the comb-shaped antenna element 2 of this series-feeding structure is applied to the transmitting array antenna B1 In the state of transmitting millimeter waves, the millimeter wave energy output by the preset millimeter wave circuit C1 on the circuit board C is first fed into the head end of the comb antenna element 2 (close to one end of the millimeter wave circuit C1 ), When the first (closest to the millimeter-wave circuit C1) microstrip line radiating element 22 radiates a part of the energy, the remaining energy continues along the antenna body 21 toward the end (tail) end (away from the end of the millimeter-wave circuit C1) Feed, and radiate part of the energy from the microstrip line radiating elements 22 in the middle one by one (the other small part is lost in the process of transmission), until a microstrip line radiating element 22 at the last (tail) end will radiate all the remaining energy. Energy radiates out.

由上述可知,在毫米波能量經由梳狀天線元件2對外發射的過程中,該梳狀天線元件2中各微帶線輻射單元22向外輻射的能量並不相同,基於各微帶線輻射單元22之面積大小與對外輻射能量的效率成正比的前題下,由於此種梳狀天線元件2之各微帶線輻射單元22具有相同面積、形狀及排列方式,因此於實際應用時,當毫米波電路C1輸出之毫米波導入該天線本體21時具有最大能量,使最接近該毫米波電路C1之微帶線輻射單元22會輻射較多能量,也承擔較大的負荷,隨著毫米波能量逐一被微帶線輻射單元22向外輻射而逐漸衰減,愈遠離該毫米波電路C1之微帶線輻射單元22會逐漸輻射較少能量,也承擔較小的負荷,如此在各微帶線輻射單元22輻射能量分佈不均的狀態,會嚴重影響該梳狀天線元件2之整體對外輻射能量的效率。It can be seen from the above that in the process of millimeter-wave energy being radiated through the comb-shaped antenna element 2, the energy radiated by the microstrip line radiation units 22 in the comb-shaped antenna element 2 is not the same. Under the premise that the area of 22 is proportional to the efficiency of external radiated energy, since each microstrip line radiating element 22 of the comb-shaped antenna element 2 has the same area, shape and arrangement, in practical applications, when the millimeter The millimeter wave output by the wave circuit C1 has the maximum energy when it is introduced into the antenna body 21, so that the microstrip line radiation unit 22 closest to the millimeter wave circuit C1 will radiate more energy and bear a greater load. It is gradually attenuated by the microstrip line radiation unit 22 one by one, and the microstrip line radiation unit 22 farther away from the millimeter wave circuit C1 will gradually radiate less energy and bear less load. The uneven distribution of the radiated energy of the unit 22 will seriously affect the overall external radiated energy efficiency of the comb-shaped antenna element 2 .

反之,此種梳狀天線元件2若應用於接收陣列天線B2在接收毫米波的狀態下,亦會有接收感應輻射能量分佈不均的情形。Conversely, if the comb-shaped antenna element 2 is applied to the receiving array antenna B2 in a state of receiving millimeter waves, the received induced radiation energy may be unevenly distributed.

有鑑於習見之毫米波天線結構有上述缺點,發明人乃針對該些缺點研究改進之道,終於有本發明產生。In view of the above-mentioned disadvantages of the conventional millimeter-wave antenna structure, the inventors have studied and improved the method for these disadvantages, and finally the present invention is produced.

本發明之主要目的在於提供一種毫米波天線之輻射能量均佈結構,具有分別由至少一梳狀天線元件組成的發射陣列天線及/或接收陣列天線;各該梳狀天線元件具有一長條狀之天線本體,以及一設於該天線本體上之微帶線輻射組件,該天線本體係以一端連通於一電路板上能產生毫米波之毫米波電路,該微帶線輻射組件係由多個間隔排列設置於該天線本體中段之中間微帶線輻射單元,以及一設於該天線本體遠離該毫米波電路之一端的末端微帶線輻射單元所組成,該等中間微帶線輻射單元分別具有不同大小面積,且其大小面積之排列方式,係由設於接近該毫米波電路之一端的中間微帶線輻射單元朝向另一端的中間微帶線輻射單元逐漸增加,藉以使各中間微帶線輻射單元之輻射能量趨近於分佈平均的狀態,進而可提昇該梳狀天線元件之整體增益。The main purpose of the present invention is to provide a radiated energy uniform distribution structure of a millimeter-wave antenna, which has a transmitting array antenna and/or a receiving array antenna respectively composed of at least one comb-shaped antenna element; each of the comb-shaped antenna elements has a long strip The antenna body, and a microstrip line radiating element arranged on the antenna body, the antenna body is connected to a millimeter-wave circuit on a circuit board at one end, and the microstrip line radiating element is composed of a plurality of It consists of intermediate microstrip line radiating units arranged at intervals in the middle section of the antenna body, and an end microstrip line radiating unit disposed at one end of the antenna body away from the millimeter-wave circuit, and the intermediate microstrip line radiating units respectively have Areas of different sizes, and the arrangement of the sizes and areas, are gradually increased from the intermediate microstrip line radiating element disposed near one end of the millimeter-wave circuit toward the intermediate microstrip line radiating element at the other end, so that each intermediate microstrip line The radiated energy of the radiating element tends to be evenly distributed, thereby improving the overall gain of the comb-shaped antenna element.

本發明之另一目的在於提供一種毫米波天線之輻射能量均佈結構,其中各中間微帶線輻射單元係為矩形形狀,且該矩形之長寬比例為1.2~1.3:1的範圍,使該等中間微帶線輻射單元的共振點可保持在接近76.5GHz的位置,而相鄰漸增的二中間微帶線輻射單元之大小比例係設為1.1~1.2:1的範圍,藉以更有效率地向外輻射毫米波能量。Another object of the present invention is to provide a radiated energy distribution structure of a millimeter-wave antenna, wherein each intermediate microstrip line radiating element is in a rectangular shape, and the length-width ratio of the rectangle is in the range of 1.2-1.3:1, so that the The resonance point of the equal middle microstrip line radiating element can be kept close to 76.5GHz, and the size ratio of the two adjacent intermediate microstrip line radiating elements is set in the range of 1.1~1.2:1, so as to be more efficient Radiate millimeter-wave energy outward from the ground.

本發明之又一目的在於提供一種毫米波天線之輻射能量均佈結構,其中各中間微帶線輻射單元與該末端微帶線輻射單元係分別呈一歪斜角度地間隔排列設置於該天線本體上,可藉以達到降低對向干擾的效果;且該末端微帶線輻射單元與該天線本體銜接的部位具有一矩形之凹缺口,可以降低該末端微帶線輻射單元之反射係數。Another object of the present invention is to provide a radiated energy distribution structure of a millimeter-wave antenna, wherein each middle microstrip line radiating element and the end microstrip line radiating element are respectively arranged on the antenna body at a skew angle and spaced apart , which can achieve the effect of reducing the opposite interference; and the part where the end microstrip line radiating element is connected with the antenna body has a rectangular concave notch, which can reduce the reflection coefficient of the end microstrip line radiating element.

為達成上述目的及功效,本發明所採行的技術手段包括:至少一梳狀天線元件,該梳狀天線元件具有一長條狀之天線本體,以及一設於該天線本體上之微帶線輻射組件,該天線本體一端能夠連通一能產生毫米波之毫米波電路;該微帶線輻射組件係由多個間隔排列設置於該天線本體中段之中間微帶線輻射單元,以及一設於該天線本體遠離該毫米波電路之一端的末端微帶線輻射單元所組成,且位於該天線本體相對遠離該毫米波電路一端的中間微帶線輻射單元之面積,不小於相對接近該毫米波電路一端的中間微帶線輻射單元之面積。In order to achieve the above objects and effects, the technical means adopted in the present invention include: at least one comb-shaped antenna element, the comb-shaped antenna element has an elongated antenna body, and a microstrip line disposed on the antenna body A radiating element, one end of the antenna body can be connected to a millimeter-wave circuit capable of generating millimeter waves; the microstrip line radiating element is composed of a plurality of intermediate microstrip line radiating units arranged at intervals in the middle section of the antenna body, and a The antenna body is composed of the end microstrip line radiating element at one end of the antenna body away from the millimeter-wave circuit, and the area of the middle microstrip line radiating element located at the end of the antenna body relatively far from the millimeter-wave circuit is not smaller than the end relatively close to the millimeter-wave circuit. The area of the middle microstrip line radiating element.

依上述結構,其中該等中間微帶線輻射單元之排列方式,係由設於較接近該毫米波電路之中間微帶線輻射單元的面積,相對小於較遠離該毫米波電路之中間微帶線輻射單元的面積。According to the above structure, the arrangement of the intermediate microstrip line radiating elements is such that the area of the intermediate microstrip line radiating elements disposed closer to the millimeter-wave circuit is relatively smaller than the intermediate microstrip line farther away from the millimeter-wave circuit. The area of the radiating element.

依上述結構,其中至少局部之相鄰中間微帶線輻射單元具有相同的面積。According to the above structure, at least part of the adjacent intermediate microstrip line radiation units have the same area.

依上述結構,其中各中間微帶線輻射單元及該末端微帶線輻射單元的形狀為選自矩形、多邊形及橢圓形等形狀中之一。According to the above structure, the shape of each middle microstrip line radiation unit and the end microstrip line radiation unit is one of shapes selected from rectangles, polygons, and ellipses.

依上述結構,其中該等中間微帶線輻射單元係為矩形,且其長與寬比例為1.2~1.3:1。According to the above structure, the intermediate microstrip line radiation units are rectangular, and the ratio of length to width is 1.2-1.3:1.

依上述結構,其中相鄰漸增之二中間微帶線輻射單元的面積比例為1.1~1.2:1。According to the above structure, the area ratio of the adjacent two gradually increasing intermediate microstrip line radiation units is 1.1-1.2:1.

依上述結構,其中該末端微帶線輻射單元的形狀為正方形。According to the above structure, the shape of the end microstrip line radiation unit is a square.

依上述結構,其中該末端微帶線輻射單元與該天線本體銜接的部位具有一矩形之凹缺口。According to the above structure, the part where the end microstrip line radiating element is connected with the antenna body has a rectangular recess.

依上述結構,其中各中間微帶線輻射單元及該末端微帶線輻射單元皆係以相同方向及歪斜角度間隔排列設置於該天線本體上。According to the above structure, each of the middle microstrip line radiating units and the end microstrip line radiating units are arranged on the antenna body in the same direction and at intervals of the skew angle.

依上述結構,其中各中間微帶線輻射單元及該末端微帶線輻射單元兩者,分別與該天線本體之間的歪斜角度為45度。According to the above structure, the inclination angle between each of the middle microstrip line radiating element and the end microstrip line radiating element and the antenna body is 45 degrees.

依上述結構,其中各中間微帶線輻射單元係分別以其上一端角連結於該天線本體。According to the above structure, each of the middle microstrip line radiating elements is respectively connected to the antenna body at its upper end angle.

為使本發明的上述目的、功效及特徵可獲致更具體的瞭解,茲依下列附圖說明如下:In order to obtain a more specific understanding of the above-mentioned objects, effects and features of the present invention, the following descriptions are given in accordance with the following drawings:

請參第2圖所示,可知本發明第一實施例之毫米波天線A的結構包括:由至少一梳狀天線元件1組成的發射陣列天線A1及/或由至少一梳狀天線元件1組成的接收陣列天線A2等部份,在本實施例中,該發射陣列天線A1由三個梳狀天線元件1組成,該接收陣列天線A2係由四個梳狀天線元件1組成,且於實際應用時,該發射陣列天線A1及/或接收陣列天線A2可依照所需的毫米波發射強度及接收靈敏度,而分別調整各梳狀天線元件1的數量;其中各該梳狀天線元件1分別具有一長條狀之天線本體11,以及一設於該天線本體11上之微帶線輻射組件12,該天線本體11係以一端連通於一電路板C上之毫米波電路C1,該微帶線輻射組件12係由多個依序間隔排列設置於該天線本體11中段之中間微帶線輻射單元121、122、123,以及一設於該天線本體11遠離該毫米波電路C1之一端的末端微帶線輻射單元124所組成。Referring to FIG. 2, it can be seen that the structure of the millimeter-wave antenna A according to the first embodiment of the present invention includes: a transmitting array antenna A1 composed of at least one comb-shaped antenna element 1 and/or composed of at least one comb-shaped antenna element 1 In this embodiment, the transmitting array antenna A1 is composed of three comb-shaped antenna elements 1, and the receiving array antenna A2 is composed of four comb-shaped antenna elements 1, and in practical application , the transmitting array antenna A1 and/or the receiving array antenna A2 can adjust the number of the comb-shaped antenna elements 1 respectively according to the required millimeter-wave transmission intensity and receiving sensitivity; wherein each of the comb-shaped antenna elements 1 has a An elongated antenna body 11, and a microstrip line radiating element 12 disposed on the antenna body 11, one end of the antenna body 11 is connected to a millimeter-wave circuit C1 on a circuit board C, and the microstrip line radiates The component 12 is composed of a plurality of intermediate microstrip line radiating elements 121 , 122 , 123 disposed in the middle section of the antenna body 11 at intervals in sequence, and an end microstrip line disposed at an end of the antenna body 11 away from the millimeter-wave circuit C1 The line radiation unit 124 is formed.

在本實施例中,該等中間微帶線輻射單元121、122、123分別具有不同大小面積,且其排列方式,係將設於較接近該等毫米波電路C1一端之中間微帶線輻射單元121的面積設成較小,且逐漸遠離該毫米波電路C1而朝向另一端設置之中間微帶線輻射單元122、123…的面積設成相對逐漸增加;各中間微帶線輻射單元121、122、123及該末端微帶線輻射單元124的形狀可為矩形、多邊形或橢圓形等。In this embodiment, the intermediate microstrip line radiation units 121 , 122 , and 123 respectively have different sizes and areas, and their arrangement is to be located at the intermediate microstrip line radiation unit closer to one end of the millimeter-wave circuits C1 The area of 121 is set to be relatively small, and the areas of the intermediate microstrip line radiation units 122, 123... which are gradually away from the millimeter-wave circuit C1 and set toward the other end are set to be relatively gradually increased; each of the intermediate microstrip line radiation units 121, 122 , 123 and the end microstrip line radiation unit 124 may be rectangular, polygonal or elliptical in shape.

請參第3圖所示,揭露了該梳狀天線元件1的一較佳實施例態樣,其中該中間微帶線輻射單元121係為矩形之結構,其長邊長度為L121,短邊長度為W121,當該長邊長度L121與該短邊長度W121的比例為1.2~1.3:1時,該中間微帶線輻射單元121的共振點保持在接近76.5GHz的位置,而相鄰次一位置的中間微帶線輻射單元122亦為相似矩形之結構,且具有一固定的間隔距離Y,其長邊長度為L122,短邊長度為W122,該長邊長度L122與短邊長度W122的比例亦為1.2~1.3:1;同時,該次一位置中間微帶線輻射單元122之面積(長邊長度L122*短邊長度W122)與該原位置中間微帶線輻射單元121之面積(長邊長度L121*短邊長度W121)比例為1.1~1.2:1。Referring to FIG. 3, a preferred embodiment of the comb-shaped antenna element 1 is disclosed, wherein the middle microstrip line radiating element 121 is a rectangular structure, the length of the long side is L121, and the length of the short side is L121. is W121, when the ratio of the long side length L121 to the short side length W121 is 1.2~1.3:1, the resonance point of the middle microstrip line radiating element 121 is kept at a position close to 76.5GHz, and the adjacent next position The middle microstrip line radiating unit 122 is also a similar rectangular structure, and has a fixed spacing distance Y, its long side length is L122, the short side length is W122, and the ratio of the long side length L122 to the short side length W122 is also is 1.2~1.3:1; at the same time, the area (long side length L122*short side length W122) of the middle microstrip line radiation unit 122 in the next position and the area of the middle microstrip line radiation unit 121 in the original position (long side length The ratio of L121*short side length W121) is 1.1~1.2:1.

由上述類推可知,該等中間微帶線輻射單元121、122、123係可分別為矩形形狀,其長寬比例限制在1.2~1.3:1的範圍,相鄰二漸增之中間微帶線輻射單元的面積比例係限制在1.1~1.2:1的範圍,且具有固定的間隔距離Y;藉由此種向外逐漸加大面積的設計,當該毫米波電路C1所輸出的毫米波能量,傳輸至最接近該毫米波電路C1之該中間微帶線輻射單元121(此時該毫米波能量最強,且輻射面積最小),由該中間微帶線輻射單元121向外輻射一部分能量之後,剩餘的能量,繼續沿該天線本體21朝向該次一位置的中間微帶線輻射單元122饋送(此時該毫米波能量次之,且輻射面積稍大),使該次一位置的中間微帶線輻射單元122,可利用較大的輻射面積來彌補該毫米波能量的衰減,藉以使該次一位置中間微帶線輻射單元122向外輻射之能量,可趨近於該原位置中間微帶線輻射單元121向外輻射之能量,同理,該次一位置的中間微帶線輻射單元122向外輻射能量之後,剩餘的能量再繼續由該再次一位置的中間微帶線輻射單元123向外輻射,利用該再次一位置的中間微帶線輻射單元123具有更大的輻射面積來彌補該毫米波能量的再度衰減,可使各位置的中間微帶線輻射單元121、122、123之輻射能量趨近於分佈平均的狀態,以提昇該梳狀天線元件1之整體增益。It can be seen from the above analogy that the intermediate microstrip line radiation units 121, 122 and 123 can be respectively rectangular in shape, and their length-width ratio is limited to the range of 1.2~1.3:1. The adjacent two gradually increasing intermediate microstrip line radiation units The area ratio of the unit is limited to the range of 1.1~1.2:1, and has a fixed separation distance Y; through this design of gradually increasing the area outward, when the millimeter-wave energy output by the millimeter-wave circuit C1, transmits To the middle microstrip line radiation unit 121 closest to the millimeter wave circuit C1 (at this time, the millimeter wave energy is the strongest and the radiation area is the smallest), after the middle microstrip line radiation unit 121 radiates a part of the energy, the remaining energy, continue to feed along the antenna body 21 toward the middle microstrip line radiating unit 122 at the next position (at this time, the millimeter wave energy is second, and the radiation area is slightly larger), so that the middle microstrip line at the next position radiates The unit 122 can use a larger radiation area to compensate for the attenuation of the millimeter-wave energy, so that the energy radiated from the middle microstrip line radiation unit 122 at the next position can approach the middle microstrip line radiation at the original position The energy radiated by the unit 121, in the same way, after the middle microstrip line radiation unit 122 at the next position radiates the energy, the remaining energy continues to be radiated by the middle microstrip line radiation unit 123 at the next position. , using the larger radiation area of the middle microstrip line radiation unit 123 in the second position to compensate for the re-attenuation of the millimeter wave energy, so that the radiation energy of the middle microstrip line radiation units 121, 122 and 123 at each position can be increased. A state close to an average distribution to improve the overall gain of the comb-shaped antenna element 1 .

在實際應用時,更可利用將該等中間微帶線輻射單元121、122、123分別僅以其上一端角連結於該天線本體11上的設計 ,並使該等中間微帶線輻射單元121、122、123之間形成一相同方向的歪斜角度間隔排列連結,藉以達到降低對向干擾的效果,圖示的歪斜角度為45度。In practical application, the design in which the intermediate microstrip line radiating elements 121 , 122 , and 123 are respectively connected to the antenna body 11 by only their upper corners can be used, and the intermediate microstrip line radiating elements 121 , 122 and 123 form a skew angle in the same direction and are connected at intervals, so as to achieve the effect of reducing the opposite interference. The skew angle shown in the figure is 45 degrees.

請參第4圖所示,揭露了該梳狀天線元件1的另一較佳實施例態樣,其中該末端微帶線輻射單元124係為矩形(正方形),且該末端微帶線輻射單元124與該天線本體11銜接的部位具有一矩形(正方形)之凹缺口1241,該天線本體11末端係穿過該凹缺口1241中央,再連結於該末端微帶線輻射單元124接近中央的部位,藉由該凹缺口1241由周邊饋入之設計,可以降低該末端微帶線輻射單元124之反射係數;因此,當中間微帶線輻射單元121、122、123分別向外輻射能量之後的最後剩餘能量,經由該天線本體11傳輸至該末端微帶線輻射單元124時,藉由該末端微帶線輻射單元124由接近中央的部位向外均勻傳播擴散的方式,可將該剩餘能量完全向外輻射,以進一步提昇整體增益。Referring to FIG. 4, another preferred embodiment of the comb-shaped antenna element 1 is disclosed, wherein the end microstrip line radiation unit 124 is rectangular (square), and the end microstrip line radiation unit The part where 124 connects with the antenna body 11 has a rectangular (square) recess 1241. The end of the antenna body 11 passes through the center of the recess 1241, and is connected to the end near the center of the microstrip line radiating element 124, The reflection coefficient of the end microstrip line radiating element 124 can be reduced by the design of the concave notch 1241 being fed from the periphery; therefore, when the middle microstrip line radiating elements 121, 122 and 123 respectively radiate energy to the outside, the last remaining When the energy is transmitted to the end microstrip line radiating element 124 through the antenna body 11 , the residual energy can be completely spread outward by the end microstrip line radiating element 124 spreading and spreading evenly from the part near the center. Radiation to further boost the overall gain.

在實際應用時,該天線本體11可於接近該末端微帶線輻射單元124的一端設有一彎折之彎折部111 ,使該末端微帶線輻射單元124可經由該彎折部111而與前述各中間微帶線輻射單元121、122、123形成相同的歪斜角度排列,以進一步降低對向干擾。In practical application, the antenna body 11 may be provided with a bent portion 111 at one end close to the end microstrip line radiating element 124 , so that the end microstrip line radiating element 124 can be connected to the end microstrip line radiating element 124 through the bent portion 111 . The aforementioned intermediate microstrip line radiation units 121 , 122 , 123 are arranged at the same skew angle, so as to further reduce the counter-interference.

請參第5圖所示,可知本發明第二種實施例之毫米波天線A0的結構包括:由至少一梳狀天線元件10組成的發射陣列天線A10及/或由至少一梳狀天線元件10組成的接收陣列天線A20等部份,在本實施例中,各該梳狀天線元件10分別具有一長條狀之天線本體11,以及一設於該天線本體11上之微帶線輻射組件120,該天線本體11係以一端連通於一電路板C上之毫米波電路C1,該微帶線輻射組件120係由多個依序間隔排列設置於該天線本體11中段之中間微帶線輻射單元121、122、123,以及一設於該天線本體11遠離該毫米波電路C1之一端的末端微帶線輻射單元124所組成。Referring to FIG. 5, it can be seen that the structure of the millimeter-wave antenna A0 according to the second embodiment of the present invention includes: a transmitting array antenna A10 composed of at least one comb-shaped antenna element 10 and/or a transmission array antenna A10 composed of at least one comb-shaped antenna element 10 In this embodiment, each of the comb-shaped antenna elements 10 respectively has a long antenna body 11 and a microstrip line radiating element 120 disposed on the antenna body 11. , the antenna body 11 is connected to a millimeter-wave circuit C1 on a circuit board C at one end, and the microstrip line radiating element 120 is composed of a plurality of intermediate microstrip line radiating elements arranged in the middle of the antenna body 11 at intervals 121 , 122 , 123 , and an end microstrip line radiating element 124 disposed at one end of the antenna body 11 away from the millimeter-wave circuit C1 .

該第二種實施例之梳狀天線元件10與前述第一種實施例之梳狀天線元件1相較,其差異在於:該微帶線輻射組件120中之各中間微帶線輻射單元121、122、123,至少局部具有相同之面積;在第5圖所示之實施例中,該微帶線輻射組件120中具有最接近該毫米波電路C1之二相同最小面積且相鄰之中間微帶線輻射單元121,一最大面積中間微帶線輻射單元123,位於該天線本體11上最遠離該毫米波電路C1的位置,二相同次大面積且相鄰之中間微帶線輻射單元122,位於該天線本體11介於最小面積中間微帶線輻射單元121與最大面積中間微帶線輻射單元123之間的位置,藉此形成另一種符合各中間微帶線輻射單元依面積逐漸增減排列裝置,而具有類似功能之梳狀天線元件10組合結構。The difference between the comb-shaped antenna element 10 of the second embodiment and the comb-shaped antenna element 1 of the first embodiment is that each of the middle microstrip line radiation elements 121 , 122 and 123, at least partially have the same area; in the embodiment shown in FIG. 5, the microstrip line radiating element 120 has two adjacent intermediate microstrips that are closest to the millimeter-wave circuit C1 with the same minimum area The line radiating element 121, a largest-area middle microstrip line radiating element 123, is located on the antenna body 11 at the position farthest from the millimeter-wave circuit C1, and two intermediate microstrip line radiating elements 122 of the same sub-large area and adjacent are located in the antenna body 11. The antenna body 11 is located between the smallest-area intermediate microstrip line radiating element 121 and the largest-area intermediate microstrip line radiating element 123, thereby forming another arrangement that conforms to the gradual increase and decrease of each intermediate microstrip line radiating element according to the area. , and the combined structure of the comb-shaped antenna element 10 with similar functions.

請參第6圖所示,可知本發明第三種實施例之毫米波天線A00的結構包括:由至少一梳狀天線元件100組成的發射陣列天線A100及/或由至少一梳狀天線元件100組成的接收陣列天線A200等部份,在本實施例中,各該梳狀天線元件100分別具有一長條狀之天線本體11,以及一設於該天線本體11上之微帶線輻射組件1200,該天線本體11係以一端連通於一電路板C上之毫米波電路C1,該微帶線輻射組件1200係由多個依序間隔排列設置於該天線本體11中段之中間微帶線輻射單元121、122、123,以及一設於該天線本體11遠離該毫米波電路C1之一端的末端微帶線輻射單元124所組成。Referring to FIG. 6, it can be seen that the structure of the millimeter-wave antenna A00 according to the third embodiment of the present invention includes: a transmitting array antenna A100 composed of at least one comb-shaped antenna element 100 and/or a transmission array antenna A100 composed of at least one comb-shaped antenna element 100 In this embodiment, each of the comb-shaped antenna elements 100 has an elongated antenna body 11 and a microstrip line radiating element 1200 disposed on the antenna body 11, respectively. , the antenna body 11 is connected to the millimeter-wave circuit C1 on a circuit board C at one end, and the microstrip line radiating element 1200 is composed of a plurality of intermediate microstrip line radiating elements arranged in the middle of the antenna body 11 at intervals 121 , 122 , 123 , and an end microstrip line radiating element 124 disposed at one end of the antenna body 11 away from the millimeter-wave circuit C1 .

該第三種實施例之梳狀天線元件100與前述第一種實施例之梳狀天線元件1相較,其差異在於:該微帶線輻射組件1200之各中間微帶線輻射單元121、122、123及末端微帶線輻射單元124係共同地以小於(或大於)45度的歪斜角度間隔排列設置於該天線本體11上,藉此形成又一種具有類似功能之梳狀天線元件100組合結構。The difference between the comb-shaped antenna element 100 of the third embodiment and the comb-shaped antenna element 1 of the first embodiment is that the microstrip line radiating elements 121 and 122 of the microstrip line radiating element 1200 are in the middle. , 123 and the end microstrip line radiating element 124 are arranged on the antenna body 11 with a skew angle less than (or greater than) 45 degrees, thereby forming another comb-shaped antenna element 100 combination structure with similar functions .

綜合以上所述,本發明毫米波天線之輻射能量均佈結構確可經由提昇各梳狀天線元件之增益,達到增加毫米波作用距離及較佳抗干擾能力之功效,實為一具新穎性及進步性之發明,爰依法提出申請發明專利;惟上述說明之內容,僅為本發明之較佳實施例說明,舉凡依本發明之技術手段與範疇所延伸之變化、修飾、改變或等效置換者,亦皆應落入本發明之專利申請範圍內。Based on the above, the radiated energy uniform distribution structure of the millimeter wave antenna of the present invention can indeed achieve the effect of increasing the millimeter wave action distance and better anti-interference ability by increasing the gain of each comb antenna element, which is a novelty and For a progressive invention, an application for an invention patent shall be filed in accordance with the law; however, the content of the above description is only the description of the preferred embodiment of the present invention, and any changes, modifications, alterations or equivalent replacements extended by the technical means and scope of the present invention are mentioned. All of them should also fall within the scope of the patent application of the present invention.

1、10、100、2 梳狀天線元件1, 10, 100, 2 comb antenna elements

11、21 天線本體11, 21 Antenna body

111 彎折部111 Bending part

12、120、1200 微帶線輻射組件12, 120, 1200 microstrip line radiation components

121、122、123 中間微帶線輻射單元121, 122, 123 Intermediate microstrip line radiation unit

124 末端微帶線輻射單元124 End microstrip line radiation unit

1241 凹缺口1241 Concave Notch

22 微帶線輻射單元22 Microstrip line radiation unit

A、A0、A00、B 毫米波天線A, A0, A00, B mmWave antenna

A1、A10、A100、B1 發射陣列天線A1, A10, A100, B1 transmit array antenna

A2、A20、A200、B2 接收陣列天線A2, A20, A200, B2 receiving array antenna

C 電路板C circuit board

C1 毫米波電路C1 mmWave circuit

L121、 L122 長邊長度L121, L122 Long side length

W121、W122 短邊長度W121, W122 Short side length

Y 間隔距離Y spacing distance

第1圖係習見毫米波天線之結構示意圖。Figure 1 is a schematic diagram of the structure of a conventional millimeter-wave antenna.

第2圖係本發明之毫米波天線第一種實施例結構示意圖。FIG. 2 is a schematic structural diagram of the first embodiment of the millimeter wave antenna of the present invention.

第3圖係第2圖中位於天線本體中段之各中間微帶線輻射單元的局部放大示意圖。Fig. 3 is a partial enlarged schematic view of each intermediate microstrip line radiating element located in the middle section of the antenna body in Fig. 2.

第4圖係第2圖中位於天線本體末(尾)端之末端微帶線輻射單元的局部放大示意圖。Figure 4 is a partially enlarged schematic diagram of the end microstrip line radiating element located at the end (tail) end of the antenna body in Figure 2.

第5圖係本發明之毫米波天線第二種實施例結構示意圖。FIG. 5 is a schematic structural diagram of the second embodiment of the millimeter-wave antenna of the present invention.

第6圖係本發明之毫米波天線第三種實施例結構示意圖。FIG. 6 is a schematic structural diagram of a third embodiment of the millimeter wave antenna of the present invention.

1 梳狀天線元件 11 天線本體 12 微帶線輻射組件 121、122、123 中間微帶線輻射單元 124 末端微帶線輻射單元 A 毫米波天線 A1 發射陣列天線 A2 接收陣列天線 C 電路板 C1 毫米波電路 1 Comb antenna element 11 Antenna body 12 Microstrip line radiation components 121, 122, 123 Intermediate microstrip line radiation unit 124 End microstrip line radiation unit A mmWave antenna A1 Transmitting Array Antenna A2 Receive Array Antenna C circuit board C1 mmWave circuit

Claims (17)

一種毫米波天線之輻射能量均佈結構,包括:至少一梳狀天線元件,該梳狀天線元件具有一長條狀之天線本體,以及一設於該天線本體上之微帶線輻射組件,該天線本體一端能夠連通一能產生毫米波之毫米波電路;該微帶線輻射組件係由多個間隔排列設置於該天線本體中段之中間微帶線輻射單元,以及一設於該天線本體遠離該毫米波電路之一端的末端微帶線輻射單元所組成,該等中間微帶線輻射單元具有至少一位於相對遠離該毫米波電路一端的最大面積中間微帶線輻射單元,以及至少一位於相對接近該毫米波電路一端的最小面積中間微帶線輻射單元,該最大面積中間微帶線輻射單元之面積大於該最小面積中間微帶線輻射單元之面積,且位於該天線本體相對遠離該毫米波電路一端的中間微帶線輻射單元之面積,不小於相對接近該毫米波電路一端的中間微帶線輻射單元之面積。 A radiated energy uniform distribution structure of a millimeter-wave antenna, comprising: at least one comb-shaped antenna element, the comb-shaped antenna element has an elongated antenna body, and a microstrip line radiation component disposed on the antenna body, the One end of the antenna body can be connected to a millimeter-wave circuit capable of generating millimeter waves; the microstrip line radiating element is composed of a plurality of intermediate microstrip line radiating units arranged at intervals in the middle section of the antenna body, and a It is composed of the end microstrip line radiation unit at one end of the millimeter wave circuit, and the middle microstrip line radiation units have at least one middle microstrip line radiation unit with the largest area located at one end relatively far away from the millimeter wave circuit, and at least one located relatively close to the end microstrip line radiation unit. The smallest-area middle microstrip line radiating element at one end of the millimeter-wave circuit, the largest-area middle microstrip line radiating element is larger than the smallest-area middle microstrip line radiating element, and is located on the antenna body relatively far from the millimeter-wave circuit The area of the middle microstrip line radiation unit at one end is not less than the area of the middle microstrip line radiation unit relatively close to one end of the millimeter-wave circuit. 如請求項1之毫米波天線之輻射能量均佈結構,其中該等中間微帶線輻射單元之排列方式,係由設於較接近該毫米波電路之中間微帶線輻射單元的面積,相對小於較遠離該毫米波電路之中間微帶線輻射單元的面積。 According to the radiated energy uniform distribution structure of the millimeter-wave antenna of claim 1, the arrangement of the intermediate microstrip line radiating elements is determined by the area of the intermediate microstrip line radiating elements located closer to the millimeter-wave circuit, which is relatively smaller than The area of the radiating element of the middle microstrip line that is farther from the millimeter-wave circuit. 如請求項1之毫米波天線之輻射能量均佈結構,其中至少局部之相鄰中間微帶線輻射單元具有相同的面積。 The radiation energy uniform distribution structure of the millimeter-wave antenna according to claim 1, wherein at least part of the adjacent intermediate microstrip line radiation elements have the same area. 如請求項1或2或3之毫米波天線之輻射能量均佈結構,其中各中間微帶線輻射單元及該末端微帶線輻射單元的形狀為選自矩形、多邊形及橢圓形等形狀中之一。 The radiation energy uniform distribution structure of the millimeter-wave antenna according to claim 1, 2 or 3, wherein the shape of each middle microstrip line radiating element and the end microstrip line radiating element is selected from the shapes of rectangle, polygon and ellipse. one. 如請求項4之毫米波天線之輻射能量均佈結構,其中該等中間微帶線輻射單元係為矩形,且其長與寬比例為1.2~1.3:1。 According to the radiated energy uniform distribution structure of the millimeter-wave antenna of claim 4, the intermediate microstrip line radiating elements are rectangular, and the ratio of length to width is 1.2~1.3:1. 如請求項1或2或3之毫米波天線之輻射能量均佈結構,其中相鄰漸增之二中間微帶線輻射單元的面積比例為1.1~1.2:1。 For the radiated energy uniform distribution structure of the millimeter-wave antenna according to claim 1, 2 or 3, the area ratio of the two adjacent intermediate microstrip line radiating elements is 1.1~1.2:1. 如請求項4之毫米波天線之輻射能量均佈結構,其中該末端微帶線輻射單元的形狀為正方形。 The radiation energy uniform distribution structure of the millimeter-wave antenna according to claim 4, wherein the shape of the end microstrip line radiation unit is a square. 如請求項1或2或3之毫米波天線之輻射能量均佈結構,其中該末端微帶線輻射單元與該天線本體銜接的部位具有一矩形之凹缺口。 The radiation energy uniform distribution structure of the millimeter-wave antenna according to claim 1, 2 or 3, wherein the part where the end microstrip line radiating element is connected to the antenna body has a rectangular recess. 如請求項7之毫米波天線之輻射能量均佈結構,其中該末端微帶線輻射單元與該天線本體銜接的部位具有一矩形之凹缺口。 The radiation energy uniform distribution structure of the millimeter-wave antenna of claim 7, wherein the part where the end microstrip line radiating element is connected to the antenna body has a rectangular concave notch. 如請求項1或2或3之毫米波天線之輻射能量均佈結構,其中各中間微帶線輻射單元及該末端微帶線輻射單元皆係以相同方向及歪斜角度間隔排列設置於該天線本體上。 According to the radiated energy uniform distribution structure of the millimeter-wave antenna of claim 1, 2 or 3, each of the middle microstrip line radiating elements and the end microstrip line radiating elements are arranged on the antenna body with the same direction and skew angle interval. superior. 如請求項6之毫米波天線之輻射能量均佈結構,其中各中間微帶線輻射單元及該末端微帶線輻射單元皆係以相同方向及歪斜角度間隔排列設置於該天線本體上。 According to the radiated energy uniform distribution structure of the millimeter wave antenna of claim 6, each of the middle microstrip line radiating elements and the end microstrip line radiating elements are arranged on the antenna body with the same direction and skew angle at intervals. 如請求項10之毫米波天線之輻射能量均佈結構,其中各中間微帶線輻射單元及該末端微帶線輻射單元兩者,分別與該天線本體之間的歪斜角度為45度。 According to the radiated energy uniform distribution structure of the millimeter wave antenna of claim 10, the skew angle between each middle microstrip line radiating element and the end microstrip line radiating element and the antenna body is 45 degrees. 如請求項11之毫米波天線之輻射能量均佈結構,其中各中間微帶線輻射單元及該末端微帶線輻射單元兩者,分別與該天線本體之間的歪斜角度為45度。 According to the radiated energy uniform distribution structure of the millimeter-wave antenna of claim 11, the skew angle between each middle microstrip line radiating element and the end microstrip line radiating element and the antenna body is 45 degrees. 如請求項10之毫米波天線之輻射能量均佈結構,其中各中間微帶線輻射單元係分別以其上一端角連結於該天線本體。 According to the radiated energy uniform distribution structure of the millimeter-wave antenna of claim 10, each intermediate microstrip line radiating element is connected to the antenna body with its upper end angle respectively. 如請求項11之毫米波天線之輻射能量均佈結構,其中各中間微帶線輻射單元係分別以其上一端角連結於該天線本體。 The radiation energy uniform distribution structure of the millimeter-wave antenna of claim 11, wherein each intermediate microstrip line radiating element is connected to the antenna body at its upper end angle respectively. 如請求項12之毫米波天線之輻射能量均佈結構,其中各中間微帶線輻射單元係分別以其上一端角連結於該天線本體。 According to the radiated energy uniform distribution structure of the millimeter wave antenna of claim 12, each intermediate microstrip line radiating element is connected to the antenna body with its upper end angle respectively. 如請求項13之毫米波天線之輻射能量均佈結構,其中各中間微帶線輻射單元係分別以其上一端角連結於該天線本體。 According to the radiated energy uniform distribution structure of the millimeter-wave antenna of claim 13, each intermediate microstrip line radiating element is connected to the antenna body at its upper end angle respectively.
TW109143718A 2020-12-10 2020-12-10 Radiated energy distribution structure of millimeter-wave antenna TWI773010B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW109143718A TWI773010B (en) 2020-12-10 2020-12-10 Radiated energy distribution structure of millimeter-wave antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW109143718A TWI773010B (en) 2020-12-10 2020-12-10 Radiated energy distribution structure of millimeter-wave antenna

Publications (2)

Publication Number Publication Date
TW202224258A TW202224258A (en) 2022-06-16
TWI773010B true TWI773010B (en) 2022-08-01

Family

ID=83062610

Family Applications (1)

Application Number Title Priority Date Filing Date
TW109143718A TWI773010B (en) 2020-12-10 2020-12-10 Radiated energy distribution structure of millimeter-wave antenna

Country Status (1)

Country Link
TW (1) TWI773010B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203250852U (en) * 2013-05-09 2013-10-23 合肥师范学院 Microstrip antenna array
CN109768394A (en) * 2017-11-09 2019-05-17 北京木牛领航科技有限公司 The method of microstrip antenna structure and electromagnetic radiation signal
CN110854516A (en) * 2019-10-30 2020-02-28 纵目科技(上海)股份有限公司 Long-distance antenna, antenna array and radar applying antenna array
CN110867643A (en) * 2019-10-30 2020-03-06 厦门运晨科技有限公司 Wide beam antenna, antenna array and radar applying antenna array
CN111224237A (en) * 2020-01-13 2020-06-02 南京邮电大学 Millimeter wave flexible antenna array
CN111316499A (en) * 2018-12-04 2020-06-19 深圳市大疆创新科技有限公司 Millimeter wave antenna structure, microwave rotary radar and movable platform

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203250852U (en) * 2013-05-09 2013-10-23 合肥师范学院 Microstrip antenna array
CN109768394A (en) * 2017-11-09 2019-05-17 北京木牛领航科技有限公司 The method of microstrip antenna structure and electromagnetic radiation signal
CN111316499A (en) * 2018-12-04 2020-06-19 深圳市大疆创新科技有限公司 Millimeter wave antenna structure, microwave rotary radar and movable platform
CN110854516A (en) * 2019-10-30 2020-02-28 纵目科技(上海)股份有限公司 Long-distance antenna, antenna array and radar applying antenna array
CN110867643A (en) * 2019-10-30 2020-03-06 厦门运晨科技有限公司 Wide beam antenna, antenna array and radar applying antenna array
CN111224237A (en) * 2020-01-13 2020-06-02 南京邮电大学 Millimeter wave flexible antenna array

Also Published As

Publication number Publication date
TW202224258A (en) 2022-06-16

Similar Documents

Publication Publication Date Title
US8009082B2 (en) Mobile radar and planar antenna
CN106256043B (en) Antenna device for vehicle
CN104515976B (en) Radar sensor with antenna house
EP1617234A1 (en) On-vehicle radar
US20080211720A1 (en) Antenna Structure Having Patch Elements
CN103576152A (en) Sliding spotlight SAR (synthetic aperture radar) as well as implementing method and device thereof
US20050110673A1 (en) Vehicle-mounted radar
JPWO2005055366A1 (en) Automotive radar
JPH08301029A (en) Rear and side obstruction detection system containing large number of antenna for small vehicle
CN112042053A (en) Radar system with plastic antenna having reduced sensitivity to interference waves on the antenna and reflections from sensor cover
US20180136327A1 (en) Compact multi range automotive radar assembly with end-fire antennas on both sides of a printed circuit board
TWI773010B (en) Radiated energy distribution structure of millimeter-wave antenna
TWI773011B (en) Anti-jamming structure of millimeter wave antenna
WO2022120702A1 (en) Radiation energy uniform distribution structure of millimeter-wave antenna
WO2022120701A1 (en) Anti-interference structure of millimeter-wave antenna
TWM612128U (en) Radiant energy uniform-distributing structure of millimeter wave antenna
TWM610429U (en) Anti-interference structure of millimeter wave antenna
US20210091463A1 (en) Stripline feed distribution network with embedded resistor plane for millimeter wave applications
CN214589266U (en) Anti-interference structure of millimeter wave antenna
CN214589267U (en) Radiation energy uniform distribution structure of millimeter wave antenna
TWI704535B (en) Antenna array and collision avoidance radar having the same
JP5396052B2 (en) Radar transceiver
JP3272523B2 (en) Transmitter and receiver antenna separate type radar device
JP2009047633A (en) Radar system
Dash et al. Antenna Array Ambiguity Function Based Study of Integration Effect on a 2D Automotive MIMO RADAR Antenna Placed Behind a Painted Bumper