TWI771983B - 氮化鎵高電子移動率電晶體的缺陷檢測方法 - Google Patents

氮化鎵高電子移動率電晶體的缺陷檢測方法 Download PDF

Info

Publication number
TWI771983B
TWI771983B TW110113424A TW110113424A TWI771983B TW I771983 B TWI771983 B TW I771983B TW 110113424 A TW110113424 A TW 110113424A TW 110113424 A TW110113424 A TW 110113424A TW I771983 B TWI771983 B TW I771983B
Authority
TW
Taiwan
Prior art keywords
high electron
electron mobility
mobility transistor
region
gallium nitride
Prior art date
Application number
TW110113424A
Other languages
English (en)
Other versions
TW202240183A (zh
Inventor
張鼎張
鄭皓軒
林妤珊
金福源
邱豐閔
戴茂洲
林昀萱
黃煒宸
陳穩仲
Original Assignee
國立中山大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立中山大學 filed Critical 國立中山大學
Priority to TW110113424A priority Critical patent/TWI771983B/zh
Priority to US17/343,804 priority patent/US20220334167A1/en
Application granted granted Critical
Publication of TWI771983B publication Critical patent/TWI771983B/zh
Publication of TW202240183A publication Critical patent/TW202240183A/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2601Apparatus or methods therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/2621Circuits therefor for testing field effect transistors, i.e. FET's
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/265Contactless testing
    • G01R31/2656Contactless testing using non-ionising electromagnetic radiation, e.g. optical radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7786Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with direct single heterostructure, i.e. with wide bandgap layer formed on top of active layer, e.g. direct single heterostructure MIS-like HEMT

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Junction Field-Effect Transistors (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

一種氮化鎵高電子移動率電晶體的缺陷檢測方法,用以解決習知的缺陷檢測方法難以確認缺陷部位及測試過程緩慢的問題。係包含:測量一氮化鎵高電子移動率電晶體的數個電性特徵;將該氮化鎵高電子移動率電晶體進行劣化測試後,再測量該數個電性特徵;以不同波長之數個光源輪流照射該氮化鎵高電子移動率電晶體,測量各該光源照射時的該數個電性特徵;及比對該數個電性特徵在上述步驟的變化,判斷該氮化鎵高電子移動率電晶體的缺陷部位。

Description

氮化鎵高電子移動率電晶體的缺陷檢測方法
本發明係關於一種電子元件的測試製程,尤其是一種快速確認缺陷部位的氮化鎵高電子移動率電晶體的缺陷檢測方法。
近年來電動車及5G通訊等產業快速發展,對於電子元件的規格及需求量增加,高功率、低消耗且可用於高頻的電子元件具有市場優勢,其中,氮化鎵(GaN)具有高崩潰電壓、高電子飽和漂移速率、低電阻率、耐化學腐蝕及良好熱穩定性等特性,係理想的半導體材料,惟,以氮化鎵為主要材料的高電子移動率電晶體(High Electron Mobility Transistor,HEMT)在高電壓、電流的工作條件下,常發生熱載子注入電晶體的製程缺陷,而導致電晶體的開態電流下降、開啟電壓漂移及使用壽命縮短等問題,當電晶體做為開關元件使用時,其切換條件的數值產生偏差,造成錯誤判讀及影響迴路的訊號傳遞。
為改善氮化鎵高電子移動率電晶體的缺陷情形,係在電晶體製造完成後進行一道測試製程,篩選出不符合規格的產品,並找到缺陷位置以確認需要改善的前段製程,惟,氮化鎵高電子移動率電晶體的缺陷分布廣泛,難以準確判斷缺陷的位置及成因,又,習知的缺陷檢測方法係利用材料分析或電性變溫萃取分析,檢測分析的過程複雜且緩慢,係不適用於工廠大批且 快速的生產流程。
有鑑於此,習知的氮化鎵高電子移動率電晶體的缺陷檢測方法確實仍有加以改善之必要。
為解決上述問題,本發明的目的是提供一種氮化鎵高電子移動率電晶體的缺陷檢測方法,係可以快速檢測元件缺陷。
本發明的次一目的是提供一種氮化鎵高電子移動率電晶體的缺陷檢測方法,係可以準確判斷缺陷分布位置。
本發明的又一目的是提供一種氮化鎵高電子移動率電晶體的缺陷檢測方法,係可以提供製程改善的資訊。
本發明全文所述方向性或其近似用語,例如「上(頂)」、「下(底)」、「升」、「降」、「側面」等,主要係參考附加圖式的方向,各方向性或其近似用語僅用以輔助說明及理解本發明的各實施例,非用以限制本發明。
本發明全文所記載的元件及構件使用「一」或「一個」之量詞,僅是為了方便使用且提供本發明範圍的通常意義;於本發明中應被解讀為包括一個或至少一個,且單一的概念也包括複數的情況,除非其明顯意指其他意思。
本發明的氮化鎵高電子移動率電晶體的缺陷檢測方法,包含:測量一氮化鎵高電子移動率電晶體的數個電性特徵;將該氮化鎵高電子移動率電晶體進行劣化測試後,再測量該數個電性特徵;以不同波長之數個光源輪流照射該氮化鎵高電子移動率電晶體,以測量各該光源照射時的該數個電性特徵;及比對該數個電性特徵在上述步驟的變化,以判斷該氮化鎵高電子 移動率電晶體的缺陷部位。
據此,本發明的氮化鎵高電子移動率電晶體的缺陷檢測方法,藉由照射各種波長的光線及觀察電晶體的電性變化,以確認電晶體是否存在缺陷及找出缺陷分布的位置,係可以準確判斷缺陷及缺陷的分布情形,係具有改善元件製程及提升產品檢測效率等功效。
其中,該數個電性特徵是該氮化鎵高電子移動率電晶體的開態電流及起始電壓。如此,藉由觀測開態電流及起始電壓的變化,係可以得知載子注入缺陷的情形,係具有判斷是否存在缺陷的功效。
其中,一該光源產生波長400nm~700nm的可見光,使該氮化鎵高電子移動率電晶體之一鈍化區的氮化矽與一供電區的氮化鋁鎵之介面產生響應。如此,可見光可以作用於特定材料,係具有改變指定結構之電性的功效。
其中,一該光源產生波長365nm的紫外光,使該氮化鎵高電子移動率電晶體之一緩衝區及一漂移區的氮化鎵層產生響應。如此,該紫外光係可以作用於特定材料,係具有改變指定結構之電性的功效。
其中,一該光源產生波長265nm的紫外光,使該氮化鎵高電子移動率電晶體之一供電區的氮化鋁鎵層產生響應。如此,該不同波長的紫外光係可以作用於不同材料,係具有分別改變不同缺陷部位之電性的功效。
其中,該氮化鎵高電子移動率電晶體係由一電子供應層堆疊於一通道層,一閘極位於該電子供應層上,一鈍化層覆蓋該電子供應層及該閘極,該氮化鎵高電子移動率電晶體的缺陷部位係包含一供電區、一緩衝區、一鈍化區及一漂移區,該供電區位於該電子供應層且在該閘極下方的區域,該緩衝區及該漂移區位於該通道層,且該緩衝區在該閘極下方的區域,而該漂移區在該緩衝區側邊區域,該鈍化區位於該鈍化層。如此,該數個缺陷部 位係可以根據材料特性及與電極的相對位置作分類,係具有精確判斷缺陷位置的功效。
1:通道層
2:電子供應層
3:鈍化層
W:矽基板
B:緩衝層
S:源極
D:汲極
G:閘極
T1:供電區
T2:緩衝區
T3:鈍化區
T4:漂移區
VT1:第一起始電壓
VT2:第二起始電壓
VT3:第三起始電壓
Ion1:第一開態電流
Ion2:第二開態電流
Ion3:第三開態電流
〔第1圖〕本發明較佳實施例的缺陷部位疊層剖面圖。
〔第2圖〕本發明較佳實施例的缺陷檢測之特性曲線圖。
〔第3圖〕如第2圖所示的另一種缺陷部位之特性曲線圖。
為讓本發明之上述及其他目的、特徵及優點能更明顯易懂,下文特舉本發明之較佳實施例,並配合所附圖式,作詳細說明如下:本發明氮化鎵高電子移動率電晶體的缺陷檢測方法的較佳實施例,係包含:對一氮化鎵高電子移動率電晶體做耐電壓測試;及以數個光源輪流照射該氮化鎵高電子移動率電晶體。
請參照第1圖所示,該氮化鎵高電子移動率電晶體係由下而上依序堆疊一矽基板W、一緩衝層B、一通道層1、一電子供應層2及一鈍化層3,該通道層1及該電子供應層2的兩端分別電連接一源極S及一汲極D,另具有一閘極G位於該電子供應層2上,該鈍化層3覆蓋該電子供應層2、該閘極G、該源極S及該汲極D。
該氮化鎵高電子移動率電晶體的缺陷部位係包含一供電區T1、一緩衝區T2、一鈍化區T3及一漂移區T4,該供電區T1位於該電子供應層2且在該閘極G下方的區域,該供電區T1的材料可以是氮化鋁鎵(AlGaN);該緩衝區T2及該漂移區T4位於該通道層1,且該緩衝區T2在 該閘極G下方的區域,而該漂移區T4在該緩衝區T2側邊區域,該緩衝區T2及該漂移區T4的材料可以是氮化鎵(GaN);該鈍化區T3位於該鈍化層3,該鈍化區T3的材料可以是氮化矽(SiN)。
請參照第1及2圖所示,在該氮化鎵高電子移動率電晶體的閘極G施加逐漸提升之一閘極電壓,並在該汲極D測量一汲極電流的變化,當該閘極電壓大於一起始電壓後,該汲極電流開始大幅增加,又,該汲極電流增加趨勢穩定於一開態電流。如第2圖所示,該氮化鎵高電子移動率電晶體在生產完成後的初始狀態接受電性測試,藉由測試記錄的特性曲線圖係可以得知元件初始狀態之一第一起始電壓VT1及一第一開態電流Ion1
得知該氮化鎵高電子移動率電晶體在初始狀態的電性狀態後,係可以對該氮化鎵高電子移動率電晶體進行劣化測試,係將元件置於嚴苛環境,例如:施加1.5倍的工作電壓,使元件在短時間內強制劣化,用以預測元件在正常工作情況下的可靠度及壽命,藉由分析劣化後的元件可以判斷缺陷模式,作為製程改善的參考。如第2圖所示,該氮化鎵高電子移動率電晶體在劣化測試後再次接受電性測試,係可以得知劣化後之一第二起始電壓VT2及一第二開態電流Ion2,相較於該第一起始電壓VT1及該第一開態電流Ion1,該第二起始電壓VT2正向偏移,而該第二開態電流Ion2降低。
又,光子可以促進注入缺陷的載子脫離束縛,使劣化後之該氮化鎵高電子移動率電晶體能夠有限地恢復電性。如第2圖所示,對劣化後之該氮化鎵高電子移動率電晶體照光並再次接受電性測試,係可以得知劣化後照光之一第三起始電壓VT3及一第三開態電流Ion3,該第三開態電流Ion3相較於該第二開態電流Ion2有所提升,但仍小於該第一開態電流Ion1
依據該氮化鎵高電子移動率電晶體在劣化前後及照光狀態下的電性變化,係可以判斷發生缺陷的部位,當缺陷位於該供電區T1及該緩衝 區T2時,所導致的電性變化係該起始電壓的漂移及該開態電流的升降;當缺陷位於該鈍化區T3及該漂移區T4時,所導致的電性變化係該開態電流的降低及恢復。又,照射波長400nm~700nm的可見光可以使氮化矽與氮化鋁鎵之介面產生響應;照射波長365nm的紫外光可以使氮化鎵產生響應;照射波長265nm的紫外光可以使氮化鋁鎵產生響應,而發生照光響應的區域能夠減輕載子注入缺陷的現象。
請參照第1及2圖所示,劣化後之該氮化鎵高電子移動率電晶體的該第二開態電流Ion2降低,若照射可見光使該第三開態電流Ion3提升,則可以判斷缺陷位於該鈍化區T3;若照射紫外光使該第三開態電流Ion3提升,則可以判斷缺陷位於該漂移區T4。
請參照第1及3圖所示,劣化後之該氮化鎵高電子移動率電晶體的第二起始電壓VT2增加且該第二開態電流Ion2降低,若照射365nm的紫外光使該第三起始電壓VT3降低且該第三開態電流Ion3提升,則可以判斷缺陷位於該緩衝區T2;若照射265nm的紫外光使該第三起始電壓VT3降低且該第三開態電流Ion3提升,則可以判斷缺陷位於該供電區T1。
綜上所述,本發明的氮化鎵高電子移動率電晶體的缺陷檢測方法,藉由照射各種波長的光線及觀察電晶體的電性變化,以確認電晶體是否存在缺陷及找出缺陷分布的位置,係可以準確判斷缺陷及缺陷的分布情形,係具有改善元件製程及提升產品檢測效率等功效。
雖然本發明已利用上述較佳實施例揭示,然其並非用以限定本發明,任何熟習此技藝者在不脫離本發明之精神和範圍之內,相對上述實施例進行各種更動與修改仍屬本發明所保護之技術範疇,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。
1:通道層
2:電子供應層
3:鈍化層
W:矽基板
B:緩衝層
S:源極
D:汲極
G:閘極
T1:供電區
T2:緩衝區
T3:鈍化區
T4:漂移區

Claims (6)

  1. 一種氮化鎵高電子移動率電晶體的缺陷檢測方法,包含:測量一氮化鎵高電子移動率電晶體的數個電性特徵;將該氮化鎵高電子移動率電晶體進行劣化測試後,再測量該數個電性特徵;以不同波長之數個光源輪流照射該氮化鎵高電子移動率電晶體,以測量各該光源照射時的該數個電性特徵;及比對該數個電性特徵在上述步驟的變化,以判斷該氮化鎵高電子移動率電晶體的缺陷部位。
  2. 如請求項1之氮化鎵高電子移動率電晶體的缺陷檢測方法,其中,該數個電性特徵是該氮化鎵高電子移動率電晶體的開態電流及起始電壓。
  3. 如請求項1之氮化鎵高電子移動率電晶體的缺陷檢測方法,其中,一該光源產生波長400nm~700nm的可見光,使該氮化鎵高電子移動率電晶體之一鈍化區的氮化矽與一供電區的氮化鋁鎵之介面產生響應。
  4. 如請求項1之氮化鎵高電子移動率電晶體的缺陷檢測方法,其中,一該光源產生波長365nm的紫外光,使該氮化鎵高電子移動率電晶體之一緩衝區及一漂移區的氮化鎵層產生響應。
  5. 如請求項1之氮化鎵高電子移動率電晶體的缺陷檢測方法,其中,一該光源產生波長265nm的紫外光,使該氮化鎵高電子移動率電晶體之一供電區的氮化鋁鎵層產生響應。
  6. 如請求項1之氮化鎵高電子移動率電晶體的缺陷檢測方法,其中,該氮化鎵高電子移動率電晶體係由一電子供應層堆疊於一通道層,一閘極位於該電子供應層上,一鈍化層覆蓋該電子供應層及該閘極,該氮化鎵高電子移動率電晶體的缺陷部位係包含一供電區、一緩衝區、一鈍化區及一 漂移區,該供電區位於該電子供應層且在該閘極下方的區域,該緩衝區及該漂移區位於該通道層,且該緩衝區在該閘極下方的區域,而該漂移區在該緩衝區側邊區域,該鈍化區位於該鈍化層。
TW110113424A 2021-04-14 2021-04-14 氮化鎵高電子移動率電晶體的缺陷檢測方法 TWI771983B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW110113424A TWI771983B (zh) 2021-04-14 2021-04-14 氮化鎵高電子移動率電晶體的缺陷檢測方法
US17/343,804 US20220334167A1 (en) 2021-04-14 2021-06-10 Method for detecting defects in gallium nitride high electron mobility transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW110113424A TWI771983B (zh) 2021-04-14 2021-04-14 氮化鎵高電子移動率電晶體的缺陷檢測方法

Publications (2)

Publication Number Publication Date
TWI771983B true TWI771983B (zh) 2022-07-21
TW202240183A TW202240183A (zh) 2022-10-16

Family

ID=83439638

Family Applications (1)

Application Number Title Priority Date Filing Date
TW110113424A TWI771983B (zh) 2021-04-14 2021-04-14 氮化鎵高電子移動率電晶體的缺陷檢測方法

Country Status (2)

Country Link
US (1) US20220334167A1 (zh)
TW (1) TWI771983B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201246297A (en) * 2011-04-07 2012-11-16 Veeco Instr Inc Metal-organic vapor phase epitaxy system and process
EP2595175A2 (en) * 2005-05-17 2013-05-22 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities related methods for device fabrication
TW201410855A (zh) * 2012-08-30 2014-03-16 Hitachi Chemical Co Ltd 研磨劑、研磨劑套組及基體的研磨方法
TW201445730A (zh) * 2013-03-15 2014-12-01 Luxvue Technology Corp 具有冗餘架構的發光二極體顯示器及製造具有整合缺陷檢測測試的發光二極體顯示器之方法
US20170029978A1 (en) * 2008-07-07 2017-02-02 Soraa, Inc. Large area, low-defect gallium-containing nitride crystals, method of making, and method of use
TW201915770A (zh) * 2017-09-28 2019-04-16 以色列商應用材料以色列公司 對半導體樣本中的缺陷進行分類之方法及其系統
US20200203493A1 (en) * 2017-08-24 2020-06-25 Sumitomo Chemical Company, Limited Charge trap evaluation method and semiconductor element
TW202105549A (zh) * 2019-01-16 2021-02-01 以色列商應用材料以色列公司 對樣本的缺陷檢測的方法及其系統

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013147710A1 (en) * 2012-03-29 2013-10-03 Agency For Science, Technology And Research Iii-nitride high electron mobility transistor structures and methods for fabrication of same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2595175A2 (en) * 2005-05-17 2013-05-22 Taiwan Semiconductor Manufacturing Company, Ltd. Lattice-mismatched semiconductor structures with reduced dislocation defect densities related methods for device fabrication
US20170029978A1 (en) * 2008-07-07 2017-02-02 Soraa, Inc. Large area, low-defect gallium-containing nitride crystals, method of making, and method of use
TW201246297A (en) * 2011-04-07 2012-11-16 Veeco Instr Inc Metal-organic vapor phase epitaxy system and process
TW201410855A (zh) * 2012-08-30 2014-03-16 Hitachi Chemical Co Ltd 研磨劑、研磨劑套組及基體的研磨方法
TW201445730A (zh) * 2013-03-15 2014-12-01 Luxvue Technology Corp 具有冗餘架構的發光二極體顯示器及製造具有整合缺陷檢測測試的發光二極體顯示器之方法
US20200203493A1 (en) * 2017-08-24 2020-06-25 Sumitomo Chemical Company, Limited Charge trap evaluation method and semiconductor element
EP3674723A1 (en) * 2017-08-24 2020-07-01 Sumitomo Chemical Company, Limited Charge trap evaluation method and semiconductor element
TW201915770A (zh) * 2017-09-28 2019-04-16 以色列商應用材料以色列公司 對半導體樣本中的缺陷進行分類之方法及其系統
TW202105549A (zh) * 2019-01-16 2021-02-01 以色列商應用材料以色列公司 對樣本的缺陷檢測的方法及其系統

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
F. Tong, K. Yapabandara, C.-W. Yang, M. Khanal, C. Jiao, M. Goforth, B. Ozden, A. Ahyi, M. Hamilton, G. Niu, D.A. Ewoldt, G. Chung and M. Park, "Spectroscopic photo I–V diagnostics of nitride-based high electron mobility transistor structures on Si wafers," ELECTRONICS LETTERS, Nov. 2013, Vol. 49, No. 24, pages 1547–1548 *
F. Tong, K. Yapabandara, C.-W. Yang, M. Khanal, C. Jiao, M. Goforth, B. Ozden, A. Ahyi, M. Hamilton, G. Niu, D.A. Ewoldt, G. Chung and M. Park, "Spectroscopic photo I–V diagnostics of nitride-based high electron mobility transistor structures on Si wafers," ELECTRONICS LETTERS, Nov. 2013, Vol. 49, No. 24, pages 1547–1548。

Also Published As

Publication number Publication date
US20220334167A1 (en) 2022-10-20
TW202240183A (zh) 2022-10-16

Similar Documents

Publication Publication Date Title
Marcon et al. Reliability analysis of permanent degradations on AlGaN/GaN HEMTs
US8164091B2 (en) Multi-purpose poly edge test structure
CN104157691B (zh) 一种半导体器件及其制造方法
US7381577B2 (en) Early detection test for identifying defective semiconductor wafers in a front-end manufacturing line
JP5980024B2 (ja) 炭化珪素半導体装置の製造方法
CN107452715B (zh) 用于测试晶体管结构的栅极绝缘的半导体器件和方法
US20080038851A1 (en) Pattern for evaluating electric characteristics, method for evaluating electric characteristics, method for manufacturing semiconductor device and method for providing reliability assurance
JPWO2009088081A1 (ja) 半導体装置及びその製造方法
De Santi et al. Review of dynamic effects and reliability of depletion and enhancement GaN HEMTs for power switching applications
US10192799B2 (en) Method and apparatus to model and monitor time dependent dielectric breakdown in multi-field plate gallium nitride devices
US9401314B2 (en) Method of testing semiconductor device
US7718448B1 (en) Method of monitoring process misalignment to reduce asymmetric device operation and improve the electrical and hot carrier performance of LDMOS transistor arrays
TWI771983B (zh) 氮化鎵高電子移動率電晶體的缺陷檢測方法
JP7175115B2 (ja) SiCデバイスの製造方法および評価方法
US11869814B2 (en) Method of manufacturing silicon carbide semiconductor device
JP2019186460A (ja) 炭化珪素半導体装置及びその製造方法
US6734028B1 (en) Method of detecting shallow trench isolation corner thinning by electrical stress
CN115377064A (zh) 碳化硅半导体装置的制造方法
JP2022105804A (ja) 炭化珪素半導体装置の検査方法
Nilsson et al. Influence of field plates and surface traps on microwave silicon carbide MESFETs
Liu et al. Impacts of Area-Dependent Defects on the Yield and Gate Oxide Reliability of SiC Power MOSFETs
JP5266899B2 (ja) 絶縁ゲート型バイポーラトランジスタの検査方法
JP3415480B2 (ja) 半導体装置の製造評価装置及びその製造評価方法
US7781239B2 (en) Semiconductor device defect type determination method and structure
KR20100062400A (ko) 반도체 웨이퍼의 결함 분석 방법