TWI765881B - 無線傳輸/接收單元(wtru)及其執行方法 - Google Patents

無線傳輸/接收單元(wtru)及其執行方法 Download PDF

Info

Publication number
TWI765881B
TWI765881B TW106110900A TW106110900A TWI765881B TW I765881 B TWI765881 B TW I765881B TW 106110900 A TW106110900 A TW 106110900A TW 106110900 A TW106110900 A TW 106110900A TW I765881 B TWI765881 B TW I765881B
Authority
TW
Taiwan
Prior art keywords
wtru
access
signal
trp
receive
Prior art date
Application number
TW106110900A
Other languages
English (en)
Other versions
TW201735695A (zh
Inventor
尤希斯瓦 諦諾
基斯蘭 佩勒特爾
派翠克 圖爾
Original Assignee
美商Idac控股公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 美商Idac控股公司 filed Critical 美商Idac控股公司
Publication of TW201735695A publication Critical patent/TW201735695A/zh
Application granted granted Critical
Publication of TWI765881B publication Critical patent/TWI765881B/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

這裡描述了一種用於在無線傳輸/接收單元(WTRU)中使用系統簽章或簽章序列來執行初始存取的方法。WTRU可以從多個傳輸接收點(TRP)中的至少一個TRP接收系統簽章。該系統簽章可以與參數配置、網路切片、不連續傳輸(DTX)狀態、控制通道特性和/或網路服務相關聯。然後,WTRU可以使用已儲存的存取表來確定資源選擇、多種初始存取方法中的初始存取方法、網路切片、網路服務或是具有至少一個TRP的群組。然後,WTRU可以從至少一個TRP接收至少一個隨機存取回應(RAR)消息。然後,WTRU會依據所接收的至少一個RAR消息來關聯至少一個TRP。

Description

無線傳輸/接收單元(WTRU)及其執行方法 相關申請的交叉引用
本申請要求主張享有於2016年3月30日提交的美國臨時申請62/315,458的權益,所述該申請案的內容由此在這裡引納入以作為參考。
行動通訊技術正在不斷演進,並且業已處於其第五代5G的前夕。與前幾代一樣,新的使用範例主要的貢獻在於為新的系統設置了要求。5G空中介面至少能夠啟用以下使用案例:改進的寬頻性能(IBB);工業控制和通訊訊(ICC)和車載應用(V2X);大規模機器類型通訊(mMTC)。
以上使用案例可以轉換成關於5G介面的以下要求:支援超低傳輸延遲(LLC);支援超可靠傳輸(URC);以及支援MTC操作(包括窄頻操作)。
下一代無線電存取技術的其中一個目標是實現改進的能量效率。無線電存取網路中的能量消耗是由始終開啟的廣播傳信所支配的。
所揭露的是一種用於提供無線通訊系統存取的系統和方法。該系統和方法包括由通訊裝置接收一系統簽章,透過所接收的系統簽章確定與無線通訊系統相關聯的一或多個參數,以及使用通訊裝置並依據該一或多個參數來存取該無線通訊系統。
在這裡描述了一種用於在無線傳輸/接收單元(WTRU)中使用系統簽章或簽章序列來執行初始存取的方法。WTRU可以從多個傳輸接收點(TRP)中的至少一TRP接收一系統簽章。該系統簽章可以與一命理、一網路切片、一不連續傳輸(DTX)狀態、一控制通道特性和/或一網路服務相關聯。然後,WTRU可以使用已儲存的存取表來確定一資源選擇、多個初始存取方法中的一初始存取方法、一網路切片、一網路服務或是具有該至少一TRP的群組。然後,WTRU可以從該至少一TRP接收至少一隨機存取回應(RAR)訊息。然後,WTRU會依據所接收的至少一RAR訊息來和該至少一TRP相關聯。
第1A圖是可以實施所揭露的一個或多個實施例的示例通訊系統100的圖式。通訊系統100可以是為多個無線使用者提供語音、資料、視訊、消息傳遞、廣播等內容的多重存取系統。該通訊系統100可以通過共用包括無線頻寬在內的系統資源來允許多個無線使用者存取這些內容,例如,該通訊系統100可以使用一種或多種通道存取方法,例如碼分多工存取(CDMA)、時分多工存取(TDMA)、頻分多工存取(FDMA)、正交FDMA(OFDMA)、單載波FDMA(SC-FDMA)等等。
如第1A圖所示,通訊系統100可以包括無線傳輸/接收單元(WTRU)102a、102b、102c、102d、無線電存取網路(RAN)104、核心網路106、公共交換電話網絡(PSTN)108、網際網路110以及其他網路112,然而應該瞭解,所揭露的實施例可以設想任意數量的WTRU、基地台、網路和/或網路元件。每一個WTRU 102a、102b、102c、102d可以是被配置成在無線環境中工作和/或通訊的任何類型的裝置。例如,WTRU 102a、102b、102c、102d可被配置成發射和/或接收無線信號,並且可以包括使用者設備(UE)、行動站台、固定或行動用戶單元、呼叫器、手機、個人數位助理(PDA)、智慧型電話、筆記型電腦、小筆電、個人電腦、無線感測器、消費類電子設備等等。
通訊系統100還可以包括基地台114a和基地台114b。每一個基地台114a、114b都可以是被配置成通過與至少一個WTRU 102a、102b、102c、102d進行無線對接來促使其存取一個或多個通訊網路的任何類型的裝置,該網路可以是核心網路106、網際網路110和/或其他網路112。作為示例,基地台114a、114b可以是基地收發信台(BTS)、節點B、演進型節點B(eNodeB)、本地節點B、本地演進型節點B、網站控制器、存取點(AP)、無線路由器等等。雖然將每個基地台114a、114b描述成單個元件,然而應該瞭解,基地台114a、114b可以包括任何數量的互連基地台和/或網路元件。
基地台114a可以是RAN 104的一部分,並且該RAN還可以包括其他基地台和/或網路元件(未顯示),例如基地台控制器(BSC)、無線電網路控制器(RNC)、中繼節點等等。基地台114a和/或基地台114b可被配置成在名為胞元(未顯示)的特定地理區域內部發射和/或接收無線信號。胞元可以進一步分割成胞元磁區。舉例來說,與基地台114a關聯的胞元可分成三個磁區。由此,在一個實施例中,基地台114a可以包括三個收發器,也就是說,每一個收發器對應於胞元的一個磁區。在另一個實施例中,基地台114a可以使用多輸入多輸出(MIMO)技術,並且由此可以為胞元中的每個磁區使用多個收發器。
基地台114a、114b可以通過空中介面116來與一個或多個WTRU 102a、102b、102c、102d進行通訊,該空中介面可以是任何適當的無線通訊鏈路(例如射頻(RF)、微波、紅外線(IR)、紫外線(UV)、可見光等等)。空中介面116可以用任何適當的無線電存取技術(RAT)來建立。
更具體地說,如上所述,通訊系統100可以是一個多重存取系統,並且可以使用一或多通道存取的方案,例如CDMA、TDMA、FDMA、OFDMA、SC-FDMA等等。例如,RAN 104中的基地台114a與WTRU 102a、102b、102c可以執行諸如通用行動電信系統(UMTS)陸地無線電存取(UTRA)之類的無線電技術,該技術可以使用寬頻CDMA(WCDMA)來建立空中介面116。WCDMA可以包括諸如高速封包存取(HSPA)和/或演進型HSPA(HSPA+)之類的通訊協議。HSPA可以包括高速下鏈封包存取(HSDPA)和/或高速上鏈封包存取(HSUPA)。
在另一個實施例中,基地台114a與WTRU 102a、102b、102c可以實施演進型UMTS陸地無線電存取(E-UTRA)之類的無線電技術,該技術可以使用長期演進(LTE)和/或先進LTE(LTE-A)來建立空中介面116。
在其他實施例中,基地台114a和WTRU 102a、102b、102c可以實施電機工程協會(IEEE) 802.16(即,全球微波存取互通性(WiMAX))、CDMA2000、CDMA2000 1X、CDMA2000 EV-DO、臨時標準2000(IS-2000)、臨時標準95(IS-95)、臨時標準856(IS-856)、全球行動通訊系統(GSM)、用於GSM增強資料速率演進(EDGE)、GSM EDGE(GERAN)之類的無線電存取技術。
例如,第1A圖中的基地台114b可以是無線路由器、本地節點B、本地演進型節點B或存取點,並且可以使用任何適當的RAT來促成商業場所、住宅、交通工具、校園等之類的局部區域中的無線連接。在一個實施例中,基地台114b與WTRU 102c、102d可以通過實施諸如IEEE 802.11之類的無線電技術來建立無線區域網路(WLAN)。在另一個實施例中,基地台114b與WTRU 102c、102d可以通過實施諸如IEEE 802.15之類的無線電技術來建立無線個人局域網(WPAN)。在另一個實施例中,基地台114b和WTRU 102c、102d可以通過使用基於蜂窩型的RAT(例如WCDMA、CDMA2000、GSM、LTE、LTE-A等等)來建立微微胞元或毫微微胞元。如第1A圖所示,基地台114b可以直接連接到網際網路110。由此,基地台114b無需經由核心網路106來存取網際網路110。
RAN 104可以和核心網路106通訊,該核心網路可以是被配置成為一個或多個WTRU 102a、102b、102c、102d以提供語音、資料、應用和/或借助網際網路協定的語音(VoIP)服務的任何類型的網路。舉例來說,核心網路106可以提供呼叫控制、記帳服務、基於行動位置的服務、預付費呼叫、網際網路連接、視訊分發等等,和/或執行諸如使用者驗證之類的高級安全功能。雖然第1A圖中沒有顯示,然而應該瞭解,RAN 104和/或核心網路106可以直接或間接地和其他RAN進行通訊,並且這些RAN既可以使用與RAN 104相同的RAT,也可以使用不同的RAT。例如,除了與使用E-UTRA無線電技術的RAN 104連接之外,核心網路106還可以與另一個使用GSM無線電技術的RAN(未顯示)進行通訊。
核心網路106還可以充當供WTRU 102a、102b、102c、102d存取PSTN 108、網際網路110和/或其他網路112的閘道。PSTN 108可以包括提供簡易老式電話服務(POTS)的電路交換電話網路。網際網路110可以包括使用公共通訊協定的全球性互聯電腦網路裝置系統,並且該協定可以是TCP/IP網際網路協定族中的傳輸控制協定(TCP)、使用者資料包通訊協定(UDP)和網際網路協定(IP)。網路112可以包括由其他服務供應商所有和/或運營的有線或無線通訊網路。例如,網路112可以包括與一或多個RAN相連的另一核心網路,該一或多個RAN可以使用與RAN 104相同的RAT或不同的RAT。
通訊系統100中一些或所有WTRU 102a、102b、102c、102d可以包含多模能力,換言之,WTRU 102a、102b、102c、102d可以包括在不同無線鏈路上與不同無線網路進行通訊的多個收發器、發射器或接收器。例如,第1A圖所示的WTRU 102c可被配置成與使用基於手機的無線電技術的基地台114a進行通訊,以及與可以使用IEEE 802無線電技術的基地台114b進行通訊。
第1B圖是示例WTRU 102的系統圖。如第1B圖所示,WTRU 102可以包括處理器118、收發器120、傳輸/接收元件122、揚聲器/麥克風124、小鍵盤126、顯示器/觸控板128、非可移記憶體130、可移記憶體132、電源134、全球定位系統(GPS)晶片組136以及其他週邊設備138。應該瞭解的是,在保持與實施例相符的同時,WTRU 102還可以包括前述元件的任何次組合。
處理器118可以是通用處理器、特殊用途處理器、傳統處理器、數位訊號處理器(DSP)、多個微處理器、與DSP核心關聯的一個或多個微處理器、控制器、微控制器、特殊應用積體電路(ASIC)、現場可程式設計閘陣列(FPGA)電路、其他任何類型的積體電路(IC)、狀態機等等。處理器118可以執行信號編碼、資料處理、功率控制、輸入/輸出處理和/或其他任何能使WTRU 102在無線環境中工作的功能。處理器118可以耦合至收發器120,收發器120則可以耦合至傳輸/接收元件122。雖然第1B圖將處理器118和收發器120顯示成是獨立組件,然而應該瞭解,處理器118和收發器120也可以組成在一個電子元件或晶片中。
傳輸/接收元件122可被配置成經由空中介面116來發射或接收往來於基地台(例如基地台114a)的信號。舉個例子,在一個實施例中,傳輸/接收元件122可以是被配置成發射和/或接收RF信號的天線。在另一個實施例中,傳輸/接收元件122可以是被配置成發射和/或接收紅外線、紫外光或可見光信號的放射器/檢測器。在另一個實施例中,傳輸/接收元件122可被配置成發射和接收RF和光信號。應該瞭解的是,傳輸/接收元件122可以被配置成發射和/或接收無線信號的任何組合。
此外,雖然在第1B圖中將傳輸/接收元件122描述成是單獨元件,但是WTRU 102可以包括任何數量的傳輸/接收元件122。更具體地說,WTRU 102可以使用MIMO技術。因此,在一個實施例中,WTRU 102可以包括兩個或多個經由空中介面116來發射和接收無線電信號的傳輸/接收元件122(例如多個天線)。
收發器120可被配置成對傳輸/接收元件122所要發射的信號進行調變,以及對傳輸/接收元件122接收的信號進行解調變。如上所述,WTRU 102可以具有多模能力。因此,收發器120可以包括允許WTRU 102借助諸如UTRA和IEEE 802.11之類的多種RAT來進行通訊的多個收發器。
WTRU 102的處理器118可以耦合到揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控面板128(例如液晶顯示器(LCD)顯示單元或有機發光二極體(OLED)顯示單元),並且可以接收來自這些部件的使用者輸入資料。處理器118還可以向揚聲器/麥克風124、小鍵盤126和/或顯示器/觸控面板128輸出使用者資料。此外,處理器118可以從諸如非可移記憶體130和/或可移記憶體132之類的任何適當的記憶體中存取訊號,以及將資訊存入這些記憶體。非可移記憶體130和可移記憶體132可以包含任意揮發性或非揮發性讀/寫記憶體。非可移記憶體130可以包括隨機存取記憶體(RAM)、唯讀記憶體(ROM)、硬碟或是其他任何類型的記憶存放裝置。可移記憶體132可以包括用戶身份模組(SIM)卡、記憶棒、安全數字(SD)記憶卡等等。在其他實施例中,處理器118可以從那些並非實際位於WTRU 102的記憶體存取訊號,以及將資料存入這些記憶體,作為示例,此類記憶體可以位於伺服器或家用電腦(未顯示)。處理器118可以存取來自保存在任何類型的適當記憶體中的存取表的資訊,以及將資料保存在該存取表中,作為示例,該記憶體可以是非可移記憶體130和/或可移記憶體132。保存在諸如非可移記憶體130和/或可移記憶體132之類的任何類型的適當記憶體中的存取表可以是從通訊網路接收的,例如,該通訊網路可以是核心網路106、網際網路110和/或其他網路112,抑或是這裡描述的任何3GPP或5G網路實體。
處理器118可以接收來自電源134的電力,並且可被配置分發和/或控制用於WTRU 102中的其他元件的電力。電源134可以是為WTRU 102供電的任何適當裝置。例如,電源134可以包括一個或多個乾電池組(如鎳鎘(Ni-Cd)、鎳鋅(Ni-Zn)、鎳氫(NiMH)、鋰(Li-ion)等等)、太陽能電池、燃料電池等等。
處理器118還可以與GPS晶片組136耦合,該晶片組可被配置成提供與WTRU 102的當前位置相關的位置資訊(例如經度和緯度)。作為來自GPS晶片組136的資訊的補充或替代,WTRU 102可以經由空中介面116接收來自基地台(例如基地台114a、114b)的位置資訊,和/或根據從兩個或多個附近基地台接收的信號時序來確定其位置。應該瞭解的是,在保持與實施例相符的同時,WTRU 102可以借助任何適當的定位方法來獲取位置資訊。
處理器118還可以耦合到其他週邊設備138,這些裝置可以包括提供附加特徵、功能和/或有線或無線連接的一個或多個軟體和/或硬體模組。例如,週邊設備138可以包括加速計、電子指南針、衛星收發器、數位相機(用於照片或視訊)、通用序列匯流排(USB)埠、振動裝置、電視收發器、免持耳機、藍牙®模組、調頻(FM)無線電單元、數位音樂播放機、媒體播放機、視訊遊戲機模組、網際網路瀏覽器等等。
第1C圖顯示的是可根據實施例的示例RAN 104和核心網路106的系統圖。如上所述,RAN 104可以使用E-UTRA無線電技術而在空中介面116上與WTRU 102a、102b、102c進行通訊。並且RAN 104還可以與核心網路106進行通訊。
RAN 104可以包括e節點B 140a、140b、140c,然而應該瞭解,在保持與實施例相符的同時,RAN 104可以包括任何數量的e節點B。每一個e節點B 140a、140b、140c都可以包括在空中介面116上與WTRU 102a、102b、102c通訊的一個或多個收發器。在一個實施例中,e節點B 140a、140b、140c可以即時MIMO技術。由此舉例來說,e節點B 140a可以使用多個天線來向WTRU 102a發送無線信號以及接收來自WTRU 102a的無線信號。
每一個e節點B 140a、140b、140c都可以關聯於一個特定的胞元(未顯示),並且可被配置成處理無線電資源管理判定、交遞判定、上鏈和/或下鏈的使用者排程等等。如第1C圖所示,e節點B 140a、140b、140c彼此可以在X2介面上進行通訊。
第1C圖所示的核心網路106可以包括行動性管理閘道(MME)142、服務閘道144以及封包資料網路(PDN)閘道146。雖然前述的每一個部件都被描述成了核心網路106的一部分,然而應該瞭解,這其中的任一部件都可以由核心網路營運者之外的實體所擁有和/或營運。
MME 142可以經由S1介面連接到RAN 104中的每一個e節點B 140a、140b、140c,並且可以充當控制節點。舉例來說,MME 142可以負責驗證WTRU 102a、102b、102c的使用者,執行承載啟動/去啟動處理,在WTRU 102a、102b、102c的初始附著過程中選擇特定的服務閘道等等。該MME 142還可以提供一個用於在RAN 104與使用GSM或WCDMA之類的其他無線電技術的其他RAN(未顯示)之間進行切換的控制平面功能。
服務閘道144可以經由S1介面連接到RAN 104中的每個e節點B 140a、140b、140c。該服務閘道144通常可以路由和轉發去往/來自WTRU 102a、102b、102c的使用者資料封包。並且該服務閘道144可以執行其他功能,例如在e節點B間的切換過程中錨定使用者平面,在下鏈資料可供WTRU 102a、102b、102c使用時觸發傳呼處理,管理並儲存WTRU 102a、102b、102c的上下文等等。
服務閘道144還可以連接到PDN閘道146,該PDN閘道可以為WTRU 102a、102b、102c提供針對網際網路110之類的封包交換網路的存取,以便支援WTRU 102a、102b、102c與受IP啟用的裝置之間的通訊。
核心網路106可以促成與其他網路的通訊。例如,核心網路106可以為WTRU 102a、102b、102c提供針對PSTN 108之類的電路切換式網路的存取,以便促成WTRU 102a、102b、102c與傳統的陸線通訊裝置之間的通訊。例如,核心網路106可以包括一個IP閘道(例如IP多媒體子系統(IMS)伺服器)或與之進行通訊,並且該IP閘道可以充當核心網路106與PSTN 108之間的介面。此外,核心網路106可以為WTRU 102a、102b、102c提供針對包含PSTN 108、網路110以及其他網路112的各種網路的存取,該網路可以包括其他服務供應商所擁有和/或運營的其他有線或無線網路。
其他網路112還可以進一步連接到依據IEEE 802.11的無線區域網路(WLAN)160。該WLAN 160可以包括存取路由器165。該存取路由器165可以包含閘道功能。並且該存取路由器165可以與多個存取點(AP)170a、170b進行通訊。存取路由器165與AP 170a、170b之間的通訊可以借助有線乙太網(IEEE 802.3標準)或是任何類型的無線通訊協定來進行。AP 170a通過空中介面與WTRU 102d進行無線通訊。
雖然這裡描述的實施例考慮的是3GPP專用協定,然而這裡描述的實施例並不侷限於3GPP系統,而且是適用於其他無線系統。
雖然並沒有打算限制對於具有其他含義和/或其他類型的信號、配置方法或是不同使用者資料單元之間的邏輯關聯的適用性,但是在這裡使用了以下定義和術語來支持關於不同方法的描述。
以下的簡寫和首字母縮寫詞是為了説明和增強對於這裡描述的實施例的理解而被提供的。 ∆f       子載波間隔 5gFlex       5G彈性無線電存取技術 5gNB  5GFlex節點B ACK   應答 BLER 塊差錯率 BTI     基本TI(一個或多個符號持續時間的整數倍) CB      基於爭用的(例如存取,通道,資源) CoMP 協作多點傳輸/接收 CP      循環首碼 CP-OFDM      傳統OFDM(依賴於循環首碼) CQI    通道品質指標 CN     核心網路(例如LTE封包核心) CRC   循環冗餘校驗 CSG   封閉用戶組 CSI     通道狀態資訊 D2D   裝置到裝置傳輸(例如LTE側鏈路) DCI    下鏈控制資訊 DL      下鏈 DM-RS     解調變參考信號 DRB   資料無線電承載 EPC    演進型封包核心 FBMC      濾波器組多載波 FBMC/OQAM      使用偏移正交振幅調變的FBMC技術 FDD   頻分雙工 FDM  頻分多工多工 ICC    工業控制和通訊 ICIC   胞元間干擾消除 IP 網際網路協定 LAA   授權輔助存取 LBT    先聽後說 LCH   邏輯通道 LCP    邏輯通道優先排序 LLC    低時間延遲通訊 LTE    長期演進,例如從3GPP LTE R8及以上 MAC  媒體存取控制 NACK      否定ACK MC     多載波 MCS   調變和編碼方案 MIMO      多輸入多輸出 MTC  機器類型通訊 NAS   非存取層 OFDM      正交頻分多工多工 OOB   頻帶外(輻射) Pcmax       指定TI中的全部可用WTRU功率 PHY   實體層 PRACH    實體隨機存取通道 PDU   協定資料單元 PER    封包差錯率 PLMN       公共地面行動網路 PLR    封包丟失率 PSS    主同步信號 QoS    服務品質(從實體層的角度來看) RAB   無線電存取承載 RACH      隨機存取通道(或過程) RAR   隨機存取回應 RCU   隨機存取網路中心單元 RF      無線電前端 RNTI  無線電網路辨識碼 RRC   無線電資源控制 RRM  無線電資源管理 RS      參考信號 RTT   往返時間 SCMA      單載波多址存取 SDU   服務資料單元 SOM  頻譜工作模式 SS      同步信號 SSS    輔助同步信號 SRB   信號無線電承載 SWG  切換間隙(在自包含子訊框中) TB      傳輸塊 TBS    傳輸塊大小 TDD   時分雙工 TDM  時分多工 TI 時間間隔(一個或多個BTI的整數倍) TTI     傳輸時間間隔(一個或多個TI的整數倍) TRP    傳輸/接收點 TPRG 傳輸/接收點群組 TRx    收發器 UFMC      通用濾波多載波 UF-OFDM      通用濾波OFDM UL      上鏈 URC   超可靠通訊 URLLC     超可靠低時間延遲通訊 V2V   車對車通訊 V2X   車載通訊 WLAN      無線區域網路和相關技術(IEEE 802.xx領域)
諸如5gFLEX之類的下一代無線電存取技術的一個目標是達成改進的能量效率。無線電存取網路中的能量消耗可以歸因於始終開啟的廣播傳信。減少不與使用者資料傳輸直接關聯的強制性週期傳輸是本文描述的實施例所提供的一個解決方案。
諸如5gFLEX子類的下一代無線電存取技術預期還會支援相同頻譜中的不同的服務集合。舊有LTE系統可定義一種初始存取方法,例如隨機存取,但是在5G中,存取方法的不同集合可以用於處理不同的使用範例,這其中包括但不侷限於增強型行動寬頻(eMBB)、mMTC以及URLLC。用於處理不同存取方法集合的機制是本文描述的實施例提供的另一個解決方案。
本文描述的實施例可以在包括但不侷限於以下各項的部署場景中使用:(1)LTE輔助的5gFLEX聚合(DC/CA卸載),(2)LTE輔助的一個或多個5gFLEX傳輸通道(其示例包括LTE CP、LTE UP、具有***到LTE Uu中的一個或多個5gFLEX TrCH/實體通道的LTE Uu)、依據LTE的獨立5gFLEX操作(作為示例,該操作包括LTE CP、至少一部分的LTE L2、5gFLEX PHY),以及(3)獨立的5gFLEX操作。
對於LTE輔助的5gFLEX聚合(DC/CA/卸載)來說,WTRU可被配置成使用諸如具有帶有LTE RRC連接的LTE控制平面,以及使用諸如帶有一個或多個LTE Uu介面的LTE使用者平面。WTRU可以進一步被配置成使用LTE DC、LTE CA或LTE-WLAN卸載的原理來操作一個或多個附加的5gFLEX Uu。這種配置可以通過從廣播或專用傳信中接收一個或多個存取表來執行。針對5gFLEX PHY的初始存取的觸發可以使用與用於LTE CA/DC/卸載相似的觸發,或是其他類型的觸發。
對於一個或多個LTE輔助的5gFLEX傳輸通道來說(作為示例,該通道包括LTE CP,LTE UP,具有一個或多個***到LTE Uu中的一個或多個5gFLEX TrCH /實體通道的LTE Uu),WTRU可被配置成執行使用舊有方法的LTE Uu操作。WTRU可被進一步配置成具有用於該WTRU的配置的5gFLEX Uu的一個或多個實體層(控制和/或資料)通道。下鏈實體通道可以共存於DL載波和/或頻帶之中,而UL載波也可以是公共或分離的(例如對於上鏈控制通道來說)。從被配置成具有一個或多個5gFLEX實體通道的WTRU的角度來看,社區專用的LTE信號/通道可被視為5gFLEX的實體層資源對映中的空洞。由於5G傳輸/接收點(TRP)未必與LTE eNB(例如5G RRH)相組合,因此,用於初始存取5gFLEX PHY的觸發器可以使用與用於LTE DL資料到達和/或LTE UL資料到達的觸發器相似的觸發器或是其他觸發器。
對依據LTE的獨立5gFLEX操作來說(作為示例,該操作包括LTE CP,LTE L2,5gFLEX PHY),WTRU可被配置成具有LTE控制平面的元件(例如RRC連接、安全性等等)以及LTE使用者平面的元件(例如EPS RAB、PDCP、RLC)。WTRU還可以被配置成具有一個或多個5G MAC實例,其中每一個實例都具有一個或多個5gFLEX Uu。用於初始存取的觸發器可以與獨立的5gFLEX系統的觸發器相類似,或者可以是獨立的5gFLEX系統的變體。
針對獨立的5gFLEX操作,WTRU可被配置成具有5G控制平面和5G使用者平面。在這種情況下,5gFLEX Uu操作可以得到解決。
本文描述的方法和過程可以在這裡描述的任何裝置上執行。特別地,使用了系統簽章或簽章序列的初始存取方法可以在WTRU、基地台、AP、eNB、5gNB、這裡描述的任何其他裝置或是能在無線通訊系統中運作的其他任何裝置上執行。
本文描述用於提供針對諸如5gFLEX系統之類的的無線通訊系統的存取的系統和方法。該系統和方法可以包括由通訊裝置接收系統簽章或簽章序列,藉由所接收的系統簽章或簽章序列來確定與無線通訊系統相關聯的一個或多個參數,以及使用該通訊裝置並依據一個或多個參數來存取無線通訊系統。這裡描述的是實施例可以用包括5G空中介面、5gFLEX在內的各種無線技術來描述。然而,這種描述是用於示例的目的,並且不會限制將這裡描述的實施例應用於其他無線技術和/或使用了不同原理的無線技術的適用性。
本文描述的實施例可用於支援5G空中介面所啟用的使用範例,這其中包括但不限於IBB、ICC、V2X和mMTC。對超低傳輸時間延遲(LLC)的支援可以包括低至1毫秒的RTT的空中介面時間延遲,其中該時間延遲可以支援介於100微秒與250微秒之間的TTI。對超低存取時間延遲(例如從初始系統存取到完成傳輸首個使用者平面資料單元的時間)的支援同樣是得到支持的。至少ICC和V2X需要小於10毫秒的端到端(e2e)延遲。
對超可靠傳輸(URC)提供的支援可以包括高於舊有LTE系統的傳輸可靠性。URC的傳輸可靠性目標是99.999%的傳輸成功率和服務可用性。此外,速度範圍為0-500公里/小時的行動性是可以被支援的。另外,至少IC和V2X會需要小於10-6 的封包丟失率。
MTC操作(包括窄帶操作)同樣可被支援。空中介面可以有效地支援窄帶操作(例如使用小於200KHz的頻寬)、延長的電池壽命(例如長達15年的自足性),以及用於小型和不頻繁資料傳輸(例如,範圍在1-100kbps的低資料速率,以及數秒到數小時的存取時間延遲)的最小通訊開銷。
在LTE和IEEE 802.11中,OFDM是作為資料傳輸的基本信號格式使用的。OFDM有效地將頻譜分成多個平行的正交子帶。每一個子載波都會在時域中用矩形視窗來修整,由此導致在頻域中產生正弦形狀的子載波。 OFDMA會在循迴首碼的持續時間內部使用頻率同步和密集的上鏈時序校準管理,以便保持信號之間的正交性以及最小化載波間干擾。這種密集同步在WTRU同時與多個存取點相連的系統並不是那麼適合。額外的功率降低通常也會應用於上鏈傳輸,以便符合對相鄰頻帶的頻譜發射需求,尤其是在存在用於WTRU傳輸的分段頻譜聚合的情況下。
傳統OFDM(CP-OFDM)的一些缺點可以通過為實施方式提出更加嚴格的RF需求來解決,尤其是使用了大量無需聚合的相鄰頻譜來執行操作的情況下。基於CP的OFDM傳輸方案還會導致下鏈實體層與舊有系統的下鏈實體層相似,例如在對導頻信號密度和位置進行修正的情況下。
由此,5gFLEX設計有可能關注於其他波形候選,但是傳統的OFDM至少對於下鏈傳輸方案而言仍舊會是5G系統的候選。用於5G的彈性的無線電存取是構建在諸如OFDMA和舊有LTE系統子類的技術之上的。
5gFLEX下鏈傳輸方案可以以高頻譜抑制(也就是較低的旁瓣和較低的OOB放射)表徵的多載波(MC)波形為基礎。多載波調製波形會將通道分成子通道,並且會將資料符號調製在這些子通道中的子載波上。用於5G的MC波形候選包括但不侷限於OFDM-OQAM和UFMC(UF-OFDM)。
對於OFDM-OQAM來說,在時域中會依照子載波來對OFDM信號應用濾波器,以便減小OOB。OFDM-OQAM對相鄰頻帶產生很小的干擾,其不需要很大的保護頻帶,並且不需要迴圈首碼。OFDM-OQAM有可能是最流行的FBMC技術。然而,它在正交性方面對多徑效應和高延遲擴展非常敏感,由此會使均衡和通道估計處理複雜化。
對於UFMC(UF-OFDM)來說,在時域中同樣可以通過對OFDM信號應用濾波器來減小OOB。然而,濾波處理是依照子帶而被應用的,以使用頻譜分段,由此降低了複雜度並使得UF-OFDM的實施更加切實可行。但是,如果頻帶中存在未使用的頻譜分段,那麼這些分段中的OOB放射可能保持與傳統OFDM一樣高。換句話說,UF-OFDM在被濾波的頻譜的邊緣會對OFDM加以改進,但在頻譜空洞中則不會有改進。
這裡描述的波形是用於示例的目的。相應地,這裡描述的實施例並不侷限於上述波形,而是可以應用於其他波形。
這些波形能夠多工具有非正交的頻率特性(例如不同的子載波間隔)的信號,並且能在不需要複雜的干擾消除接收器的情況下實現非同步信號的共存,以及可以促成作為RF處理一部分的基頻處理中的分段頻譜聚合,以此作為其實施方式的低成本替換方案。
例如,在相同頻帶中不同波形的共存性可以用於支援使用了SCMA的mMTC窄帶操作。另一個示例是在相同頻帶內部支援不同波形的組合,例如用於所有方面以及同時用於下鏈和上鏈傳輸的CP-OFDM、OFDM-OQAM以及UF-OFDM。這種共存性可以包括在不同的WTRU之間或者是來自相同WTRUD 的傳輸之間使用了不同類型的波形的傳輸,其中該傳輸在時域中可以是在具有某種重疊或者連續的情況下同時進行的。
其他共存性方面可以包括對混合類型的波形的支持,這其中包括但不侷限於以下各項:支援以下的至少一項的波形和/或傳輸:可能改變的CP持續時間(例如隨傳輸而改變),CP與低功率尾部(例如零尾)的組合,使用了低功率CP和自我調整低功率CP的混合保護間隔形式等等。此類波形可以支援其他方面的動態變化和/或控制,例如如何應用濾波處理器(例如是在用於接收針對指定載波頻率的任何傳輸的頻譜邊緣,在用於接收與特定頻譜操作模式(SOM)相關聯的傳輸的頻譜邊緣,依照子載波還是依照其群組來應用濾波處理)。
上鏈傳輸方案可以使用與用於下鏈傳輸的波形相同或不同的波形。
對往來於相同社區中的不同WTRU的傳輸所進行的多工可以依據FDMA和TDMA。
5gFLEX無線電存取設計可以用高度的頻譜彈性性來表徵,其中該頻譜彈性性能夠實現具有不同特性的不同頻帶中的部署。這些特性可以包括不同的雙工佈置以及不同和/或可變大小的可用頻譜,其中該頻譜包括相同或不同頻帶中的連續和不連續的頻譜分配。5gFLEX無線電存取設計可以支持可變時序方面,這其中包括支持多個TTI長度以及支援非同步傳輸。
在這裡描述的實施例中,TDD和FDD雙工方案都是可被支持的。對於FDD操作來說,補充下鏈操作是通過使用頻譜聚合而被支持的。FDD操作同時支援全雙工FDD和半雙工FDD操作。對於TDD操作來說,DL/UL分配是動態的;也就是說,DL/UL分配不會依據固定的DL/UL訊框配置。相反的,DL或UL傳輸間隔的長度是依照傳輸時機設置的。
5G空中介面設計能在上鏈和下鏈上啟用不同的傳輸頻寬,其範圍可以是從標稱系統頻寬直至與系統頻寬相對應的最大值之間的任何值。
第2圖是提供了5gFLEX系統支援的一些系統傳輸頻寬200的示例圖,其中該系統支援根據本文描述的任一實施例的使用了系統簽章或簽章序列的初始存取方法。對於單載波操作來說,所支援的系統頻寬至少可以包括5、10、20、40和80MHz。在一些實施例中,所支援的系統頻寬可以包括指定範圍以內的任何頻寬(例如從數兆赫茲到160MHz)。標稱頻寬可以具有一個或多個固定的可能數值。在MTC裝置的工作頻寬以內可以支持高達200KHz的窄帶傳輸。應該指出的是,這裡使用的系統頻寬201可以指網路能為指定載波管理的頻譜的最大部分。對於這種載波來說,在這裡可以將WTU最低限度支援的用於胞元獲得、測量和初始存取網路的頻譜部分稱為標稱系統頻寬202。
WTRU可被配置成具有處於整個系統頻寬範圍以內的通道頻寬203、204和/或205。 為WTRU配置的通道頻寬203、204和205可以包括或者不包括作為系統頻寬201的一部分的標稱系統頻寬202。由於為頻域波形的基頻濾波處理提供了有效的支援,因此可以在沒有為工作頻寬引入額外許可通道頻寬的情況下滿足與頻帶中的指定最大工作頻寬相適用的RF需求集合,由此可以通過第2圖的5G空中介面來實現頻寬彈性。第2圖的5G空中介面可以支援用於配置、再配置和/或動態改變為WTRU配置的用於單載波操作的通道頻寬203、204和205的方法,以及支援用於為標稱系統頻寬202、系統頻寬201或是所配置的通道頻寬203、204和205內部的窄帶操作分配頻譜的方法。
5G空中介面的實體層也可以是頻帶不可知的,並且可以支援低於5GHz的授權頻帶中的操作以及5-6GHz範圍的無授權頻帶中的操作。對於無授權頻帶中的操作來說,與LTE LAA相似的依據LBT Cat 4的通道存取框架可被支援。此外,用於縮放和管理(例如排程、資源定址、廣播信號、測量)針對任意頻譜塊大小的胞元專用和/或WTRU專用的通道頻寬的方法也可以被支援。
下鏈控制通道和信號可以支援FDM操作。WTRU可以通過僅僅使用系統頻寬的標稱部分接收傳輸來獲取下鏈載波;也就是說,WTRU初始不需要接收覆蓋了網路為所涉及的載波所管理的整個頻寬的傳輸。
下鏈資料通道可以是在與標稱系統頻寬對應或者不與之對應的頻寬上分配的,並且除了處於為WTRU配置的通道頻寬內部之外並沒有其他的限制。舉例來說,網路可以使用5MHz的標稱頻寬來操作具有12MHz系統頻寬的載波,由此允許支援至多5HMz的最大RF頻寬的裝置捕獲和/或存取系統,同時有可能將+10到-10MHz的載波頻率分配給支援高達20MHz通道頻寬的其他WTRU。
第3圖是5gFLEX系統支援的示例的彈性頻譜分配300的圖式,其中該系統支援根據這裡描述的任一實施例的使用了系統簽章或簽章序列的初始存取方法。系統頻寬301可以支援具有可變傳輸特性的頻譜分配302以及標稱系統頻寬303。在第3圖的示例中,不同的子載波304至少在概念上可被分配給不同的操作模式(例如SOM)。不同的傳輸的不同需求可以用SOM來滿足。 SOM可以包括子載波間隔、TTI長度和/或一個或多個可靠性方面(例如混合自動重傳請求(HARQ)處理方面),並且還有可能包括輔助控制通道。SOM可以指代特定的波形或處理方面(例如通過使用FDM和/或TDM來支持相同載波中的不同波形的共存性,或者通過TDM方式或其他方式支援TDD波段中的FDD操作的共存性)。
WTRU可被配置成依照一個或多個SOM來執行傳輸。例如,SOM可以對應於使用了以下的至少一項的傳輸:特定的TTI持續時間,特定的初始功率水準,特定的HARQ處理類型,用於成功的HARQ接收/傳輸的特定上限,特定的傳輸模式,特定的實體通道(上鏈或下鏈),特定的波形類型,或是依照特定RAT(例如舊有LTE或者依照5G傳輸方法)的傳輸。SOM還可以對應於QoS等級和/或相關方面,例如最大/目標時間延遲,最大/目標BLER或別的QoS等級或相關方面。更進一步,SOM還可以對應於頻譜區域和/或特定控制通道或是其方面(包括搜索空間、DCI類型等等)。舉例來說,WTRU可被配置成具有用於URC服務類型、LLC服務類型和MBB服務類型中的每一個的SOM。WTRU可以具有用於系統存取以及用於在與系統相關聯的頻譜部分(例如在標稱系統頻寬303)中傳輸/接收L3控制信號(例如RRC信號)的SOM配置。
用於單載波操作的頻譜聚合可被支持,由此,WTRU支持在相同工作頻帶內部的連續和/或不連續的實體資源塊(PRB)集合上傳輸和/或接收多個傳輸塊(TB)。單個TB也可以被對映到不同的PRB集合。
同時的傳輸可以與不同的SOM需求相關聯。此外,多載波操作可以使用處於相同工作頻帶內部或是跨越了兩個或更多工作頻帶的連續或不連續頻譜塊來支持。使用不同模式(例如FDD和TDD)和使用不同通道存取方法(例如6GHz以下的授權和非授權頻帶操作)的頻譜塊聚合也可以被支援。WTRU的多載波聚合是可以被配置、再配置或動態改變的。
下鏈和上鏈傳輸可被組織到用多個固定的方面(例如下鏈控制資訊(DCI)位置)以及多個變化的方面(例如傳輸時序和所支持的傳輸類型)表徵的無線電訊框之中。
基本時間間隔(BTI)是用整數數量的一個或多個符號表示的,其中符號持續時間可以取決於與時間-頻率資源相適用的子載波間隔。對於FDD來說,子載波間隔由此在用於指定訊框的上鏈載波頻率fUL 與下鏈載波頻率fDL 之間是存在差異的。
傳輸時間間隔(TTI)可以是系統支援的連續傳輸之間的最小時間,其中每一個傳輸都與用於下鏈(TTIDL )、用於上鏈(UL TRx)的不同傳輸塊(TB)相關聯,這其中排除了任何前序碼(如果適用的話),但是包含了任何控制資訊(例如下鏈控制資訊(DCI)或上鏈控制資訊(UCI))。TTI可以用整數數量的一個或多個BTI來表述。BTI可以是特定與指定SOM和/或與指定SOM相關聯。
所支援的訊框持續時間可以包括但不限於100微秒、125微秒(1/8毫秒)、142.85微秒(1/7微秒是2個nCP LTE OFDM符號)以及1毫秒,由此能與舊有的LTE時序結構相校準。
第4圖是根據一個實施例的用於TDD的示例性的彈性訊框結構400的圖式,其中該訊框結構可以在5gFLEX系統這類支援使用了系統簽章或簽章序列的初始存取的無線通訊系統中使用,並且該訊框結構可以與這裡描述的任一實施例結合使用。如第4圖的示例所示,每一個訊框的開端都可以用處於與所涉及的載波頻率fUL + DL 有關的每一個訊框(DL TRx)402a和402b的任何DL傳輸部分之前且具有固定持續時間tdci 412a和412b的下鏈控制資訊(DCI)401a和401b來指示。DL傳輸部分402a和402b的持續時間可以以整數個傳輸塊(TB)為基礎。
在第4圖的示例中,除了DCI 401a和DCI 401b指示的任何下鏈指配(一個或多個)和/或任何上鏈許可(一個或多個)之外,DCI 401a至少可以指示訊框n的DL TRx部分402a的持續時間tDL(n) 405a,並且DCI 401b至少可以指示訊框n +1的DL TRx部分402b的持續時間tDL(n+1) 405b。
該訊框還可以包括訊框的UL傳輸部分(UL TRx)403a和403b。UL傳輸部分403a和403b的持續時間可以依據整數個傳輸塊(TB)。在第4圖的示例中,DCI 401a至少可以指示訊框n的UL TRx部分403a的持續時間tUL(n) 406a,並且DCI 401b至少可以指示訊框n +1的UL TRx部分403b的持續時間tUL(n+1) 406b。如果如第4圖的示例中顯示的那樣存在訊框的上鏈部分,那麼在每一個訊框的上鏈部分之前會有一個切換間隙(SWG)404a和404b。
WTRU可以依據DCI 401a和401b推導出由此產生的每一個訊框的TTI持續時間。如第4圖的示例所示,每一個訊框的可變持續時間可以依照用整數個BTI所表述的TTI持續時間來表示。在第4圖的示例中,訊框n的持續時間是依照TTIn 表示的,該TTIn 則被表示成x*BTI 409a,訊框n + 1的持續時間是依照TTIn+1 表示的,並且該TTIn+1 被表示成y*BTI 409b。第4圖的示例還顯示了子訊框間間隔(ISS)411。
對於TDD來說,5gFLEX可以通過在DCI和DL TRx部分(如果使用了相應資源的半靜態配置)中包含相應的下鏈控制和前向傳輸來而在訊框結構400中支援裝置到裝置(D2D)/車聯網(V2X)/側鏈路操作。作為替換,在訊框結構400中可以通過在DL TRx部分(用於動態分配)包含相應的下鏈控制和前向傳輸以及通過在訊框結構400的UL TRx部分包含相應的反向傳輸來支援D2D/V2X/側鏈路操作。
第5圖是根據另一個實施例的用於FDD的示例訊框結構500的圖式,其中該訊框結構可以在5gFLEX系統這類支援使用了系統簽章或簽章序列的初始存取的無線通訊系統中使用,並且該訊框結構可以與這裡描述的任一實施例結合使用。訊框結構500可以包括下鏈參考TTI以及用於上鏈的一個或多個TTI。如第5圖的示例所示,該訊框的開端可以用處於與所涉及的載波頻率fDL 有關的任何下鏈資料傳輸部分(DL TRx)502a和502b之前且具有固定持續時間tdci 506a和506b的DCI 501a和501b來指示。DL傳輸部分502a和502b的持續時間可以以整數個傳輸塊(TB)為基礎。
在第5圖的示例中,DCI 501a可以指示訊框n的DL TRx部分502a的持續時間tDL(n) 507a,並且DCI 501b可以指示訊框n + 1的DL TRx部分502b的持續時間tDL(n+1) 507b。如第5圖的示例所示,每一個訊框的可變持續時間可以依照下鏈參考TTI持續時間來表示,該持續時間則可以依照整數數量的BTI來表示。在第5圖的示例中,訊框n的持續時間是依照被表述成x*BTI 509a的TTIDL(n) 表示的,訊框n+1的持續時間則是依照被表述成y*BTI 509b的TTIDL(n+1) 表示的。
DCI可以指示與任何包含了傳輸塊的一個或多個適用上鏈傳輸有關的偏移(toffset )505以及TTI持續時間。單獨的DCI同樣可以用於下鏈和上鏈方向。在第5圖的示例中,該訊框可以包括針對相關載波頻率fUL 的上鏈傳輸部分(UL TRx)503a、503b和503c。 UL傳輸部分503a、503b和503c的持續時間可以以整數數量的傳輸塊(TB)為基礎。上鏈TTI的開端可以使用從與上鏈訊框的開端重疊的下鏈參考訊框的開端應用的偏移(toffset )505得到。舉例來說,如果UL同步適用,那麼toffset 505可以包括時序提前。在第5圖的示例中,DCI 501a至少可以指示訊框n的UL TRx部分503a和503b的持續時間tUL(n,0) 508a和tUL(n,1) 508b。DCI 501b至少可以指示訊框n+1的UL TRx部分503c的持續時間tUL(n+1,0) 508c。第5圖的示例還顯示了ISS 504。
對於FDD來說,5gFLEX可以通過在UL TRx部分(所使用的可以是相應資源的動態分配)包含相應的下鏈控制、前向和反向傳輸而在訊框結構500的UL TRx部分支援D2D/V2x/側鏈路操作。
在媒體存取控制(MAC)層中可以支援排程功能。可供使用的排程模式包括但不侷限於以下各項:(1)用於下鏈傳輸和/或上鏈傳輸的資源、時序和傳輸參數方面的密集排程的基於網路的排程;以及(2)用於時序和傳輸參數方面的更大的彈性性的依據WTRU的排程。對於這些模式來說,排程資訊可以在單個或多個TTI中生效。
依據網路的排程能使網路密集管理分配給不同WTRU的可用無線電資源,例如用於優化此類資源的共用處理。在該模式中支援動態排程。
依據WTRU的排程能使WTRU在網路(動態或非動態)指配的共用或專用上鏈資源集合內部依照需要而以最小的時延來伺機存取上鏈資源。同步和非同步的伺機傳輸都是得到支持的。基於爭用的傳輸和無爭用的傳輸都是得到支持的。對伺機傳輸(排程或非排程的)的支援可以滿足5G的超低時延需求以及mMTC使用範例的節能需求。
5gFLEX可以支援可用於傳輸的資料與用於上鏈傳輸的可用資源之間的關聯。只要在相同TB內部多工具有不同QoS需求的資料的處理既不會對具有最嚴格的QoS需求的服務引入負面影響,也不會引入不必要的系統資源浪費,那麼這種多工就是得到支持的。
傳輸可以用多種可以具有不同特性的不同編碼方法來編碼。舉例來說,一種編碼方法可以產生一系列的資訊單元。每個資訊單元或塊可以是自包含的。例如,傳輸第一個塊的過程中的差錯不會損害接收器成功解碼第二個塊的能力,尤其是在第二個塊沒有差錯和/或可以在第二個塊或在至少成功解碼了至少一部分的不同塊中找到足夠冗餘資訊的情況下。關於編碼方法的示例還可以包括raptor/fountain碼,由此,一個傳輸可以可以由一系列的N個raptor碼組成。一個或多個這樣的碼可以在時間上被對映到一個或多個傳輸“符號”。由此,“符號”可以對應於一個或多個資訊位元集合,例如一個或多個八位元組。這種編碼可以用於在傳輸中添加前向糾錯(FEC),據此,該傳輸可以使用N+1或N+2個raptor碼(或符號,在假設了單一的raptor碼符號關係的情況下),由此,該傳輸對於單個“符號”的損失更具彈性,作為示例,該損失有可能歸因於由別的在時間上重疊的傳輸產生的干擾或穿孔。
邏輯傳輸連線性可以不同於供舊有LTE使用的邏輯通道(LCH)。LCH可以代表資料封包和/或PDU之間的邏輯關聯。這種關聯可以以此類資料單元與相同的承載相關聯(與舊有方案相似)和/或與相同的SOM和/或切片相關聯為基礎。舉例來說,這種關聯可以用以下的至少一項來表徵:一系列的處理功能,適用的實體資料(和/或控制)通道(或是其實例),協定堆疊的產生實體,該協議堆疊的產生實體包含了正被集中的特定部分(例如僅僅是PDCP或是除了RF之外的任何部分)和/或可以由前傳介面分離的更接近於邊緣的別的部分(例如TRP中的MAC/PHY或是僅僅RF)。當觸發是以資料到達為基礎時,不同的存取過程可以依照具有可用資料的LCH的類型來觸發。
邏輯通道封包(LCG)可以不同於供舊有LTE使用的LCH封包或特徵描述。LCG可以包括使用了一個或多個評判準則的LCH群組。該評判準則可以是一個或多個LCH可具有與LCG的所有LCH相適用的相似優先等級(與舊有相似)。該評判準則還可以是一個或多個LCH可以與相同的SOM或是其類型或者與相同的切片或是其類型相關聯。這種關聯可以通過以下的至少一項來表徵:一系列的處理功能,適用的實體資料(和/或控制)通道(或是其實例),協定棧的產生實體,該協議棧的產生實體包含了正被集中的特定部分(例如僅僅是PDCP或是除了RF之外的任何部分)和/或可以由前傳介面分離的更接近於邊緣的別的部分(例如TRP中的MAC/PHY或是僅僅RF)。
RAN切片可以包括RAN功能、傳輸網路功能以及資源(例如向使用者提供端到端服務所需要的無線電資源和回程/前傳資源以及核心網路功能/資源)。術語RAN切片或切片在這裡是可以互換使用的。傳輸或核心網路功能既可以在通用處理器上虛擬化,也可以作為專用硬體上的網路功能來運行,還可以在專用硬體與通用硬體之間被拆分。PLMN可以包括一個或多個切片,其中每一個切片等價於運營商的單一、公共或通用網路。每一個切片可以包括被優化成支援該切片所提供的不同服務的一個或多個SOM。例如,在切片內部得到服務的WTRU可以共同具有以下的一個或多個方面:服務和/或QoE需求(例如ULLRC、eMBB、MMTC),WTRU類別(例如CAT 0到M及以上,此外還可以為6GHz以上定義附加的類別,以便區分波束成形能力),覆蓋需求(例如正常覆蓋,增強覆蓋),PLMN /操作者,對於特定Uu介面的支援(例如LTE、LTE-Evo、低於6 GHz的5G、高於6GHz的5 G、無授權),以及由相同的核心網路切片提供服務。
這裡提及的傳輸通道(TrCH)可以包括應用於資料且有可能會影響到無線電介面上的一個或多個傳輸特性的特定處理步驟集合和/或特定功能集合。舊有LTE定義了多種類型的TrCH,其示例包括廣播通道(BCH),傳呼通道(PCH),下鏈共用通道(DL-SCH),多播通道(MCH),上鏈共用通道(UL-SCH)以及隨機存取通道(該通道通常不會運送任何使用者平面資料)。用於運送使用者平面資料的主要傳輸通道是分別用於下鏈和上鏈的DL-SCH和UL-SCH。
對於5G系統來說,空中介面支援的增強需求集合將會導致支援多個傳輸通道,例如用於使用者和/或控制平面資料以及用於單個WTRU的傳輸通道。相應地,這裡使用的術語TrCH與在參考LTE系統來使用該術語時相比具有更廣義的含義。舉例來說,諸如URLLCH之類的用於URLLC的傳輸通道、用於行動寬頻的傳輸通道(MBBCH)和/或用於機器類型通訊的傳輸通道(MTCCH)可以是為下鏈傳輸(例如DL-URLLCH、DL-MBBCH和DL-MTCCH)和上鏈傳輸(例如UL-URLLCH、UL-MBBCH和UL-MTCCH)定義的。TrCH的類型可以對應於實體資料通道的類型,可以與SOM相關聯,可以與實體控制通道相關聯,和/或可以與特定的DCI集合相關聯。不同的存取和過程可以依照TrCH的類型、網路/WTRU需要的LCH或是相關聯的優先順序/QoS等級和/或SOM的類型來觸發。
第6圖是能與本文描述的任一實施例結合使用的可用的示例輔助模式600的示意圖。WTRU可以採用單獨模式609或輔助模式610連接到TRP。舉例來說,WTRU 604a、604b和604c是用單獨模式609連接的,而WTRU 611a、611b、611c和611d則是用輔助模式610連接的。需要輔助的社區群組可被稱為被輔助層603,並且提供輔助的社區群組可被稱為輔助層602。
在第6圖的示例中顯示了以下輔助模式: WTRU 611a連接到由處於6GHz以下的頻帶中的5Gflex大型胞元606輔助並處於6GHz以下的頻帶中的5Gflex小型胞元607; WTRU 611b連接到由LTE-Evo大型胞元605輔助並處於6GHz以下的頻帶中的5Gflex小型胞元607; WTRU 611c連接到由處於6GHz以下的頻帶中的5Gflex大型胞元606輔助並處於6GHz以上的頻帶中的5Gflex小型胞元608; WTRU 611d連接到由LTE-Evo大型胞元605輔助並處於6GHz以上的頻帶的5Gflex小型胞元608; WTRU 611e連接到由處於6GHz以上的頻帶中的5Gflex小型胞元608輔助並處於6Ghz以下的頻帶中的5Gflex小型胞元607; 在第6圖的示例中顯示了以下的獨立模式: WTRU 604b採用單獨模式連接612到處於6GHz以下的頻帶中的5Gflex小型胞元607; WTRU 604a採用單獨模式連接601到處於6GHz以下的頻帶中的5Gflex大型胞元606;和 WTRU 604c採用單獨模式連接613到處於6GHz以上的頻帶中的5Gflex小型胞元608。
第7圖是使用系統簽章或簽章序列來執行初始存取的示例系統700的圖式,其中該系統可以以本文描述的任一實施例結合使用。網路可以支援不同的參數配置,其中每一個參數配置都與為特定類型的服務/使用範例所定制的特定的存取方法相關聯。參考第7圖,WTRU 707可以包括第1A圖、第1B圖和第1C圖中的示例WTRU 102的元件。WTRU 707可被配置成接收和/或檢測一個或多個系統簽章或系統簽章序列。
系統簽章可以包括或包含使用一序列的信號結構。系統簽章、系統簽章序列、簽章序列和簽章等術語在這裡是可以互換使用的。這些系統簽章可以類似於同步信號,例如LTE PSS或SSS。這裡使用的系統簽章可以是由WTRU、TRP、這裡描述的其他任何裝置或是能在無線通訊系統中工作的其他任何裝置接收或傳送的任何類型的信號,並且系統簽章可以在這裡描述的任何實施例中使用。
在第7圖的示例中,多個TRP中的每一個TRP都會傳送系統簽章。TRP 705a、705b、705c、705d和705e傳送系統簽章A 701,其中作為示例,該系統簽章可以與參數配置A以及mMTC服務相關聯。TRP 704a、704b和704c傳送系統簽章B 702,例如,該系統簽章可以與參數配置B以及預設存取和eMBB服務相關聯。TRP 706a、706b和706c傳送系統簽章C 703,例如,該系統簽章可以與參數配置C以及URLLC服務相關聯。 諸如第7圖示例中的TRP 704c之類的TRP可以經由S1-C介面712連接到MME 711,以及經由S1-U介面713連接到服務閘道(S-GW)710。
諸如第7圖的TRP和/或WTRU之類的節點可以在一個或多個頻率和時間資源上傳送和/或接收一個或多個系統簽章。系統簽章既可以佔用工作通道的整個頻寬,也可以只佔用該頻寬的一部分。系統簽章既可以在一個時段以內傳送一次,也可以在逐個視窗中傳送多次。舉例來說,信號突發可以在一個視窗中被傳送x次,並且在下一個視窗出現之前不會被傳送。視窗可以是重疊或不重疊的。系統簽章既可以佔用局部的OFDM符號(例如在保護時段或是循環首碼中作為唯一碼字傳送),也可以佔用一個或多個OFDM符號。不同類型的實體信號可被用作系統簽章,這其中包括但不侷限於以下各項:同步信號、胞元或TRP專用的參考信號(例如CRS)、TRP群組(TRPG)共有的參考信號、前序碼、唯一碼字、定位參考信號、其他參考信號、主塊(MIB)中的位元、系統塊(SIB)中的位元、其他任何廣播通道,或是運送少量淨荷位元的低開銷實體通道。這種實體通道可被設計用於附加的健壯性,例如與所附著的CRC一起。
系統簽章可以是指定區域內部的特定節點或TRP專用的(例如通過唯一標識該節點),或者它們也可以為區域內部的多個節點或TRP所共有。WTRU可以從系統簽章中唯一識別或區分傳輸節點。指定的系統簽章可以與一個以上的節點相關聯,並且WTRU可以使用所接收的系統簽章來辨識/表徵與節點群組相關聯的一個或多個參數或操作方面。作為示例,系統簽章可被表徵如下: 系統簽章可以是TRP專用的,並且可以用於辨識和/或區分TRP; 系統簽章可以是TRPG專用的,其中用於某個層內部的兩個或更多TRPG的相同系統簽章可以標識公共存取參數; 系統簽章可以是層專用的,並且可以區分巨集層與小型胞元層; 系統簽章可以是WTRU專用的,例如在D2D操作中使用; 系統簽章可以是中繼器專用的,例如在中繼操作中使用; 系統簽章可以SOM/切片專用的。每一個SOM/切片都可以攜帶自己的系統簽章。在一個示例中,與SOM/切片相關聯的系統簽章可以用特定於該SOM/切片的無線電資源(時間/頻率資源)和/或參數(例如參數配置,TTI,CP等等)來傳送。
每一個系統簽章都可以包括名為子簽章的不同部分。舉例來說,一個子簽章可以是天線埠專用的,TRP專用的,SOM專用的,或是多個TRP專用的等等。作為替換或補充,WTR有可能會從發射機(TRP或別的WTRU)接收到一個以上的不同的系統簽章。
不同類型的系統簽章可以通過作為簽章使用的信號格式而被辨識和/或區分。舉例來說,同步信號可被用作層專用的系統簽章,而定位參考信號則可以被用作TRP專用的參考信號。不同類型的系統簽章可被定義和/或傳送,以便支持不同的WTRU能力。舉例來說,處於正常覆蓋的WTRU可以接收完整的系統簽章,而具有增強覆蓋需求和/或具有有限RF頻寬能力的WTRU則會接收到完整簽章的子簽章,並且有可能獲得與所接收的子簽章相關聯的局部資訊。系統簽章的不同子簽章可以與不同的週期或重複因數相關聯。
在不同的子簽章和/或不同的系統簽章之間可以具有預先定義的聯繫。這種聯繫可以依照以下的一項或多項來定義:時序關係(例如符號、子訊框等等),頻率關係(例如子載波對映、RB偏移等等),空間關係(例如,對映到不同波束或是不同類型的波束,比方說寬波束或窄波束),信號自身的方面(例如序號、正交碼、所用信號結構、重複次數),以及不同的天線埠(例如來自天線埠x的TRP專用系統簽章,以及來自天線埠y的TRPG專用系統簽章)。 WTRU可以使用系統簽章和/或子簽章之間的聯繫來確定一個或多個系統參數或配置。
WTRU可以使用預先定義的配置來確定系統簽章在訊框結構和/或資源網格中(例如在時間和/或頻率資源中)的佈置。作為替換,系統簽章在訊框結構和/或資源網格內部的佈置可以是彈性的,由此將會避免干擾並且能夠實現前向相容性。WTRU可以從社區專用的配置,或結合輔助層(例如LTE層)提供的其他信號/通道,或者使用時間視窗內部的盲檢測來確定這種彈性的佈置。通過檢測一個簽章的處理將能夠檢測與相同傳輸節點(例如TRP和/或WTRU)相關聯的其他簽章。
參考第7圖,WTRU 707可以支援多種服務,例如mMTC、eMBB和URLLC,並且可以支援用於支援多種服務的存取方法,以及多連線性。WTRU 707可以接收系統簽章A 701、系統簽章B 702和系統簽章C 703,然後可以依據每一個系統簽章來確定與網路相關聯的一個或多個參數。例如,WTRU 707可以從每個系統簽章得到一個索引,並且可以使用該索引來檢索相關聯的參數,作為示例,該參數可以是從WTRU儲存的存取表中檢索的。例如,WTRU 707可以將與系統簽章相關聯的接收功率用於開迴路功率控制,其中如果WTRU 707確定其可以使用系統的適用資源來存取系統和/或針對該系統進行傳輸,那麼可以使用該開迴路功率控制來設置初始傳輸功率。在另一個示例中,如果WTRU 707確定其可以使用系統的適用資源來存取系統和/或針對該系統進行傳輸,那麼WTRU 707可以使用所接收的系統簽章或簽章序列的時序來設置諸如PRACH資源上的前序碼之類的傳輸的時序。
WTRU 707可被配置成具有關於一個或多個條目的列表,該列表在這裡可被稱為存取表。如上所述,該存取表可被保存在WTRU 707的記憶體中,並且該存取表可被編制索引,以使每一個條目都與系統簽章和/或其序列相關聯。這些條目可以是各系統簽章的參數。此類條目可以包括但不侷限於存取方法(例如PRACH)參數配置方面(例如TTI持續時間),以及TRP / G專用的控制通道資訊。依據該索引,存取表中的條目可以與多個節點或TRP相關聯。WTRU可以藉由如上所述的傳輸來接收該存取表。所接收的這個傳輸可以使用專用資源,例如通過RRC配置和/或通過使用廣播資源的傳輸。在使用廣播資源時,存取表的傳輸週期有可能相對較長(例如長達10240毫秒),並且其有可能長於簽章的傳輸週期(例如在100毫秒的範圍以內)。這裡述及的存取表可以包括WTRU 707所接收的用於本文描述的目的的任何類型的系統資訊。
存取表可以提供一個或多個區域的初始存取參數。存取表中的每一個條目都可以提供使用該系統執行初始存取過程所必需的一個或多個參數。這些參數可以包括一個或多個隨機存取參數的至少一個集合,其中該參數可以包括但不侷限於時間和/或頻率中的適用的實體層資源(例如PRACH資源),初始功率位準,以及用於接收回應的實體層資源。這些參數可以進一步包括存取限制,其中該存取限制可以包括但不侷限於公共陸地行動網路(PLMN)身份標識和/或CSG資訊。更進一步,這些參數還可以包括路由相關資訊,例如一個或多個適用的路由區域。
WTRU 707可以具有可用於與特定服務相關聯的傳輸的資料,其可以透過測量來確定檢測到的系統簽章,確定適用於該服務的存取配置,以及使用與所確定的存取表條目相關聯的系統資訊來執行相應的存取程序。然後,WTRU 707可以接收至少一個隨機存取回應(RAR),例如RAR 708或709,並且可以與系統建立Uu連接。
第8圖是使用了系統簽章或簽章序列的示例的初始存取處理800的流程圖,其中該處理可以在如上所述的示例系統700中執行,並且可以與這裡描述的任一實施例結合使用。雖然第8圖的處理800中的每一個步驟都是單獨顯示和描述的,但是多個步驟既可以以與所顯示的順序不同的循序執行,也可以以相互平行的方式執行,還可以以彼此併發的方式執行。出於示例目的,第8圖的處理是由WTRU執行的,但是它還可以由在無線通訊系統中運作的任何節點來執行,例如TRP、eNB、5gNB、AP或基地台。在第8圖的示例中,WTRU可以借助如上所述的WTRU的收發器或接收器來從多個TRP中的至少一個TRP接收系統簽章801。該系統簽章可以與如上所述的任何參數及特性相關聯。例如,所接收的系統簽章可以與參數配置、網路切片、不連續傳輸(DTX)狀態、控制通道特性或網路服務相關聯。
然後,在802,WTRU可以使用已儲存的存取表來確定資源選擇、多種存取方法中專用於與系統簽章相關聯的參數配置的初始存取方法、網路切片、網路服務和/或關於至少一個TRP的群組。在該步驟中,WTRU可以測量、讀取和/或解碼所接收的系統簽章,並且可以執行與系統簽章的特定方面相關聯的一個或多個行動。不同子簽章、不同系統簽章和/或簽章序列類型之間的關係可以傳達關於系統組態的一個或多個方面。這種關係可以處於時域(例如符號或偏移)和/或頻域(例如子載波或資源塊(RB))中。此外,這種關係還可以包括系統簽章屬性(例如類型、序號或根序列)。然後,參考第8圖,在803,WTRU可以從至少一個TRP接收至少一個RAR訊息。
在第8圖描述的過程中,WTRU可以從所接收的系統簽章中確定系統操作/配置,這其中包括但不侷限於以下內容:
WTRU可以確定具有一個或多個公共方面/屬性的邏輯區域。WTRU可以假設具有相同系統簽章的TRP群組使用了公共系統組態(例如初始存取參數)。該TRP群組可以屬於無法供WTRU在TRP改變時重新獲取系統資訊的相同簽章區域或公共SIB區域。在一些實施例中,WTRU可以將TRP群組視為單一TRP或邏輯胞元。該WTRU可以假設具有相同系統簽章的TRP群組與相同的中心單元相關聯。例如,該WTRU可以在與相同的中心單元相關聯的TRP內部執行第二層的重建,而不是第三層的重建。
WTRU可以確定指向全域系統資訊表中的條目的指標。WTRU可以應用存取表中與系統簽章或是系統簽章的一些部分相關聯或是由其索引的系統資訊(例如包含了PRACH配置的初始存取參數等等)。並且,當WTRU不再接收到系統簽章或系統簽章的部分時,WTRU可以停止使用與該系統簽章或系統簽章部分相關聯的當前系統資訊。
WTRU可以確定針對預先定義的廣播RNTI的對映。WTRU可以開始在控制通道上監視與該系統簽章相關聯的預先定義的廣播RNTI。然後,該廣播RNTI可用於排程與該系統簽章相關聯的系統資訊和/或存取表。
WTRU可以確定對服務(例如eMBB、MMTC、ULLRC)提供的支援,或者可以確定可指示對特定服務提供的支援的系統簽章部分或是被保留的系統簽章序列的群組。例如,系統簽章1可以指示對於eMBB的支援,簽章2可以指示對於MMTC的支援,簽章3可以指示對於ULLRC的支援。作為替換,系統簽章或系統簽章部分之間的關​​系可以傳達相同的資訊。
WTRU可以通過使用能與多個SOM相關聯的系統簽章來確定對於SOM的支援。SOM與系統簽章之間的對映可被預先定義或者被指示成是存取表資訊的一部分。依據與這些SOM相關聯的一個或多個系統簽章的存在性,WTRU可以確定訊框結構內部的一個或多個SOM的存在性。
WTRU可以確定網路的DTX狀態。網路中的每一個TRP都可以處於各種DTX狀態或是可視度等級之一。例如徹底關閉,只發送系統簽章,CRS為關閉,CRS為啟用,存取表的週期性傳輸,存取表的按需傳輸,用於高優先順序服務(例如緊急呼叫)的存取表等等。 WTRU可以從TRP傳送的系統簽章中確定TRP的DTX狀態。一個或多個系統簽章可以不直接提供系統資訊,而是可以指向可用於啟動系統資訊的特定UL資源。WTRU可以使用這些UL資源來請求傳輸存取表。在一個實施例中,WTRU可被配置成在DTX中報告TRP(例如使用保留的系統簽章)。網路可以依據WTRU報告數量來確定啟動TRP。
WTRU可以借助系統簽章來確定傳呼處理。預先定義的系統簽章可用於傳呼過程。這其中可以包括借助預先定義的系統簽章來指示用於一個或多個WTRU的傳呼消息的存在性。這種指示可以具有不同的等級,例如訊框等級或子訊框等級。用於實際傳呼消息傳輸的時間/頻率資源可以借助預先定義的簽章來指示,作為示例,此類資源可以是在存取表中定義的。用於傳呼回應/前序碼傳輸的UL時間/頻率資源可以借助預先定義的系統簽章來指示,並且在存取表中可以定義這樣的資源。
WTRU可以確定關於與輔助層中的特定節點的關聯的指示。WTRU可以考慮將在被輔助層中傳送相同系統簽章的一個或多個TRP與輔助層中的相同節點相關聯。舉例來說,傳送相同參考信號的5Gflex TRP群組可以與相同的LTE-Evo宏eNB相關聯。WTRU可以確定特定的LTE-Evo宏eNB。
WTRU可以確定關於可被使用的控制通道特性/屬性的指示。WTRU可以從系統簽章中確定與控制通道相關聯的以下的一個或多個特徵/屬性:
控制通道類型:WTRU可以依據系統簽章來確定控制通道類型。例如,WTRU可以依據預先定義的系統簽章的存在來確定與一個以上的TRP相關聯的控制通道的存在。同樣,WTRU可以依據TRP專用的系統簽章的存在來確定TRP專用控制通道的存在。 WTRU可以依據SOM /切片專用的系統簽章的存在來確定SOM /切片專用的控制通道的存在。WTRU可以依據預先定義的系統簽章的存在來確定是否控制通道是否被波束成形。WTRU可以依據預先定義的系統簽章的存在來確定覆蓋增強的控制通道的存在(例如在時間和/或頻率中重複)。
控制通道位置:WTRU可以依據系統簽章的相對位置來獲得控制通道位置。例如,控制通道可被置於依照時間(例如符號)和/或頻率(例如子載波偏移、RB偏移等等)的預先定義的偏移位置。
控制通道長度/大小/頻寬:WTRU可以根據系統簽章來確定控制通道大小(例如用OFDM符號數量來衡量)。舉例來說,在系統簽章序列與運送控制通道的OFDM符號數量之間存在預先定義的對映。同樣,WTRU可以依據預先定義的系統簽章來顯性確定或者依據系統簽章佔用的資源來隱性確定控制通道頻寬。
WTRU可以確定與TRP或TRPG相關的身份標識。依據所接收的系統簽章,WTRU可以從其他TRP中辨識和/或區分某一個TRP。基於公共系統簽章的存在,WTRU可以辨識屬於相同群組的兩個或更多TRP。依據所接收的系統簽章,WTRU可以從其他TRPG中辨識和/或區分某一個TRPG。當WTRU從相同TRP接收到兩個或更多TRPG專用的系統簽章時,WTRU可以認為該TRP屬於兩個或更多TRPG。在一些實施例中,系統簽章可以包括兩個或更多部分,例如TRPG專用的第一部分以及TRP專用的第二部分。
WTRU可以確定特定的網路切片,其中每一個RAN切片與專用或者能與其他RAN切片共用的無線電資源集合相關聯。WTRU可以依據與特定RAN切片相關聯的系統簽章的存在來辨識出與該切換相關聯的無線電資源部分。在一個示例中,WTRU可以依據與特定RAN切片相關聯的系統簽章佔用的頻寬或者依據與該切片相關聯的系統簽章序列的功能來確定分配給該切片的頻寬。依據預先定義的系統簽章在這些子訊框和/或TTI和/或OFDM符號中的存在,WTRU可以確定一個或多個子訊框和/或TTI和/或OFDM符號是否與特定的RAN切片相關聯。WTRU可以獲取系統簽章與相關聯的RAN切片之間的對映,其中作為示例,該對映可以從存取表或者可以WTRU專用配置獲取。類似的機制可以用於將SOM或信號結構與系統簽章相關聯。
WTRU可以確定特定的參數配置。這其中可以包括這樣的情況:由WTRU依照系統簽章來確定與該參數配置相關聯的一個或多個參數。舉例來說,與參數配置相關聯的一個或多個參數可以包括但不侷限於:TTI長度,每一個TTI的符號數量,頻寬,子載波間隔以及循環首碼。在一個示例中,所支援或允許的參數配置集合可以是預先定義的,並且可以通過使用存取表而被對映到唯一的系統簽章。
WTRU可以確定可供使用的特定訊框結構。例如,WTRU可以依據所接收的系統簽章來確定雙工模式或訊框結構類型。例如,預先定義的系統簽章可被保留,以便指示TDD雙工模式、FDD雙工模式、半雙工模式或全雙工模式等等中的一種模式。此外,WTRU還可以依照預先定義的系統簽章的存在來確定訊框結構內部的一個或多個實體通道的類型。舉例來說,子訊框中的第一個符號可以運送簽章,該簽章用於描述訊框的剩餘部分、該訊框是否幾乎空白或者該訊框是否為自包含(也就是支持在相同子訊框內部被時間多工的上鏈和下鏈中的傳輸),以及自包含訊框的特定格式(也就是,UL控制和/或資料跟隨著DL控制和/或資料,DL控制和/或資料跟隨著UL資料和/或控制等等)。同樣,WTRU可以依照系統簽章來確定子訊框號、時隙號、系統訊框號等等。
WTRU可以確定關於可以使用的網路能力/特徵的指示。舉例來說,在舊有系統中,WTRU可能需要透過解碼系統資訊來確定網路能力,也就是確定網路是否支援一個或多個特徵。在下一代系統中,WTRU可以依據一個或多個系統簽章的存在來直接確定一個或多個網路能力。這樣做可以減小時間延遲和開銷,因為WTRU將不需要從每一個TRP接收和解碼系統資訊。作為示例,預先定義的系統簽章可被保留,以便指示對於eMBMS、D2D、6GHz以上的載波等等的支持。此外,第一系統簽章群組可被保留,以便指示網路支援初始的5G特徵集合(例如階段1),並且第二簽章群組可被保留,以便指示網路支援擴展的5G特徵集合(例如階段2)。在一個示例中,具有階段2能力的WTRU可以優先存取具有第二簽章群組的TRP。
WTRU可以確定可被使用的特定部署或操作模式。WTRU可以依據系統簽章來區分LTE輔助的5GFlex傳輸通道以及獨立的5GFlex操作。預先定義的系統簽章可被置於LTE訊框結構中,以便指示存在一個或多個5GFlex實體通道。同樣,獨立的5GFlex操作可以用不同的系統簽章集合來指示。執行初始存取的WTRU邏輯可以依據在訊框內接收的系統簽章。WTRU可以依據從TRP傳送的預先定義的系統簽章來區分巨集TRP和低功率TRP。
WTRU可以確定TRP或TRPG的適用性。WTRU可以以使用系統簽章執行的測量為基礎並通過使用一個品質度量來確定TRP或TRP群組的適用性。這種測量可以用來選擇用於執行初始存取、切換或是執行空閒模式傳呼監視的TRP/TRPG。
WTRU可以確定可以使用的系統資訊的特定版本(相對於預先定義的資訊集合)。每一個系統簽章都可以與預先定義的系統資訊集合相關聯。一旦接收到這樣的系統簽章,則WTRU可以應用系統資訊中的相關聯的配置。
WTRU可以依照系統簽章來確定初始存取消息的大小和格式(例如msg1、msg3等等)。
WTRU可以確定系統簽章時序可被用作DL時序參考。
WTRU可以確定系統簽章的接收功率可被用作DL路徑損耗參考。
WTRU可以依據所接收的系統簽章來確定存取表的位置。例如,WTRU可以依據系統簽章來確定用於運送存取表的資料通道的存在和格式。WTRU不需要通過獲知或解碼控制通道來接收存取表資訊。例如,存取表資訊可以是用預先定義的MCS傳送的。在一個示例中,WTRU可以使用所接收的系統簽章來確定存取表傳輸的冗餘版本。
WTRU可以確定相連結的頻帶/DL/UL頻率(例如系統簽章和佈置以及操作頻帶之間的關係)。
包含在系統資訊傳輸中的資訊可以用特定方式來構造。舉例來說,此類資訊可以作為元素清單而被接收。例如,每一個元素都可以代表存取表中的模組化元素。存取表中的系統資訊可被封包到不同的子表中。
這些元素中的資訊可以依據包括但不限於以下各項的特徵來封包:
實體節點專用:例如TRP專用的子表,TRPG專用的子表。作為示例,WTRU可以確定與一個這樣的元素相關聯的參數可以與不同和/或專用的MAC實例的配置相關聯。
RAN切片專用:作為示例,WTRU可以確定與一個這樣的元素相關聯的參數可以與一個或多個特定類型的處理(例如L1、L2)和/或所支援的QoS特定類型和/或等級相關聯。
服務(eMBB,ULLRC,mMTC)專用:作為示例,WTRU可以確定與一個這樣的元素相關聯的參數可以與一個或多個特定類型的控制通道、實體資料資訊(上鏈和/或下鏈)和/或所支援的QoS的類型的配置和/或可用性相關聯。
SOM專用:作為示例,WTRU可以確定與一個這樣的元素相關聯的參數可以與實體資源的一個或多個特定類型和/或集合的配置和/或可用性相關聯。
特徵/能力(例如MBMS、D2D等等)專用:作為示例,WTRU可以確定與一個這樣的元素相關聯的參數可以與一個或多個特定類型(例如WTRU相關)的能力或是其組合的配置和/或可用性和/或對其提供的支援相關聯。例如,WTRU可以使用相關聯的存取參數來確定網路支援一個或多個特徵集合。
層(例如大型子表,小型胞元子表)專用:例如,WTRU可以確定與一個這樣的元件相關聯的參數可以與一個或多個特定類型的無線電存取方法的配置和/或可用性和/或為其提供的支援相關聯,作為示例,該方法可以依據系統資訊廣播和RRC連接、依據簽章的存取或是其他方法。
分量載波(Pcell子表,PScell子表,Scell子表)專用:例如,WTRU可以確定與一個這樣的元素相關聯的參數可以與一個或多個特定類型的無線電資源的聚合的配置和/或可用性和/或為其提供的支援相關聯。作為示例,借助一種存取方法,L1存取(例如前序碼傳輸和/或隨機存取)的結果會導致產生多個關聯,其中每一個關聯都與不同的載波和/或TRP相關聯。
群組IE:群組ID是以與層專用的IE(或是一個以上的TRP共有的IE)分離的方式特定於胞元的。
行動性集合和/或存取集合專用(例如共用了至少一些方面的一個或多個TRP的群組專用):這些方面可以包括程序和/或功能,例如支持協作排程,COMP,載波聚合,MBMS區域,公共存取權利,在此類群組的TRP內部的無縫行動性,公共安全環境,用於此類群組的所有TRP的WTRU環境可用性/共用等等。例如,這在集合中的所有TRP通過啟用這種協作的介面(例如理想的介面)而受相同中心實體控制和/或相互連接和/或連接到中心控制實體的時候是適用的。舉例來說,WTRU可以確定與一個這樣的元素相關聯的參數可以與諸如L1/PHY行動性之類的一個或多個特定過程的配置和/或可用性相關聯。
無線電存取技術類型(例如LTE,5gFLEX)專用:作為示例,WTRU可以確定與一個這樣的元素相關聯的參數可以與一個或多個特定的無線電存取類型和/或存取方法的配置和/或可用性和/或為其提供的支援相關聯。作為示例,WTRU可以確定相關聯的無線電存取過程使用了舊有LTE方法(或是其演進)來執行單獨存取。舉例來說,WTRU可以確定相關聯的無線電存取過程使用了5gFLEX程序用於單獨存取。對於LTE CP/PHY + 5gFLEX PHY重疊、DC或CA來說,例如,WTRU可以確定相關聯的無線電存取程序使用了舊有LTE方法(或是其演進),由此,WTRU可以首先建立用於後續配置一個或多個5gFLEX TrCH和/或實體資料通道(一個或多個)的RRC連接。WTRU有可能進一步確定這種配置是否針對的是相同載波(例如通過重疊附加實體通道),不同載波(例如通過載波聚合原理)和/或單獨的MAC實例(例如通過雙重連接原理並使用不同的排程器)。對於LTE CP + 5gFLEX PHY替換方案來說,作為示例,WTRU可以確定相關聯的無線電存取過程會在基於5gFLEX存取表、簽章檢測、一個或多個5gFLEX TrCH上的傳輸和/或一個或多個實體存取/資料通道使用5gFLEX程序執行了存取之後,將舊有的LTE方法(或是其演進)用於L3/RRC控制平面。這些元件各自可以進一步被組在一起。這些群組可以被進一步地相互分離。
第9圖是借助存取表來檢測/獲取系統資訊的示例處理900的流程圖,其中該處理可以在如上所述的示例系統700中執行,並且可以與這裡描述的任一實施例組合使用。雖然第9圖的過程900中的每一個步驟都是單獨顯示和描述的,但是多個步驟既可以按照與所顯示的順序不同的次序執行,也可以以相平並行的方式執行,還可以以彼此併發的方式執行。出於示例目的,第9圖的處理是由WTRU執行的,但是它還可以由在無線通訊系統中運作的任何節點執行,例如TRP、eNB、5gNB、AP或基地台。在第9圖的示例中,依據所接收的系統簽章、與先前接收的存取表的有效性相關聯的方面、出於預先獲取存取表的目的、在通電時,和/或在計時器期滿時,WTRU可以藉由如上所述的WTRU的收發器或發射機來觸發用於獲取或重新獲取至少一個存取表的程序901。
舉例來說,WTRU可以定期地接收系統簽章,以便保持最新的系統配置。當WTRU接收到未知系統簽章時,WTRU可以觸發一個用於獲取或重新獲取至少一個存取表的程序901。舉例來說,當WTRU不具有保存在其記憶體中的與系統簽章相關聯的有效存取表時,WTRU可以將所接收的系統簽章聲明為未知。如果WTRU接收到未知的系統簽章,那麼它可以執行包括但不限於以下各項的行動:將該未知系統簽章報告給當前關聯的TRP或TRPG,和/或將該未知系統簽章報告給輔助層,觸發按需的存取表傳輸程序,或者將該未知系統簽章視為來自不可存取的發射機。
在另一個示例中,WTRU可以在接收到保留簽章的時候觸發一個獲取或重新獲取至少一個存取表的程序901,其中該保留簽章是為了指示存取表變化而被保留的特殊簽章。
在另一個示例中,WTRU可以在其確定與系統簽章和/或存取表接收相關和/或相關聯的量度不再具有足夠的品質的時候,觸發一個用於獲取或重新獲取至少一個存取表的程序901。在該示例中,存取表的有效性可以取決於所傳送的存取表的接收品質。
在另一個示例中,WTRU會在確定已儲存的存取表中的一個或多個條目不再有效之後觸發一個用於獲取或重新獲取至少一個存取表的程序901。存取表的有效性可以在與已儲存的存取表資訊相關聯的值標籤不同於網路廣播的值標籤時通過值標籤的變化來確定。值標籤可以是在不同的細微性等級定義的。該值標籤可以與整個存取表、和/或子表、和/或條目群組、和/或表中的特定條目相關聯。在重新獲取存取表時,WTRU可以根據值標籤的細微性而僅僅重新獲取存取表的相關部分。WTRU可以採用若干種方式接收用於確定存取表的有效性的值標籤,這其中包括但不限於以下各項:作為存取表中的單獨條目,在MAC控制元素中,在被保留用於運送值標籤資訊的實體通道中,使用同步通道或解調參考信號的一個或多個屬性,和/或在傳呼消息中。
在另一個示例中,WTRU可以藉由於預先獲取存取表來觸發用於獲取或重新獲取至少一個存取表的程序901。在該示例中,WTRU可以在實際接收一個或多個系統簽章之前預先獲取與一個或多個系統簽章相關聯的存取表。該WTRU可以使用以下的一種或多種方法來預先獲取該存取表:
WTRU可以依據其位置和與一個或多個系統簽章的接近度來確定需要獲取或重新獲取存取表。舉例來說,WTRU可被配置成具有在以下各項限定的地理位置處於活動狀態的系統簽章的清單:位置區域,路由區域,RAN區域,依據定位參考信號的關聯,或是用於獲取位置資訊的其他手段(例如GPS/GNSS)。
作為切換資訊的一部分,WTRU可以從源社區接收與目標社區中的一個或多個系統簽章相對應的存取表列表。
WTRU可以在連接釋放過程中接收存取表資訊的一些部分。例如,WTRU可以在空閒模式中使用存取表資訊。
WTRU可以預先獲取與被關閉的一個或多個系統簽章相關聯的存取表資訊。這些系統簽章可以與處於DRX狀態的一個或多個TRP和/或處於活動TRP內部的一個或多個非活動服務相對應。
在另一個示例中,WTRU可以在通電時觸發用於獲取或重新獲取至少一個存取表的程序901。在該示例中,當已儲存的存取表為空時,和/或當WTRU不具有與所接收的簽章相關聯的有效存取表時,WTRU可以在通電時獲取存取表。
在另一個示例中,WTRU可以在計時器期滿時觸發用於獲取或重新獲取至少一個存取表的程序901。在該示例中,WTRU可以在週期性刷新計時器期滿的時候獲取或重新獲取該存取表。
在觸發了用於獲取或重新獲取至少一個存取表的程序901之後,WTRU可以接收該至少一個存取表902。該WTRU可以採用若干種方法來檢測和接收包含系統資訊的至少一個存取表。例如,存取表傳輸可以與單獨的邏輯通道相關聯,並且可以被對映到有可能包含了以下的一個或多個傳輸特性的傳輸通道:
存取表傳輸的週期有可能相對較長(例如長達10240毫秒)。該週期還有可能長於系統簽章傳輸週期(例如在100毫秒的範圍以內)。
存取表的不同部分(例如子表)依據其對傳統WTRU操作的重要性的順序而以不同的週期傳輸。舉例來說,與其他子表相比,用於運送與可存取性有關的資訊/ PLMN資訊或初始存取資訊的子表有可能會被更頻繁地傳送。
不同的存取表傳輸模式同樣是可以實施的。WTRU可以從輔助層接收與被輔助層相關聯的存取表資訊。舉例來說,WTRU可以使用包括但不限於以下各項的方法來自LTE-Evo大型胞元接收關於5gFLEX小型胞元的存取表資訊:輔助層中的系統資訊的類型(例如用於小型胞元群組/TRPG的大型胞元中的SIB),輔助層中的SC-PTM模式,和/或作為專用WTRU資訊的共用資料通道(例如PDSCH)。在另一個示例中,WTRU可以組合來自輔助層和被輔助層的傳輸,以便形成完整的存取表。舉例來說,WTRU可以從LTE巨集層接收基準存取表,並且僅僅從5gFLEX小型胞元層接收基準表之外的增量變化。
對於多TRP協作廣播機制(單頻模式)來說,WTRU可以在相同的時間/頻率資源上接收來自一個以上的TRP的存取表資訊。WTRU可以認為這種存取表資訊適用於遍及某個地理區域的一個以上的TRP。單獨的天線埠可被定義給存取表傳輸。WTRU可以在假設使用單個天線埠的情況下執行層對映和預編碼處理。該存取表傳輸可以使用擴展迴圈首碼。多TRP協作廣播通道可以與專用的參考信號相關聯,其中該信號不同於社區專用的參考信號。
對於TRP專用的傳輸來說,存取表可以是在單一胞元/TRP的覆蓋範圍以內使用共用或公共資料通道或廣播通道傳送的。與存取表傳輸相對應的下鏈控制消息可以通過保留的RNTI來標識。舉例來說,至少兩個RNTI可以用於辨識存取表的不同子表。作為替換,在TRP內部可以使用單一胞元的點到多點傳輸(SC-PTM)來傳送存取表。
此外也可以通過實施混合機制來傳送存取表。WTRU可以使用多TRP機制來接收存取表的RAN區域/層專用部分,並且存取表的社區專用部分可以借助廣播或單播機制來接收。舉例來說,WTRU可以依照系統簽章來區分傳輸模式。例如,不同的系統簽章可被保留用於特定的存取表傳輸模式。
存取表傳輸可以與相同子訊框/TTI中的其他邏輯通道相多工。存取表傳輸也可以是自包含的,也就是與專用的同步信號和/或解調變參考信號相關聯。用於運送解調參考信號的資源元素可以與用於運送存取表資訊的資源元素執行時間和/或頻率多工。WTRU可以使用專用於獲取存取表的同步信號來獲取時間和/或頻率同步。關於同步信號的一些示例包括但不侷限於前序碼和/或序列,系統簽章功能,或是或為存取表保留的預先定義的序列,唯一碼字等等。在另一個示例中,專用同步信號可以不同於胞元專用同步信號。該專用同步信號可以是按需傳送的,也就是僅僅在相關聯的存取表傳輸處於活動狀態的時候傳送。同步信號可被定位在存取表傳輸的偏移上。WTRU可以從與存取表傳輸相關聯的專用同步信號的存在性中檢測到存取表的存在。用於存取表傳輸的最大傳輸塊大小可以被限制為小於一個臨界值,由此適應不同的WTRU能力。處於覆蓋受限場景或RF頻寬受限場景的WTRU可以接收存取表傳輸的附加重複,以便提升SNR和健壯性。
在接收到至少一個存取表902之後,WTRU可以在記憶體中儲存與一個或多個系統簽章相關聯的至少一個存取表903。WTRU的記憶體可以包括但不限於在上文中對照第1B圖描述的非可移記憶體130、可移記憶體132。在儲存至少一個存取表時903,WTRU可以儲存具有大多數的系統所共有的取值的基準配置,參數,並且然後可以只儲存每一個系統簽章的增量配置。此外,WTRU可以接收在WTRU頻繁存取的社區/TRP中使用並且是該WTRU專用的長期配置。
假設WTRU記憶體可以保持與至多n個系統簽章相對應的存取表,那麼在其記憶體已滿(已經保持了n個簽章)的時候,WTRU可以使用以下的一個或多個演算法來為其新接收的系統簽章讓出地方:
WTRU可以保持追蹤針對每一個系統簽章而對存取表資訊進行檢索的頻繁程度。WTRU可以用新接收的系統簽章來改寫第n個最頻繁使用的系統簽章記憶體。
WTRU可以追蹤在與簽章關聯的每一個胞元/區域中花費的時間(或停留時間)。該WTRU可以用新簽章來改寫所花費的時間量最少的系統簽章。
WTRU可以追蹤最近接收的系統簽章。WTRU可以用新的系統簽章來覆蓋最近最少使用的系統簽章。
WTRU會使用新的簽章資訊來改寫最早簽章(依照其被寫入記憶體的時間)記憶體(即先進先出)。
在啟動第9圖中的用於獲取或重新獲取存取表的過程900之前,WTRU可以先確定其具有該社區的存取權(例如PLMN ID,CSG,存取限制等等)。然後,在該胞元中的任何上鏈傳輸之前,WTRU可以確保其具有與系統簽章相關聯的有效的初始存取參數。這些參數可以由存取表中的一個或多個條目來提供。
WTRU可以使用以下的一種或多種方法來確定包括供存取表傳輸使用的時間、頻率、空間和/或碼方面的資源在內的存取表的傳輸特性:
WTRU可以確定存取表的排程模式可以是定期性的或者是按需的。對於定期性排程模式來說,存取表的一些部分可以是在預先定義的週期傳送的。舉例來說,只有用於初始WTRU存取所需的絕對最小值可以是定期性傳送的。在該示例中,所傳送的僅僅是用於初始存取的UL資源配置、PLMN ID、存取限制、非關鍵性擴展等等。這種定期性傳輸並不僅限於一個TRP,並且可以是適用於兩個或更多TRP的公共參數。與在所有時間發送用於所有TRP的所有系統參數相比,按需解決方案可被認為是一種更精簡的方法。存取表的一些部分不會被定期性傳送,並且這些部分僅僅會依據WTRU的請求而被傳送。WTRU觸發的存取表傳輸啟動處理可以包括:請求存取表資訊的WTRU被配置成傳送顯性的存取表啟動請求/關注通知消息。該WTRU可以使用被保留用於觸發按需的存取表傳輸的UL資源(例如UL RACH資源或UL信號)。在一個示例中,WTRU可以通過傳送檢測到的系統簽章和/或值標籤和/或原因/理由碼來請求存取表的特定部分。WTRU可以接收攜帶了DL許可的RAR相關資訊,其中該DL許可運送的是被請求的存取表資訊。在按需請求與SIB傳輸(具有或不具有PDCCH)之間存在時序關係。作為替換,WTRU可以接類似於傳呼的消息,該消息攜帶了與按需的存取表傳輸有關的資訊。這種呼叫器制可以有益於WTRU適時接收存取表(也就是說,WTRU不會傳送存取表請求)。在混合排程模式中,存取表傳輸可以在按需模式與定期性模式之間動態切換。該混合方法可以為存取表傳輸提供從頻繁傳輸到完全按需傳輸的彈性週期性。該週期性可以通過以下各項來確定:通過WTRU請求的數量(例如,WTRU可被配置成在DTX中使用保留的簽章來報告TRP)、網路監聽(例如,TRP可以監聽其他TRP傳輸或WTRU傳輸),依據社區負載(舉例來說,如果社區中的WTRU的數量很多,那麼執行定期性傳輸將會是非常有效的),依據輔助層,依據活動的SOM/服務,依據TRP間協作(例如在X2上),依據RRM方面(例如資源使用,一天中的時刻等等)等等。
WTRU可以依據以下的一種或多種方法來確定用於存取表傳輸的DL資源:
指示了存取表資訊的存在性的傳呼相關消息。此外,該傳呼消息還可以運送具有關於存取表傳輸的排程資訊的DL資源許可。
控制通道(例如PDCCH、EPDCCH等等)中的下鏈控制資訊(DCI)。
與系統簽章佔用的時間/頻率資源的隱性關係,以及多個TRP共有的專用控制通道(例如用於單頻傳輸模式)。
WTRU可以請求包含了與特定連接過程相關聯的參數的存取表的一個或多個部分。然後,除了傳送被請求的連接過程參數之外,網路還可以分配用於該連接過程的資源(也就是捎帶存取表請求和連接請求過程)。作為替換,WTRU可以包含關於連接請求的具體原因(例如MO資料或傳信),然後,網路可以向WTRU提供相關的SIB,並且還可以為該連接過程分配資源。此外,WTRU還可以在連接請求中包含值標籤。
第10圖是使用了系統簽章或簽章序列的示例隨機存取過程1000的流程圖,其中該過程可以在如上所述的示例系統700中執行,並且可以與本文描述的任一實施例組合使用。雖然第10圖的過程1000中的每一個步驟都是單獨顯示和描述的,但是多個步驟既可以按照與所顯示的順序不同的次序執行,也可以以相互平行的方式執行,還可以以彼此併發的方式執行。出於示例目的,第10圖的處理是由WTRU執行的,但是它還可以由在無線通訊系統中運作的任何節點執行,例如TRP、eNB、5gNB、AP或基地台。
在第10圖的示例中,WTRU可以經由如上所述的WTRU的收發器或接收器以及藉由依照這裡描述的任一方法接收的存取表來接收至少一個RACH配置集合1001。結果,WTRU可以藉由存取表而被配置成具有一個或多個潛在的RACH配置集合。RACH配置可以包括前序碼配置(例如前序碼數量,前序碼封包,前序碼選擇評判準則等等),功率提升參數,RAR視窗配置,重傳配置,PRACH配置(例如RACH時機,時間/頻率資源,RACH格式等等),重傳等等。此外,WTRU可以區分兩個不同的RACH配置類別,其中每一個類別都可以與一個TRP相關聯或者與多個TRP相關聯。
WTRU可以接收系統簽章1002。然後,WTRU可以依據所接收的系統簽章來確定至少一個RACH配置集合的被許可的RACH配置1003。在一些實施例中,WTRU可以依據包括但不侷限於以下各項的評判準則而在多個被許可的RACH配置中選擇RACH配置子集:
用於隨機存取的觸發器:WTRU可以以msg3是否具有傳信或資料PDU為基礎來確定RACH配置。每一個SOM都可以與特定的RACH配置相關聯。WTRU可以根據資料可用的SOM來確定RACH配置。每一個網路切片都與特定的RACH配置相關聯。WTRU可以根據資料可用的切片來確定RACH配置。
WTRU狀態:WTRU可以處於ACTIVE(活動)/CONNECTED(連接)狀態。舉例來說,WTRU有可能已經連接到網路,並且在從DRX喚醒時,WTRU可以選擇與服務TRP相關聯的RACH配置。作為替換,WTRU可以回應於網路觸發器(例如RACH命令)來執行RACH過程。在這種情況下,WTRU可以確定觸發RACH所命令的網路節點,並且可以選擇與網路節點相關聯的RACH配置。WTRU可以處於PASSIVE(被動)/IDLE(閒置)狀態。舉例來說,WTRU可以沒有與網路節點的活動連接,和/或在網路節點選擇過程中沒有活動的連接。WTRU可以選擇與多個TRP相關聯的RACH配置,並且可以依據RACH過程來執行TRP選擇。
WTRU覆蓋狀態:WTRU可以以其覆蓋狀態(例如以正常覆蓋或需要增強覆蓋)為基礎來選擇RACH配置。
測量結果:WTRU可以依據對一個或多個系統簽章和/或參考信號的測量來選擇一個或多個TRP。然後,WTRU可以確定與所選擇的TRP相關聯的RACH配置。
WTRU能力:WTRU可以接收用於指示網路節點能力的不同RACH配置。例如,具有諸如階段2 5G WTRU之類的的擴展特徵的WTRU可以優先排序與具有5G階段2能力的TRP相關聯的RACH配置,而具有諸如階段1 5G WTRU之類的有限特徵的WTRU則可以選擇與LTE輔助的TRP相關聯的RACH配置。
DL路徑損耗。
資料和/或傳信PDU(例如MSG3)的大小。
WTRU可被預先配置成具有不同的RACH資源集合,並且每一個集合都與以下的一個或多個屬性相關聯:為點到點RACH過程保留的TRP專用的RACH資源;為點到多點RACH過程保留的專用於兩個或更多TRP的RACH資源。多點RACH資源配置可以包括WTRU是否等待第一RAR(對於TRP協作而言)或者WTRU是否等待整個RACH視窗(對於以WTRU為基礎的RAR選擇而言)。
參考第10圖,WTRU隨後可以使用所接收的系統簽章來發送前序碼1004。舉例來說,在前序碼傳輸過程中,WTRU可以將系統簽章用於初始功率設置和時序參考(例如以接收系統簽章為基礎的測量)。WTRU可以使用Msg1/前序碼傳輸來指示WTRU的某種身份標識形式,其中WTRU ID可以是以下各項之一:專用於服務TRP的WTRU ID(例如RNTI);專用於TRP群組的WTRU ID(例如由中心單元分配);在輔助層(例如在LTE-Evo宏eNB中)分配的WTRU的RNTI;WTRU的臨時NAS辨識碼;以及顯性的RAN等級的WTRU環境辨識碼(例如,其在邏輯RAN區域內部是唯一的)。
在前序碼傳輸中使用的前序碼碼選擇和/或PRACH資源選擇可以取決於WTRU ID。WTRU可以依據散列函數來選擇前序碼和RACH資源。該散列函數可以將WTRU ID對映到特定的PRACH資源。 WTRU的數量通常會大於可用的PRACH資源,並且有可能會導致發生衝突。作為示例,WTRU可以通過使用以下的一個或多個參數作為散列函數的輸入來將這種衝突隨機化:WTRU身份標識,與時域相關的ID(例如子訊框編號,傳送RACH的符號編號),與頻域相關的ID(例如起始子載波索引,RB編號,頻寬區域等等),社區ID /系統簽章,以及重傳計數。
WTRU可以將附加資訊連同PRACH傳輸一起傳送。舉例來說,WTRU可以附加小的酬載或MAC控制元素以及RACH前序碼傳輸,其中該傳輸運送了諸如顯性的WTRU ID或WTRU環境辨識碼之類的附加資訊。在另一個示例中,WTRU可以通過選擇特定的RACH資源來傳達附加資訊。例如,WTRU可以選擇與多個TRP相關聯的RACH資源,以便傳達對於網路節點選擇的需要。在另一個示例中,WTRU可以選擇與資源重複相關聯的RACH配置,以便傳達對於增強覆蓋的需要。在另一個示例中,WTRU可以傳送關於WTRU的需要的指示(例如資料封包大小、服務類型、被請求的信號結構類型)。
WTRU的前序碼傳輸可以與DL系統簽章相關聯,該DL系統簽章可以與網路中的一個或多個MAC實例相關聯。RACH資源(例如時間、頻率、前序碼等等)可以與一個TRP或一組TRP相關聯。WTRU可以根據存取表確定與簽章相關聯的RACH配置。作為替換,該RACH配置的一些部分可以通過系統簽章本身的一個或多個方面(例如時間/頻率中的相對偏移、頻寬等等)而被隱性確定。
WTRU可被配置成具有公共RACH配置,而不用考慮在這些資源上偵聽RACH的TRP的數量。對於接收和處理UL隨機存取消息的網路節點數量而言,WTRU可以是透明的。
在另一個示例中,WTRU可以向網路指示RACH是以一個TRP還是多個TRP為目標。WTRU可以通過以下的任一項來提供這種指示,將附加資訊與諸如MAC控制元素之類的PRACH傳輸包含在一起,和/或將唯一碼字附著於OFDM符號,和/或將該指示作為小型酬載,和/或選擇RACH資源群組和/或前序碼,和/或選擇時間/頻率資源。
WTRU的重傳行為可以取決於RACH資源選擇。舉例來說,每一個RACH資源集合都可以與不同的重傳特徵/參數相關聯,其中該重傳特徵/參數包括但不侷限於許可的最大重傳次數,回應視窗長度,爭用解決計時器等等。與初始傳輸相比,WTRU可以為重傳應用不同的RACH配置。 WTRU可被配置成具有用於重傳的附加RACH時機。舉例來說,WTRU可以考慮將預先配置的附加RACH資源用於傳輸,其中該資源僅僅是為重傳保留的。在TRP專用的RACH上的預先配置的次數的嘗試終止之後,WTRU可以選擇與多個TRP相關聯的RACH配置。舉例來說,WTRU的初始傳輸可以專用於TRP,並且一旦失敗(例如沒有RAR或者爭用解決計時器期滿),那麼WTRU可以將一個以上的TRP作為重傳目標,由此提升成功的機率。
參考第10圖,WTRU可以接收與前序碼傳輸相對應的至少一個RAR訊息1005。WTRU可以接收與每一個RACH傳輸相對應的RAR。來自相同TRP(例如用於提供增強覆蓋)的RAR或者來自不同TRP(用於多連接)的RAR可以在時間和/或頻率上分離,但是處於預先定義的RAR窗口內部。WTRU有可能需要在RAR視窗以內接收所有可能的RAR,而不是在第一RAR之後停止接收。RAR視窗大小可以取決於RACH過程中涉及的TRP的數量。或者,預設的RAR視窗大小可被定義,並且RAR中的位元對映可以指示它是該視窗內部的最後一個RAR消息。WTRU還可以依據對RACH配置的選擇來接收不同的RAR消息(格式/內容)。該WTRU可以在RAR消息中接收包括但不限於以下各項的資訊:
WTRU可以在RAR消息中接收TRP專用的同步信號。WTRU可以依據在RAR內部接收的來自優選/選定TRP的同步信號來執行與該TRP的同步處理。WTRU可以將所接收的RAR消息視為針對該TRP的初始存取的DL時序參考。
WTRU可以在RAR消息中接收TRP身份標識或是TRP群組專用標識。
WTRU可以在RAR消息中接收被許可的關聯的數量。 WTRU可以依照在所接收的RAR消息中用信號通告的值來限制最大關聯數量。
WTRU可以在RAR消息中接收用於測量和選擇TRP的參考信號。WTRU可以使用對RAR中包含的系統簽章和參考信號所做的測量的組合或是對RAR中包含的參考信號所做的測量來選擇一個或多個TRP。
WTRU可以在RAR消息中接收最後一個RAR指示。如果最後一個RAR指示為偽,則WTRU可以在當前RAR視窗內部等待一個或多個RAR消息,否則,WTRU可以停止監聽RAR消息,並且假設RAR視窗在攜帶了最後一個RAR指示為真的RAR消息的子訊框處結束。一旦RAR視窗結束,則WTRU可以依據在該視窗內部接收的RAR消息來執行初始存取過程。
WTRU可以在RAR消息中接收附加系統資訊。舉例來說,RAR消息可以顯性地包含用於執行進一步的初始存取或連接建立程序的專用配置。作為替換,RAR消息可以借助用於傳輸附加系統資訊的附加簽章或DCI來指示這種配置。
如果RAR消息包括關於附加WTRU環境資訊的請求,那麼WTRU可以傳送附加的環境資訊。例如,這種處理可以在無法從前序碼中檢索或獲知WTRU環境或者WTRU ID不可知的時候發生(也就是說,對於指定的WTRU ID來說存在一個以上的WTRU環境)。
WTRU可以接收可包含在RAR消息中的重定向消息。例如,WTRU可被重定向到先前被關閉的不同TRP,和/或被重定向到不同的層(例如巨集層或小型胞元層)、不同的RAT(例如低於6GHz或高於6Ghz的RAT)或是不同的頻譜(例如無授權頻譜)。重定向消息還可以提供輔助資訊,例如時序輔助(用於同步到重定向的TRP),初始存取輔助(例如專用前序碼和/或RACH資源)等等。
WTRU可以接收可被包含在RAR消息中的啟動消息。例如可以依據WTRU的請求而被啟動的專用於新WTRU的SOM或切片的身份標識或配置。
WTRU可以接收可被包含在RAR消息中的解調變參考信號,以便對其進行解碼。
WTRU可以接收L3控制消息,以便提供可被包含在RAR消息中的附加資訊(例如專用配置,WTRU專用的控制通道配置等等)。
WTRU可以在RAR消息中接收與協作傳送RAR的TRP集合有關的資訊。
WTRU可以在RAR消息中接收與TRPG有關的資訊,該資訊可以與傳送RAR的TRP相關聯。
WTRU可以在RAR消息中接收用於指示是否成功執行了切換的資訊。例如,透過包含針對WTRU的指示,可以使其丟棄與源TRP的連接。
WTRU可以在RAR消息中接收供該WTRU開始監視其他TRP/TRPG的輔助資訊。
WTRU可以在RAR消息中接用於表明關於PUSCH(例如用於SPS)的先前許可仍舊有效的指示。
WTRU可以在RAR消息中接收特定於TRP的時序提前,或者在單個RAR消息中接收特定於TRP群組的時序提前。
WTRU可以在RAR消息中接收特定於一個TRP的UL許可或是用於一個以上的TRP的有可能不同的UL資源。
WTRU可以在RAR消息中接收臨時RNTI。
參考第10圖,WTRU可以依據所接收的至少一個RAR來確定TRP關聯1006。WTRU可以根據所接收的RAR消息數量以及WTRU應用的選擇評判準則來關聯到一個或多個TRP。該選擇評判準則可以包括以下的一項或多項:以使用RAR傳送的RS上的測量為基礎,以在先前的RS上進行的測量為基礎(舉例來說,WTRU可以事先對其進行預排序),使用在先的RS所進行的測量的組合,使用RAR傳送的RS,包含在RAR淨荷中的排序度量,使用了RAR中的時序提前值的最早的時序,以及RAR傳輸的時序。
WTRU可以依據該隨機存取過程來確定與至少一個TRP的關聯。該WTRU可以依據以下各項來確定所要關聯的TRP的數量:網路配置(例如,在存取表中可以配置最大連接數量),滿足WTRU選擇評判準則的RAR消息的數量,WTRU狀態(例如,WTRU有可能已經連接到服務TRP,並且WTRU可以選擇從服務TRP接收的RAR),WTRU服務類型/QoS(例如,超可靠服務有可能需要連接到一個以上的TRP),WTRU行動狀態(例如,固定的WTRU可以選擇一個TRP,具有中等/快速行動性的WTRU可以選擇一個以上的TRP來執行無縫切換),WTRU能力(例如,WTRU有可能受到RF鏈的數量的限制)以及實體通道類型(例如,對於波束成形的隨機存取來說,WTRU可以選擇一個以上的TRP,以便提升對抗鏈路故障的健壯性)。
WTRU可以根據以下各項的最小值來與多個TRP相關聯:網路配置的最大連接量,滿足WTRU選擇評判準則的RAR消息的數量,依據WTRU能力所支援的最大連接量。WTRU可以採用以下的一種方式來向網路指示關於TRP的選擇:WTRU可以在為所有TRP配置的公共UL資源中在控制消息(例如L3消息或MSG3)中傳送所選擇的TRP的身份標識; WTRU可以在該WTRU選擇的RAR消息所許可/配置的UL資源上傳送控制消息;以及WTRU可以在控制消息(例如L3消息)中將所選擇的TRP傳送到輔助層(例如LTE-Evo eNB)中的服務社區。
WTRU可以使用包含在RAR消息中的系統簽章、系統簽章序列或TRP身份標識中的一個或多個來標識TRP。
在一個實施例中,TRP可以為WTRU選擇最佳的RAR。TRP之間的協調可以是分散式或集中式的(例如在RAN中心單元)。TRP可以通過交換適用性度量來確定為WTRU提供服務的最佳TRP。該適用性可以包括以下的一項或多項:所接收的PRACH上的關於特定TRP的SNR,TRP上的負載(例如用於實現隱性的負載均衡),已經具有已儲存的WTRU環境的TRP(例如基於歷史關聯),匹配WTRU能力的TRP,其他任何鄰近評判準則,以及依據WRTU的需要,例如DL或DL繁忙(heavy),或是傳輸類型。
在另一個實施例中,WTRU可以依據系統簽章、RACH資源類型或者依據存取表中的顯性網路配置來確定是執行依據WTRU的RAR選擇還是使用依據網路的RAR選擇。在另一個示例中,WTRU可以依據RAR消息數量來確定需要執行依據WTRU的RAR選擇;如果只接收到一個RAR消息,那麼WTRU可將其視為依據網路的選擇。如果WTRU接收到一個以上的RAR消息,那麼WTRU可以執行如上該的RAR選擇過程。在另一個示例中,RAR選擇模式可以是在RAR消息自身當中顯性指示的,例如用控制位元來指示。
混合解決方案同樣是可以使用的,其中同時應用了依據網路的選擇和依據WTRU的選擇。在一個示例中,TRP可以通過協調而在多個RAR消息中選擇兩個或更多RAR,然後,WTRU可以選擇一個或多個TRP來執行關聯。在另一個示例中,WTRU可以接收兩個或更多RAR,並且可以將所選擇的TRP的身份標識傳送到網路。然後,網路可以執行第二選擇階段,並且可以在新的控制消息中向WTRU指示結果。
系統簽章可以用於快速地重新配置WTRU專用資源。作為專用信號或胞元專用信號的一部分,WTRU可以獲得一個或多個預先配置集合。該預先配置集合可以包括但不侷限於以下各項:排程許可,另一個下鏈或上鏈控制配置,和/或L2 / L3配置。例如,排程許可可以包括預先定義的資源配置細微性(例如一個、兩個或更多資源塊)。
每一個預先配置的集合都可以被對映到一個或多個系統簽章資源(例如序列和時間/頻率資源)。WTRU有可能需要監視系統簽章的存在。
一旦接收到其中一個簽章,則WTRU可以應用相關聯的預先配置。WTRU可被配置成在啟動預先配置的資源的時候傳送應答。作為替換,具有少量資訊位元的短控制消息可以用於啟動其中一個預先配置的集合。
WTRU可被配置成使用不同的存取方法,其中每一個存取方法是依照以下的一項或多項的特定組合定義的:UL同步方面,與網路節點數量相關的佈置,第一上鏈傳輸與實際資料PDU傳輸之間的時序關係,爭用解決和/或WTRU標識,用於存取的UL資源,與HARQ處理相關聯的特性,多址方案,以及輔助方面。
對於UL同步方面來說,WTRU可以依據其UL同步狀態來選擇不同的初始存取過程。舉例來說,如果WTRU需要在資料傳輸之前在上鏈中同步,那麼WTRU可以選擇一種隨機存取方法來獲得UL同步,然後執行資料傳輸。如果WTRU不需要UL同步,那麼WTRU可以執行具有寬鬆的時間和頻率同步需求的非同步存取方法。在一個示例中,兩種不同的存取方法可以依據如何執行同步來定義,即依據WTRU還是依據網路。
作為示例,與網路節點數量相關的佈置可以包括跨越了能為多點初始存取保留的TRP群組的公共配置和/或UL資源,其中WTRU上鏈傳輸可以由一個以上的TRP接收。作為替換,WTRU可以先選擇特定的TRP(例如依據適用性評判準則),然後可以獲取與該TRP相對應的初始存取參數,以及隨後執行針對所選擇的TRP的初始存取過程。
對於第一上鏈傳輸與實際資料PDU傳輸之間的時序關係來說,不同的初始存取方法可以是基於第一上鏈傳輸與實際資料PDU傳輸之間的關係定義的。舉例來說,在初始存取過程中,WTRU可以在第一上鏈傳輸中包括資料PDU的一部分或是整個資料PDU。作為替換,WTRU可以在獲取用於實際資料PDU傳輸的資源之前傳送一個或多個信號/前序碼。
對於爭用解決和/或WTRU標識來說,不同的初始存取方法可以以WTRU應該在資料傳輸之前確定爭用已被解決還是WTRU可以在實際爭用解決步驟之前傳送資料為基礎來定義。舉例來說,WTRU可以發起依據爭用的資料傳輸,並且如果沒有爭用,那麼WTRU可以不需要爭用解決步驟,或者作為替換,WTRU可能需要提供附加標識來解決爭用或是標識WTRU環境,但是這有可能是在實際資料PDU傳輸之後發生的。
用於存取的UL資源包括關於傳輸方案的以下的一個或多個方面:單載波或多載波方案,或是特定的多載波方案,例如OFDM、SC-FDMA、FBMC、UFMC、零尾等等;與傳輸方案相關聯的參數:例如參數配置方面,比方說子載波間隔、符號持續時間、循環首碼持續時間/保護長度/零尾長度、發射功率(期望和/或補償因數)、擴展因數、頻寬等等;訊框結構,例如在一個或多個參考信號、一個或多個同步信號、一個或多個實體信號/通道、TTI長度、訊框、子訊框長度、TDD配置等等在時間和/或頻率中的佈置;資源的排程方面,包括許可的最大資料位元數量,例如,其取決於時間頻率/碼資源的大小、MCS、重複因數和/或週期性、重試次數、回應視窗等等;以及其他實體處理方面,例如空間處理(預編碼、發射分集、空間多工),波束成形(類比、數位或混合)等等。
對於與HARQ處理相關聯的特性來說,不同的初始存取方法可以是以是否為資料傳輸使用HARQ以及HARQ參數為基礎定的,該HARQ參數例如為HARQ進程的數量、排程許可、資料的傳輸/接收以及HARQ回饋的傳輸/接收之間的相對時序等等。
對於多址存取方案來說,不同的初始存取方案可以依據所使用的多址存取類型來定義,例如資源擴展多址存取、稀疏碼多址存取、依據競爭的存取、排程存取等等。每一個初始存取方案都可以關聯於多址存取方案專用的參數(例如隨機存取功率位準、前序碼、功率提升因數、最大重傳次數等等、時間頻率資源圖案、擴展碼、稀疏碼等等)。在一個實施例中,資源可以依照多存取方案來分組,舉例來說,WTRU群組可以是為可被WTRU自主存取且沒有公共許可的資源預先配置的(例如借助專用RRC信號),資源群組可以是為可被胞元中的所有WTRU存取的依據爭用的存取配置的(例如借助存取表),資源群組可以是為只有被具有有效的WTRU專用排程許可的排程存取配置的(例如借助下鏈控制資訊)。
對於輔助方面來說,WTRU可以依據從輔載波/胞元/胞元群組/切片/ SOM接收的輔助資訊而在輔載波/胞元/胞元群組/切片/ SOM上執行初始存取。這種輔助資訊包括如上所述的存取方法的一個或多個特性。
WTRU可以執行各種存取方法。
一種示例的存取方法包括:WTRU在基於爭用的資料通道上傳送資料。來自WTRU的第一上鏈消息(例如msg1)可以運送整個資料PDU或是其一部分。WTRU還可以將解調變參考信號、前序碼和/或WTRU辨識碼連同msg1一起傳送。WTRU可以從可用序列池中選擇解調變參考信號。或者,WTRU可以依照WTRU身份標識來選擇解調參考信號。在另一個實施例中,WTRU可被配置成具有唯一的解調變參考信號和/或顯性WTRU身份標識。該WTRU可以從網路接收包括以下的一項或多項的應答:對於UL資料PDU的引用(例如被資料PDU佔用的時間/頻率資源),在UL PDU中使用的解調變參考信號序列,包含在資料PDU中的WTRU ID等等。
第二示例存取方法是以如上所述的多點隨機存取為基礎的。其他的示例存取方法可以包括但不侷限於:用於6GHz以上的波束成形隨機存取,專用於使用了重複的覆蓋增強型WTRU的存取方法,具有寬鬆的同步需求的非同步存取方法。
不同存取方法的配置可以包括以上列出的一個或多個特性/屬性/參數,這其中包括將被用於該存取方法的資源。
第11圖是用於配置不同存取方法的示例過程1100的流程圖,其中該過程可以在如上所述的示例系統700中執行,並且可以與本文描述的任一實施例組合使用。雖然第11圖的過程1100中的每一個步驟都是單獨顯示和描述的,但是多個步驟既可以按照與所顯示的順序不同的次序執行,也可以以相互平行的方式執行,還可以以彼此併發的方式執行。出於示例目的,第11圖的處理是由WTRU執行的,但是它還可以由在無線通訊系統中運作的任何節點執行,例如TRP、eNB、5gNB、AP或基地台。在第11圖的示例中,WTRU可以借助如上所述的該WTRU的收發器或接收器來接收關於至少一個不同的存取方法的配置1101。這種接收至少一個不同存取方法的處理1101可以依照以下的至少一項來實現:藉由預設的存取方法,廣播配置,關於系統簽章的特定佈置,存取表,專用配置,得到輔助的配置和/或隱含確定。
舉例來說,預設存取方法可以是預先配置的,並且WTRU可以在沒有其他任何配置的情況下或者在其獲取以下描述的任一配置之前使用預設的存取方法。
廣播配置可以包括關於許可/可能的存取方法的列表,其中作為示例,該清單可以通過以下方式來廣播:使用RRC msg(包括系統資訊消息),MAC控制元件(在公共通道上的共用排程資訊和/或初始存取回應訊息(例如隨機存取過程中接收的RAR)中),主塊(作為示例,其可以包括在通用的SOM/切片上或是在尚未獲取/可以提供詳細的存取表的時候使用的初始存取方法),系統資訊廣播(其可以包括在特定SOM/切片中許可的存取方法,其中該SOM/切片可以運送或者不運送系統資訊廣播)。
為了使用系統簽章的特定佈置,預先定義的信號序列可被使用,和/或此類信號之間的相對時序/頻率偏移可被使用(舉例來說,存取方法可以依照與廣播信號序列相關聯的索引和/或多個此類信號之間的相對佈置(在時間/頻率上)來確定和/或指示)。
在存取表中可以提供關於一種或多種存取方法的配置,其中該配置可以由系統簽章或是被保留的值來索引。舉例來說,每一個存取方法都可以與不同的系統簽章相關聯,並且此類關聯可以附加地暗指用於傳送系統簽章的頻寬區域與在相關聯的頻寬區域內部適用的存取方法之間的對映。WTRU可以獲取使用廣播機制(例如借助共用資料通道)或是使用專用通道(例如作為WTRU專用的RRC配置)傳送的存取表。
對於專用配置來說,WTRU可以通過使用以下各項而被顯性地配置成具有一個或多個存取方法/參數:控制協定(例如RRC協定)、媒體存取協定(例如MAC控制元件或者在隨機存取過程中借助RAR消息)、傳呼消息、該消息可用於指示DL資料到達以及所要使用的相關聯的UL存取方法/參數、NAS消息(例如,WTRU可以在附著過程中接收許可存取方法集合,並且它可以取決於WTRU簽約)、下鏈控制傳信(例如,借助所接收的DCI,此外,該DCI可以指示存取方法所適用的資源或切片)。WTRU可以使得專用配置優先於其他配置。例如,專用配置的一個或多個參數可以優先於通過其他方法配置的參數。
對於被輔助的配置來說,WTRU可以從輔助層獲取關於存取方法的配置。這種配置既可以藉由RRC配置來提供,也可以用存取表通告。例如,用於小型胞元層的存取方法配置可以由巨集層來提供。在另一個示例中,用於波束成形小型胞元層(例如在6GHz以上運作)的配置可以由在低於6GHz的頻率中運作的輔助層提供。
對於隱性確定來說,WTRU可以從剩餘參數的配置中隱性地識別存取方法的一個或多個方面。舉例來說,對多址存取方法的選擇可以通過資源配置特性和/或UL資源參數化而被隱性地確定。
配置方面可以包括供WTRU識別不同的存取方法、選擇適當的存取方法(例如與存取方法選擇相適用的資訊)以及執行存取過程所必需的資訊。關於存取方法的一個或多個配置方面可以是靜態的,而其他配置方面則可以是動態的。在一個示例中,WTRU可以組合用不同方法通告的配置部分,以便獲得存取方法的總體配置。舉例來說,關於多址存取方法的選擇可以在廣播系統資訊/存取表中用信號通告,並且用於存取方法的資源可以借助控制通道而被動態排程。此外,WTRU可以從不同節點獲取該配置的部分,以便確定存取方法的總體配置。WTRU可以獲得來自巨集層的協助,其中該協助會與來自小型胞元層的特定資訊相結合,以便在小型胞元層上執行初始存取。WTRU可以接收與存取方法無關的UL資源配置。例如,在UL資源與在該UL資源上使用的存取方法之間可以提供聯繫。在另一個示例中,與其他切片相隔離的特定切片可被保留用於初始存取程序。
參考第11圖,WTRU可以觸發至少一個初始存取程序1102。該步驟可以是在滿足以下的一個或多個條件的是時候執行的:
有UL資料和/或高層傳信(例如RRC,NAS)到達,並且滿足了以下的一個或多個條件:當WTRU UL同步狀態是不同步時;資料屬於不存在連接的邏輯通道或邏輯通道群組,而不管其他邏輯通道的狀態怎樣(例如不管其是活動還是無活動的);資料屬於不存在傳輸通道對映的新的邏輯通道群組或邏輯通道;資料針對的是與當前活動的服務不同的服務;資料屬於與當前活動的邏輯通道相比關聯的是不同模式/切片/SOM的邏輯通道;LCH上的資料被配置成傳送到WTRU尚不具有UL同步的TRP;資料是未被定義配置的資料/也就是存在無線電承載或邏輯通道;以及資料被對映到與當前活動的層/RAT/分量載波或胞元群組不同的層或RAT或分量載波或胞元群組。
有DL資料到達並且滿足以下的一個或多個條件:WTRU接收傳呼消息或是用於指示DL資料到達的信號,並且該傳呼消息還可以指示新的邏輯通道/傳輸通道配置;在傳呼消息中存在用於觸發特定存取方法的顯性指示,該方法可以在特定的SOM和/或切片上進行;以及作為示例,DL傳呼消息可以指示DL資料到達以及邏輯通道身份標識和/或與特定傳輸通道類型的對映和/或關於初始存取方法的顯性指示。
一些方面與新的或未知的系統簽章相關聯:WTRU可被預先配置成檢測新的簽章並且觸發針對網路的報告。例如,當TRP從關閉狀態轉換到接通狀態時,或者在產生實體新的切片或SOM以及傳送特定於該切片/SOM的系統簽章的時候,這時可以接收在存取表中不存在有效條目的未知系統簽章。作為替換,WTRU可以簡單地將未知簽章視為不可存取傳輸點或切片或SOM。
L3被重新建立(例如RRC連接):舉例來說,L3可以是因為故障而被重建的,其中舉例來說,該故障可以是無線電鏈路故障,切換故障或安全性故障。WTRU可被配置成發起一個用於報告無效配置和/或恢復資料傳輸的存取程序。例如在WTRU無法遵從在存取表或高層消息(例如L3)或MAC控制元素或其他手段中接收的配置的一個或多個方面的時候。
初始存取程序是由WTRU的行動性觸發的:例如,當WTRU行動到與先前區域不同或者未被包含在先前RAN路由區域群組中的新的RAN路由區域時,或者RAN路由區域、TRPG或RAN中心單元改變以及切換的時候,這時可以觸發初始存取程序。
一些方面與UL同步以及時序提前是關聯的:WTRU有可能失去UL同步(例如,WTRU可能需要為低時延傳輸保持UL同步);出於定位目的,在WTRU定位處理需要時序提前的時候;以及隨著時間的經過而具有週期性,例如在WTRU進入DRX但是仍舊需要保持UL同步的時候。
對於LTE輔助的5gFLEX傳輸通道來說:WTRU會在LTE Uu內部監視為5GFlex操作預先配置的時間/頻率資源。當WTRU檢測到一個或多個系統簽章和/或當系統簽章的接收功率在為5GFlex操作配置的資源中高於臨界值時,WTRU可以觸發初始存取。
WTRU從網路接收顯性命令(例如在網路命令WTRU從非同步存取轉換成同步存取的時候,PDCCH命令,和/或網路觸發的初始存取(例如用於檢索未知的WTRU環境))。
WTRU改變覆蓋狀態:包括在服務胞元品質降至臨界值以下的時候以及在WTRU進入增強覆蓋模式的時候,從覆蓋範圍以外回到覆蓋範圍以內。WTRU可以發起與增強覆蓋模式(例如RACH前序碼重複)相對應的初始存取。
WTRU在經過的時間以內無法獲取存取表:作為示例,WTRU可以在取決於系統簽章的低週期性資源上使用默認存取方法。
在通電時,WTRU會觸發至少一個存取程序。
一旦啟動了與不同存取方法相對應的UL資源,則WTRU會觸發至少一個存取程序:包括當啟動新的切片或SOM且該切片/SOM中的一個或多個UL資源被保留用於初始存取時。WTRU可以執行與SOM或切片相關聯和/或為其配置的初始存取方法。當添加新的分量載波(例如對於載波聚合而言)或者添加小型胞元(例如對於多連線性而言)時,WTRU可以觸發為該載波或小型胞元等等配置的初始存取方法,舉例來說,如果啟動的是高於6GHz的載波,那麼WTRU可以執行該載波專用的初始存取(例如波束成形初始存取)。
存在針對新的/輔助存取方法的觸發器,作為主存取方法或先前存取方法失敗的結果。該觸發器可以特定於D2D或中繼模式。
參考第11圖,WTRU可以選擇多種存取方法中的至少一種存取方法1103。該選擇可以依照不同的選擇評判準則。WTRU可以確定與所選擇的存取方法相關聯以及為該方法配置的UL資源。然後,WTRU可以執行至少一個存取程序1104。該程序可以依照為存取方法定義的規則來執行。
用於選擇至少一種存取方法的選擇評判準則可以包括但不侷限於以下各項:依據資料變得可用的邏輯通道類型;依據先前初始存取程序的結果;依據主初始存取程序的結果;依據資料PDU的大小;依據資料PDU的類型(例如IP或非IP資料);依據服務請求類型;依據現有LCH連接/鏈路;連接類型;依據存取分類;依據無線電介面;依據信號結構、SOM或頻寬區域;依據切片;依據服務類型/QoS;依據TRP胞元群組專用、TRP專用,TRPG專用;依據層;配置方面;依據資源選擇;通用存取方法和特定存取方法;依據所接收的系統簽章;依據WTRU的能力和/或簽約;依據WTRU的覆蓋狀態;依據操作模式的功能;依據一個以上的並行的初始存取程序。
對於資料變得可用的邏輯通道類型的功能來說,不同類型的無線電承載和/或邏輯通道和/或邏輯連接、邏輯通道群組和/或傳輸通道以及其間的對映可被定義,以便表徵5GFlex所支援的不同類型的端到端服務(例如eMBB、URLLC或mMTC)。每一個邏輯通道和/或傳輸通道都可以與一個或多個存取方法相關聯。一旦用於空邏輯通道的資料到達,則WTRU可以首先選擇一個存取方法(如果存在一個以上的存取方法),然後執行與該LCH相關聯的初始存取程序。
在以先前初始存取程序的結果為基礎時,WTRU可以保持關於使用特定存取方法的失敗次數的計數。當失敗次數超出預定臨界值時,WTRU可以切換到不同的存取方法。此外,在藉由諸如禁止計時器指定的預時序間中可以禁止失敗的存取方法。WTRU可以用不同的參數(包括但不侷限於功率提升,重複率提升,以及為發生衝突的WTRU保留/優先排序不同的資源(例如一些專用資源))。當所有初始存取方法或是其集合或是所有存取方法的計數器超出臨界值的時候,或者當從初始存取程序開端開始經過了預先定義的時間,則WTRU可以宣佈無線電鏈路失敗。
如果主初始存取程序提供了與輔助初始存取程序有關的更多資訊,那麼選擇可以依據主初始存取程序的結果。在SOM的情況下有可能存在針對另一個的重定向。
該選擇可以取決於現有LCH連接/鏈路。例如,一旦在新的LCH中有資料到達,那麼WTRU可以使用與當前活動LCH、TCH、切片、SOM(例如使用當前UL控制通道)相對應的特定方法。
該選擇可以依據連接的類型。 WTRU可以被配置成執行依據連接的資料傳輸或是無連接資料傳輸,例如以資料PDU的大小、時間延遲和/或開銷需求為基礎來執行。WTRU可以選擇與連接特性相關聯的不同存取方法。例如,該連接可以依據以下各項:用於連線導向的資料傳輸的隨機存取程序,用於無連接資料傳輸的依據爭用的資料傳輸程序,建立原因(MO傳信或MO資料),重建或建立,高優先順序存取,延遲容忍的存取,緊急連接等等。
該選擇可以取決於存取分類。 WTRU可以依據存取分類來選擇不同的存取方法,其中一些存取方法可被限制用於某些存取分類。
WTRU可以依照無線電介面來選擇存取方法。例如,不同的存取方法可以是針對LTE、LTEEvo、6GHz以下的5GFlex以及6GHz以上的5GFlex定義的。WTRU可以從用於每一個無線電介面的可能存取方法中選擇一種存取方法。WTRU可以依據滿足了時延和/或開銷方面的一個或多個需求的許可存取方法來對無線電介面的選擇執行優先排序處理。
該選擇可以取決於信號結構、SOM或頻寬區域。在SOM內部可能會有一組許可資源。WTRU可以選擇SOM,然後可以執行與之關聯的存取方法。
該選擇可以取決於切片(切片類型)。WTRU可以依照切片提供的服務類型(系統簽章功能)而在特定的切片上執行初始存取方法。
該選擇可以取決於層。存取方法同樣也可以從與節點相關聯的屬性中確定,例如層的指示。
該選擇可以依據配置方面。舉例來說,WTRU可被配置成具有用於DL傳呼消息中的DL資料到達的特定存取方法。WTRU可以在切換時觸發所配置的存取方法,以便在目標胞元中使用。
該選擇可以依據資源選擇。作為示例,WTRU可以依據UL資源選擇來確定存取方法。WTRU可以選擇最早出現的UL資源,然後選擇與該資源相關聯/為其配置的存取方法。在可用的存取方法中,WTRU可以依照其減少時間延遲的方面來選擇一個存取方法。WTRU可以比較不同存取方法/資源的排程週期,並且可以選擇最早或具有最小開銷等等的存取方法。
該選擇可以依據通用存取方法和/或特定存取方法。WTRU可以先選擇為通用SOM/切片/優選胞元/RAT配置/與之關聯的默認存取方法,隨後可以執行與其他SOM/切片/胞元/胞元群組/RAT相關聯的特定存取方法。這些特定的存取方法可根據預設存取方法的結果而被配置/啟動。在一個解決方案中,默認存取方法可以是胞元專用的,並且特定存取方法可以是WTRU專用的。舉例來說,在使用標稱頻寬的初始存取(例如通電,獲取PDP上下文等等)和用於與指定簽章相關聯的特定SOM的初始存取之間有可能存在差異。一些eNB/TRP可以支持僅僅一個、另一個或是所有這二者。舉例來說,大型eNB可以支援使用標稱SOM的存取,TRP僅僅支持SOM專用的存取(沒有用於交換L3/NAS傳信的裝置),而其他裝置(eNB或TRP)則可以同時支援這二者。
該選擇可以取決於所接收的系統簽章。 WTRU可以選擇與接收到的系統簽章相關聯/為其配置的初始存取方法。例如,當WTRU接收多個系統簽章時,WTRU可以選擇與具有最高接收功率的系統簽章或是優選類型的系統簽章相關聯的初始存取方法。
該選擇可以依據WTRU的覆蓋狀態,這其中可以包括覆蓋範圍以內,覆蓋範圍以外,增強覆蓋範圍等等。操作模式的功能可以包括以該操作模式是基礎設施模式、D2D模式、中繼模式或傳輸(例如自回程/前傳)模式為基礎的不同存取方法。一個以上的初始存取程序是可以平行使用的。
雖然在上文中描述了採用特定組合的特徵和要素,但是本領域普通技術人員將會認識到,每一個特徵或要素既可以單獨使用,也可以與其他特徵和要素進行任何組合。此外,這裡描述的方法可以在引入電腦可讀媒體中以供電腦或處理器運行的電腦程式、軟體或韌體中實施。關於電腦可讀媒體的示例包括電信號(經由有線或無線連接傳送)以及電腦可讀儲存媒體。關於電腦可讀儲存媒體的示例包括但不侷限於唯讀記憶體(ROM)、隨機存取記憶體(RAM)、暫存器、暫存記憶體、半導體存放裝置、內部硬碟盒可拆卸磁片之類的磁媒體、磁光媒體,以及CD-ROM碟片和數位多用途碟片(DVD)之類的光媒體。與軟體關聯的處理器可以用於實施在WTRU、UE、AP、eNB、5gNB、終端、基地台、RNC或任何電腦主機中使用的射頻收發器。
102、102a、102b、102c、102d、604a、604b、604c、611a、611b、611c、611d、611e、707‧‧‧無線傳輸/接收單元(WTRU) 104‧‧‧無線電存取網路(RAN) 106‧‧‧核心網路 108‧‧‧公共交換電話網絡(PSTN) 110‧‧‧網際網路 112‧‧‧其他網路 114a、114b‧‧‧基地台 116‧‧‧空中介面 118‧‧‧處理器 120‧‧‧收發器 122‧‧‧傳輸/接收元件 124‧‧‧揚聲器/麥克風 126‧‧‧小鍵盤 128‧‧‧顯示器/觸控板 130‧‧‧非可移記憶體 132‧‧‧可移記憶體 134‧‧‧電源 136‧‧‧全球定位系統(GPS)晶片組 138‧‧‧週邊設備 140a、140b、140c‧‧‧e節點B 142、711‧‧‧行動性管理閘道(MME) 144、710‧‧‧服務閘道(S-GW) 146‧‧‧封包資料網路(PDN)閘道 160‧‧‧無線區域網路(WLAN) 165‧‧‧存取路由器 170a、170b‧‧‧存取點(AP) 200‧‧‧系統傳輸頻寬 201、301‧‧‧系統頻寬 202、303‧‧‧標稱系統頻寬 203、204、205‧‧‧通道頻寬 300‧‧‧彈性頻譜分配 302‧‧‧具有可變傳輸特性的頻譜分配 304‧‧‧子載波 400‧‧‧彈性訊框結構 401a、401b、501a、501b‧‧‧DCI 402a、402b、502a、502b‧‧‧下鏈資料傳輸部分(DL TRx) 403a、403b、503a、503b、503c‧‧‧上鏈傳輸部分(UL TRx) 404a、404b‧‧‧切換間隙(SWG) 405a、405b、507a、507b‧‧‧持續時間tDL(n) 406a、406b‧‧‧持續時間tUL(n) 409a、509a‧‧‧x*BTI 409b、509b‧‧‧y*BTI 411、504‧‧‧子訊框間間隔(ISS) 412a、412b、506a、506b‧‧‧固定持續時間tdci 500‧‧‧訊框結構 505‧‧‧偏移(toffset) 508a‧‧‧持續時間tUL(n,0) 580b‧‧‧持續時間tUL(n,1) 508c‧‧‧持續時間tUL(n+1,0) 5gFlex‧‧‧5G彈性無線電存取技術 600‧‧‧示例輔助模式 601、612、613‧‧‧單獨模式連接 602‧‧‧輔助層 603‧‧‧被輔助層 605‧‧‧LTE-Evo大型胞元 606‧‧‧5Gflex大型胞元 607、608‧‧‧5Gflex小型胞元 609‧‧‧單獨模式 610‧‧‧輔助模式 700‧‧‧示例系統 701‧‧‧系統簽章A 702‧‧‧系統簽章B 703‧‧‧系統簽章C 704a、704b、704c、705a、705b、705c、705d、705e、706a、706b、706c‧‧‧傳輸接收點(TRP) 708、709‧‧‧隨機存取回應(RAR) 712‧‧‧S1-C介面 713‧‧‧S1-U介面 800、900‧‧‧處理 1000、1100‧‧‧過程 BTI‧‧‧基本TI(一個或多個符號持續時間的整數倍) DCI‧‧‧下鏈控制資訊 DL‧‧‧下鏈 LTE‧‧‧長期演進 RACH‧‧‧隨機存取通道(或過程) S1、X2‧‧‧介面 TI‧‧‧時間間隔(一個或多個BTI的整數倍) TTI‧‧‧傳輸時間間隔(一個或多個TI的整數倍) UL‧‧‧上鏈
更詳細的理解可以從以下結合附圖舉例給出的描述中得到,其中: 第1A圖是可以實施所揭露的一個或多個實施例的示例通訊系統的系統圖; 第1B圖是可以在第1A圖所示的通訊系統內部使用的示例無線傳輸/接收單元(WTRU)的系統圖; 第1C圖是可以在第1A圖所示的通訊系統內部使用的示例無線電存取網路和示例核心網路的系統圖; 第2圖提供由5gFLEX系統支援的一些系統傳輸頻寬的示例圖; 第3圖是由5gFLEX系統支援的示例的彈性頻譜分配的圖; 第4圖是可以在由諸如5gFLEX系統之類的無線通訊系統中使用的關於TDD的示例性的彈性訊框結構的圖式; 第5圖是可以在諸如5gFLEX系統之類的無線通訊系統中使用的關於FDD的示例性的訊框結構的圖式; 第6圖是可用的示例輔助模式的圖式; 第7圖是使用系統簽章或簽章序列的示例初始存取系統的圖; 第8圖是使用系統簽章或簽章序列的示例初始存取處理的流程圖; 第9圖是透過存取表來檢測/獲取系統資訊的示例程序的流程圖; 第10圖是用到了使用系統簽章或簽章序列的初始存取的示例隨機存取程序的流程圖;以及 第11圖是用於配置不同的存取方法的示例程序的流程圖。
700‧‧‧示例系統
701‧‧‧系統簽章A
702‧‧‧系統簽章B
703‧‧‧系統簽章C
704a、704b、704c、705a、705b、705c、705d、705e、706a、706b、706c‧‧‧傳輸接收點(TRP)
707‧‧‧無線傳輸/接收單元(WTRU)
708、709‧‧‧隨機存取回應(RAR)
710‧‧‧服務閘道(S-GW)
711‧‧‧行動性管理閘道(MME)
712‧‧‧S1-C介面
713‧‧‧S1-U介面

Claims (12)

  1. 一種由一無線傳輸/接收單元(WTRU)所執行的方法,該方法包含:從一基地台接收在相關聯的時間及頻率資源中之一信號,該信號具有一相關聯的子載波間隔及一相關聯的波束,其中該信號包含同步信號及一主資訊塊之位元;根據該信號來確定至少一控制通道之一波束及該至少一控制通道之一位置;以及根據該至少一控制通道之所確定波束及該至少一控制通道的所確定位置來在該至少一控制通道上從一基地台接收一傳輸。
  2. 如請求項1所述的方法,更包含根據所接收的信號來確定該至少一控制通道之一頻寬及一長度。
  3. 如請求項1所述的方法,其中該信號之一第一部分與複數波束公共,而該信號之一第二部分為波束特定的。
  4. 如請求項1所述的方法,其中以一專用參考信號來傳送一廣播通道傳輸,其中該專用參考信號與該至少一控制通道的該所確定波束相關聯。
  5. 如請求項1所述的方法,更包含傳送指示用於系統資訊塊(SIB)之一請求的資訊,並因應所傳送的請求來接收這些SIB。
  6. 如請求項1所述的方法,更包含接收一定期性視窗中之這些頻率資源中至少一部分之複數信號,並接收一下一定期性視窗中之這些頻率資源的至少一部分之另外的複數信號。
  7. 一種無線傳輸/接收單元(WTRU),包含:一收發器;以及 一處理器;該收發器被配置成從一基地台接收在相關聯的時間及頻率資源中之一信號,該信號具有一相關聯的子載波間隔及一相關聯的波束,其中該信號包含同步信號及一主資訊塊之位元;該處理器被配置成根據該信號來確定至少一控制通道之一波束及該至少一控制通道之一位置;以及該處理器及該收發器被配置成根據該至少一控制通道的所確定波束與該至少一控制通道的所確定位置來在該至少一控制通道上從一基地台接收一傳輸。
  8. 如請求項7所述的WTRU,該處理器及該收發器被配置成根據所接收的信號來確定該至少一控制通道之一頻寬及一長度。
  9. 如請求項7所述的WTRU,其中該信號之一第一部分與複數波束公共,而該信號之一第二部分為波束特定的。
  10. 如請求項7所述的WTRU,該收發器被配置成接收包含一專用參考信號之一廣播通道傳輸,其中該專用參考信號與該至少一控制通道的該所確定波束相關聯。
  11. 如請求項7所述的WTRU,該收發器被配置成傳送指示用於系統資訊塊(SIB)之一請求的資訊,並因應所傳送的請求來接收這些SIB。
  12. 如請求項7所述的WTRU,該收發器被配置成接收一定期性視窗中之這些頻率資源中的至少一部分之複數信號,並接收一下一定期性視窗中之這些頻率資源中至少一部分的另外的複數信號。
TW106110900A 2016-03-30 2017-03-30 無線傳輸/接收單元(wtru)及其執行方法 TWI765881B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201662315458P 2016-03-30 2016-03-30
US62/315,458 2016-03-30

Publications (2)

Publication Number Publication Date
TW201735695A TW201735695A (zh) 2017-10-01
TWI765881B true TWI765881B (zh) 2022-06-01

Family

ID=58640992

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106110900A TWI765881B (zh) 2016-03-30 2017-03-30 無線傳輸/接收單元(wtru)及其執行方法

Country Status (5)

Country Link
US (4) US20190104551A1 (zh)
EP (2) EP3437418A1 (zh)
CN (2) CN114944897A (zh)
TW (1) TWI765881B (zh)
WO (1) WO2017173051A1 (zh)

Families Citing this family (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3427456A1 (en) 2016-03-10 2019-01-16 IDAC Holdings, Inc. Determination of a signal structure in a wireless system
WO2017174581A1 (en) * 2016-04-05 2017-10-12 Sony Corporation Wireless telecommunications apparatus and methods
CN114826847A (zh) 2016-05-11 2022-07-29 Idac控股公司 支持在同一信道内使用混合参数配置的物理(phy)层方案
WO2017217797A1 (ko) 2016-06-15 2017-12-21 엘지전자 주식회사 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2018012894A1 (en) * 2016-07-13 2018-01-18 Lg Electronics Inc. Method and user equipment for receiving system information, and method and base station for transmitting system information
EP3482599A4 (en) 2016-08-10 2019-05-29 Samsung Electronics Co., Ltd. METHOD AND DEVICE FOR SUPPORTING THE FLEXIBLE BANDWIDTH OF A USER DEVICE IN A NEXT-GENERATION COMMUNICATION SYSTEM
BR112019002748A2 (pt) * 2016-08-10 2019-05-14 Idac Holdings, Inc. método para uma unidade de transmissão/recepção sem fio, unidade de transmissão/recepção sem fio, e, estação-base
CN107734678B (zh) * 2016-08-12 2023-05-23 中兴通讯股份有限公司 一种信息传输方法、装置和***
CN107733828B (zh) * 2016-08-12 2020-10-09 电信科学技术研究院 一种确定基带参数的方法和设备
CN107733829B (zh) * 2016-08-12 2021-11-02 大唐移动通信设备有限公司 一种发送和检测同步信号的方法、设备
KR102123233B1 (ko) * 2016-09-01 2020-06-17 주식회사 케이티 차세대 무선 액세스 망에서 데이터를 송수신하는 방법 및 그 장치
CN116600392A (zh) 2016-09-10 2023-08-15 Lg电子株式会社 执行副链路操作的方法和用户设备以及控制该设备的设备
CN106572353A (zh) * 2016-10-21 2017-04-19 上海拆名晃信息科技有限公司 用于虚拟现实的无线传输方法、装置、终端和头显设备
WO2018084569A1 (ko) * 2016-11-01 2018-05-11 엘지전자 주식회사 무선 통신 시스템에서 gps 신호를 수신하여 위치 정보를 도출하는 방법 및 장치
CN113472503B (zh) 2016-11-04 2022-11-18 中兴通讯股份有限公司 一种传输带宽的配置方法及发射节点
EP3535865B1 (en) 2016-11-04 2024-02-14 Sony Group Corporation Multi-beam operation for random access transmission in a mobile radio communication network
WO2018087154A1 (en) * 2016-11-08 2018-05-17 Telefonaktiebolaget Lm Ericsson (Publ) Optimization of logical channel processing for multiple transport blocks
US11239972B2 (en) * 2016-11-17 2022-02-01 Qualcomm Incorporated Large cell support for narrowband random access
GB2561806B (en) * 2017-01-05 2021-10-06 Tcl Communication Ltd Methods and devices for accessing a radio access network
CN110383915B (zh) 2017-01-05 2023-05-09 日本电气株式会社 无线接入网节点、无线终端及其方法和非瞬时性计算机可读介质
CN112654095B (zh) 2017-01-05 2022-10-25 华为技术有限公司 传输数据的方法、网络设备和终端设备
US10797753B2 (en) * 2017-04-12 2020-10-06 Cable Television Laboratories, Inc. Systems and methods for LTE ingress characterize using PNM metrics
CN115941011A (zh) * 2017-04-27 2023-04-07 大唐移动通信设备有限公司 一种波束控制方法和装置
EP4258738A3 (en) * 2017-05-02 2024-01-17 Ntt Docomo, Inc. User equipment, base station, and random access method
US11528749B2 (en) 2017-06-08 2022-12-13 Qualcomm Incorporated Techniques and apparatuses for random access procedure in a wireless backhaul network
US11419143B2 (en) * 2017-06-08 2022-08-16 Qualcomm Incorporated Random access procedure in a wireless backhaul network
KR102366376B1 (ko) * 2017-06-15 2022-02-23 삼성전자 주식회사 Mac 계층 헤더 처리 방법 및 장치
US10772052B2 (en) * 2017-06-16 2020-09-08 Qualcomm Incorporated Controlling coexistent radio systems in a wireless device
JP6941676B2 (ja) * 2017-08-14 2021-09-29 株式会社Nttドコモ ネットワークアクセス方法及び通信システム
US10536859B2 (en) 2017-08-15 2020-01-14 Charter Communications Operating, Llc Methods and apparatus for dynamic control and utilization of quasi-licensed wireless spectrum
US10856340B2 (en) * 2017-09-15 2020-12-01 Mediatek Inc. Enhanced cell selection mechanisms in mobile communications
EP3982575A1 (en) 2017-10-11 2022-04-13 Telefonaktiebolaget LM Ericsson (publ) Acknowledgement signaling processes for radio access networks
US10340976B2 (en) 2017-10-16 2019-07-02 Charter Communications Operating, Llc Methods and apparatus for coordinated utilization of quasi-licensed wireless spectrum
US10492204B2 (en) 2017-11-15 2019-11-26 Charter Communications Operating, Llc Methods and apparatus for utilization of quasi-licensed wireless spectrum for IoT (Internet-of-Things) services
EP3711424B1 (en) * 2017-11-15 2023-11-15 Nokia Technologies Oy Connection establishment in inter-rat communication system
US10966073B2 (en) 2017-11-22 2021-03-30 Charter Communications Operating, Llc Apparatus and methods for premises device existence and capability determination
EP3714657A1 (en) * 2017-11-24 2020-09-30 Sony Corporation Early data transmission in a random access procedure
EP3721661A4 (en) * 2017-12-05 2021-07-21 Telefonaktiebolaget LM Ericsson (publ) TRANSMITTER RECEIVING POINT, PROCEDURE AND COMPUTER PROGRAM FOR REASSIGNING RADIO RADS
US10849177B2 (en) * 2018-01-08 2020-11-24 Htc Corporation Method of handling radio access technology indication and related communication device
US10405192B2 (en) 2018-01-15 2019-09-03 Charter Communications Operating, Llc Methods and apparatus for allocation and reconciliation of quasi-licensed wireless spectrum across multiple entities
US11284316B2 (en) * 2018-02-07 2022-03-22 Qualcomm Incorporated Mobile device centric clustering in wireless systems
CN112042145A (zh) * 2018-04-04 2020-12-04 Idac控股公司 多址(ma)签名传输
US11350355B2 (en) 2018-05-03 2022-05-31 Nokia Solutions And Networks Oy Selecting and managing network slices
US11432284B2 (en) 2018-05-22 2022-08-30 Charter Communications Operating, Llc Methods and apparatus for intra-cell and inter-frequency mobility optimization and mitigation of session disruption in a quasi-licensed wireless system
US10541877B2 (en) * 2018-05-29 2020-01-21 Ciena Corporation Dynamic reservation protocol for 5G network slicing
US11075846B2 (en) * 2018-06-18 2021-07-27 Qualcomm Incorporated Round-trip time signaling
US11219061B2 (en) * 2018-07-24 2022-01-04 Qualcomm Incorporated Listen-before-talk (LBT) modes for random access procedures
US11690066B2 (en) * 2018-07-30 2023-06-27 Qualcomm Incorporated Retransmission and fallback for autonomous uplink transmission
US10979874B2 (en) 2018-08-10 2021-04-13 At&T Intellectual Property I, L.P. Multi-connectivity based vehicle-to-everything communications in a wireless network
CN111328126B (zh) * 2018-12-17 2021-09-07 华为技术有限公司 通信方法及装置
US11096171B2 (en) * 2019-01-11 2021-08-17 Lg Electronics Inc. Method and apparatus for performing BWP-based communication in NR V2X
KR102541185B1 (ko) * 2019-01-11 2023-06-13 엘지전자 주식회사 측위 정보를 송수신하는 방법 및 이를 위한 장치
WO2020154886A1 (en) * 2019-01-29 2020-08-06 Zte Corporation Random access channel structure design
US10980025B2 (en) 2019-01-31 2021-04-13 Charter Communications Operating, Llc Methods and apparatus for frequency transition management in a quasi-licensed wireless system
WO2020155061A1 (en) * 2019-01-31 2020-08-06 Nec Corporation Method, device, and computer readable medium for communication
US11129171B2 (en) 2019-02-27 2021-09-21 Charter Communications Operating, Llc Methods and apparatus for wireless signal maximization and management in a quasi-licensed wireless system
CN111988862B (zh) * 2019-05-21 2022-07-19 大唐移动通信设备有限公司 随机接入信道的选择、配置方法、接入设备及网络设备
US11374779B2 (en) 2019-06-30 2022-06-28 Charter Communications Operating, Llc Wireless enabled distributed data apparatus and methods
US11438771B2 (en) 2019-07-11 2022-09-06 Charter Communications Operating, Llc Apparatus and methods for heterogeneous coverage and use cases in a quasi-licensed wireless system
WO2021034628A1 (en) * 2019-08-16 2021-02-25 Convida Wireless, Llc Channel access for unlicensed spectrum in mmw operation
US11528748B2 (en) * 2019-09-11 2022-12-13 Charter Communications Operating, Llc Apparatus and methods for multicarrier unlicensed heterogeneous channel access
US11368552B2 (en) 2019-09-17 2022-06-21 Charter Communications Operating, Llc Methods and apparatus for supporting platform and application development and operation
CN115801211A (zh) * 2019-09-24 2023-03-14 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
US11317296B2 (en) 2019-10-02 2022-04-26 Charter Communications Operating, Llc Apparatus and methods for interference handling and switching operating frequencies for devices being supported by a wireless access node
US11026205B2 (en) 2019-10-23 2021-06-01 Charter Communications Operating, Llc Methods and apparatus for device registration in a quasi-licensed wireless system
US11581911B2 (en) 2019-10-28 2023-02-14 Charter Communications Operating, Llc Apparatus and methods for phase noise mitigation in wireless systems
US11457485B2 (en) 2019-11-06 2022-09-27 Charter Communications Operating, Llc Methods and apparatus for enhancing coverage in quasi-licensed wireless systems
US11363466B2 (en) 2020-01-22 2022-06-14 Charter Communications Operating, Llc Methods and apparatus for antenna optimization in a quasi-licensed wireless system
WO2021180054A1 (en) * 2020-03-12 2021-09-16 Shanghai Langbo Communication Technology Company Limited Method and device in a node used for wireless communication
US20210385858A1 (en) * 2020-06-04 2021-12-09 Qualcomm Incorporated Random access procedure selection by an integrated access and backhaul node
CN113811001A (zh) * 2020-06-16 2021-12-17 维沃移动通信有限公司 基本时间单元的处理方法、装置及电子设备
US11483715B2 (en) 2020-07-06 2022-10-25 Charter Communications Operating, Llc Apparatus and methods for interference management in a quasi-licensed wireless system
US11831586B2 (en) * 2020-07-10 2023-11-28 Qualcqmm Incorporated Transmit receive point pairing indication
US20230189128A1 (en) * 2020-08-12 2023-06-15 Beijing Xiaomi Mobile Software Co., Ltd. Methods for access control, and communication device
US11595962B1 (en) * 2020-09-03 2023-02-28 Sprint Spectrum Llc Use of network signaling (NS) values to cooperatively control spectral emission and additional functionality such as uplink/downlink subcarrier shifting
US11877344B2 (en) 2020-12-14 2024-01-16 Charter Communications Operating, Llc Apparatus and methods for wireless coverage enhancement using technology detection
CN115915471A (zh) * 2021-08-06 2023-04-04 华为技术有限公司 一种随机接入的方法及装置
US20230090399A1 (en) * 2021-09-22 2023-03-23 Qualcomm Incorporated Link establishment using leaky-wave antennas
WO2023173394A1 (en) * 2022-03-18 2023-09-21 Qualcomm Incorporated Computing power aware random access procedure

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140241242A1 (en) * 2013-02-27 2014-08-28 Samsung Electronics Co., Ltd Methods and apparatus for channel sounding in beamformed massive mimo systems

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0212165D0 (en) * 2002-05-27 2002-07-03 Nokia Corp A wireless system
US8000305B2 (en) * 2006-01-17 2011-08-16 Motorola Mobility, Inc. Preamble sequencing for random access channel in a communication system
CN101669336B (zh) * 2007-04-27 2013-05-08 交互数字技术公司 用于多媒体广播组播服务的资源管理方法和设备
CN101632321B (zh) * 2007-06-12 2012-11-28 夏普株式会社 基站装置、移动站装置、程序、上行链路同步请求方法以及同步偏差测量用信号发送方法
KR20120093455A (ko) * 2008-08-29 2012-08-22 인터디지탈 패튼 홀딩스, 인크 다운링크 공유 서비스에 대한 피드백 신호를 전송하고 무선 송수신 유닛의 갯수를 추정하기 위한 방법 및 장치
WO2011005163A1 (en) * 2009-07-07 2011-01-13 Telefonaktiebolaget L M Ericsson (Publ) Random access procedure utilizing cyclic shift of demodulation reference signal
CN105162619A (zh) * 2010-04-02 2015-12-16 交互数字专利控股公司 被配置为协调服务控制策略和接入控制策略的***
US8861452B2 (en) * 2010-08-16 2014-10-14 Qualcomm Incorporated Method and apparatus for use of licensed spectrum for control channels in cognitive radio communications
US20120071200A1 (en) * 2010-09-22 2012-03-22 Infineon Technologies Ag Method and device for selecting a serving base station, mobile communication network, base station, and method for determining transmission characteristics
US9462539B2 (en) * 2011-11-21 2016-10-04 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node, user equipment and methods for enabling access to a radio network
KR102273492B1 (ko) 2011-12-08 2021-07-08 인터디지탈 패튼 홀딩스, 인크 복수의 무선 액세스 기술을 사용한 통신
EP3852466A1 (en) * 2012-01-25 2021-07-21 Comcast Cable Communications LLC Cell group configuration in a wireless device and base station with timing advance groups
US8964780B2 (en) * 2012-01-25 2015-02-24 Ofinno Technologies, Llc Sounding in multicarrier wireless communications
CN104186010B (zh) * 2012-03-16 2018-09-21 交互数字专利控股公司 无线***中的随机接入过程
US11405841B2 (en) * 2012-07-20 2022-08-02 Qualcomm Incorporated Using UE environmental status information to improve mobility handling and offload decisions
WO2014070048A1 (en) * 2012-10-29 2014-05-08 Telefonaktiebolaget L M Ericsson (Publ) Method for sending or receiving system information
ES2665369T3 (es) * 2013-03-15 2018-04-25 Qualcomm Incorporated Procedimiento mejorado de acceso aleatorio con formación de haces en LTE
US9713032B2 (en) 2013-04-22 2017-07-18 Telefonaktiebolaget Lm Ericsson (Publ) Transmission of a random access response message
US9451639B2 (en) 2013-07-10 2016-09-20 Samsung Electronics Co., Ltd. Method and apparatus for coverage enhancement for a random access process
KR102072417B1 (ko) * 2013-08-05 2020-02-04 삼성전자 주식회사 무선 통신 시스템에서 빠른 다중 기지국 검색 및 접속 방법 및 장치
US9499995B2 (en) * 2013-08-08 2016-11-22 Intel IP Corporation Coverage extension level for coverage limited device
US9591644B2 (en) * 2013-08-16 2017-03-07 Qualcomm Incorporated Downlink procedures for LTE/LTE-A communication systems with unlicensed spectrum
EP2887561B1 (en) * 2013-12-18 2019-07-03 Alcatel Lucent Beamforming apparatuses, methods and computer programs for a base station transceiver and a mobile transceiver
US9814068B2 (en) * 2014-03-25 2017-11-07 Telefonaktiebolaget Lm Ericsson (Publ) System and method for beam-based physical random-access
US9603165B2 (en) * 2015-01-30 2017-03-21 Telefonaktiebolaget L M Ericsson (Publ) Random-access response with analog beamforming
EP3257314A4 (en) 2015-02-13 2018-10-10 Telefonaktiebolaget LM Ericsson (publ) Methods and devices for random access
US20160270038A1 (en) 2015-03-11 2016-09-15 Samsung Electronics Co., Ltd Transmissions of downlink control channels for low cost ues
US9918344B2 (en) 2015-04-09 2018-03-13 Intel IP Corporation Random access procedure for enhanced coverage support
US10735166B2 (en) 2015-05-29 2020-08-04 Huawei Technologies Co., Ltd. System and method of UE-centric radio access procedure
US10064217B2 (en) * 2015-10-16 2018-08-28 Samsung Electronics Co., Ltd. Method and apparatus for enabling flexible numerology in multi-user MIMO system
US11089579B2 (en) * 2016-01-13 2021-08-10 Samsung Electronics Co., Ltd. Method and apparatus for supporting multiple services in advanced MIMO communication systems

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140241242A1 (en) * 2013-02-27 2014-08-28 Samsung Electronics Co., Ltd Methods and apparatus for channel sounding in beamformed massive mimo systems

Also Published As

Publication number Publication date
CN114944897A (zh) 2022-08-26
US20230089690A1 (en) 2023-03-23
TW201735695A (zh) 2017-10-01
US11856614B2 (en) 2023-12-26
US11284445B2 (en) 2022-03-22
WO2017173051A1 (en) 2017-10-05
CN108886819A (zh) 2018-11-23
EP3437418A1 (en) 2019-02-06
US20200214049A1 (en) 2020-07-02
CN108886819B (zh) 2022-05-10
US20240188139A1 (en) 2024-06-06
EP3793124A1 (en) 2021-03-17
US20190104551A1 (en) 2019-04-04

Similar Documents

Publication Publication Date Title
TWI765881B (zh) 無線傳輸/接收單元(wtru)及其執行方法
US11729753B2 (en) Framing, scheduling, and synchronization in wireless systems
US11838244B2 (en) Receiver bandwidth adaptation
TWI750499B (zh) 無線傳輸/接收單元(wtru)功率控制方法及裝置
KR102631724B1 (ko) 물리적 레이어 이동성 프로시져를 수행하기 위한 방법 및 장치
CN115835346A (zh) 用于在无线网络中有效功率节省的方法和装置